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Abstract

This paper aims to answer an open problem posed by Morancey in 2015 concerning the null control-
lability of the heat equation on (−1, 1) with an internal inverse square potential located at x = 0. For the
range of singularity under study, after having introduced a suitable self-adjoint extension that enables to
transmit information from one side of the singularity to another, we prove null-controllability in arbitrary
small time, firstly with an internal control supported in an arbitrary measurable set of positive measure,
secondly with a boundary control acting on one side of the boundary. Our proof is mainly based on
a precise spectral study of the singular operator together with some recent refinements of the moment
method of Fattorini and Russell. This notably requires to use some fine (and sometimes new) properties
for Bessel functions and their zeros.
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1 Introduction

1.1 Statement of the problem and main result

This article is mainly dedicated to investigating the null-controllability properties of the following singular
parabolic equation with inverse square potential

∂tf(t, x)− ∂2xxf(t, x) +
c

x2
f(t, x) = u(t, x)1ω(x), (t, x) ∈ (0, T )× (−1, 1),

f(t,−1) = f(t, 1) = 0, t ∈ (0, T ),

f(0, x) = f0(x), x ∈ (−1, 1),

(1.1)

where c ∈ R, T > 0 is a horizon time, ω is a measurable subset of (−1, 1) assumed to have positive Lebesgue
measure, 1ω denotes the characteristic function on ω, f0 ∈ L2(−1, 1) and u ∈ L2 ((0, T )× (−1, 1)). This
kind of potentials naturally appear in the context of combustion theory ([7]), but also in quantum mechanics
([5]).

It is proved in [4] that (1.1) is ill-posed in L2(0, 1) (with Dirichlet boundary conditions in 0 and 1) if
c < − 1

4 (see also [34]). On L2(−1, 1), we can prove that (1.1) is ill-posed, in the sense that there does not

exist any selfadjoint extension of ∂2xx −
c

x2
Id, posed on C∞

0 ((−1, 1) \ {0}), for which this operator generates

a C0-semigroup, if c < − 1
4 . The proof of this fact is postponed to Appendix A.

Moreover, from [26, Chapter X], we know that for c ⩾ 3
4 , the operator −∂2xx +

c

x2
Id is essentially self-

adjoint on C∞
0 (R \ {0}), meaning that no information is passing through the singularity x = 0 (see e.g. [10,

pp. 1744-1745] for an interesting discussion on this subject). Notably, in this context, it is not possible to
control with a measurable set ω that lies only on one part of the singularity x = 0.

For all these reasons, from now on, we will restrict to coefficients c that lie in
(
− 1

4 ,+
3
4

)
(the case c = 1

4
cannot be directly treated with the techniques developed in this article, see Section 5 for more explanations).
Throughout this paper, for the sake of consistency with the existing literature, the coefficient of the singular
potential is parameterized as c = cν , where

cν := ν2 − 1

4
, ∀ν ∈ (0, 1). (1.2)

Our main result is the following null-controllability result in arbitrary small time.

THEOREM 1.1. For any f0 ∈ L2(−1, 1) and T > 0, there exists a control u ∈ L2 ((0, T )× (−1, 1)) such
that the corresponding solution f to (1.1) verifies f(T ) = 0 in L2(Ω).

We also have a version of this Theorem with a boundary control on one side of the boundary, which
requires some nontrivial intermediate results and more notations. For the sake of simplicity, we chose to
postpone it at the end of the paper (see Theorem 4.13).

REMARK 1.2. In the previous Theorem, the solutions of (1.1) have to be understood in a sense explained
in Section 1.2. Notably, even in the case where cν = 0, we obtain a new result for a non-standard definition
of solutions of the usual heat equation (corresponding to a particular self-adjoint extension of the Laplace
operator on C∞

0 ((−1, 0)× (0, 1))).

REMARK 1.3. Here, ω can be any measurable set of positive measure, whereas in most of the literature,
one considers ω that is an open set. As we will see during the proof, passing to this more general case is not
totally obvious (see Remark 4.7).
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The controllability properties of heat equations with inverse square potentials has been a wide subject
of studies during the last fifteen years. In dimension larger than three, the case of an internal inverse square
singularity with inverse square potential and internal null control was first treated in [33] in a particular
geometry and then extended in [15] (see also [36] for the study of an optimal control problem in this setting).
The case of a variable diffusion has been treated in [25]. The case of approximate boundary control has been
studied in [28], still in dimension larger than three. The case of an inverse square singularity located at the
boundary and internal control was first treated in any space dimension in [11]. A related result is also [9],
involving the distance to the boundary in dimension larger that three.

Concerning specifically the case of the one-dimensional heat equation with inverse square potential at
one point of the boundary, the question of the cost of controllability with a boundary control located at
the other point of the boundary has been studied in [21], whereas [8] proved a result where the boundary
control is located at the boundary. The case of mixed degenerate diffusion and singular potentials is treated
in [17, 32], and a model with memory is studied in [2].

Remark that in all the literature cited above, in the 1D case, the case where the singularity is located inside
the domain has not been addressed, except in [22, Theorem 1.5], where the author proved an approximate
controllability result in this context. In [22], the author raised the open question of obtaining a null-
controllability result in the context of equation (1.1). The goal of the present article is to give a positive
answer to this question.

That this question has not been investigated yet comes from the fact that this situation is much more
difficult from a theoretical point of view. Indeed, the domain (−1, 1) is separated in two subintervals by the
inverse square potential, and notably, if one considers the usual domain of the Laplace operator H1

0 (−1, 1)∩
H2(−1, 1), it will not be possible to control (1.1) with ω located in one side of the boundary. In fact, we
need to consider another self-adjoint extension of Aν on C∞

0 ((−1, 1) \ {0}). Of course, what is important
is to specify what to prescribe at the boundary. As we will see in Section 1.2, we are able to introduce an
appropriate self-adjoint extension, with appropriate transmission conditions, that enables to pass information
through the singularity. The main difficulty is then to give an appropriate spectral decomposition of this
self-adjoint extension. Notably, we will give some very precise estimates on the eigenvalues of Aν and also
on the eigenfunctions of Aν .

The plan of the paper is as follows. In Subsection 1.2, we investigate the well-posedness of (1.1). In
Subsection 1.3, we give some already-known results on Bessel functions, together with new technical results
that are needed for our study. In Section 2, we study the spectral decomposition of the singular elliptic
operator under consideration. In Section 3, we give some precise results on the asymptotic behaviour of the
eigenvalues of our singular operator. In Section 4, we prove our main Theorem 1.1 and give an extension to
the case of a boundary control. To conclude, in Section 5, we present several open problems related to the
present study.

1.2 Well-posedness

We consider the following homogeneous problem:
∂tf − ∂2xxf +

cν
x2
f = 0, (t, x) ∈ (0, T )× (−1, 1),

f(t,−1) = f(t, 1) = 0, t ∈ (0, T ),

f(0, x) = f0(x), x ∈ (−1, 1).

(1.3)

We begin by addressing the well-posedness of (1.3). The elliptic differential operator under consideration is

Aνf := −∂2xxf +
cν
x2
f.

It is obvious that Aν is well-defined on C∞
0 ((−1, 0)∪ (0, 1)). We now specify the self-adjoint extension to be

employed.

3



As in [22, Section 2.1], we introduce:

H̃2
0 :=

{
f ∈ H2(−1, 1), f(0) = f ′(0) = 0

}
,

Fν
s :=

{
f ∈ L2(−1, 1), ∃c+1 , c

−
1 , c

+
2 , c

−
2 ∈ R, f(x) =

{
c−1 |x|ν+

1
2 + c−2 |x|−ν+ 1

2 on (−1, 0),

c+1 |x|ν+
1
2 + c+2 |x|−ν+ 1

2 on (0, 1).

}
.

Notice that for any fs ∈ Fν
s , fs ∈ C∞((−1, 0) ∪ (0, 1)) and

(−∂2xx +
cν
x2

)fs(x) = 0, ∀x ∈ (−1, 0) ∪ (0, 1). (1.4)

The domain of Aν is defined as

D(Aν) :=
{
f = fr + fs; fr ∈ H̃2

0 (−1, 1), fs ∈ Fν
s such that f(−1) = f(1) = 0,

c−1 + c−2 + c+1 + c+2 = 0, and

(
ν +

1

2

)
c−1 +

(
−ν + 1

2

)
c−2 =

(
ν +

1

2

)
c+1 +

(
−ν + 1

2

)
c+2

}
,

(1.5)

which is a linear subspace of L2(−1, 1). By [22, Remark 2.3], we have Aν(D(Aν)) ⊂ L2(−1, 1), confirming
that (Aν , D(Aν)) is indeed an unbounded operator on L2(−1, 1), which is moreover densely defined since{

ϕ ∈ C∞
0 ((−1, 0) ∪ (0, 1)), extended at 0 by ϕ(0) = 0

}
⊂ H̃2

0 (−1, 1) ⊂ D(Aν).

To conclude, using [22, Proposition 2.2], (Aν , D(Aν)) is self-adjoint on L2(−1, 1), and for any f ∈ D(Aν),
the following inequality holds:

⟨Aνf, f⟩ ⩾ min{1, 4ν2}
∫ 1

−1

∂xfr(x)
2 dx. (1.6)

REMARK 1.4. For ν ∈ (0, 1), it is easy to verify that we have a direct sum H̃2
0 (−1, 1) ⊕ Fν

s . Since
D(Aν) ⊂ H̃2

0 (−1, 1) ⊕ Fν
s , the unique decomposition of functions in D(Aν) given by f = fr + fs, where

f ∈ D(Aν), fr ∈ H̃2
0 (−1, 1), fs ∈ Fν

s will be referred to as the decomposition into the regular part fr and the
singular part fs. The conditions imposed on the coefficients of the singular part in (1.5) will be referred to
as transmission conditions.

REMARK 1.5. On Fν
s , the operator Aν acts independently on (0, 1) and (−1, 0). Thus, the symbol ∂2xx

should not be interpreted as a derivative in the distributional sense over Ω = (−1, 1). Instead, it operates
separately on (−1, 0) and (0, 1). In other words, ∂2xx has to be understood as a distributional derivative on
Ω = (−1, 0) ∪ (0, 1). Therefore, from (1.4), we have Aνfs = 0.

We have already remarked that (Aν , D(Aν)) is a densely defined self-adjoint and monotone operator (by
(1.6)). From [12, Corollary 2.4.8], we deduce that −Aν is am-dissipative operator, so that applying the Hille-
Yosida theorem for self-adjoint monotone operators (see, for instance, [12, Theorem 3.2.1]), we obtain that
−Aν generates a strongly continuous semigroup, denoted by (e−Aνt)t⩾0. In other words, the homogeneous
problem (1.3) is well-posed: for any f0 ∈ L2(−1, 1), there exists a unique

f ∈ C0([0,+∞), L2(−1, 1)) ∩ C0((0,+∞), D(Aν)) ∩ C1((0,+∞), L2(−1, 1))

such that f verifies (1.3).
Our next goal is to define the notion of a solution to the non-homogeneous problem (1.1).
Let us introduce the operator

B : L2(−1, 1) → L2(−1, 1), g 7→ 1ωg.

Since B ∈ Lc(L
2(−1, 1)), the non-homogeneous problem (1.1) is well-posed. In other words, there exists a

unique weak solution (defined for in the sense of transpositions as in [13, Section 2.3] for instance) to (1.1)
in C0([0, T ], L2(−1, 1)), that is “explicitely” given by

f = e−Aνtf0 +

∫ t

0

e−Aν(t−s)1ωu(s) ds, ∀t ∈ [0, T ].
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1.3 Generalities on Bessel functions

Let us consider some parameter ν ∈ R. The Bessel functions of the first kind, denoted by Jν , are solutions
to the differential equation given by

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0. (1.7)

The Bessel function of the first kind Jν(x) can be defined for any x > 0 by its power series expansion

Jν(x) =

+∞∑
k=0

(−1)k

k! Γ(k + ν + 1)

(x
2

)2k+ν

, (1.8)

where Γ(z) is the Euler Gamma function (by convention, 1
Γ(x) = 0 if x is a non-positive integer). For all

ν ∈ R and all n ∈ N \ {0}, we denote by jν,n the n-th positive real zero of Jν . We refer the reader to [35, 20]
for more details on Bessel functions.
Now, we state several results on Bessel functions that will be useful later.

The first result is the following inequality, that we did not find in the literature and might be interesting
by itself.

LEMMA 1.6. Let ν ∈ (0, 1). Then,

Jν(x)J−ν(x) <
sin(νπ)

νπ
, ∀x > 0.

Proof of Lemma 1.6. Let x > 0. We introduce

φx : (0, 1] −→ R, ν 7→ sin(νπ)

νπ
− Jν(x)J−ν(x).

From [35, p. 150, (1)], we know that

Jν(z)J−ν(z) =
2

π

∫ π

2

0

J0(2z cos(θ)) cos(2νθ)dθ, ∀ν ∈ R, ∀z > 0.

Therefore, φx is differentiable on (0, 1] and

φx
′(ν) =

cos(νπ)

ν
− sin(νπ)

πν2
+

2

π

∫ π

2

0

J0(2x cos(θ))2θ sin(2νθ)dθ, ∀ν ∈ (0, 1].

From the integral representation given in [35, p. 176, (4)], we have

J0(x) =
1

π

∫ π

0

cos(x sin(θ))dθ.

We deduce that |J0(x)| < 1 for x > 0. Hence, we have∣∣∣∣∣∣ 2π
∫ π

2

0

J0(2x cos(θ))2θ sin(2νθ)dθ

∣∣∣∣∣∣ ⩽ 2

π

∫ π

2

0

|J0(2x cos(θ))| 2θ sin(2νθ)dθ <
2

π

∫ π

2

0

2θ| sin(2νθ)|dθ,

and since ν ∈ (0, 1), we have sin(2νθ) > 0 for all θ ∈ (0, π2 ). Furthermore,

2

π

∫ π

2

0

2θ sin(2νθ)dθ =
2

π

[
−θ cos(2νθ)

ν
+

sin(2νθ)

2ν2

]π
2

0

= −cos(νπ)

ν
+

sin(νπ)

πν2
.
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Gathering the previous computations, we deduce that φx
′(ν) < 0 for any ν ∈ (0, 1], so φx is decreasing on

(0, 1]. Hence,
∀ν ∈ (0, 1), φx(ν) > φx(1) = −J1(x)J−1(x).

From [35, (2), p.15], we have J−1(x) = −J1(x). We deduce that

∀ν ∈ (0, 1), φx(ν) > φx(1) = J1(x)
2 ⩾ 0,

which concludes the proof.

LEMMA 1.7. [35, Subsection 3.12]
Let ν ∈ R \ Z. The Wronskian of Jν and J−ν , denoted as W (Jν , J−ν), satisfies

W (Jν , J−ν) (x) = −2 sin(νπ)

πx
, ∀x > 0.

Notably, for ν ∈ R \ Z, Jν and J−ν form a basis of solution for (1.7)

LEMMA 1.8. Let ν ∈ (0, 1). The real positive zeros of Jν and J−ν are strictly interlaced, and

j−ν,1 < jν,1 < j−ν,2 < jν,2 < ... < j−ν,n < jν,n < ...

Proof of Lemma 1.8. Since ν ∈ (0, 1), we have ν > −1 and −ν > −1, and we know from [24, Theorem 3
and Remarks] that the positive real zeros of Jν are interlaced. Thus, it suffices to show that j−ν,1 < jν,1.

To prove this, we will analyze the function g : x 7→ Jν(x)
J−ν(x)

and show that g is increasing on (0, j−ν,1), and

that limx→0+ g(x) = 0. Consequently, we will have g(x) > 0 on (0, j−ν,1), which implies that j−ν,1 < jν,1.

g′(x) =
Jν

′(x)J−ν(x)− Jν(x)J−ν
′(x)

J−ν
2(x)

=
−W (Jν , J−ν)(x)

J−ν
2(x)

=
2 sin(νπ)

πxJ−ν
2(x)

> 0, ∀x ∈ (0, j−ν,1).

