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Abstract

The Douglas’ majorization and factorization theorem characterizes the inclusion of oper-
ator ranges in Hilbert spaces. Notably, it reinforces the well-established connections between
the inclusion of kernels of operators in Hilbert spaces and the (inverse) inclusion of the clo-
sures of the ranges of their adjoints. This note aims to present a “mixed” version of these
concepts for operators with a codomain in a product space. Additionally, an application in
control theory of coupled systems of linear partial differential equations is presented.
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1 Introduction

The goal of this note is to provide new insights into the celebrated Douglas’ majorization
and factorization theorem proved in [3] (see Theorem 1.1) on the inclusion of operator ranges
in Hilbert spaces. We will reinterpret Douglas’ majorization and factorization theorem as a
reinforcement of well-known properties related to the inclusions of the closures of operator
ranges. This can also be expressed in a form resembling a “non-quantitative majorization”
and “non-continuous factorization” theorem (see Theorem 1.2), which we will refer to as the
“weak majorization and factorization theorem”. We do not claim originality for this “theorem”;
rather, its significance lies in its analogy with Douglas’ theorem.

Once this basic analogy is established, we will examine operators whose codomain is a
product Hilbert space. This will enable us to derive a “mixed” version of the Douglas’ and
weak majorization and factorization theorems (our main Theorem 2.1). The necessary and
sufficient conditions given in this theorem are not really easy to manipulate, so we give some
sufficient conditions (Propositions 2.4 and 2.6) that might be easier to verify in practice.

It is well-known that Douglas’ majorization and factorization theorem is an essential tool for
studying abstract linear control systems in infinite dimensional spaces (see the seminal paper
[2]). Here, the applications we have in mind come from the control theory of coupled systems
of linear partial differential equations (see e.g. [5, Theorem 1.10], where the kind of mixed
version presented later on appears naturally), but our hope is that the present note might also
be helpful in other fields of mathematics. Notably, we present in Section 3 an application to
a toy model of coupled heat system. This is for illustration purpose and we do not intend to
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transform this note into a specialized paper in control theory. Further advanced applications in
control theory will be discussed elsewhere.

1.1 Douglas’ majorization and factorization Theorem and a weaker analogue

Let us set some useful and standard notations. For a set E in a metric space, E is the closure
of E. For an operator T between linear spaces, R(T ) is the range of T , and N (T ) is the kernel
of T . For E and F two normed vector spaces, Lc(E,F ) is the set of linear continuous maps
from E to F (endowed with the operator norm ||| · |||), whereas L(E,F ) is the set of linear (and
non-necessarily continuous) maps from E to F .

Now, let us consider H1, H2, H3 some (all) real or (all) complex Hilbert space, endowed
with some scalar or hermitian product (assumed to be left-linear in the complex case), with
associated norm respectively || · ||i (i = 1, 2, 3). Consider two operators A ∈ Lc(H1, H3) and
B ∈ Lc(H2, H3). Then, we have the following so-called Douglas’ majorization and factorization
theorem:

Theorem 1.1. The following statements are equivalent :

(i) (range inclusion) R(A) ⊂ R(B) (or, equivalently, for any h1 ∈ H1, there exists h2 ∈ H2

such that Ah1 = Bh2).

(ii) (majorization) There exists C > 0 such that for any z ∈ H3, we have

||A∗z||1 ⩽ C||B∗z||2.

(iii) (factorization) A = BC for some C ∈ Lc(H1, H2) (or, equivalently, A∗ = DB∗ for some
D ∈ Lc(H2, H1)).

Theorem 1.1 can be seen as a refinement of the following “theorem”.

Theorem 1.2. The following statements are equivalent :

(i) (closure of range inclusion) R(A) ⊂ R(B) (or, equivalently, R(A) ⊂ R(B), or equiva-
lently, for any h1 ∈ H1 and any ε > 0, there exists h2 ∈ H2 such that ||Ah1−Bh2||3 ⩽ ε).

(ii) (non-quantitative majorization) N (B∗) ⊂ N (A∗), i.e.

∀z ∈ H3, B
∗z = 0 ⇒ A∗z = 0.

(iii) (non-continous factorization) A∗ = DB∗ for some D ∈ L(H2, H1) not necessarily contin-
uous.