We have shown that g is increasing on (0, j−ν,1). Finally, since limx→0+ Jν(x) = 0 and limx→0+ J−ν(x) =
+∞, it follows that limx→0+ g(x) = 0. We can conclude as stated above.

LEMMA 1.9. [35, (2), p. 82]

∀ν ∈ R, Jν
′ =

1

2
(Jν−1 − Jν+1) .

LEMMA 1.10. [35, (1), p.199]

Jν(x) =
x→+∞

√
2

πx

(
cosω

n∑
k=0

(−1)k
a2k(ν)

x2k
− sinω

n∑
k=0

(−1)k
a2k+1(ν)

x2k+1
+O

(
1

x2n+2

))
, ∀ν ∈ R, ∀n ∈ N,

where ω = x− ν
π

2
− π

4
, and a0 = 1, ak =

(4ν2 − 12)(4ν2 − 32)...(4ν2 − (2k − 1)2)

k!8k
for k ∈ N \ {0}.

COROLLARY 1.11. Let ν ∈ R.

Jν(x) =
x→+∞

O
(

1

x1/2

)
, Jν

′(x) =
x→+∞

O
(

1

x1/2

)
.

Proof of Corollary 1.11. The first asymptotic behaviour is directly obtained from Lemma 1.10. The
second asymptotic behavior follows immediately from Lemma 1.9 and the first asymptotic behavior.

6



LEMMA 1.12. We have

jν,n =
n→+∞

π

(
n+

ν

2
− 1

4

)
+O

(
1

n

)
, j−ν,n =

n→+∞
π

(
n− ν

2
− 1

4

)
+O

(
1

n

)
.

Proof of Lemma 1.12. Since ν ̸∈ Z, we have J−ν = Jν cos(νπ)− Yν sin(νπ), with Yν =
Jν cos(νπ)− J−ν

sin(νπ)
the Bessel function of the second kind. Thus, using [35, end of p. 506], we obtain the desired asymptotic
expansions for jν,n and j−ν,n directly.

LEMMA 1.13. Let ν ∈ (0, 1).

∫ 1

0

xJ±ν(ax)
2dx =

1

2

((
1− ν2

a2

)
J±ν(a)

2 + J±ν
′(a)2

)
, ∀a > 0,

(1.9.a)∫ 1

0

xJν(ax)J−ν(ax)dx =
1

2

((
1− ν2

a2

)
Jν(a)J−ν(a) + Jν

′(a)J−ν
′(a)

)
+
ν sin(νπ)

πa2
, ∀a > 0,

(1.9.b)∫ β

α

xJ±ν(ax)
2dx =

1

2
β2

((
1− ν2

a2β2

)
J±ν(aβ)

2 + J±ν
′(aβ)2

)
∀α, β > 0, ∀a > 0,

− 1

2
α2

((
1− ν2

a2α2

)
J±ν(aα)

2 + J±ν
′(aα)2

)
, (1.9.c)

∫ β

α

xJν(ax)J−ν(ax)dx =
1

2
β2

((
1− ν2

a2β2

)
Jν(aβ)J−ν(aβ) + Jν

′(aβ)J−ν
′(aβ)

)
∀α, β > 0, ∀a > 0,

− 1

2
α2

((
1− ν2

a2α2

)
Jν(aα)J−ν(aα) + Jν

′(aα)J−ν
′(aα)

)
. (1.9.d)

Proof of Lemma 1.13. Proof of (1.9.a) [20, (4), p. 255] states that for any a > 0,∫ 1

0

xJ±ν(ax)
2dx =

1

2

((
1− ν2

a2

)
J±ν(a)

2 + J±ν
′(a)2

)
− lim

x→0+

1

2
x2
((

1− ν2

a2x2

)
J±ν(ax)

2 + J±ν
′(ax)2

)
.

Moreover, by (1.8),

J±ν(ax) ∼
x→0+

1

Γ(±ν + 1)

(ax
2

)±ν

,

so

xJ±ν(ax) ∼
x→0+

1

Γ(±ν + 1)

(a
2

)±ν

x±ν+1 −→
x→0+

0 because ν ∈ (0, 1).

Therefore, limx→0+ x
2J±ν(ax)

2 = 0, and we have

lim
x→0+

1

2
x2
((

1− ν2

a2x2

)
J±ν(ax)

2 + J±ν
′(ax)2

)
= lim

x→0+

1

2a2
(
−ν2J±ν(ax)

2 + (ax)2J±ν
′(ax)2

)
.

Therefore, to conclude the proof of (1.9.a), we only need to prove that

lim
x→0+

x2J±ν
′(x)2 − ν2J±ν(x)

2 = 0.
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By examining the series expansion of J±ν
′ issued from (1.8), we have

J±ν
′(x) =

x→0+

±ν
Γ(±ν + 1)

1

2±ν
x±ν−1 +O(x1±ν).

Therefore, we have

x2J±ν
′(x)2 =

x→0+

[
ν

Γ(±ν + 1)

1

2±ν

]2
x±2ν +O(x2±2ν) because ν ∈ (0, 1), (1.10)

and by examining the series expansion of J±ν given in (1.8), we have

νJ±ν(x) =
x→0+

ν

Γ(±ν + 1)

1

2±ν
x±ν +O(x2±ν).

so

ν2J±ν(x)
2 =

x→0+

[
ν

Γ(±ν + 1)

1

2±ν

]2
x±2ν +O(x2±2ν) because ν ∈ (0, 1). (1.11)

Finally, from (1.10) and (1.11), we obtain

x2J±ν
′(x)2 − ν2J±ν(x)

2 =
x→0+

O(x2±2ν) −→
x→0+

0 because ν ∈ (0, 1),

which concludes the proof of (1.9.a).

Proof of (1.9.b) Let A,B,C,D ∈ R. We define Cν := AJν +BYν and Dν := CJν +DYν , with

Yν =
Jν cos(νπ)− J−ν

sin(νπ)
the second kind Bessel function. [20, (3), p. 254] states that for any a > 0,

∫ 1

0

xCν(ax)Dν(ax)dx =
1

4
(2Cν(a)Dν(a)− Cν−1(a)Dν+1(a)− Cν+1(a)Dν−1(a))

− lim
x→0+

1

4
x2 (2Cν(ax)Dν(ax)− Cν−1(ax)Dν+1(ax)− Cν+1(ax)Dν−1(ax)) .

We choose A = 1, B = 0, C = cos(νπ), and D = − sin(νπ). Thus, we have Cν = Jν and Dν = J−ν . One
needs to be careful when computing Dν+1 and Dν−1. We have

Dν+1 = CJν+1+D
Jν+1 cos((ν + 1)π)− J−ν−1

sin((ν + 1)π)
= cos(νπ)Jν+1− sin(νπ)

−Jν+1 cos(νπ)− J−ν−1

− sin(νπ)
= −J−ν−1.

Following the same kind of computations on Dν−1 gives Dν−1 = −J−ν+1. Therefore, we obtain∫ 1

0

xJν(ax)J−ν(ax)dx =
1

4
(2Jν(a)J−ν(a) + Jν−1(a)J−ν−1(a) + Jν+1(a)J−ν+1(a))

− lim
x→0+

1

4
x2 (2Jν(ax)J−ν(ax) + Jν−1(ax)J−ν−1(ax) + Jν+1(ax)J−ν+1(ax)) .

First, we compute the limit term. By examining the series expansion of Jν , J−ν , Jν−1, J−ν+1, Jν+1, and
J−ν−1 given in (1.8), we find that

x2Jν(ax)J−ν(ax) ∼
x→0+

x2
1

Γ(ν + 1)

(ax
2

)ν 1

Γ(−ν + 1)

(ax
2

)−ν

=
1

Γ(ν + 1)

1

Γ(−ν + 1)
x2 −→

x→0+
0,

x2Jν+1(ax)J−ν+1(ax) ∼
x→0+

x2
1

Γ(ν + 2)

(ax
2

)ν+1 1

Γ(−ν + 2)

(ax
2

)−ν+1

=
(ax/2)2

Γ(ν + 2)Γ(−ν + 2)
x2 −→

x→0+
0,

x2Jν−1(ax)J−ν−1(ax) ∼
x→0+

x2
1

Γ(ν)

(ax
2

)ν−1 1

Γ(−ν)

(ax
2

)−ν−1

=
1

Γ(ν)Γ(−ν)
4

a2
=

−ν
Γ(ν)Γ(1− ν)

4

a2
,
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where the argument in the Euler Gamma function is always valid because ν ∈ (0, 1). We recall that the
complement formula for the Euler Gamma function, which is valid since ν ∈ (0, 1), gives

Γ(ν)Γ(1− ν) =
π

sin(νπ)
.

Therefore, we conclude that

lim
x→0+

1

4
x2 (2Jν(ax)J−ν(ax) + Jν−1(ax)J−ν−1(ax) + Jν+1(ax)J−ν+1(ax)) = −ν sin(νπ)

πa2
.

Thus, to conclude the proof, we need to show that

1

4
(2Jν(a)J−ν(a) + Jν−1(a)J−ν−1(a) + Jν+1(a)J−ν+1(a)) =

1

2

((
1− ν2

a2

)
Jν(a)J−ν(a) + Jν

′(a)J−ν
′(a)

)
.

(1.12)
To prove this, we need to use the following identities

∀ν ∈ (0, 1),∀x > 0, Jν+1(x) =
ν

x
Jν(x)− Jν

′(x), J−ν+1(x) =
−ν
x
J−ν(x)− J−ν

′(x),

Jν−1(x) =
ν

x
Jν(x) + Jν

′(x), J−ν−1(x) =
−ν
x
J−ν(x) + J−ν

′(x),

which are stated in [35, Section 3.2, (3) and (4), p45]. Substituting Jν+1(a), J−ν+1(a), Jν−1(a), and J−ν−1(a)
into 1

4 (2Jν(a)J−ν(a)− Jν−1(a)J−ν+1(a)− Jν+1(a)J−ν−1(a)) directly yields (1.12) and thus concludes the
proof of (1.9.b).

Proof of (1.9.c) and (1.9.d). The result in (1.9.c) is directly obtained from [20, Section 11.2, (4)]. The
result in (1.9.d) is obtained from [20, Section 11.2, (3)], using a similar approach as in the proof of (1.9.b)
to substitute Jν+1, J−ν+1, Jν−1, and J−ν−1, which gives the desired result.

2 Diagonalization

From now on, we will always assume that ν ∈ (0, 1). Remind that cν is defined by (1.2). We know that Aν

is self-adjoint and non-negative by (1.6). Therefore, we know that the spectrum of Aν is a subset of R+,
σ(Aν) ⊂ [0,+∞). Our goal here is to prove that Aν has a Hilbert basis of eigenfunctions, and to give a
rather precise description of the spectrum, together with some useful estimates on the eigenfunctions.

2.1 Complete inventory of eigenvalues and eigenfunctions

First of all, let us investigate the kernel of Aν .

PROPOSITION 2.1.
Ker(Aν) = Fν

s ∩D(Aν)

= Span
(
x 7→ |x|ν+ 1

2 − |x|−ν+ 1
2

)
.

λ0 = 0 is therefore the smallest eigenvalue of Aν , of multiplicity 1.

Proof of Proposition 2.1. First, thanks to (1.4), we directly obtain Fν
s ∩D(Aν) ⊂ Ker(Aν).

Now, let f ∈ D(Aν) be such that Aνf = 0. Using (1.6), we obtain ||∂xfr||L2(−1,1) = 0.
Since ∂xfr ∈ H1(−1, 1) ↪→ C0(−1, 1) and f ′r(0) = 0, we obtain fr = 0. Therefore, f = fs ∈ Fν

s ∩D(Aν).
Thus, Ker(Aν) = Fν

s ∩D(Aν).

Finally, it is easy to check that Fν
s ∩D(Aν) = Span

(
x 7→ |x|ν+ 1

2 − |x|−ν+ 1
2

)
, using the transmission condi-

tions in the definition of Aν together with the Dirichlet boundary conditions at ±1.
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Let E > 0. Now, using Bessel functions, we want to find f ∈ D(Aν) such that Aνf = Ef . Let us first
investigate the differential equation Aνf = f , without taking into account the transmission and boundary
conditions.

PROPOSITION 2.2. Let E > 0. Aν , let f ∈ C∞((−1, 0) ∪ (0, 1)). Then, the function f satisfies

∀x ∈ (−1, 0) ∪ (0, 1),

(
− d2

dx2
+
ν2 − 1

4

x2

)
f(x) = Ef(x), (2.1)

if and only if f is of the form

f(x) =

{
a−ν

√
−xJν(−

√
Ex) + a−−ν

√
−xJ−ν(−

√
Ex), ∀x ∈ (−1, 0),

a+ν
√
xJν(

√
Ex) + a+−ν

√
xJ−ν(

√
Ex), ∀x ∈ (0, 1),

(2.2)

with a−ν , a
−
−ν , a

+
ν , a

+
−ν ∈ R.

Therefore, a function f is in the eigenspace associated with the eigenvalue E if and only if f ∈ D(Aν) and
f is of the form (2.2).

Proof of Proposition 2.2.
On (0, 1). We consider the function ψ+

ν,E(x) =
√
xJν(

√
Ex), defined on (0, 1). Taking the second derivative,

we have

ψ+′′

ν,E(x) = − 1

4x3/2
Jν(

√
Ex) +

1√
x

√
EJ ′

ν(
√
Ex) + E

√
xJ ′′

ν (
√
Ex).

Next, we use the Bessel equation (1.7) satisfied by Jν at
√
Ex > 0, which gives

Ex2J ′′
ν (
√
Ex) + x

√
EJ ′

ν(
√
Ex) + Ex2Jν(

√
Ex) = ν2Jν(

√
Ex).

Therefore, we have, for all x ∈ (0, 1),(
− d2

dx2
+
ν2 − 1

4

x2

)
ψ+
ν,E(x) =

1

4x3/2
Jν(

√
Ex)− 1√

x

√
EJ ′

ν(
√
Ex)− E

√
xJ ′′

ν (
√
Ex)

− 1

4x2
√
xJν(

√
Ex) +

√
x

x2
(Ex2J ′′

ν (
√
Ex) + x

√
EJ ′

ν(
√
Ex) + Ex2Jν(

√
Ex))

= Eψ+
ν,E(x).

Since ν ∈ R \ Z, we have that (Jν , J−ν) is a basis of solutions of (1.7) by Lemma 1.7. Therefore, by posing
ψ+
−ν,E(x) =

√
xJ−ν(

√
Ex) on (0, 1), we also have that for all x ∈ (0, 1),(

− d2

dx2
+
ν2 − 1

4

x2

)
ψ+
−ν,E(x) = Eψ+

−ν,E(x).

On (-1, 0). We follow the same computations as on (0, 1) and we observe that they are the same.

We proved that any function of the form (2.2) satisfies (2.1). We have found all the solutions to (2.1)
since the total solution space is of dimension 4, consisting of two independent solutions on (0, 1) and two
independent solutions on (−1, 0). This matches the expected structure, as the equation is second-order and
has a singularity at x = 0, which separates the two intervals.

Now, we want to find conditions on a−−ν , a
−
ν , a

+
−ν , and a

+
ν to ensure that the function f defined in (2.2) is

in D(Aν).

PROPOSITION 2.3. Let ν ∈ (0, 1). Any function of the form (2.2) is in H̃2
0 (−1, 1)⊕Fν

s .
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Proof of Proposition 2.3. By examining the power series expansion (1.8) of the Bessel functions Jν and
isolating the term for k = 0, we have

√
xJν(

√
Ex) =

1

Γ(ν + 1)

(√
E

2

)ν

|x|ν+ 1
2 +

∞∑
k=1

(−1)k

k! Γ(k + ν + 1)

(√
E

2

)2k+ν

x2k+ν+ 1
2 , ∀x ∈ (0, 1),

√
xJ−ν(

√
Ex) =

1

Γ(−ν + 1)

(√
E

2

)−ν

|x|−ν+ 1
2 +

∞∑
k=1

(−1)k

k! Γ(k − ν + 1)

(√
E

2

)2k−ν

x2k−ν+ 1
2 , ∀x ∈ (0, 1).

We introduce

fr(x) :=



a−ν

∞∑
k=1

(−1)k

k! Γ(k + ν + 1)

(√
E

2

)2k+ν

(−x)2k+ν+ 1
2

+a−−ν

∞∑
k=1

(−1)k

k! Γ(k − ν + 1)

(√
E

2

)2k−ν

(−x)2k−ν+ 1
2 , ∀x ∈ (−1, 0),

a+ν

∞∑
k=1

(−1)k

k! Γ(k + ν + 1)

(√
E

2

)2k+ν

x2k+ν+ 1
2

+a+−ν

∞∑
k=1

(−1)k

k! Γ(k − ν + 1)

(√
E

2

)2k−ν

x2k−ν+ 1
2 , ∀x ∈ (0, 1),

fs(x) :=

a
−
ν

1
Γ(ν+1)

(√
E
2

)ν
|x|ν+ 1

2 + a−−ν
1

Γ(−ν+1)

(√
E
2

)−ν

|x|−ν+ 1
2 , ∀x ∈ (−1, 0),

a+ν
1

Γ(ν+1)

(√
E
2

)ν
|x|ν+ 1

2 + a+−ν
1

Γ(−ν+1)

(√
E
2

)−ν

|x|−ν+ 1
2 , ∀x ∈ (0, 1).

(2.3)

Thus, we have f = fs + fr. Since ν ∈ (0, 1), it is clear that fs ∈ L2(−1, 1). By examining (2.3), we see that
fs has the right form with

c+1 = a+ν
1

Γ(ν + 1)

(√
E

2

)ν

, c+2 = a+−ν

1

Γ(−ν + 1)

(√
E

2

)−ν

,

c−1 = a−ν
1

Γ(ν + 1)

(√
E

2

)ν

, c−2 = a−−ν

1

Γ(−ν + 1)

(√
E

2

)−ν

.

(2.4)

Therefore, fs ∈ Fν
s . Finally, we need to verify that fr ∈ H̃2

0 (−1, 1). We introduce

gr(x) =



a−ν
∑∞

k=1
(−1)k

k! Γ(k+ν+1)

(√
E
2

)2k+ν

(−x)2k+ν+ 1
2

+a−−ν

∑∞
k=2

(−1)k

k! Γ(k−ν+1)

(√
E
2

)2k−ν

(−x)2k−ν+ 1
2 , ∀x ∈ (−1, 0),

a+ν
∑∞

k=1
(−1)k

k! Γ(k+ν+1)

(√
E
2

)2k+ν

x2k+ν+ 1
2

+a+−ν

∑∞
k=2

(−1)k

k! Γ(k−ν+1)

(√
E
2

)2k−ν

x2k−ν+ 1
2 , ∀x ∈ (0, 1),

hr(x) =

a
−
−ν

−1
Γ(1−ν+1)

(√
E
2

)2−ν

(−x)2−ν+ 1
2 , ∀x ∈ (−1, 0),

a+−ν
−1

Γ(1−ν+1)

(√
E
2

)2−ν

x2−ν+ 1
2 , ∀x ∈ (0, 1).

Thus, fr = gr + hr. Since ν ∈ (0, 1), we have gr ∈ C2([−1, 1]) ⊂ H2(−1, 1) and gr(0) = g′r(0) = 0,
therefore, gr ∈ H̃2

0 (−1, 1). We also have hr ∈ C1([−1, 1]) and hr(0) = h′r(0) = 0. We only need to check
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that h′′r ∈ L2(−1, 1). Since for ν > 1
2 , h

′
r is only differentiable on (−1, 0) ∪ (0, 1) and not at 0, we need to

compute h′′r using the derivative in the distributional sense. Let ϕ ∈ C∞
c (−1, 1),

⟨h′′r , ϕ⟩ = −
∫ 1

−1

h′rϕ
′ = −

∫ 0

−1

h′rϕ
′ −
∫ 1

0

h′rϕ
′ =

∫ 0

−1

h′′rϕ− [h′rϕ]
0
−1 +

∫ 1

0

h′′rϕ− [h′rϕ]
1
0

=

∫ 0

−1

h′′rϕ+

∫ 1

0

h′′rϕ since h′r(0) = 0.

Therefore, h′′r is obtained by examining the derivative of h′r on (−1, 0) and (0, 1). We find

h′′r (x) =

a
−
−ν

−1
Γ(1−ν+1)

(√
E
2

)2−ν

(2− ν + 1
2 )(1− ν + 1

2 )(−x)
−ν+ 1

2 , ∀x ∈ (−1, 0),

a+−ν
−1

Γ(1−ν+1)

(√
E
2

)2−ν

(2− ν + 1
2 )(1− ν + 1

2 )x
−ν+ 1

2 , ∀x ∈ (0, 1),

which is in L2(−1, 1) since ν ∈ (0, 1). Thus, hr ∈ H̃2
0 (−1, 1) and gr ∈ H̃2

0 (−1, 1). Therefore, fr = gr + hr ∈
H̃2

0 (−1, 1). We have shown that f = fs + fr ∈ H̃2
0 (−1, 1)⊕Fν

s .

PROPOSITION 2.4. Let ν ∈ (0, 1), let E > 0. The value E is a positive eigenvalue of Aν if and only if

Jν(
√
E)

(√
E

2

)−2ν
Γ(ν + 1)

Γ(−ν + 1)
= J−ν(

√
E), (2.5)

or

Jν(
√
E)

(√
E

2

)−2ν
Γ(ν + 1)

Γ(−ν + 1)

1− 2ν

1 + 2ν
= J−ν(

√
E). (2.6)

Furthermore, Jν(
√
E) ̸= 0, and

• if (2.5) is satisfied, the eigenspace associated with the eigenvalue E is

Span

x 7→


− Γ(ν + 1)

Γ(−ν + 1)

(√
E

2

)−2ν
√
−xJν(−

√
Ex) +

√
−xJ−ν(−

√
Ex) on (−1, 0)

− Γ(ν + 1)

Γ(−ν + 1)

(√
E

2

)−2ν
√
xJν(

√
Ex) +

√
xJ−ν(

√
Ex) on (0, 1)

 , (2.7)

• if (2.6) is satisfied, the eigenspace associated with the eigenvalue E is

Span

x 7→


1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)

(√
E

2

)−2ν
√
−xJν(−

√
Ex)−

√
−xJ−ν(−

√
Ex) on (−1, 0)

−1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)

(√
E

2

)−2ν
√
xJν(

√
Ex) +

√
xJ−ν(

√
Ex) on (0, 1)

 ,

(2.8)

which are both of dimension 1.

Proof of Proposition 2.4. We want to find conditions that allow candidate eigenfunctions written as (2.2)
to be in D(Aν). Referring to the definition of D(Aν) in (1.5), Proposition 2.3, and (2.4), the function f
defined in (2.2) is in D(Aν) if and only if

(a+ν + a−ν )
1

Γ(ν + 1)

(√
E

2

)ν

+ (a+−ν + a−−ν)
1

Γ(−ν + 1)

(√
E

2

)−ν

= 0, (2.9)
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(a+ν − a−ν )(ν +
1

2
)

1

Γ(ν + 1)

(√
E

2

)ν

+ (a+−ν − a−−ν)(−ν +
1

2
)

1

Γ(−ν + 1)

(√
E

2

)−ν

= 0, (2.10)

f(1) = a+ν Jν(
√
E) + a+−νJ−ν(

√
E) = 0, (2.11)

f(−1) = a−ν Jν(
√
E) + a−−νJ−ν(

√
E) = 0. (2.12)

We introduce the useful quantity

Dν :=
1

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)

(√
E

2

)−2ν

. (2.13)

1
2

[
Γ(ν + 1)

(√
E
2

)−ν

× (2.9) + Γ(ν+1)

ν+ 1
2

(√
E
2

)−ν

× (2.10)

]
gives

a+ν = −Dν(a
+
−ν + 2νa−−ν), (2.14)

and 1
2

[
Γ(ν + 1)

(√
E
2

)−ν

× (2.9)− Γ(ν+1)

ν+ 1
2

(√
E
2

)−ν

× (2.10)

]
gives

a−ν = −Dν(a
−
−ν + 2νa+−ν). (2.15)

Reason by contradiction and assume that Jν(
√
E) = 0. Then, (2.11) and (2.12) become a+−νJ−ν(

√
E) = 0

and a−−νJ−ν(
√
E) = 0. Assume one more time by contradiction that J−ν(

√
E) ̸= 0. Then, we must have

a+−ν = a−−ν = 0. Using (2.14) and (2.15), we also must have a+ν = a−ν = 0. Thus, f = 0. This is not possible

since we are looking for eigenfunctions. Therefore, we must have J−ν(
√
E) = 0, which is not possible since

Lemma 1.8 shows that the positive zeros of Jν and J−ν are strictly interlaced.
Therefore, Jν(

√
E) ̸= 0. We substitute a−ν in (2.12) using (2.15). This gives

a+−νJν(
√
E)2νDν = a−−ν

(
J−ν(

√
E)− Jν(

√
E)Dν

)
.

Since Jν(
√
E) ̸= 0, we have

a+−ν = a−−ν

J−ν(
√
E)− Jν(

√
E)Dν

Jν(
√
E)2νDν

. (2.16)

Substituting a+ν in (2.11) using (2.14) gives

a−−νJν(
√
E)2νDν = a+−ν

(
J−ν(

√
E)− Jν(

√
E)Dν

)
.

We now substitute a+−ν in the previous equality, using (2.16). This gives

a−−νJν(
√
E)2νDν = a−−ν

J−ν(
√
E)− Jν(

√
E)Dν

Jν(
√
E)2νDν

(
J−ν(

√
E)− Jν(

√
E)Dν

)
,

which can be rewritten as

a−−ν

(
Jν(

√
E)2νDν

)2
= a−−ν

(
J−ν(

√
E)− Jν(

√
E)Dν

)2
.

We cannot have a−−ν = 0 because it would lead to a+−ν = 0 using (2.16), and then a−ν = a+ν = 0 using (2.14)
and (2.15). Therefore, we must have(

Jν(
√
E)2νDν

)2
=
(
J−ν(

√
E)− Jν(

√
E)Dν

)2
. (2.17)
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To summarize, we proved that if E is an eigenvalue of Aν for a function f of the form (2.2), then we must have
(2.17), and we must have a+−ν satisfying (2.16), while a+ν and a−ν must satisfy (2.14) and (2.15) respectively,
with a−−ν chosen freely in R.
On the other hand, if (2.17) is satisfied, we can choose any function from the setf of the form (2.2) such that : a−−ν ∈ R, a+−ν = a−−ν

J−ν(
√
E)− Jν(

√
E)Dν

Jν(
√
E)2νDν

,

a+ν = −Dν(a
+
−ν + 2νa−−ν), a−ν = −Dν(a

−
−ν + 2νa+−ν)

 (2.18)

and we indeed have Aνf = Ef and f ∈ D(Aν). Therefore, E is an eigenvalue and the eigenspace associated
with the eigenvalue E is given by (2.18).
Now, we will distinguish cases on the condition (2.17). If (2.17) is true, then we have either

Jν(
√
E)2νDν = J−ν(

√
E)− Jν(

√
E)Dν (2.19)

or
−Jν(

√
E)2νDν = J−ν(

√
E)− Jν(

√
E)Dν . (2.20)

We notice that condition (2.19) is equivalent to condition (2.5), and condition (2.20) is equivalent to condition
(2.6). Therefore, what remains to be proved is that the eigenspace (2.18) takes the form stated in the theorem,
whether (2.19) or (2.20) holds.
Let us suppose that (2.19) is true. It is straightforward that the eigenspace (2.18) can be rewritten as{

f of the form (2.2) such that : a−−ν ∈ R, a+−ν = a−−ν ,

a+ν = −Dν(1 + 2ν)a−−ν , a−ν = −Dν(1 + 2ν)a−−ν

}
.

By looking at the expression of Dν in (2.13) and at the functions of the form (2.2), it is clear that this space
is exactly (2.7).
Now, let us suppose that (2.20) is true. It is straightforward that the eigenspace (2.18) can be rewritten as{

f of the form (2.2) such that : a−−ν ∈ R, a+−ν = −a−−ν ,

a+ν = Dν(1− 2ν)a−−ν , a−ν = −Dν(1− 2ν)a−−ν

}
.

By looking at the expression of Dν in (2.13) and at the functions of the form (2.2), it is clear that this space
is exactly (2.8). This concludes the proof of Proposition 2.4.

REMARK 2.5. It is crucial to emphasize that we have found all the eigenvalues and eigenfunctions of
our operator Aν , for any ν ∈ (0, 1). Indeed, we know that Aν is self-adjoint and non-negative by (1.6).
Therefore, σpoint(Aν) ⊂ R+. Proposition 2.1 shows that 0 is an eigenvalue of multiplicity 1 and provides
the kernel. Proposition 2.4 indicates that the other eigenvalues are given by the implicit equations (2.5) and
(2.6), and provides the associated eigenspaces, that are also of dimension one.

2.2 Distribution structure of the eigenvalues

Now that we have found the conditions (2.5) and (2.6) for our eigenvalues, we would like to determine which
values of E satisfy one of this condition, and how these values are distributed along the positive real axis.
This is the subject of this subsection, which is concluded by a proposition that characterizes the structure
of the distribution of our eigenvalues.

PROPOSITION 2.6. Let ν ∈ (0, 1), let n ∈ N \ {0}. The function f : x 7→ Jν(x)
J−ν(x)

x−2ν is a well-

defined, increasing, and continuous bijection from (j−ν,n, j−ν,n+1) to R. Furthermore, f is also a well-defined,

increasing, and continuous bijection from (0, j−ν,1) to (Γ(−ν+1)
Γ(ν+1) 2−2ν ,+∞).
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Proof of Proposition 2.6. Let n ∈ N\{0}. First, thanks to Lemma 1.8, we know that J−ν does not vanish
between (j−ν,n, j−ν,n+1) or between (0, j−ν,1). Therefore, f is well-defined on (j−ν,n, j−ν,n+1) or (0, j−ν,1).
The function f is also differentiable on these intervals, so to show that f is increasing, we only need to
examine its derivative. Let x ∈ (j−ν,n, j−ν,n+1) or x ∈ (0, j−ν,1). Then,

f ′(x) =

(
Jν

′(x)x−2ν − 2νJν(x)x
−2ν−1

)
J−ν(x)− Jν(x)x

−2νJ−ν
′(x)

J−ν
2(x)

=
−x−2νW (Jν , J−ν) (x)− 2νx−2ν−1Jν(x)J−ν(x)

J−ν
2(x)

with W (Jν , J−ν) defined in Lemma 1.7,

=
2νx−2ν−1

(
sin(νπ)

νπ − Jν(x)J−ν(x)
)

J−ν
2(x)

> 0 thanks to Lemma 1.6.

Therefore, f is increasing on (j−ν,n, j−ν,n+1), and on (0, j−ν,1). Furthermore, J−ν(j−ν,n) = J−ν(j−ν,n+1) = 0,
and Jν(j−ν,n) ̸= 0, Jν(j−ν,n+1) ̸= 0 because the positive real zeros of Jν and J−ν are strictly interlaced as
shown in Lemma 1.8. Therefore, we have

lim
x→j+−ν,n

f(x) = −∞, lim
x→j−−ν,n+1

f(x) = +∞, and lim
x→j−−ν,1

f(x) = +∞.