Remark 1.3. Since D needs not to be continuous here, the factorization property A = BC for
some C ∈ L(H1, H2) not necessarily continuous cannot be derived by passing to the adjoint. This
is reasonable, since A = BC implies that R(A) ⊂ R(B), even if C is not continuous, and this
property is clearly stronger than the desired one R(A) ⊂ R(B) in infinite dimension (consider
for instance a non-onto operator B with dense range, and any A such that R(A) ̸⊂ R(B)).
Notably, by Theorem 1.1, we see that A = BC1 for some C1 ∈ L(H1, H2) not necessarily
continuous implies that A = BC2 for some C2 ∈ Lc(H1, H2).

Proof. We claim no originality in the statement and proof of this “theorem”. The equivalence
between (i) and (ii) is of course totally standard by passing to the orthogonal. Let us remind
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how to prove the equivalence between (ii) and (iii). That (iii) implies (ii) is trivial by linearity
of D. The fact that (ii) implies (iii) is standard: we first set

D : B∗h2 ∈ R(B∗) 7→ A∗h2 ∈ R(A∗),

which is well-defined by (ii) and linear by easy computations. Then, we consider any algebraic
complement F of the range of B∗, and for h3 = f + B∗h2 with f ∈ F , we set D(h3) = A∗h2.
Then D is well-defined by (ii), linear by easy computations, and by setting f = 0 we indeed
have that for any h2 ∈ H2, D(B∗h2) = A∗h2.

1.2 A mixed version for a range in a product space

Now, assume that we haveH3 = H4×H5, whereH4, H5 are some Hilbert spaces on the same field
as H1, H2, endowed with some scalar or hermitian product, with associated norm respectively
|| · ||i (i = 4, 5). As usual, we endow in this case H3 with the Hilbertian norm

||(h4, h5)||2H3
= ||h4||2H4

+ ||h5||2H5
, (h4, h5) ∈ H4 ×H5.

Then, for hi ∈ Hi (i = 1, . . . 4), one can write

A(h1) =

(
A1(h1)
A2(h1)

)
=

(
A1

A2

)
h1,

with A1 ∈ Lc(H1, H4), A2 ∈ Lc(H1, H5), or equivalently

A∗(h4, h5) = A∗
1(h4) +A∗

2(h5) =
(
A∗

1 A∗
2

)(h4
h5

)
,

and the same for B:

B(h2) =

(
B1(h2)
B2(h2)

)
=

(
B1

B2

)
h2,

with B1 ∈ Lc(H2, H4), B2 ∈ Lc(H2, H5), or equivalently

B∗(h4, h5) = B∗
1(h4) +B∗

2(h5) =
(
B∗

1 B∗
2

)(h4
h5

)
.

Our main result will some kind of “mixed” usual-weak Douglas’ majorization and factor-
ization Theorem: for the first component of A, we ask for an exact inclusion of range, but for
the second component, we ask for some approximate inclusion of range. More precisely, our
objective is to characterize the following property.

Goal 1.4. For any h1 ∈ H1 and any ε > 0, find h2 ∈ H2 such that A1h1 = B1h2 and
||A2h1 −B2h2||5 ⩽ ε.

The important point here is that the same h2 has to realise both objectives. Clearly, this
has to be more restrictive than the following properties taken separately :

• For any h1 ∈ H1, find h2 ∈ H2 such that A1h1 = B1h2.

• For any h1 ∈ H1 and any ε > 0, find h̃2 ∈ H2 such that ||A1h1 − B1h̃2||5 ⩽ ε and
||A2h1 −B2h̃2||5 ⩽ ε.

This gives some natural necessary conditions given in Proposition 1.5. One of the goal of this
note will be to understand how to fill the gap in order to find reinforcements of these necessary
conditions that turn out to be also sufficient (see Theorem 2.1).
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Proposition 1.5. Necessary conditions for Goal 1.4 to hold are the following (equivalent)
properties: (i) There exists C > 0 such that for any h4 ∈ H4, we have

||A∗
1h4||1 ⩽ C||B∗

1h4||2,

and N (B∗) ⊂ N (A∗), i.e. ∀(h4, h5) ∈ H3, B
∗
1h4 +B∗

2h5 = 0 ⇒ A∗
1h4 +A∗

2h5 = 0.

(ii) A1 = B1C1 for some C ∈ Lc(H1, H4) (or, equivalently, A∗
1 = D1B

∗
1 for some D1 ∈

Lc(H4, H1)), and A
∗ = DB∗ for some D ∈ L(H2, H1) not necessarily continuous.

Remark 1.6. In general, properties (i) and (ii) of Proposition 1.5 are not sufficient for Goal
1.4 to hold. We will provide a counterexample in Proposition 2.3.

Proof. Necessarily, if Goal 1.4 holds, then, for any h1 ∈ H1, there exists h2 ∈ H2 such that
A1h1 = B1h2. So, one can apply Douglas’ majorization and factorization theorem 1.1 and
deduce that there exists C > 0 such that for any z ∈ H3, we have

||A∗
1z||1 ⩽ C||B∗

1z||2,

and A1 = B1C1 for some C ∈ Lc(H1, H4), or, equivalently, A∗
1 = D1B

∗
1 for some D1 ∈

Lc(H4, H1).
Moreover, clearly, we also have that there exists h2 ∈ H2 such that ||A1h1 − B1h2||24 +

||A2h1 − B2h2||2 ⩽ ε. So, applying Theorem 1.2 leads to the N (B∗) ⊂ N (A∗), i.e. ∀(h4, h5) ∈
H3, B

∗
1h4 + B∗

2h5 = 0 ⇒ A∗
1h4 + A∗

2h5 = 0, and A∗ = DB∗ for some D ∈ L(H2, H1) not
necessarily continuous. This gives the (equivalent) necessary conditions (i) and (ii).

2 Main result

We can now state our mixed version of a majorization and factorization theorem.

Theorem 2.1. The following statements are equivalent:

(i) (mixed range inclusion and closure of range inclusion) Goal 1.4 is fullfilled: for any h1 ∈
H1 and any ε > 0, there exists h2 ∈ H2 such that A1h1 = B1h2 and ||A2h1 −B2h2|| ⩽ ε.

(ii) (mixed quantitative and non-quantitative majorization) The two following conditions hold.

– There exists C > 0 such that for any h4 ∈ H4, we have

||A∗
1h4||1 ⩽ C||B∗

1h4||2.

– Consider any h5 ∈ H5 such that there exists some (yn) ∈ HN∗
4 for which B∗

2h5 =
limn→+∞B∗

1yn. Then, A∗
2h5 = limn→+∞A∗

1yn.

(iii) (mixed continuous and non-continuous factorization) Let us call Π the orthogonal
projection on N (B1) in H2. Then, A∗

1 = D1B
∗
1 and A∗

2 = (D1 +D2Π)B
∗
2 for some

D1 ∈ Lc(H2, H1) and D2 ∈ L(N (B1), H1) not necessarily continuous.

Remark 2.2. (ii) and (iii) enable to understand the gap between the necessary conditions
given in Proposition 1.5 and necessary and sufficient conditions. Notably, one readily observes
that condition (ii) in Theorem 2.1 is stronger than condition (i) in Proposition 1.5 (consider a
constant sequence), and that condition (iii) in Theorem 2.1 is stronger than condition (ii) in
Proposition 1.5 (just extend D2 to 0 on N (B1)

⊥ so that it is now defined on H2).
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Proof. Let us first prove that (i) implies (iii). First of all, we remark that (i) notably implies
that R(A1) ⊂ R(B1), so we can apply Theorem 1.1 and deduce that A1 = B1C1 for some
C1 ∈ Lc(H1, H2). By assumption, for any ε > 0 and any h1 ∈ H1, there exists h2 ∈ H2 such
that A1h1 = B1h2 and ||A2h1 − B2h2|| ⩽ ε. For such ε, h1, h2, we have B1(C1h1 − h2) = 0, so
h2 = C1h1 + u for some u ∈ N (B1). Now, for fixed h1, (i) implies that we should also have
A2h1 = B2h2 = B2C1h1 + B2u, i.e. ||A2h1 − B2C1h1 − B2u|| ⩽ ε for some u ∈ N (B1). We
deduce that

R(A2 −B2C1) ⊂ R(B̃2),

where B̃2 = (B2)|N (B1). Applying Theorem 1.2 implies that that there exists some D2 ∈
L(N (B1), H1) not necessarily continuous such that

A∗
2 − C∗

1B
∗
2 = D2B̃

∗
2 .

Remarking that B̃∗
2 = ΠB∗

2 and introducing D1 = C∗
1 gives that (iii) is verified.