Finally, from the asymptotic expansion (1.8), we have

Jν(x) ∼0+
1

Γ(ν + 1)

(x
2

)ν
and J−ν(x) ∼0+

1

Γ(−ν + 1)

(x
2

)−ν

.

We deduce that limx→0+ f(x) =
Γ(−ν+1)
Γ(ν+1) 2−2ν , which concludes the proof.

Thanks to the above property, we are able to give a result on the distributions of the eigenvalues of Aν .

PROPOSITION 2.7. .
Let ν ∈ (0, 1),

• ∄E ∈ (0, j2−ν,1), E satisfies (2.5).

• ∀n ∈ N \ {0}, ∄E ∈ [j2−ν,n, j
2
ν,n], E satisfies (2.5).

• ∀n ∈ N \ {0}, ∃!E ∈ (j2ν,n, j
2
−ν,n+1), E satisfies (2.5). We denote it by λ2n.

Let ν ∈ (0, 12 ),

• ∃!E ∈ (0, j2−ν,1), E satisfies (2.6). We denote it by λ1.

• ∀n ∈ N \ {0}, ∄E ∈ [j2−ν,n, j
2
ν,n], E satisfies (2.6).

• ∀n ∈ N \ {0}, ∃!E ∈ (j2ν,n, j
2
−ν,n+1), E satisfies (2.6). We denote it by λ2n+1.

Let ν ∈ ( 12 , 1),

• ∄E ∈ (0, j2−ν,1], E satisfies (2.6).

• ∀n ∈ N \ {0}, ∃!E ∈ (j2−ν,n, j
2
ν,n), E satisfies (2.6). We denote it by λ2n−1.

• ∀n ∈ N \ {0}, ∄E ∈ [j2ν,n, j
2
−ν,n+1], E satisfies (2.6).

Let ν = 1
2 ,

• ∀n ∈ N \ {0}, E = j2−ν,n satisfies (2.6). We denote it by λ2n−1.

• ∄E ∈ R+ \ {0}
⋃

n≥1{j2−ν,n}, E satisfies (2.6).
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We always have, regardless of ν ∈ (0, 1)

0 = λ0 < λ1 < λ2 < ... < λ2n < λ2n+1 < ... (2.21)

(a) Even eigenvalues λ2n for ν = 1/2 ∈ (0, 1) (b) Odd eigenvalues λ2n+1 for ν = 1/2

(c) Even eigenvalues λ2n for ν = 0.1 ∈ (0, 1/2) (d) Odd eigenvalues λ2n+1 for ν = 0.1 ∈ (0, 1/2)

(e) Even eigenvalues λ2n for ν = 0.6 ∈ (0, 1/2) (f) Odd eigenvalues λ2n+1 for ν = 0.6 ∈ (0, 1/2)

Figure 1: Illustration of the evolution of eigenvalues as a function of ν.
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REMARK 2.8. .

• The reader should note that the proposition is stated in such a way that for any fixed ν ∈ (0, 1), all
values of E that are solutions of (2.5) or (2.6) are listed. We ensure that we provide a complete
inventory. Therefore, the point spectrum of Aν is σpoint = {λn, n ∈ N}.

• Lemma 1.8 is crucial here to better understand why the proposition is formulated this way. Lemma 1.8
ensures that we do not assign different names to the same E.

• Proposition 2.7 implies that limn→+∞ λn = +∞, since limn→+∞ j−ν,n = +∞.

REMARK 2.9. Proposition 2.7 implies that

• if ν ∈ (0, 12 ), λ2n < λ2n+1 < j2−ν,n+1, ∀n ∈ N \ {0}.

• if ν ∈ ( 12 , 1), λ2n < j2−ν,n+1 < λ2n+1, ∀n ∈ N \ {0}.

• if ν = 1
2 , λ2n < λ2n+1 = j2−ν,n+1, ∀n ∈ N \ {0}.

Figure 1 illustrates the behavior of the eigenvalues λn for different values of the parameter ν ∈ (0, 1),
distinguishing even and odd eigenvalues. These plots visually reinforce Proposition 2.7, by explicitly showing
where the solutions of the conditions (2.5) and (2.6) lie relative to the squared Bessel zeros j2±ν,n.

The graphical layout emphasizes that the eigenvalues are interlaced with the Bessel zeros. For instance,
one observes that between each pair of consecutive Bessel zeros, precisely one eigenvalue may exist, depending
on the parity and the value of ν. The figures also show the transitions described in Remark 2.9: when ν
increases from below 1/2 to above it, the location of the odd eigenvalues λ2n+1 shifts from being to the left
of j2−ν,n+1 to being to its right.

This transition is especially noticeable when comparing Figures 1b, 1d, and 1f. However, in the case
ν = 0.6, corresponding to Figure 1f, the values of λ2n+1 and j2−ν,n+1 are extremely close, and the main plot
does not allow for a precise visual comparison.

To address this, Figure 2 provides a magnified view centered around λ5 and j2−ν,3. This zoomed-in inset
clearly confirms that λ5 > j2−ν,3, as given by Proposition 2.7 for ν ∈ (1/2, 1).

Figure 2: Zoom on the eigenvalue λ5 and the squared Bessel zero j2−ν,3 for ν = 0.6 ∈ (1/2, 1)

Proof of Proposition 2.7. There are four clear blocks in the proposition. We will go through them one
by one in Parts 1, 2, 3, and 4 of the proof. First, we should underline that, thanks to Lemma 1.8, we know
that the family

(0, j2−ν,1)
⋃
n≥1

{j2−ν,n}
⋃
n≥1

{j2ν,n}
⋃
n≥1

(j2−ν,n, j
2
ν,n)

⋃
n≥1

(j2ν,n, j
2
−ν,n+1)
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is a partition of R+ \ {0}. Therefore, the proposition provides a complete inventory of the solutions E > 0
of (2.5) or (2.6). We will use the function f defined in Proposition 2.6.

Part 1. Let us introduce h1, which is well-defined on R+ \ {0}
⋃

n≥1{j2−ν,n}:

h1 : x 7→ f(
√
x)

1

2−2ν

Γ(ν + 1)

Γ(−ν + 1)
.

Since x 7→
√
x is increasing on R+ \ {0}, and 1

2−2ν

Γ(ν+1)
Γ(−ν+1) > 0, we have, thanks to Proposition 2.6, that for

any n ∈ N \ {0}, h1 is a continuous increasing bijection from (j2−ν,n, j
2
−ν,n+1) to R, and from (0, j2−ν,1) to

( 1
2−2ν

Γ(ν+1)
Γ(−ν+1) ×

Γ(−ν+1)
Γ(ν+1) 2−2ν ,+∞) = (1,+∞).

Let E > 0 satisfying (2.5). Then E ̸∈
⋃

n≥1{j2−ν,n} because otherwise it would imply that Jν(
√
E) =

J−ν(
√
E) = 0, which is not possible according to Lemma 1.8.

Therefore, E > 0 satisfies (2.5) if and only if

E ̸∈
⋃
n≥1

{j2−ν,n} and h1(E) = 1. (2.22)

Using the intermediate value theorem on h1, we directly prove the first three items of the proposition:

• ∄E ∈ (0, j2−ν,1), E satisfies (2.5). Indeed, we cannot have h1(E) = 1 on (0, j2−ν,1) since we have
h1(0) = 1.

• ∀n ∈ N \ {0}, ∄E ∈ [j2−ν,n, j
2
ν,n], E satisfies (2.5). Indeed, for any n ∈ N \ {0}, h1(j2ν,n) = 0, so

h1|(j2−ν,n,j
2
ν,n]

is a bijection from (j2−ν,n, j
2
ν,n] to (−∞, 0]. Therefore, if E satisfies (2.5), then E ̸∈

(j2−ν,n, j
2
ν,n]. Additionally, E ̸= j2−ν,n according to (2.22), so E ̸∈ [j2−ν,n, j

2
ν,n].

• ∀n ∈ N \ {0}, ∃!E ∈ (j2ν,n, j
2
−ν,n+1) such that E satisfies (2.5). Indeed, h1|(j2ν,n,j2−ν,n+1)

is a bijection

from (j2ν,n, j
2
−ν,n+1) to (0,+∞).

Part 2. Let ν ∈ (0, 12 ). We introduce h2, which is well-defined on R+ \ {0}
⋃

n≥1{j2−ν,n}:

h2 : x 7→ f(
√
x)

1

2−2ν

Γ(ν + 1)

Γ(−ν + 1)

1− 2ν

1 + 2ν
.

Since x 7→
√
x is increasing on R+ \ {0}, and 1

2−2ν

Γ(ν+1)
Γ(−ν+1)

1−2ν
1+2ν > 0, thanks to Proposition 2.6, we have that

for any n ∈ N \ {0}, h2 is a continuous increasing bijection from (j2−ν,n, j
2
−ν,n+1) to R and from (0, j2−ν,1) to

( 1
2−2ν

Γ(ν+1)
Γ(−ν+1)

1−2ν
1+2ν × Γ(−ν+1)

Γ(ν+1) 2−2ν ,+∞) = (1−2ν
1+2ν ,+∞).

Using the exact same arguments as in Part 1 of the proof, we find that E > 0 satisfies (2.6) if and only if

E ̸∈
⋃
n≥1

{j2−ν,n} and h2(E) = 1.

Using the intermediate value theorem on h2, we directly prove the three needed items, as done in Part 1.
Finally, using Lemma 1.8, the only thing left to prove to have (2.21) for ν ∈ (0, 12 ) is that for all n ∈ N \ {0},
λ2n < λ2n+1. This is straightforward since λ2n and λ2n+1 are both in (j2ν,n, j

2
−ν,n+1), h2 = 1−2ν

1+2νh1 so h2 < h1
on (j2ν,n, j

2
−ν,n+1), and h1(λ2n) = h2(λ2n+1) = 1.

Part 3. Let ν ∈
(
1
2 , 1
)
. We follow the exact same strategy as in Part 2, except that here, 1−2ν

1+2ν < 0, so
the growth behavior of h2 is inverted. The increasing parts are now turned into decreasing ones, and vice
versa. Using the intermediate value theorem on h2, we directly prove the three needed items. Finally, using
Lemma 1.8, we have nothing left to prove in order to establish (2.21) for ν ∈

(
1
2 , 1
)
.

Part 4. Let ν = 1
2 . For ν = 1

2 , we directly find that the fact that E > 0 satisfies (2.6) is equivalent to

J−ν(
√
E) = 0. Therefore, the two items of this part are directly obtained. Finally, using Lemma 1.8, we

have nothing left to prove in order to establish (2.21) for ν = 1
2 .
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2.3 Hilbert Basis of eigenfunctions

In order to prove that the spectrum of Aν is restricted to the point spectrum, we prove the following result.

PROPOSITION 2.10. (Aν , D(Aν)) has compact resolvent.

Proof of proposition 2.10. Since (Aν , D(Aν)) is self-adjoint, it is automatically closed. Hence, for any λ ∈
R such thatAν−λId is invertible, the closed graph theorem ensures that (Aν−λId)−1 ∈ Lc(L

2(−1, 1), D(Aν)),
where D(Aν) is equipped with the usual graph norm. So, by composition, (Aν , D(Aν)) has a compact
resolvent as soon as the injection (D(Aν), || · ||D(Aν)) ↪→ (L2(−1, 1), || · ||L2(−1,1)) is compact.
Let (fn = fnr + fns )n∈N ∈ D(Aν)

N be a bounded sequence for the graph norm || · ||D(Aν), where for all n ∈ N,

fnr ∈ H̃2
0 (−1, 1) and fns ∈ Fν

s . We have that

∃C1 > 0, ∀n ∈ N, ||fn||L2(−1,1) ≤ C1, and ∃C2 > 0, ∀n ∈ N, ||Afn||L2(−1,1) ≤ C2.

Therefore, we obtain

∀n ∈ N, ⟨Afn, fn⟩L2(−1,1) ≤ ||fn||L2(−1,1)||Afn||L2(−1,1) ≤ C1C2.

Using (1.6), we have

∀n ∈ N, min{1, 4ν2}
∫ 1

−1

(∇fnr )2 ≤ C1C2.

Thus, we conclude that (∇fnr )n∈N is a bounded sequence in L2(−1, 1). Combining this with Poincaré’s
inequality on (-1,1) (which valid since fnr ∈ H̃2

0 (−1, 1) for any n ∈ N), we deduce that (fnr )n∈N is also a
bounded sequence in L2(−1, 1). This implies that (fnr )n∈N is a bounded sequence in H1(−1, 1), so that
Rellich’s theorem states that the injection H1(−1, 1) ↪→ L2(−1, 1) is compact. Therefore, there exists a

subsequence (f
φ1(n)
r )n∈N that converges strongly in L2(−1, 1) to some fr ∈ L2(−1, 1). Furthermore,

∀n ∈ N, ||fns ||L2(−1,1) = ||fns + fnr − fnr ||L2(−1,1) ≤ ||fn||L2(−1,1) + ||fnr ||L2(−1,1).

Since (fn)n∈N is bounded in L2(−1, 1), and we have shown that (fnr )n∈N is bounded in L2(−1, 1), we conclude

that (fns )n∈N is also bounded in L2(−1, 1), so (f
φ1(n)
s )n∈N is also bounded. Moreover, (f

φ1(n)
s )n∈N ∈ (Fν

s )
N,

and since Fν
s is a finite-dimensional vector subspace of L2(−1, 1), there exists a subsequence (f

φ2◦φ1(n)
s )n∈N

that converges strongly in L2(−1, 1) to some fs ∈ Fν
s ⊂ L2(−1, 1). Thus, we have proven that

∀n ∈ N, fφ2◦φ1(n) = fφ2◦φ1(n)
r + fφ2◦φ1(n)

s −→
n→+∞

fr + fs ∈ L2(−1, 1).

Therefore, (D(Aν), || · ||D(Aν)) ↪→ (L2(−1, 1), || · ||L2(−1,1)) is compact, and we can conclude as explained at
the beginning of the proof.

We are now ready to give a complete description of the spectral theory of Aν .

THEOREM 2.11. We introduce

ψ0 := |x|ν+ 1
2 − |x|−ν+ 1

2 on (−1, 1), and a0 := ||ψ0||L2(−1,1).

Let n ∈ N \ {0}, we introduce

ψ2n :=


− Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n
2

)−2ν √
−xJν

(
−
√
λ2nx

)
+

√
−xJ−ν

(
−
√
λ2nx

)
, on (−1, 0),

− Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n
2

)−2ν √
xJν

(√
λ2nx

)
+

√
xJ−ν

(√
λ2nx

)
, on (0, 1),
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a22n := ||ψ2n||2L2(−1,1) =

(
1− ν2

λ2n

)
J−ν

(√
λ2n

)2
+ J−ν

′
(√

λ2n

)2
−2

Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n
2

)−2ν [(
1− ν2

λ2n

)
Jν

(√
λ2n

)
J−ν

(√
λ2n

)
+Jν

′
(√

λ2n

)
J−ν

′
(√

λ2n

)
+

2ν sin(νπ)

πλ2n

]

+

(
Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n
2

)−2ν
)2 [(

1− ν2

λ2n

)
Jν

(√
λ2n

)2
+ Jν

′
(√

λ2n

)2]
> 0

(2.23)

Let n ∈ N, we introduce

ψ2n+1 :=


1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n+1

2

)−2ν
√
−xJν

(
−
√
λ2n+1x

)
−

√
−xJ−ν

(
−
√
λ2n+1x

)
, on(−1, 0),

−1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n+1

2

)−2ν
√
xJν

(√
λ2n+1x

)
+

√
xJ−ν

(√
λ2n+1x

)
, on(0, 1),

a22n+1 := ||ψ2n+1||2L2(−1,1) =

(
1− ν2

λ2n+1

)
J−ν

(√
λ2n+1

)2
+ J−ν

′
(√

λ2n+1

)2
−2

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n+1

2

)−2ν [(
1− ν2

λ2n+1

)
Jν

(√
λ2n+1

)
J−ν

(√
λ2n+1

)
.