Now, let us prove that (iii) implies (ii). This is just a question of remarking that for any
(h4, h5) ∈ H4 ×H5, we have

A∗1h4 +A∗
2h5 = D1B

∗
1h4 + (D1 +D2Π)B

∗
2h5

= (D1 +D2Π)(B
∗
1h4 +B∗

2h5),

since B1Π = 0 by definition of Π (so Π∗B∗
1 = ΠB∗

1 = 0). Choosing h5 = 0 leads to

||A∗
1h4||1 ⩽ C||B∗

1h4||2,

with C = |||D1|||, which gives the first property of (ii). For the second property, it is a little bit
more intricate. Assume that for some h5 ∈ H5, we have some (yn) ∈ HN∗

4 such that

B∗
2h5 = lim

n→+∞
B∗

1yn.

This assertion is equivalent to the fact that B∗
2h5 ∈ R(B∗

1) = N (B1)
⊥, i.e., is equivalent

to the fact that ΠB∗
2h5 = 0. So, for such a h5, we have by (iii) that A∗

1h5 = D1B
∗
1h5 and

A∗
2h5 = D1B

∗
2h5. Now, remark that for any n ∈ N∗, we have D1B

∗
1yn = A1yn. By continuity of

D1, this quantity converges as n→ +∞ to D1B
∗
2h5 = A∗

2h5, whence the desired result.

It remains to prove that (ii) implies (i). First of all, applying Douglas’ majorization and
factorization theorem 1.1 to A1 and B1, we know that A1 = B1C1 for some C1 ∈ Lc(H1, H2).
Let us prove that

R(A2 −B2C1) ⊂ R(B̃2),

where B̃2 = (B2)|N (B1), i.e., by passing to the orthogonal,

N (ΠB∗
2) ⊂ N (A∗

2 − C∗
1B

∗
2).

Let us consider some h4 ∈ N (ΠB∗
2). This means that ΠB∗

2h4 = 0, i.e. B∗
2h ∈ N (B1)

⊥, i.e.
B∗

2h ∈ R(B∗
1). Hence, we have some (yn) ∈ HN∗

4 such that

B∗
2h5 = lim

n→+∞
B∗

1yn,

and by hypothesis, we also have

A∗
2h5 = lim

n→+∞
A∗

1yn = lim
n→+∞

C∗
1B

∗
1yn = C∗

1B
∗
2h5.
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So we have h5 ∈ N (A∗
2 − C∗

1B
∗
2), as needed. We deduce that

R(A2 −B2C1) ⊂ R(B̃2).

Hence, for any ε > 0 and any h2 ∈ H2, we have ||A2h1−B2C1h1−B2u|| ⩽ ε for some u ∈ N (B1).
Setting h2 = C1h1 + u, we have (i) has needed, since B1h2 = B1(C1h1 + u) = A1h1.

Now that we have proved Theorem 2.1, we can go back to the counterexample evoked in
Remark 1.6.

Proposition 2.3. Condition (i) or (ii) in Proposition 1.5 are in general not sufficient for Goal
1.4 to hold.

Proof. Let us give an appropriate counterexample. Consider H any separable Hilbert space of
infinite dimension, endowed with a norm || · ||, and consider {en}n∈N∗ a Hilbert basis of H. We
choose

H1 = H2 = H4 = H5 = H.

Assume for the moment that one can find selfadjoint B1 and B2 (so we can forget the adjoint on
these operators in our reasoning) such that the closure of (B2)

−1(R(B1)), denoted by F , is not
equal to H, and such that (B2)

−1(R(B1)) = H. We take A1 = 0, so that A1 = B1C1 with C1 =
0 ∈ Lc(H). We consider A2 the orthogonal projection on F⊥. Assume that B1h4 + B2h5 = 0
for some (h4, h5) ∈ H2. We deduce that B2h5 ∈ R(B1), so h5 ∈ F . By our choice of A2, we
deduce that A2h5 = 0, so we have the property that A1h4 +A2h5 = 0, as needed. However, we
do not have the stronger property that for any h1 ∈ H1 and any ε > 0, there exists h2 ∈ H such
that A1h1 = B1h2 and ||A2h1−B2h2|| ⩽ ε. Indeed, by contradiction, this would mean that (iii)
of Theorem 2.1 holds. Remark that any h5 ∈ H is such that there exists some (yn) ∈ HN∗

4 for
which B2h5 = limn→+∞B1yn, since (B2)

−1(R(B1)) = H. We need to conclude that A2h5 = 0,
i.e. h5 ∈ N (A2) = F , which is of course not possible if we have chosen h5 ∈ F⊥ \ {0}.

It remains to prove the existence of such B1, B2. Consider B1 as the unique linear operator
such that B1(en) = en/n

2 for all n ∈ N∗, and B2(h) = ⟨h, x⟩x, where x =
∑+∞

n=1 en/n. B1

is a diagonal operator on a Hilbert basis, so it is selfadjoint. B2 is also clearly selfadjoint by
using the definition of the adjoint operator. Moreover, R(B1) is dense in H, so that we have
(B2)

−1(R(B1)) = H. Then, h ∈ (B2)
−1(R(B1)) is equivalent to the fact that B2(h) ∈ R(B1),

which is equivalent to the existence of a sequence (fn)n∈N∗ of l2(N∗) such that for any n ∈ N∗,
we have

⟨h, x⟩
n

=
fn
n2
, i.e. ⟨h, x⟩ = fn

n
.

Notably, fn/n has necessarily to be constant, which means that fn = 0, since (fn)n∈N∗ ∈ l2(N∗).
We deduce that for any h ∈ (B2)

−1(R(B1), we have ⟨x, h⟩ = 0, which implies that
(B2)

−1(R(B1)) ⊂ x⊥, and concludes our proof since x⊥ is closed.

Our previous theorem might be difficult to prove in practice. So, our next goal is to give
effective sufficient conditions, that can be verified in practice, as we will see afterwards on a
simple example. More precisely, in what follows, we are interested to understand what can be
added as an hypothesis so that the conditions given in Proposition 1.5 become sufficient. The
first one is the following.

Proposition 2.4. Assume that (B∗
2)

−1(R(B∗
1)) = (B∗

2)
−1(R(B∗

1)). Then, condition (i) or (ii)
in Proposition 1.5 are sufficient in order that Goal 1.4 holds.
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Remark 2.5. • Notably, if R(B∗
1) (or, equivalently, R(B1)) is closed, then, Proposition

2.4 applies. This is automatically the case if one of the Hilbert spaces H2 or H4 is finite-
dimensional.

• Of course, the counterexample provided in Proposition 2.3 does not verify (B∗
2)

−1(R(B∗
1)) =

(B∗
2)

−1(R(B∗
1)).

Proof. Indeed, by (i) in Proposition 1.5, we have that there exists C > 0 such that for any
h4 ∈ H4, we have

||A∗
1h4||1 ⩽ C||B∗

1h4||2.

Now, consider any h5 ∈ H5 such that there exists some (yn) ∈ HN∗
4 for which B∗

2h5 =
limn→+∞B∗

1yn. Then, h5 ∈ (B∗
2)

−1(R(B∗
1)). Since (B∗

2)
−1(R(B∗

1)) = (B∗
2)

−1(R(B∗
1)), we

deduce that limn→+∞B∗
1yn = B∗

1y for some y ∈ H4. So we have

B∗
2h5 +B∗

1(−y) = 0,

and we deduce thanks to condition (ii) in Proposition 1.5 that

A∗
2h5 +A∗

1(−y) = 0,

i.e. A∗
2h5 = A∗

1y. Since for any n ∈ N∗, we have

||A∗
1(y − yn)||1 ⩽ C||B∗(y − yn)||2,

we deduce that we also have A∗
1y = limn→+∞A∗

1yn. So we deduce that A∗
2h5 = limn→+∞A∗

1yn,
and Theorem 2.1 applies, which concludes our proof.

Unfortunately, for the applications we have in mind, (B∗
2)

−1(R(B∗
1)) = (B∗

2)
−1(R(B∗

1)) will
not be verified, or hard to verify, in practice. So, our next goal is to give an effective sufficient
condition, that can be verified in practice, as we will see afterwards on a simple example.
Assume that N (B∗) = 0. Then, introduce the following Hilbertian norm on H4:

||h4||2∗ = ||B∗
1h4||22.

It is a norm. Indeed, if B∗
1h4 = 0, notably, we have B∗(h4, 0) = 0, and so (h4, 0) = 0. We

introduce the completion H4
||·||∗

for this norm, and

X = H4
||·||∗ ×H5,

endowed with the Hilbertian norm

||(h4, h5)||2∗ = ||B∗
1h4||22 + ||h5||25,

which makes X a Hilbert space.
Then, by definition of || · ||∗, one can extend B∗ on X as a linear continuous map, still

denoted by B∗. Under these hypotheses, we have the following proposition.