+Jν
′
(√

λ2n+1

)
J−ν

′
(√

λ2n+1

)
+

2ν sin(νπ)

πλ2n+1

]

+

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)

(√
λ2n+1

2

)−2ν
2 [(

1− ν2

λ2n+1

)
Jν

(√
λ2n+1

)2
+ Jν

′
(√

λ2n+1

)2]
> 0.

(2.24)

Let n ∈ N, we define

ϕn :=
ψn

an
.

Then, (ϕn)n∈N is a Hilbert basis of L2(−1, 1) consisting of eigenfunctions of Aν .

Proof of Theorem 2.11. Thanks to Proposition 2.1 and Corollary 2.4, we know that σpoint(Aν) =
{λn, n ∈ N}, and that all these eigenvalues are distinct and have multiplicity 1. Moreover, for any n ∈ N,
Ker(Aν − λn Id) = Span(ψn) = Span(ϕn). Furthermore, using (1.9.a) and (1.9.b), we directly obtain (2.23)
and (2.24). Since Aν is self-adjoint with compact resolvent, we deduce that σ(Aν) = {λn, n ∈ N} and that
the sequence (ϕn)n∈N forms a Hilbert basis of L2(−1, 1).

3 Asymptotic behaviour of the eigenvalues

3.1 Case ν ∈
(
0, 1

2

)
During this whole subsection, we focus on the case ν ∈ (0, 12 ).
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LEMMA 3.1. Let ν ∈
(
0, 12

)
,√

πx

2

(
Jν(x)

(x
2

)−2ν Γ(ν + 1)

Γ(−ν + 1)
− J−ν(x)

)
=

x→+∞
− cos

(
x+ ν

π

2
− π

4

)
+

Γ(ν + 1)

Γ(−ν + 1)
cos
(
x− ν

π

2
− π

4

)( 2

x

)2ν

+O
(
1

x

)
,

(3.1)

√
πx

2

(
Jν(x)

(x
2

)−2ν 1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
− J−ν(x)

)
=

x→+∞
− cos

(
x+ ν

π

2
− π

4

)
+

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
cos
(
x− ν

π

2
− π

4

)( 2

x

)2ν

+O
(
1

x

)
.

(3.2)

Proof of Lemma 3.1. Let ν ∈
(
0, 12

)
, using Lemma 1.10, we have√

πx

2
J−ν(x) =

x→+∞
cos
(
x+ ν

π

2
− π

4

)
+O

(
1

x

)
, (3.3)√

πx

2
Jν(x)

(x
2

)−2ν

=
x→+∞

cos
(
x− ν

π

2
− π

4

)( 2

x

)2ν

+O
(

1

x1+2ν

)
. (3.4)

Γ(ν + 1)

Γ(−ν + 1)
×(3.4)−(3.3)=(3.1), and

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
×(3.4)−(3.3)=(3.2).

PROPOSITION 3.2. Let ν ∈
(
0, 12

)
,

√
λ2(n−1) =

n→+∞
π

(
n− ν

2
− 1

4

)
− Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν

+O
(

1

nmin(1,4ν)

)
, (3.5)

√
λ2(n−1)+1 =

n→+∞
π

(
n− ν

2
− 1

4

)
− 1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν

+O
(

1

nmin(1,4ν)

)
. (3.6)

Proof of Proposition 3.2. Let ν ∈
(
0, 12

)
.

Proof of (3.5).
Step 1. Thanks to (3.1), we know that√

πx

2

(
Jν(x)

(x
2

)−2ν Γ(ν + 1)

Γ(−ν + 1)
− J−ν(x)

)
=

x→+∞
− cos

(
x+ ν

π

2
− π

4

)
+O

(
1

x2ν

)
.

We also know that we need to have for n > 1√
π
√
λ2(n−1)

2

Jν (√λ2(n−1)

)(√λ2(n−1)

2

)−2ν
Γ(ν + 1)

Γ(−ν + 1)
− J−ν

(√
λ2(n−1)

) = 0. (3.7)
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Therefore, we must have

0 =
n→+∞

− cos
(√

λ2(n−1) + ν
π

2
− π

4

)
+O

(
1√

λ2(n−1)

)
, (3.8)

because
√
λ2(n−1) −→

n→+∞
+∞ as explained in Remark 2.8. Thus, we have

cos
(√

λ2(n−1) + ν
π

2
− π

4

)
=

n→+∞
o(1).

That implies that there must exist a sequence of integers (kn)n∈N\{0} ∈ ZN\{0} such that√
λ2(n−1) =

n→+∞
π

(
kn − ν

2
− 1

4

)
+ o(1),

and thanks to Proposition 2.7 we know that for n > 1,
√
λ2(n−1) ∈ (jν,n−1, j−ν,n). Using Lemma 1.12, we

obtain, as n→ +∞,√
λ2(n−1)∈

(
π

(
n− 1 +

ν

2
− 1

4

)
+O

(
1

n

)
, π

(
n− ν

2
− 1

4

)
+O

(
1

n

))
.

Therefore, since ν ∈ (0, 1), for n large enough, we must have kn = n. This proves that√
λ2(n−1) =

n→+∞
π

(
n− ν

2
− 1

4

)
+ ε2ν(n) with ε2ν(n) = o(1). (3.9)

Step 2. Now, we want to prove that ε2ν(n) =
n→+∞

O
(

1

n2ν

)
. We will repeat the same process. Using (3.8)

and (3.9), we obtain

cos
(
πn+ ε2ν(n)−

π

2

)
=

n→+∞
O
(

1

n2ν

)
.

Therefore,

sin (ε2ν(n)) =
n→+∞

O
(

1

n2ν

)
, which gives ε2ν(n) +O

(
ε2ν(n)

3
)

=
n→+∞

O
(

1

n2ν

)
.

Thus,

ε2ν(n)
(
1 +O

(
ε2ν(n)

2
))

=
n→+∞

O
(

1

n2ν

)
,

which implies that Thus,

ε2ν(n) (1 + o(1)) =
n→+∞

O
(

1

n2ν

)
.

This implies that ε2ν(n) =
n→+∞

O
(

1

n2ν

)
.

Step 3. Now, we want to obtain an even more precise expression of ε2ν . We will use the same strategy.
Using (3.1), we know that√

πx

2

(
Jν(x)

(x
2

)−2ν Γ(ν + 1)

Γ(−ν + 1)
− J−ν(x)

)
=

x→+∞
− cos

(
x+ ν

π

2
− π

4

)
+

Γ(ν + 1)

Γ(−ν + 1)
cos
(
x− ν

π

2
− π

4

)( 2

x

)2ν

+O
(
1

x

)
.
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(3.7) is still true. Therefore, we must have

− cos
(√

λ2(n−1) + ν
π

2
− π

4

) Γ(ν + 1)

Γ(−ν + 1)
cos
(√

λ2(n−1) − ν
π

2
− π

4

)( 2√
λ2(n−1)

)2ν

=
n→+∞

O

(
1√

λ2(n−1)

)
.

Using (3.9), we obtain

(−1)n+1 sin (ε2ν(n)) +
Γ(ν + 1)

Γ(−ν + 1)
(−1)n sin (−νπ + ε2ν(n))

(
2

πn

)2ν (
1 +O

(
1

n

))−2ν

=
n→+∞

O
(
1

n

)
.

Now, we use the asymptotic expansions of sin(x), (1 + x)−2ν , and sin(−νπ + x) around 0. We need to

remember that we already know that ε2ν(n) =
n→+∞

O
(

1

n2ν

)
by the previous step, and that since ν ∈

(
0,

1

2

)
,

2ν ∈ (0, 1). We obtain

Γ(ν + 1)

Γ(−ν + 1)
(−1)n

(
sin(−νπ) +O

(
1

n2ν

))(
2

πn

)2ν (
1 +O

(
1

n

))
+ (−1)n+1

(
ε2ν(n) +O

(
1

n6ν

))
=

n→+∞
O
(
1

n

)
,

which gives

ε2ν(n) =
x→+∞

− Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν

+O
(

1

nmin(1,4ν)

)
,

and concludes the proof of (3.5).

Proof of (3.6). It is crucial to note that the asymptotic expansion (3.2) is simply the asymptotic expansion

of (3.1) but with
Γ(ν + 1)

Γ(ν − 1)
replaced by

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(ν − 1)
. Therefore, if we could prove that

√
λ2(n−1)+1 =

n→+∞
π

(
n− ν

2
− 1

4

)
+ o(1), (3.10)

then we would follow the exact same proof as for (3.5) except that
Γ(ν + 1)

Γ(ν − 1)
would always be replaced by

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(ν − 1)
. Therefore, we would have proven (3.6).

Using (3.2) instead of (3.1) and for n ∈ N \ {0}, the condition that
√
λ2(n−1)+1 satisfies is now (2.6) instead

of (2.5), we can follow the same computations as in Step 1 to obtain that there must exist a sequence of
integers (kn)n∈N\{0} ∈ ZN\{0} such that√

λ2(n−1)+1 =
n→+∞

π

(
kn − ν

2
− 1

4

)
+ o(1).

Since ν ∈
(
0, 12

)
, Proposition 2.7 gives that for n > 1,

√
λ2(n−1)+1 ∈ (jν,n−1, j−ν,n). Thus, by following the

same computations as in Step 1, we obtain (3.10). As explained before, this is enough to conclude the proof
of (3.6).

Taking the square of (3.5) and (3.6) and keeping only the terms of the right order of precision leads to the
following result.
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COROLLARY 3.3. Let ν ∈
(
0, 12

)
,

λ2(n−1) =
n→+∞

π2

(
n− ν

2
− 1

4

)2

− 4
Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν−1

+O
(

1

nmin(0,4ν−1)

)
, (3.11)

λ2(n−1)+1 =
n→+∞

π2

(
n− ν

2
− 1

4

)2

− 4
1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν−1

+O
(

1

nmin(0,4ν−1)

)
, (3.12)

λ2(n−1)+1 − λ2(n−1) =
n→+∞

16ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν−1

+O
(

1

nmin(0,4ν−1)

)
. (3.13)

3.2 Case ν ∈
[
1
2
, 1
)

During this whole subsection, we will focus only on the case ν ∈ [ 12 , 1).

LEMMA 3.4. Let ν ∈
[
1
2 , 1
)
,√

πx

2

(
Jν(x)

(x
2

)−2ν Γ(ν + 1)

Γ(−ν + 1)
− J−ν(x)

)
=

x→+∞
− cos

(
x+ ν

π

2
− π

4

)
+ sin

(
x+ ν

π

2
− π

4

) 4ν2 − 1

8
× 1

x

+
Γ(ν + 1)

Γ(−ν + 1)
cos
(
x− ν

π

2
− π

4

)( 2

x

)2ν

+O
(

1

x2

)
.

(3.14)

Proof of Lemma 3.4. Let ν ∈
[
1
2 , 1
)
, using Lemma 1.10, we have√

πx

2
J−ν(x) =

x→+∞
cos
(
x+ ν

π

2
− π

4

)
− sin

(
x+ ν

π

2
− π

4

) 4ν2 − 1

8
× 1

x
+O

(
1

x2

)
(3.15)

and √
πx

2
Jν(x)

(x
2

)−2ν

=
x→+∞

cos
(
x− ν

π

2
− π

4

)( 2

x

)2ν

+O
(

1

x1+2ν

)
. (3.16)

Γ(ν + 1)

Γ(−ν + 1)
(3.16)−(3.15)=(3.14), and we keep O

(
1

x2

)
instead of O

(
1

x1+2ν

)
because ν ∈

[
1
2 , 1
)
.

As soon as we have proved this asymptotic expansion, it is not difficult to figure out that one can follow
exactly the proof of Proposition 3.2 and obtain the following result.

PROPOSITION 3.5. Let ν ∈
[
1
2 , 1
)
,

√
λ2(n−1) =

n→+∞
+ π

(
n− ν

2
− 1

4

)
− 4ν2 − 1

8πn
− Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν

+O
(

1

n2

)
, (3.17)

√
λ2(n−1)+1 =

n→+∞
+ π

(
n− ν

2
− 1

4

)
− 4ν2 − 1

8πn
− 1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν

+O
(

1

n2

)
. (3.18)
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Taking the square of (3.17) and (3.18) leads to the following result.

COROLLARY 3.6. Let ν ∈
[
1
2 , 1
)
,

λ2(n−1) =
n→+∞

π2

(
n− ν

2
− 1

4

)2

− 2
4ν2 − 1

8
− 4

Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν−1

+O
(
1

n

)
, (3.19)

λ2(n−1)+1 =
n→+∞

π2

(
n− ν

2
− 1

4

)2

− 2
4ν2 − 1

8
− 4

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν−1

+O
(
1

n

)
, (3.20)

λ2(n−1)+1 − λ2(n−1) =
n→+∞

16ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
sin(νπ)

(
2

πn

)2ν−1

+O
(
1

n

)
. (3.21)

We can also deduce the following less precise result, true for any ν ∈ (0, 1).

COROLLARY 3.7. √
λ2(n−1) =

n→+∞
π

(
n− ν

2
− 1

4

)
+O

(
1

nmin(1,2ν)

)
and √

λ2(n−1)+1 =
n→+∞

π

(
n− ν

2
− 1

4

)
+O

(
1

nmin(1,2ν)

)
.

Proof of Corollary 3.7. This is directly obtained from (3.5), (3.6), (3.17) and (3.18), with a case distinction
on ν.

4 Null Controllability

4.1 Internal Control

To prove the null controllability property stated in Theorem 1.1, we will follow the moment method, that was
introduced in [16] for the study of the boundary null controllability of the 1D heat equation, in the spirit of
the work [18], which explains how to treat the case of an internal control. The moment method is presented
in [30, Section 5.3.3] for instance. To be able to find a control u ∈ L2 ((0, T )× ω) that is well-defined and
that brings the final state to 0, we will have to

• find a biorthogonal family (qn)n∈N to the family of exponentials (t 7→ e−λnt)n∈N in L2(0, T ), i.e.
verifying ∫ T

0

qk(t)e
−λjtdt = δk,j , ∀k, j ∈ N,

with δk,j the Kronecker symbol;

• obtain an estimate on the L2-norm of the (qn)n∈N;

• prove that infn∈N
∫
ω
ϕ2n > 0, with (ϕn)n∈N the Hilbert basis of eigenfunctions defined in Theorem 2.11.

The first point is easily obtained. Moreover, in order to find the estimate on the L2-norm, we will need to
introduce the notion of condensation index, following the work of [3, Section 3]. Then, using results from
[3, Section 4], we will be able to obtain our second point. These two steps are stated in Proposition 4.5.
Finally, to obtain the third point, we will need several asymptotic behaviours that are stated in Lemma 4.8.
Then, we prove it on a control domain of the form ω = (α, β) ⊂ (−1, 1) in Proposition 4.10. Afterwards,
we generalize the result to the measurable case in Corollary 4.6. With all those intermediate results, we will
finally prove Theorem 1.1.
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DEFINITION 4.1. [3, Definition 3.1 and Remark 3.10]

Let Λ = (µn)n∈N ∈ RN be a positive and increasing sequence such that
∑

n∈N

1

µn
< +∞. The condensation

index of the sequence Λ is defined by

c(Λ) := lim sup
n→+∞

− 1

µn
ln |C ′(µn)| ∈ [0,+∞] , (4.1)

with

C(µ) =

+∞∏
n=0

(
1− µ2

µ2
n

)
, ∀µ > 0. (4.2)

REMARK 4.2. In fact, to define the condensation index, we only need to assume that (λn)n∈N is positive
for large enough n. Indeed, one easily proves that removing a finite number of terms in the sequence Λ does
not change the value of c(Λ), in the sense that for any N ∈ N, we have

c(Λ) = lim sup
n→+∞

− 1

µn
ln |C ′

N (µn)| ∈ [0,+∞] ,

with

CN (µ) =

+∞∏
n=N

(
1− µ2

µ2
n

)
, ∀µ > 0.