Proposition 2.6. If N (B∗) = 0, if the extension B∗ on X also verifies N (B∗) = 0, and if
there exists C > 0 such that for any h4 ∈ H4, we have

||A∗
1h4||1 ⩽ C||B∗

1h4||2,

then, for any h1 ∈ H1 and any ε > 0, there exists h2 ∈ H2 such that A1h1 = B1h2 and
||A2h1 −B2h2|| ⩽ ε.
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Remark 2.7. It might seem surprising the condition of Proposition 2.6 does not depend on A2.
In fact, this comes from the strong assumption that N (B∗) = 0, which implies by orthogonality
that B has dense range. So, R(B) is so “big” that in this context, the exact form of A2 is not
important. This can also be observed during the proof.

Proof. According to Theorem 2.1, we only need to prove that for any h5 ∈ H5 such that
there exists some (yn) ∈ HN∗

4 for which B∗
2h5 = limn→+∞B∗

1yn, then, A
∗
2h5 = limn→+∞A∗

1yn.
Consider such a h5. Then, remark that the sequence (yn, 0)n∈N∗ is a Cauchy sequence for
the || · ||∗-norm, so it converges to some (z, 0) ∈ X. By uniqueness, we necessarily have that
B∗

1z = B∗
2h5. So, we have that (z,−h5) ∈ N (B∗), and hence z = h5 = 0, which implies that

A∗
2h5 = 0. To conclude, remark that since ||A∗

1yn||1 ⩽ C||B∗
1yn||2 for any n ∈ N∗, we also have

A∗
1yn → 0 as n→ +∞, which concludes the proof.

3 An example : a coupled heat system on a bounded domain

Let T > 0. Let Ω a bounded, connected and open set of Rd d ∈ N∗ of class C 2, ω a nonempty
open subset of Ω. Consider some reaction-diffusion model of the form

∂y

∂t
−∆y = 1ωh in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,
y (0, ·) = y0 in Ω,

∂z

∂t
−∆z = y in (0, T )× Ω,

z = 0 on (0, T )× ∂Ω,
z (0, ·) = z0 in Ω,

(3.1)

for some y0, z0 ∈ L2(Ω) and some h ∈ L2((0, T ),Ω). Remind that this system is

• null-controllable in arbitrary small time : for any T > 0, for any y0, z0 ∈ L2(Ω), there
exists h ∈ L2((0, T ),Ω) such that y(T ) = z(T ) = 0;

• and also approximately controllable in arbitrary small time: for any T > 0, for any
y0, z0, yT , zT ∈ L2(Ω), for any ε > 0 there exists h ∈ L2((0, T ),Ω) such that ||y(T )−yT || ⩽
ε and ||z(T )− zT || ⩽ ε.

Both results are well-known and consequences for instance of the results given in [1].
As explained in Remark 3.2, for the question we would like to investigate in what follows,

there is no loss of generality by assuming that z0 = 0, so we will instead look at

∂y

∂t
−∆y = 1ωh in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,
y (0, ·) = y0 in Ω,

∂z

∂t
−∆z = y in (0, T )× Ω,

z = 0 on (0, T )× ∂Ω,
z (0, ·) = 0 in Ω,

(3.2)

which of course enjoys similar approximate and null controllability properties.
Let us introduce the following spaces and operators, according to our previous notations.

• H1 = H2 = H4 = H5 = L2(Ω).
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• A(y0) = (y(T ), z(T )), where (y, z) is the corresponding solution of (3.2) for h = 0 and
z0 = 0, so A1(y

0) = y(T ) and A2(y
0) = z(T ).

• B(h) = −(y(T ), z(T )), where (y, z) is the corresponding solution of (3.2) for y0 = z0 = 0,
so B1(h) = −y(T ) and B2(h) = −z(T ).

Let us now investigate a problem mixing null-controllability and approximate controllability.
As far as we know, this result is new.

Proposition 3.1. For any (y0, zT ) ∈ L2(Ω)2 and any ε > 0, there exists h ∈ H2 such that the
solution (y, z) of (3.2) verifies y(T ) = 0 and ||z(T )− zT ||L2(Ω) ⩽ ε.

Proof. By the superposition principle for linear equations, we have y(T ) = A1(y
0)−B1(h) and

z(T ) = A2(y
0). So we can reformulate our question as follows : for any (y0, zT ) ∈∈ L2(Ω)2 and

any ε > 0, there exists h ∈ H2 such that the solution (y, z) of (3.2) verifies A1(y
0) = B1(h) and

||A2(y
0)−B2(h)− zT || ⩽ ε.

We first compute the adjoint operators of A1, B1 and A,B (from which we can easily deduce
the expression of A∗

2 and B∗
2 , but they are not explicitly needed). It will be convenient to

introduce the adjoint system of (3.2):

−∂ϕ
∂t

−∆ϕ = ψ in (0, T )× Ω,

ϕ = 0 on (0, T )× ∂Ω,
ϕ (T, ·) = ϕT in Ω,

−∂ψ
∂t

−∆ψ = 0 in (0, T )× Ω,

ψ = 0 on (0, T )× ∂Ω,
ψ (T, ·) = ψT in Ω,

(3.3)

where ϕT , ψT ∈ L2(Ω). We will also need the following scalar equation:
−∂η
∂t

−∆ϕ = 0 in (0, T )× Ω,

η = 0 on (0, T )× ∂Ω,
η (T, ·) = ϕT in Ω,

(3.4)

where ϕT ∈ L2(Ω). Then, reasoning by density and performing integrations by parts, the
solution of (3.2) verifies : for any ϕT , ψT ∈ L2(Ω),

⟨y(T ), ϕT ⟩L2(Ω) + ⟨z(T ), ψT ⟩L2(Ω) − ⟨y0, ϕ(0)⟩L2(Ω) =

∫ T

0

∫
ω
h(t, x)ϕ(t, x)dxdt,

where (ϕ, ψ) verifies (3.3) Notably, taking ψT = 0 and h = 0 leads to

⟨y(T ), ϕT ⟩L2(Ω) = ⟨y0, ϕ(0)⟩L2(Ω).

But ψT = 0 implies that ψ = 0, which implies that in fact this ϕ is equal to the solution η of
(3.4). Hence, we have

A∗
1(ψ

T ) = η(0).

Now, taking h = 0 leads to

⟨z(T ), ψT ⟩L2(Ω) + ⟨y(T ), ϕT ⟩L2(Ω) = ⟨y0, ϕ(0)⟩L2(Ω).

We deduce that
A∗(ϕT , ψT ) = ϕ(0).
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Applying a similar strategy leads to

B∗
1(ϕ

T , ψT ) = −η1ω
and

B∗(ϕT , ψT ) = −ϕ1ω.
Now, our goal is to apply Proposition 2.6. N (B∗) = 0 is true: if B∗(ϕT , ψT ) = 0, then ϕ = 0 on

(0, T )× 1ω. Differentiating and using (3.3), we obtain that −∂ϕ
∂t

−∆ϕ = ψ = 0 on (0, T )× ω.

By Holmgren’s uniqueness Theorem, ψ is analytic in space, so ψ = 0 on (0, T )×Ω. We notably
deduce by continuity in time that ψT = 0. Going back to the first equation in (3.3) and doing
exactly the same reasoning implies that ϕT = 0, as needed.

Introduce the following Hilbertian norm on L2(Ω)2:

||(ϕT , ψT )||2∗ =
∫ T

0

∫
ω
η(t, x)2dxdt+

∫
Ω
ψT (x)2dx,

and consider B∗ to be the extension of B∗ on the completed space X. Then, we still have
N (B∗) = 0. In order to prove that, we will prove that for any (ϕT , ψT ) ∈ X, we can associate
a solution (ϕ, ψ) to (3.3) such that ψ ∈ L2((0, T ′), L2(Ω)) for any T ′ < T . Indeed, classical
Carleman estimates for the heat equation (see e.g. [7, Theorem 9.4.1]) imply that for any
(ϕT , ψT ) ∈ L2(Ω)2, we have, for some C > 0 (that might depend on T and change from line to
line in the following reasoning),∫ T

0

∫
Ω
e−

C
T−tϕ(t, x)2dxdt ⩽ C

(∫ T

0

∫
ω
ϕ(t, x)2dxdt+

∫ T

0

∫
Ω
ψ(t, x)2dxdt

)
.

Moreover, a classical well-posedness result also ensures that∫ T

0

∫
Ω
ψ(t, x)2dxdt ⩽ C

∫
Ω
ψT (x)2dx ⩽ C||(ϕT , ψT )||2∗. (3.5)

We deduce that∫ T

0

∫
Ω
e−

C
T−tϕ(t, x)2dxdt ⩽ C

(∫ T

0

∫
ω
ϕ(t, x)2dxdt+

∫
Ω
ψT (x)2dx

)
⩽ C

(∫ T

0

∫
ω
η(t, x)2dxdt+

∫ T

0

∫
ω
(ϕ− η)(t, x)2dxdt+ ||(ϕT , ψT )||2∗

)
⩽ C

(∫ T

0

∫
ω
(ϕ− η)(t, x)2dxdt+ ||(ϕT , ψT )||2∗

)
.