REMARK 4.3. We study the condensation index since it provides a measure of the separation of the ele-
ments λn of the sequence Λ. It will be useful to obtain an essential estimate on the L2-norm of a biorthogonal
family in Proposition 4.5.

PROPOSITION 4.4. We introduce Λ = (λn)n∈N, with {λn, n ∈ N} the eigenvalues of Aν defined in
Propositions 2.1 and 2.7. Then, the condensation index c(Λ) is 0.

Proof of Proposition 4.4. This proof takes some inspiration from the proof of [23, Lemma 4.1]. First,
from (2.21), Corollary 3.3, and Corollary 3.6, we obtain that (λn)n∈N\{0} is a positive increasing sequence

and
∑

n∈N\{0}
1
λn

< +∞. Therefore, the notion of condensation index is well-defined. By examining (4.2)

(where we start the summation at n = 1, see Remark 4.2), we notice that

|C ′(λn)| =
2

λn

+∞∏
j=1
j ̸=n

∣∣∣∣∣1− λ2n
λ2j

∣∣∣∣∣ , ∀n ∈ N \ {0}.

Therefore, we get, for any n ∈ N \ {0},

1

λn
ln |C ′(λn|) =

1

λn

ln
2

λn
+

n−2∑
j=1

ln

∣∣∣∣∣1− λ2n
λ2j

∣∣∣∣∣+ ln

∣∣∣∣1− λ2n
λ2n−1

∣∣∣∣+ ln

∣∣∣∣1− λ2n
λ2n+1

∣∣∣∣+ +∞∑
j=n+2

ln

∣∣∣∣∣1− λ2n
λ2j

∣∣∣∣∣


=
1

λn
ln

2

λn
+

1

λn
ln

(
λ2n
λ2n−1

− 1

)
+

1

λn
ln

(
1− λ2n

λ2n+1

)
+ Fn +Gn,

with Fn =
1

λn

n−2∑
j=1

ln

(
λ2n
λ2j

− 1

)
, and Gn =

1

λn

+∞∑
j=n+2

ln

(
1− λ2n

λ2j

)
.

Moreover, thanks to Corollary 3.3 and Corollary 3.6, we know that the asymptotic growth speed of (λn)n∈N

is of order n2, so it is also the asymptotic growth speed of (λn+1 + λn)n∈N, and that the asymptotic growth
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speed of (λ2n+2−λ2n+1)n∈N is of order n. Moreover, (3.13) and (3.21) give that the asymptotic decay speed

of (λ2n+1 − λ2n)n∈N is of order
1

n2ν−1
. Therefore, we have

1

λn
ln

2

λn
−→

n→+∞
0,

1

λn
ln

(
λ2n
λ2n−1

− 1

)
= − 1

λn
2 ln(λn−1) +

1

λn
ln(λn + λn−1) +

1

λn
ln(λn − λn−1) −→

n→+∞
0,

1

λn
ln

(
1− λ2n

λ2n+1

)
= − 1

λn
2 ln(λn+1) +

1

λn
ln(λn+1 + λn) +

1

λn
ln(λn+1 − λn) −→

n→+∞
0.

Thus, if we prove that Fn −→
n→+∞

0 and Gn −→
n→+∞

0, then, according to Definition 4.1, we will have proved

that c(Λ) = 0.

Proof of Fn −→
n→+∞

0.

First, we notice that

|Fn| ⩽
1

λn

n−2∑
j=1√

2λj<λn

ln

(
λ2n
λ2j

− 1

)
+

1

λn

n−2∑
j=1√

2λj>λn

ln

(
λ2j

λ2n − λ2j

)
, ∀n ∈ N \ {0}.

Moreover, for n ⩾ 2,

0 ⩽
1

λn

n−2∑
j=1√

2λj<λn

ln

(
λ2n
λ2j

− 1

)
⩽

1

λn

n−2∑
j=1√

2λj<λn

ln

(
λ2n
λ21

− 1

)
⩽
n− 2

λn
ln

(
λ2n
λ21

− 1

)
−→

n→+∞
0,

since the asymptotic growth speed of (λn)n∈N is of order n2. Moreover, for n ⩾ 2,

0 ⩽
1

λn

n−2∑
j=1√

2λj>λn

ln

(
λ2j

λ2n − λ2j

)
⩽

1

λn

n−2∑
j=1√

2λj>λn

ln

(
λ2n

λ2n − λ2n−2

)
⩽
n− 2

λn
ln

(
λ2n

λ2n − λ2n−2

)
−→

n→+∞
0,

thanks to the already mentioned information about the asymptotic expansion of the eigenvalues and their
differences.

Therefore, we proved that Fn −→
n→+∞

0.

Proof of Gn −→
n→+∞

0. First, we notice that

|Gn| ⩽
1

λn

+∞∑
j=n+2

ln

(
λ2j

λ2j − λ2n

)
=

1

λn

+∞∑
j=n+2

ln

(
1 +

λ2n
λ2j − λ2n

)
, ∀n ∈ N \ {0}.

Moreover, we recall that for any x > 0, we have ln(1 + x) ⩽ x. Therefore,

|Gn| ⩽
1

λn

+∞∑
j=n+2

λ2n
λ2j − λ2n

=

+∞∑
j=n+2

λn
(λj + λn)(λj − λn)

⩽
+∞∑

j=n+2

1

λj − λn
.

We notice that the series on the right-hand side of this inequality can be written as

+∞∑
j=n+2

1

λj − λn
=

+∞∑
k such that 2(k−1)⩾n+2

1

λ2(k−1) − λn
+

+∞∑
k such that 2(k−1)+1⩾n+2

1

λ2(k−1)+1 − λn
, ∀n > 0.
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First, we want to prove that G2(n−1) −→
n→+∞

0. We have

∣∣G2(n−1)

∣∣ ⩽ +∞∑
k=n+1

1

λ2(k−1) − λ2(n−1)
+

+∞∑
k=n+1

1

λ2(k−1)+1 − λ2(n−1)
, ∀n > 1. (4.3)

Ifν ∈
(
0, 12

)
, Corollary 3.3 gives that

λ2(n−1) =
n→+∞

π2

(
n− ν

2
− 1

4

)2

+ εeven2ν−1(n), λ2(n−1)+1 =
n→+∞

π2

(
n− ν

2
− 1

4

)2

+ εodd2ν−1(n),

with εeven2ν−1(n), ε
odd
2ν−1(n) = O

(
1

n2ν−1

)
. From there, it is not difficult to infer that

∃N ∈ N,∀n > N, ∀k > n, λ2(k−1) − λ2(n−1) ⩾ (π2 − 1)

(
k − ν

2
− 1

4

)2

− (π2 − 1)

(
n− ν

2
− 1

4

)2

,

and λ2(k−1)+1 − λ2(n−1) ⩾ (π2 − 1)

(
k − ν

2
− 1

4

)2

− (π2 − 1)

(
n− ν

2
− 1

4

)2

.

(4.4)

If ν ∈ [ 12 , 1), Corollary 3.6 gives that

λ2(n−1) =
n→+∞

π2

(
n− ν

2
− 1

4

)2

− 2
4ν2 − 1

8
+ εeven2ν−1(n),

λ2(n−1)+1 =
n→+∞

π2

(
n− ν

2
− 1

4

)2

− 2
4ν2 − 1

8
+ εodd2ν−1(n),

with εeven2ν−1(n), ε
odd
2ν−1(n) = O

(
1

n2ν−1

)
. Therefore, it is very easy to obtain the same statement (4.4).

Let ν ∈ (0, 1). From (4.3) and (4.4), we obtain that for any n > N ,

∣∣G2(n−1)

∣∣ ⩽ 2

π2 − 1

+∞∑
k=n+1

1(
k − ν

2 − 1
4

)2 − (n− ν
2 − 1

4

)2 =
2

π2 − 1

+∞∑
k=1

1(
k − ν

2 − 1
4

)2
+ 2n

(
k − ν

2 − 1
4

)
⩽

2

π2 − 1

(
1(

1− ν
2 − 1

4

)2
+ 2n

(
1− ν

2 − 1
4

) + +∞∑
k=2

∫ k

k−1

1(
x− ν

2 − 1
4

)2
+ 2n

(
x− ν

2 − 1
4

)dx)

=
2

π2 − 1

(
1(

1− ν
2 − 1

4

)2
+ 2n

(
1− ν

2 − 1
4

) + [ 1

2n
ln

(
x− ν

2 − 1
4

x− ν
2 − 1

4 + 2n

)]+∞

1

)
−→

n→+∞
0.

We can reiterate the proof by following the same steps to obtain that we have as well G2(n−1)+1 −→
n→+∞

0.

As a consequence, we have that the condensation index c(Λ) is 0, which concludes the proof.

From the previous Proposition, we easily deduce the existence of biorthogonal families at any time T > 0.

PROPOSITION 4.5. Let T > 0. We consider (t 7→ e−λnt)n∈N ∈ L2(0, T )N, with {λn, n ∈ N} the
eigenvalues of Aν defined in Proposition 2.7 and 2.1. Then, there exists a biorthogonal family (qn)n∈N ∈
L2(0, T )N to (t 7→ e−λnt)n∈N such that

∀ε > 0, ∃Cε(T ) > 0, ∀n ∈ N, ||qn||L2(0,T ) ⩽ Cε(T )e
ελn . (4.5)
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Proof of Proposition 4.5. Let T > 0. From (2.21), Corollary 3.3, and Corollary 3.6, we obtain that
(λn)n∈N is a non-negative increasing sequence and

∑
n∈N\{0}

1
λn

< +∞. Therefore, we can use [3, Theorem

4.1] (which can be easily adapted to include the case where 0 is a simple eigenvalue by an appropriate
translation argument in time), which gives the existence of the biorthogonal family (qn)n∈N. Proposition 4.4
gives that the condensation index is equal to 0. Therefore, [3, Remark 4.3] gives (4.5), which concludes the
proof.

Now, we want to prove the following Proposition.

PROPOSITION 4.6. Let ω be a measurable set of (−1, 1) of positive Lebesgue measure. Then,

inf
n∈N

∫
ω

ϕ2n > 0,

with (ϕn)n∈N the Hilbert basis of eigenfunctions defined in Theorem 2.11.

REMARK 4.7. Let us emphasize here that obtaining this proposition is not straightforward, and relies
on the explicit form of our eigenfunctions. This comes from the fact that we are working here with sin-
gular potentials and non-conventional self-adjoint extensions, so that many tools from perturbation theory
are not available. Indeed, for the usual eigenfunctions of the Dirichlet-Laplace operator on (0, 1) given by√
2 sin(nπx), we have, for any measurable set ω ⊂ (0, 1) of positive measure, by the Riemann-Lebesgue

Lemma,

lim
n→+∞

∫
ω

2 sin(nπx)2dx = lim
n→+∞

∫
ω

(1− cos(2nπx)dx) = |ω|,

where | · | denotes the Lebesgue measure. So, we easily infer that

inf
n∈N\{0}

∫
ω

2 sin(nπx)2dx > 0.

For the Dirichlet-Laplace operator with bounded potential, it is easy to prove by a perturbation argument
that the same property holds (see e.g. [19, Appendix A]). However, this reasoning is ineffective in our case,
because our eigenfunctions cannot be written as adequate perturbations of sin or cos functions.

In order to prove Proposition 4.6, we need several intermediate steps. First, we state several asymptotic
results that will be useful later on.

LEMMA 4.8. Let β0 ∈ (0, 1).

J−ν

(√
λ2(n−1)β

)
=

n→+∞

1√
π

(
2

πβn

)1/2(
sin
(√

λ2(n−1)β + ν
π

2
+
π

4

)
+Oβ0

(
1

n

))
,∀1 > β ⩾ β0, (4.6.a)

J−ν

(√
λ2(n−1)

)
=

n→+∞
O
(

1

n1/2+min(1,2ν)

)
, (4.6.b)

J−ν
′
(√

λ2(n−1)β
)

=
n→+∞

1√
π

(
2

πβn

)1/2(
cos
(√

λ2(n−1)β + ν
π

2
+
π

4

)
+Oβ0

(
1

n

))
,∀1 > β ⩾ β0,

(4.6.c)

J−ν
′
(√

λ2(n−1)

)
=

n→+∞

(−1)n√
π

(
2

πn

)1/2(
1 +O

(
1

nmin(1,4ν)

))
, (4.6.d)

a22(n−1) =
n→+∞

1

π

2

πn

(
1 +O

(
1

nmin(1,2ν)

))
, (4.6.e)

where a2(n−1) is defined in (2.23), and Oβ0 ( · ) means: there exists C(β0) > 0 and n0 ∈ N \ {0}, that might
depend on β0, such that for any n ⩾ n0 and any β ⩾ β0,

|Oβ0
( · )| ⩽ C(β0) | · | .

29



Proof of Lemma 4.8. Let β0 ∈ (0, 1).
Proof of (4.6.a) and (4.6.b). From Lemma 1.10, we obtain

J−ν(x) =
x→+∞

√
2

πx

(
cos
(
x+ ν

π

2
− π

4

)
+O

(
1

x

))
.

Let β ⩾ β0. We know that
√
λ2(n−1) −→

n→+∞
+∞. Therefore,

J−ν

(√
λ2(n−1)β

)
=

√
2

π
√
λ2(n−1)β

(
cos
(√

λ2(n−1)β + ν
π

2
− π

4

)
+Oβ0

(
1√

λ2(n−1)

))

=
1√
π

(
2

πβn

)1/2(
1 +Oβ0

(
1

n

))−1/2(
sin
(√

λ2(n−1)β + ν
π

2
+
π

4

)
+Oβ0

(
1

n

))
,

where we used Corollary 3.7 for the asymptotic expansion of
√
λ2(n−1). This concludes the proof of (4.6.a).

Now, let us take β = 1. Using the previous computations, we obtain

J−ν

(√
λ2(n−1)

)
=

n→+∞
O
(

1

n1/2

)[
sin

(
π

(
n− ν

2
− 1

4

)
+O

(
1

nmin(1,2ν)

)
+ ν

π

2
+
π

4

)
+O

(
1

n

)]
=

n→+∞
O
(

1

n1/2

)(
(−1)nO

(
1

nmin(1,2ν)

)
+O

(
1

n

))
=

n→+∞
O
(

1

n1/2+min(1,2ν)

)
,

which concludes the proof of (4.6.b).

Proof of (4.6.c) and (4.6.d). Lemma 1.9 states that J−ν
′ = 1

2 (J−ν−1 − J−ν+1). Therefore, by using
Lemma 1.10 on J−ν−1 and J−ν+1, we obtain that

J−ν
′(x) =

x→+∞

1

2

√
2

πx

(
cos
(
x− (−ν − 1)

π

2
− π

4

)
− cos

(
x− (−ν + 1)

π

2
− π

4

)
+O

(
1

x

))
=

x→+∞

1

2

√
2

πx

(
cos
(
x+ ν

π

2
+
π

4

)
− cos

(
x+ ν

π

2
− 3

π

4

)
+O

(
1

x

))
=

x→+∞

√
2

πx

(
cos
(
x+ ν

π

2
+
π

4

)
+O

(
1

x

))
.