(3.6)
Remark that η̃ = ϕ− η verifies

−∂η̃
∂t

−∆η̃ = ψ in (0, T )× Ω,

η̃ = 0 on (0, T )× ∂Ω,
η̃ (T, ·) = 0 in Ω,

(3.7)

So by a classical well-posedness result, we also have∫ T

0

∫
ω
(ψ − η)(t, x)2dxdt ⩽ C

∫ T

0

∫
Ω
(ϕ− η)(t, x)2dxdt

⩽ C

∫ T

0

∫
Ω
ψ(t, x)2dxdt

⩽ C

∫
Ω
ψT (x)2dx

⩽ C||(ϕT , ψT )||2∗.
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Going back to (3.6), we deduce that∫ T

0

∫
Ω
e−

C
T−tϕ(t, x)2dxdt ⩽ C||(ϕT , ψT )||2∗. (3.8)

From (3.5) and (3.8), we deduce by density that for any T ′ < T and any (ϕT , ψT ) ∈ X, we
can associate a solution (ϕ, ψ) to (3.3) such that for any T ′ < T , we have y ∈ L2((0, T ′) × Ω).
So notably, if B∗(ϕT , ψT ) = 0, then, we have ϕ = ψ = 0 on L2((0, T ′)×Ω). This is true for any
T ′ < T , so we deduce that ϕ = ψ = 0 on L2((0, T ) × Ω). This exactly means that N (B∗) = 0
on X, so that Proposition 2.6 applies and our result is proved.

Remark 3.2. In fact, Proposition 3.1 also implies the same property for system (3.1), namely,
For any (y0, z0, zT ) ∈ zT and any ε > 0, there exists h ∈ H2 such that the solution (y, z) of (3.1)
verifies y(T ) = 0 and ||z(T ) − zT || ⩽ ε. Indeed, introducing A3(z

0) the solution of (3.1) with
y0 = h = 0, and with the notations of the proof of Proposition 3.1, the superposition principle
says that our problem is equivalent to: for any (y0, z0, zT ) ∈ L2(Ω)3 and any ε > 0, there exists
h ∈ H2 such that A1(y

0) = B1(h) and ||A2(y
0) + A3(z

0) − B2(h) − zT || ⩽ ε, which is clearly
implies by Proposition 3.1 (just change zT into zT −A3(z0)).

4 Further results, comments, open problems

More products. Of course, one can consider operators with codomain in products of more
than two spaces: assume that we have some Hilbert spaces E1, . . . Ep on which one wants the
“exact range inclusion property”, and F1, . . . Fm on which one wants the “closure of range
inclusion” property. One can obtain the analogue of Theorem 2.1 just by setting H4 = E1 ×
. . .× Ep and H5 = F1 × . . .× Fm, endowed with the natural Hilbertian product norm.

The case of Banach spaces. The analog of Douglas’ majorization and factorization theorem
in Banach spaces might be false if we work with non-reflexive Banach spaces (see [4]). However,
the result given in [4] notably gives that we have an analog of Douglas’ majorization and
factorization theorem for reflexive Banach spaces, for which all orthogonality relation that are
true in Hilbert spaces also hold. So Theorem 2.1 is also valid in the case of reflexive Banach
spaces.

Extending Proposition 2.6. Even if the condition N (B∗) = 0 is often verified in practice in
many examples (notably coming from control theory), it is a very restrictive condition. Here is
a possible way to extend a little bit the results. Assume that R(B) is itself a cartesian subspace
of H4 ×H5. Then, we can replace B with B̃, obtained by restricting the codomain to R(B). B̃
is now with dense range, so N (B̃∗) = 0. Since R(B) is cartesian, we can apply Proposition 2.6
to this operator. In the general case, we have no idea of how to find an analogue to Proposition
2.6. Notably, it would be reasonable that a condition on A2 appears in such an analogue.

Unbounded operators. We do not treat the general case of unbounded operators A and B
on Hilbert or Banach spaces, that is more involved (see [3] or [6]). Here, the situation is likely
to be even more complicated and we leave it for further investigation.
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