Let β ⩾ β0. Since
√
λ2(n−1) −→

n→+∞
+∞, we have

J−ν
′
(√

λ2(n−1)β
)

=
n→+∞

√
2

π
√
λ2(n−1)β

(
cos
(√

λ2(n−1)β + ν
π

2
+
π

4

)
+O

(
1√

λ2(n−1)β

))

=
n→+∞

1√
π

(
2

πβn

)1/2(
1 +Oβ0

(
1

n

))−1/2(
cos
(√

λ2(n−1)β + ν
π

2
+
π

4

)
+Oβ0

(
1

n

))
which concludes the proof of (4.6.c). Now, we fix β = 1. Substituting

√
λ2(n−1) in (4.6.c) with Corollary 3.7

easily gives (4.6.d).

Proof of (4.6.e). Let n > 1. We recall that the expression of a2(n−1) is given in (2.23).
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Since
√
λ2(n−1) =

n→+∞
O(n), we obtain from Corollary 1.11 that

a22(n−1) =

(
1 +O

(
1

n2

))
J−ν

(√
λ2(n−1)

)2
+ J−ν

′
(√

λ2(n−1)

)2
+O

(
1

n2ν

)[(
1 +O

(
1

n2

))
O
(

1

n1/2

)
O
(

1

n1/2

)
+O

(
1

n1/2

)
O
(

1

n1/2

)
+O

(
1

n2

)]
+O

(
1

n4ν

)[(
1 +O

(
1

n2

))
O
(
1

n

)
+O

(
1

n

)]
=

(
1 +O

(
1

n2

))
J−ν

(√
λ2(n−1)

)2
+ J−ν

′
(√

λ2(n−1)

)2
+O

(
1

n1+2ν

)
.

Using (4.6.b) and (4.6.d), we obtain

a22(n−1) =
n→+∞

(
1 +O

(
1

n2

))
O
(

1

n1+min(2,4ν)

)
+

2

π2n

(
1 +O

(
1

nmin(1,4ν)

))
+O

(
1

n1+2ν

)
=

n→+∞

2

π2n

(
1 +O

(
1

nmin(1,4ν)

)
+O

(
1

nmin(2,4ν)

)
+O

(
1

n2ν

))
, which gives (4.6.e).

REMARK 4.9. The reader can convince themselves that all the asymptotic behaviours that we obtained so

far in this section are still valid when the index 2(n−1) is replaced by 2(n−1)+1 and
Γ(ν + 1)

Γ(−ν + 1)
is replaced

by
1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
. Notably, Lemma 4.8 also holds for even indexes 2(n− 1) + 1.

The previous asymptotic result is useful to prove the following non-concentration property of our eigenfunc-
tions on any non-trivial interval that is far from 0.

PROPOSITION 4.10. Let α0 ∈ (0, 1). There exists C > 0 and n0 ∈ N \ {0} (that might depend on α0

and ν) such that ∫ β

α

ϕ2n ⩾ C(β − α), α0 ⩽ α < β < 1, ∀n ⩾ n0.

Let β0 ∈ (0, 1). There exists C > 0 and n0 ∈ N \ {0} (that might depend on β0 and ν) such that∫ β

α

ϕ2n ⩾ C(β − α), −1 < α < β ⩽ −β0, ∀n ⩾ n0,

with (ϕn)n∈N the Hilbert basis of L2(−1, 1) of eigenfunctions defined in Theorem 2.11.

Proof of Proposition 4.10. Since ϕ22(n−1) and ϕ
2
2(n−1)+1 are even, there is no loss of generality by assuming

that we are in the case α0 ⩽ α < β < 1. First, let us start with the even indexes 2(n− 1). We have, for all
n > 1, ∫ β

α

ψ2
2(n−1) =

∫ β

α

xJ−ν

(√
λ2(n−1)x

)2
dx

− 2
Γ(ν + 1)

Γ(−ν + 1)

(√
λ2(n−1)

2

)−2ν ∫ β

α

xJν

(√
λ2(n−1)x

)
J−ν

(√
λ2(n−1)x

)
dx

+

 Γ(ν + 1)

Γ(−ν + 1)

(√
λ2(n−1)

2

)−2ν
2 ∫ β

α

xJν

(√
λ2(n−1)x

)2
dx.

(4.7)
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From the mean value Theorem for integrals, there exists rn ∈ (α, β) such that∫ β

α

xJν

(√
λ2(n−1)x

)
J−ν

(√
λ2(n−1)x

)
dx = (β − α)rnJν

(√
λ2(n−1)rn

)
J−ν

(√
λ2(n−1)rn

)
.

From Corollary 1.11, we deduce that there exists C > 0 such that for any n large enough,∣∣∣rnJν (√λ2(n−1)rn

)
J−ν

(√
λ2(n−1)rn

)
dx
∣∣∣ ⩽ C

λ2(n−1)
.

Using Corollary 3.7, we deduce that for some new C > 0,∣∣∣∣∣∣−2
Γ(ν + 1)

Γ(−ν + 1)

(√
λ2(n−1)

2

)−2ν ∫ β

α

xJν

(√
λ2(n−1)x

)
J−ν

(√
λ2(n−1)x

)
dx

∣∣∣∣∣∣ ⩽ (β − α)C

n1+2ν
. (4.8)

A similar reasoning also ensures that for n large enough,∣∣∣∣∣∣∣
 Γ(ν + 1)

Γ(−ν + 1)

(√
λ2(n−1)

2

)−2ν
2 ∫ β

α

xJν

(√
λ2(n−1)x

)2
dx

∣∣∣∣∣∣∣ ⩽
(β − α)C

n1+4ν
. (4.9)

Now, let us go back to the first term of (4.7). Using (1.9.c), with (4.6.a) and (4.6.c), we obtain that∫ β

α

xJ−ν

(√
λ2(n−1)x

)2
=

1

2
β2

((
1− ν2√

λ2(n−1)
2
β2

)
J−ν(

√
λ2(n−1)β)

2 + J−ν
′(
√
λ2(n−1)β)

2

)

− 1

2
α2

((
1− ν2√

λ2(n−1)
2
α2

)
J−ν(

√
λ2(n−1)α)

2 + J−ν
′(
√
λ2(n−1)α)

2

)

=
1

2
β2

[(
1 +Oα0

(
1

n2

))
2

π2βn

(
sin2

(
β
√
λ2(n−1) + ν

π

2
+
π

4

)
+Oα0

(
1

n

))
+

2

π2βn

(
cos2

(
β
√
λ2(n−1) + ν

π

2
+
π

4

)
+Oα0

(
1

n

))]
− 1

2
α2

[(
1 +Oα0

(
1

n2

))
2

π2αn

(
sin2

(
α
√
λ2(n−1) + ν

π

2
+
π

4

)
+Oα0

(
1

n

))
+

2

π2αn

(
cos2

(
α
√
λ2(n−1) + ν

π

2
+
π

4

)
+Oα0

(
1

n

))]
.

Since cos2 +sin2 = 1, we have∫ β

α

xJ−ν

(√
λ2(n−1)x

)2
dx =

1

π2n
(β − α)

(
1 +Oα0

(
1

n

))
.

Hence, we deduce that there exists C > 0, that might depend on ν and α0, and that might from now on
change from line to line, there exists ñ0 ∈ N \ {0} (depending also on ν and α0) such that for any n ⩾ ñ0,∫ β

α

xJ−ν

(√
λ2(n−1)x

)2
dx ⩾

C

n
(β − α).

Coming back to (4.7) and using (4.8) and (4.9), we deduce that there exists some n0 ⩾ ñ0 such that for
n ⩾ n0, we have ∫ β

α

ψ2
2(n−1) ⩾

C

n
(β − α).
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Therefore, using (4.6.e), we obtain that for some (possibly larger) n0, we have∫ β

α

ϕ22(n−1) ⩾ C(β − α), ∀n ⩾ n0.

This concludes the proof for even indexes of eigenfunctions and for α0 ⩽ α, β < 1.

Then, we observe that for n > 0, the expression of ϕ22(n−1)+1 is very similar to the one of ϕ22(n−1) on (0, 1),

except that the index 2(n−1) is replaced by 2(n−1)+1 and that
Γ(ν + 1)

Γ(−ν + 1)
is replaced by

1− 2ν

1 + 2ν

Γ(ν + 1)

Γ(−ν + 1)
.

Therefore, using Remark 4.9, we also have (for some possibly larger n0)∫ β

α

ϕ22(n−1)+1 ⩾ C(β − α), ∀n ⩾ n0.

By using the structure of the open sets of R, we can deduce the following result.

COROLLARY 4.11. Let α0 ∈ (0, 1). There exists C > 0 and n0 ∈ N \ {0} (that might depend on α0 and
ν) such that for any open subset O that is included in (α0, 1) or (−1,−α0), we have∫

O
ϕ2n ⩾ C|O|, ,∀n ⩾ n0.

Proof of Corollary 4.11. As already explained, it is enough to treat the case where O ⊂ (α0, 1). Then,
O is a disjoint union of a countable collection of open intervals {(ak, bk)}k∈I with I at most countable, and
for any k ∈ I, α0 < ak < bk < 1. With these notations, we have∫

O
ϕ2n =

∑
k∈I

∫ bk

ak

ϕ2n.

Using Lemma 4.10, this gives, for some C > 0 and n0 ∈ N \ {0} depending on α0 and ν,∫
O
ϕ2n ⩾ C

∑
k∈I

(bk − ak) = C|O|, ∀n ⩾ n0,

whence the result.

The last step is to pass from an open set to a measurable set of positive measure.

Proof of Proposition 4.6 Now, we consider ω a measurable set of (−1, 1) assumed to have positive
Lebesgue measure. Let ω̃ be another measurable set of (−1, 1). We will use repeatedly the following
property:

ω̃ ⊂ ω ⇒ inf
n∈N

∫
ω

ϕ2n ⩾ inf
n∈N

∫
ω̃

ϕ2n.

Hence, to prove the desired result, is is enough to prove it for a measurable subset of ω.

Assume without loss of generality that |ω ∩ [0, 1)| > 0 (otherwise, we use a symmetry argument as before).
Therefore, we can change ω into ω ∩ [0, 1), according to the discussion above, and we still call it ω. By the
Lebesgue density Theorem, for almost every x ∈ ω and for rx > 0 small enough, we have |ω ∩ Bx(rx)| > 0.
Since {0} is of null measure, and ω ⊂ [0, 1), there exists some x0 ∈ ω with x0 > 0 and some r > 0 such
that |ω ∩ Bx0

(r)| > 0. Reducing r if necessary, we can assume that r < x0/2. We call 2α0 = x0/2. Then
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ω ∩Bx0(r) ⊂ (2α0, 1). Hence, we can change ω into ω ∩Bx0(r), so we reduce to the case where ω ⊂ (2α0, 1)
with α0 > 0.

By exterior regularity of the Lebesgue measure [27, Theorem 2.20], for all k ∈ N \ {0}, there exists an open
set Ok of (−1, 1) with ω ⊆ Ok such that |Ok \ ω| < 1/k. Moreover, reducing Ok if necessary, we can assume
that Ok ⊂ (α0, 1) for any k ∈ N \ {0}. By the “reverse” of the dominated convergence Theorem, we know
that for some extraction φ,

1Oφ(k)\ω −→
k→+∞

0, a.e. on (−1, 1).

Since ϕ2n ∈ L1(−1, 1) for any n ∈ N \ {0}, and

|1Oφ(k)
ϕ2n| ⩽ |ϕ2n|,

the dominated convergence Theorem ensures that∫ 1

−1

1Oφ(k)
ϕ2n −→

k→+∞

∫
ω

ϕ2n.

In other words, ∫
Oφ(k)

ϕ2n −→
k→+∞

∫
ω

ϕ2n. (4.10)

Moreover, since Oφ(k) ⊂ (α0, 1) for any k ∈ N \ {0}, thanks to Proposition 4.11, there exists C > 0 and
n0 ∈ N \ {0}, that might depend on α0 and ν, such that for any k ∈ N \ {0}, we have∫

Oφ(k)

ϕ2n ⩾ C|Oφ(k)|, ∀n ⩾ n0.

One can make k → +∞ in this inequality, and deduce by (4.10) that∫
ω

ϕ2n ⩾ C|ω|, ∀n ⩾ n0.

For n < n0, as a consequence of the analyticity of the Bessel functions on C \ {0} together with the fact that
every normalized eigenfunction ϕn for n ∈ N \ {0} is under the form

ϕn(x) = αn

√
xJν(δx) + βn

√
xJ−ν(δx), x > 0,

for some αn, βn ∈ R \ {0}, for some δ ̸= 0, and for some ν ∈ (0, 1), we clearly have∫
ω

ϕ2n > 0, ∀n ⩽ n0, n > 0,

and from Proposition 2.1, for any normalized eigenfunction ϕ0 associated to the eigenvalue 0, we also have∫
ω

ϕ20 > 0.

Hence, we have proved our desired result.

We are now ready for the proof of our main Theorem.

Proof of Theorem 1.1. Let T > 0, let ω be a measurable set of (−1, 1) assumed to have positive Lebesgue
measure. Let f0 ∈ L2(−1, 1). We know that (ϕn)n∈N is a Hilbert basis of L2(−1, 1), with (ϕn)n∈N defined
in Theorem 2.11. Therefore,

f0 =
∑
j∈N

〈
f0, ϕj

〉
L2(−1,1)

ϕj .
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We denote the unique solution of (1.1) in C0
(
[0, T ], L2(−1, 1)

)
by f . We recall that by the Duhamel formula,

we have

f(t) = e−Aνtf0 +

∫ t

0

e−Aν(t−s)1ωu(s)ds, ∀t ∈ [0, T ]. (4.11)

Choosing t = T in (4.11), and taking the scalar product with ϕn gives that

∀n ∈ N, ⟨f(T ), ϕn⟩ =
〈
e−AνT f0, ϕn

〉
L2(−1,1)

+

〈∫ T

0

e−Aν(T−s)1ωu(s)ds, ϕn

〉
L2(−1,1)

= e−λnT
〈
f0, ϕn

〉
L2(−1,1)

+

∫ T

0

e−λn(T−s) ⟨u(s), 1ωϕn⟩L2(−1,1) ds.

(4.12)

According to [30, Section 5.3.3] (for instance), we choose the following control

u(t, x) = −
∑
n∈N

〈
f0, ϕn

〉
L2(−1,1)

e−λnT qn(T − t)
1ωϕn(x)

||1ωϕn||2L2(−1,1)

, (4.13)

after having checked that it makes sense.
Proposition 4.6 allows to be sure that for any n ∈ N, ||1ωϕn||L2(−1,1) > 0. Now, we need to check that
u ∈ L2 ((0, T )× (−1, 1)). First, we have for all t ∈ [0, T ]

||u(t)||2L2(−1,1) =
∑
n∈N

∑
k∈N

〈
f0, ϕn

〉 〈
f0, ϕk

〉
e−λnT e−λkT

qn(T − t)

||1ωϕn||
qk(T − t)

||1ωϕk||

〈
1ωϕn

||1ωϕn||
,

1ωϕk
||1ωϕk||

〉
.

Moreover,

∀n, k ∈ N,

∣∣∣∣∣
∫ T

0

〈
f0, ϕn

〉 〈
f0, ϕk

〉
e−λnT e−λkT

qn(T − t)

||1ωϕn||
qk(T − t)

||1ωϕk||

〈
1ωϕn

||1ωϕn||
,

1ωϕk
||1ωϕk||

〉
dt

∣∣∣∣
⩽

∣∣〈f0, ϕn〉 〈f0, ϕk〉∣∣
inf
j∈N

||1ωϕj ||2
e−λnT e−λkT ||qn||L2(0,T )||qk||L2(0,T )

⩽

∣∣〈f0, ϕn〉 〈f0, ϕk〉∣∣
inf
j∈N

||1ωϕj ||2
e−λnT e−λkTC2

T/2e
λn

T
2 eλk

T
2 ,

where we used Proposition 4.5 for ε = T
2 to obtain an upper bound to ||qn||2L2(0,T ), and Proposition 4.6,

which gives inf
n∈N

||1ωϕn||2L2(−1,1) > 0. Therefore, we can use Fubini’s theorem to get

∫ T

0

||u(t)||2dt =
∑
n∈N

∑
k∈N

∫ T

0

〈
f0, ϕn

〉 〈
f0, ϕk

〉
e−λnT e−λkT

qn(T − t)

||1ωϕn||
qk(T − t)

||1ωϕk||

〈
1ωϕn

||1ωϕn||
,

1ωϕk
||1ωϕk||

〉
dt

⩽
C2

T/2

inf
j∈N

||1ωϕj ||2

(∑
n∈N

∣∣〈f0, ϕn〉∣∣ e−λn
T
2

)2

< +∞ because f0 ∈ L2(−1, 1).

This proves that u ∈ L2 ((0, T )× (−1, 1)). Now, we examine what (4.12) gives when we choose this control.
Using the biorthogonal property of (qn)n∈N, we have

∀n ∈ N,
∫ T

0

e−λn(T−s) ⟨u(s), 1ωϕn⟩L2(−1,1) ds = −
〈
f0, ϕn

〉
e−λnT

〈
1ωϕn

||1ωϕn||2L2(−1,1)

, 1ωϕn

〉
L2(−1,1)

= −
〈
f0, ϕn

〉
e−λnT .
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Therefore, from (4.12), we have
⟨f(T ), ϕn⟩L2(−1,1) = 0, ∀n ∈ N,

which means that f(T ) = 0. This concludes the proof of Theorem 1.1.

4.2 Boundary Control

Let us now explain briefly how one can deduce an appropriate boundary control result for the system
∂tf(t, x)− ∂2xxf(t, x) +

c

x2
f(t, x) = 0, (t, x) ∈ (0, T )× (−1, 1),

f(t,−1) = 0, f(t, 1) = u(t), t ∈ (0, T ),

f(0, x) = f0(x), x ∈ (−1, 1),

(4.14)

where u ∈ L2(0, T ) (the case where the control acts at x = −1 can be treated similarly). The first important
point is to understand the well-posedness of (4.14), which is less obvious as for (4.14), since the control
operator is now unbounded. The procedure is classical and we only give the main ingredients. Without loss
of generality, we study instead

∂tf(t, x)− ∂2xxf(t, x) +
c

x2
f(t, x) + f(t, x) = 0, (t, x) ∈ (0, T )× (−1, 1),

f(t,−1) = 0, f(t, 1) = u(t), t ∈ (0, T ),

f(0, x) = f0(x), x ∈ (−1, 1).

(4.15)

Indeed, one can pass from one equation to another by multiplying the solutions by e−t (or et), without
changing the well-posedness or controllability results. The main interest of system (4.15) is that the under-
lying elliptic operator Aν + Id is now (self-adjoint and) positive. The eigenvectors are unchanged and the
eigenvalues are shifted by 1.

PROPOSITION 4.12. For any n ∈ N \ {0}, we have ϕ′n(1) ̸= 0. Moreover,

ϕ′2(n−1)(1) =
n→+∞

(−1)nπn

(
1 +O

(
1

nmin(1,2ν)

))
, (4.16)

ϕ′2(n−1)+1(1) =
n→+∞

(−1)nπn

(
1 +O

(
1

nmin(1,2ν)

))
, (4.17)

with (ϕn)n∈N the Hilbert basis of eigenfunctions defined in Theorem 2.11.

Proof of Proposition 4.12. The first assertion comes from the fact that ϕn(1) = 0. Since ϕn is an
eigenfunction of Aν , it verifies a second-order ODE that is not singular in a neighborhood of x = 1, so we
cannot have simultaneously ϕn(1) = 0 and ϕ′n(1) = 0.
Let n ∈ N \ {0}, let x ∈ (0, 1], by looking at the form of ψ2(n−1) given in Theorem 2.11, we get

ψ′
2(n−1)(x) =

1

2
√
x
J−ν(

√
λ2(n−1)x) +

√
x
√
λ2(n−1)J

′
−ν(
√
λ2(n−1)x)

− Γ(ν + 1)

Γ(−ν + 1)

(√
λ2(n−1)

2

)−2ν (
1

2
√
x
Jν(
√
λ2(n−1)x) +

√
x
√
λ2(n−1)J

′
ν(
√
λ2(n−1)x)

)
.
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Therefore,

ψ′
2(n−1)(1) =

1

2
ψ2(n−1)(1)

+
√
λ2(n−1)

J ′
−ν(
√
λ2(n−1))−

Γ(ν + 1)

Γ(−ν + 1)

(√
λ2(n−1)

2

)−2ν

J ′
ν(
√
λ2(n−1))


=

n→+∞
0 + πn

(
1 +O

(
1

n

))(
J ′
−ν(
√
λ2(n−1)) +O

(
1

n2ν

)
O
(

1

n1/2

))
,

where we used Corollary 3.7 and Lemma 1.9. Now, from Lemma 1.9 and Lemma 1.10, we get

J ′
−ν(x) =

x→+∞

1

2
(J−ν−1(x)− J−ν+1(x))

=
x→+∞

1

2

(
2

πx

)1/2(
cos
(
x+ ν

π

2
+
π

2
− π

4

)
− cos

(
x+ ν

π

2
− π

2
− π

4

)
+O

(
1

x

))
=

x→+∞

(
2

πx

)1/2(
cos
(
x+ ν

π

2
+
π

4

)
+O

(
1

x

))
.

We then replace x by
√
λ2(n−1) in the expression above. Thanks to Corollary 3.7, we get

J ′
−ν(
√
λ2(n−1)) =

n→+∞

1

π

(
2

n

)1/2 [
1 +O

(
1

n

)][
(−1)n cos

(
O
(

1

nmin(1,2ν)

))
+O

(
1

n

)]
=

n→+∞

(−1)n

π

(
2

n

)1/2 [
1 +O

(
1

nmin(1,4ν)

)]
.

Thus,

ψ′
2(n−1)(1) =

n→+∞
πn

(
1 +O

(
1

n

))
(−1)n

π

(
2

n

)1/2(
1 +O

(
1

nmin(1,2ν)

))
.

Using the asymptotic expression of a2(n−1) at (4.6.e), we directly obtain (4.16). We can follow the same
computations to prove (4.17).

From Proposition 4.12 and Corollary 3.3, we see that there exists some constant c1, c2 > 0 such that for
any n ∈ N \ {0}, we have

c1
√
λn + 1 ⩽ |ϕ′n(1)| ⩽ c2

√
λn + 1, ∀n ∈ N. (4.18)

From this estimate, one can obtain the following well-posedness result. Since Aν +Id is positive, one can
define (Aν + Id)1/2. Moreover, Aν + Id extends as an unbounded operator with domain D((Aν + Id)1/2)
and state space D((Aν + Id)−1/2) = D((Aν + Id)1/2)′ (see [31, Corollary 3.4.6]), where for any s ∈ R,
D((Aν + Id)s) is equipped with the Hilbertian norm

||f ||2s =

+∞∑
k=1

(λk + 1)2s|⟨f, ϕk⟩L2(−1,1)|2,

which makes it a Hilbert space. Notably, we obtain a Hilbert basis (ϕ̃n)n∈N of eigenfunctions in D(A
−1/2
ν )

as
ϕ̃n =

√
λn + 1ϕn,

and estimate (4.18) becomes

(λn + 1)c1 ⩽ |ϕ̃′n(1)| ⩽ c2(λn + 1), ∀n ∈ N. (4.19)
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For the sake of simplicity, from now on, we introduce

H±1/2 = D((Aν + Id)±1/2).

Standard computations (see for instance [31, Section 10.7], where the usual Laplacian operator is replaced
by Aν) show that in the state space H1/2, the first line of (4.15) can be written in an abstract way as

y′ = (Aν + Id)y + bu,

where b ∈ H−1/2 is a scalar control operator that can be written as b = (Aν+Id)D, where D : R → L2(−1, 1)
is the Dirichlet map that is given by duality by (see [31, Proposition 10.6.1])

D∗g = −((Aν + Id)−1g)′(1), ∀g ∈ L1(−1, 1).

Notably, for any k ∈ N,
bk := ⟨b, ϕ̃k⟩H−1/2

=
1

λk + 1
⟨b, ϕ̃k⟩L2(−1,1)

=
1

λk + 1
⟨(Aν + Id)D, ϕ̃k⟩L2(−1,1)

=
1

λk + 1
⟨1,D∗(Aν + Id)ϕ̃k⟩R

= − 1

1 + λk
ϕ̃′k(1).

Hence, (4.19) becomes

c1 ⩽ |bk| ⩽ c2, k ∈ N. (4.20)

The upper bound in (4.20) together with the fact that there exists some constant C > 0 such that for
any k ∈ N \ {0}, we have 1 ⩽ 1+λk ⩽ Ck2 (by Corollary 3.3) easily imply that the sequence (bk)k∈N verifies
the Carleson measure criterion for admissibility given in [31, Definition 5.3.1].

From [31, Theorem 5.3.2], we deduce that b is an admissible control operator, and we have the following
well-posedness result: for any f0 ∈ D((Aν+Id)1/2)′, there exists a unique weak solution f to (4.15) verifying
f ∈ C0([0, T ], D((Aν + Id)1/2)′).

We are now ready to give or null boundary controllability result in arbitrary small time.

THEOREM 4.13. For any f0 ∈ D((Aν + Id)1/2)′ and any T > 0, there exists a control u ∈ L2(0, T ) such
that the corresponding solution f to (4.15) verifies f(T ) = 0 in D((Aν + Id)1/2)′.

Proof of Theorem 4.13. Since b is an admissible control operator, since the eigenvalues λk+1 are positive
for k ∈ N, and

∑+∞
k=0

1
λk+1 < +∞ by Corollary 3.3, one can apply directly [3, Theorem 2.5] and obtain that

(4.15) is null controllable for any T > T0, where

T0 = lim sup
k→+∞

(
log 1

|bk|

λk + 1
+ c(Λ + 1)

)
.

Here, c(Λ + 1) is the condensation index of the sequence {λn+1 + 1}n∈N\{0}, as defined in Definition 4.1.
From the lower bound given in (4.20), we have that

log 1
|bk|

λk + 1
→

k→+∞
0.

Moreover, it is easy to infer that c(Λ + 1) = c(Λ), where c(Λ) is defined in Proposition 4.4 and verifies
c(Λ) = 0. Hence, T0 = 0, and our result follows.
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5 Further comments and open problems

The case cν = − 1
4 . We have cautiously excluded this case in our study (as in [22]), whereas this critical

case does not lead necessarily to ill-posedness (the other critical case c = 3
4 is impossible, on the contrary).

However, the functional setting is not clear. Indeed, this is equivalent to impose ν = 0, and we lose the
coercivity estimate (1.6), which is notably crucial for the definition of the domain of Aν . In the case ν = 0, we
need to change the definition of D(Aν) according to [1, Proposition 3.1], and to find a suitable replacement
for (1.6). In fact, (1.6) is proved by using the following Hardy inequality:∫ 1

−1

z(x)2

x2
⩽ 4

∫ 1

−1

zx(x)
2, ∀z ∈ H−1(−1, 1) such that z(0) = 0,

that might be replaced in the case ν = 0 by an improved Hardy-Poincaré type inequalities like in [34,
Theorem 2.2]. This case would require an appropriate and extensive treatment that is likely to be different
from the situation we presently studied, and is outside the scope of this article.

Backstepping. Since we proved null-controllability in any time T > 0, we know that rapid stabilization
(i.e. exponential stabilization at any arbitrarily large rate) holds (see [29, Proposition 21 and Theorem 25]).
However, it would be interesting to construct an explicit feedback thanks to the backstepping method. This
would require to solve a second order PDE of wave type, with two singular potentials, one depending on
space and one on time. We were not able to understand in which functional setting such an equation could
be well-posed.

Other self-adjoint extensions. As highlighted before, our result highly depends on the self-adjoint
extension that we use for the Laplace operator with core C∞

0 ((−1, 0)∪ (0, 1)). The natural (and “minimal”)
one leads to a lack of null-controllability from one side, whereas choosing whats seems to be the “best”
extension (in terms of transmission conditions) leads to a positive null-controllability result. However, there
are a lot of intermediate self-adjoint extensions. It would be interesting from a conceptual point of view to
perform an exhaustive study in the particular case of our heat equation with inverse square potential.

Mixed singular/degenerate equations. In [32], the author proved some controllability results for
parabolic equations posed on (0, 1), with degenerate diffusion and singular potential at the boundary x = 0.
It would be interesting to understand if these results can be extended in our case of an interior degener-
acy/singularity and a control region that is only located in one side of the boundary. It would require to
develop a similar functional setting, with adequate transmission conditions, but we expect to the computa-
tions to be much heavier.

Grushin equation with a singularity. The original motivation of [22] was to study the controllability
properties of the Grushin equation with inverse square potential

∂tf(t, x, y)− ∂2xxf(t, x, y) +
c

x2
f(t, x, y) = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T )× (−1, 1)× (0, 1),

with Dirichlet boundary condition on the boundary of (−1, 1)× (0, 1), and ω is an open subset on (−1, 1)×
(0, 1). This kind of model naturally arises when looking at the Laplace operator on almost-riemannian
manifolds. In [22], approximate controllability is proved. It would be interesting to understand if null-
controllability can hold at least in some particular geometrical settings and in large enough time, when
controlling for instance in vertical strip that is located at one side of the singularity x = 0, as in [6] (where
there is no singular potential), by using a Fourier decomposition in the y variable and reducing the problem
to a uniform observability problem, as in [6]. In view of the present study, we expect that this question may
be rather difficult.
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A Ill-posedness of (1.1) for c < −1
4

The goal of this appendix is to prove the following Proposition.

PROPOSITION A.1. Assume we work in the state space L2(−1, 1). Assume that c < − 1
4 . Then, there

does not exist any selfadjoint extension of ∂2xx − c

x2
Id, posed on C∞

0 ((−1, 1) \ {0}), for which this operator

generates a C0-semigroup.

Proof of Proposition A.1. We reason by contradiction. Consider (A,D(A)) any selfadjoint extension of

(∂2xx − c

x2
Id, C∞

0 ((−1, 1) \ {0})), such that A generates a C0-semigroup. Then, it is well-known (see [14,

Proposition, p. 91]) that A is semibounded in the following sense: there exists C > 0 such that for any
f ∈ D(A), we have

⟨f,Af⟩L2(−1,1) ⩽ C||f ||2L2(−1,1). (A.1)

Notably, for f ∈ C∞
0 ((0, 1)) extended by 0 on (−1, 0), (A.1) becomes (after one integration by parts)

−
∫ 1

0

f ′(x)2dx− c

∫ 1

0

f(x)2

x2
dx ⩽ C

∫ 1

0

f(x)2dx. (A.2)

By an easy density argument, (A.2) also holds for any f ∈ H1
0 ((0, 1)). Let ε ∈ (0, 1). Let f(x) = x1/2+ε(1−x).

We have f ∈ H1
0 (0, 1). Explicit computations give∫ 1

0

f(x)2dx =
1

4ε3 + 18ε2 + 26ε+ 12
,∫ 1

0

f(x)2

x2
dx =

1

2ε+ 6ε2 + 4ε3
,∫ 1

0

f ′(x)2dx =
2ϵ+ 1

8ϵ2 + 8ϵ
.

Hence, as ε→ 0, the right-hand side of (A.2) tends to C/12, whereas the left-hand side is equivalent to

1

ε

(
−1

8
− c

2

)
.

Since c < −1/4, this quantity goes to +∞ as ε → 0. This is in contradiction with (A.2), which concludes
the proof.
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