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Abstract. This paper investigates the convergence properties of Luenberger observers applied5
to a linearized water wave model. The study is motivated by the challenge of estimating wave6
dynamics when only partial free surface measurements are available. We identify fundamental ob-7
structions to convergence, showing that the classical Luenberger observer fails to achieve full-state8
reconstruction due to challenges associated with mean-value modes and high-frequency components.9
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filtering and projection techniques. Our theoretical results are reinforced by numerical experiments11
that demonstrate the practical effectiveness of these observer-based estimation methods for water12
waves.13
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1. Introduction. The study of water waves has long been a cornerstone of16

fluid mechanics, with broad applications in oceanography, naval engineering, and17

coastal management. These wave dynamics are governed by the water wave equations18

(WWE), derived from the incompressible Euler equations, which describe the free19

surface’s evolution and the underlying fluid’s velocity potential. However, to simplify20

the complex non-linearity of these equations, the linearized water wave equations21

(LWWE) are often employed. These equations, while capturing essential physical22

properties, allow for more tractable analytical and numerical investigations. They23

form the basis for the observer convergence analysis explored in this paper.24

Recent research in the literature on fluid mechanics engineering science has fo-25

cused on estimation and control techniques for wave systems, particularly in scenarios26

where direct measurements of the full state of the system are unavailable or imprac-27

tical [9, 7, 10]. Luenberger observers, initially designed for linear systems, have been28

adapted to a range of complex applications, including fluid dynamics. The primary29

objective of our paper is to examine from the mathematical point of view the conver-30

gence properties of Luenberger observers when applied to the linearized water wave31

model, with partial data from the free surface (data coming from the whole surface32

have been studied in [36]). Although the existing literature offers a variety of meth-33

ods for controlling and stabilizing water waves, there is a gap regarding the rigorous34

convergence analysis of such observers in the context of the LWWE with partial ob-35

servation of the water surface.36

Several works have investigated control and stabilization methods for water waves.37

Gagnon et al. [14] presented a Fredholm-type backstepping transformation to achieve38

rapid stabilization of the so-called capillary-gravity linearized water waves model,39

using spectral properties and controllability assumptions. We also refer to the con-40

tribution of Alazard et al. [1], who provided insights into the stabilization of water41

waves using pressure disturbances applied to the free surface. Further contributions42

in the field of stabilization include Su et al. [33], who investigated the stabilization of43

small-amplitude water waves using boundary controls. Note that the problem studied44
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in this paper has similarities to that of damped wave equations. We refer to [31] for45

a comprehensive review of this problem.46

While previous studies have concentrated on stabilization and controllability for47

both linear and non-linear water wave models, our work provides a novel approach by48

focusing specifically on the convergence of Luenberger observers in a linearized set-49

ting. The contribution of this paper is twofold. First, we establish some obstructions50

for the convergence of Luenberger observers applied to the LWWE, together with51

sufficient conditions to recover some “partial” and quantitative convergence results,52

leveraging spectral methods and operator theory. Related works are [15, 4], where53

the authors also study Luenberger observers or back and forth nudging algorithms54

for infinite-dimensional linear systems that are not fully reconstructible, as in the55

present situation. However, the results given in these articles do not apply in our56

context. Second, we validate these theoretical results through numerical simulations,57

demonstrating the practical applicability of observer-based estimation in water-wave58

systems.59

This paper is organized as follows. Section 2 introduces the linearized water wave60

model. Section 3 sets the functional setting for our analysis. Section 4 delves into61

the main non-convergence results (Proposition 4.1 and Proposition 4.3) for the most62

natural Luenberger observer if we consider initial conditions in the natural energy63

space, or in a space of initial conditions with zero mean value. Section 5 aims to64

understand how to restore some partial and quantitative convergence theorems by65

changing the Luenberger observer (Theorem 5.1 and Theorem 5.2). Lastly, section 666

validates the theoretical analysis through numerical experiments and discusses the67

broader implications for observer design in fluid systems.68

2. The linearized water waves equation. This paper focuses on linearized69

water waves (LWWE) equations. These equations are derived from a master model,70

that of water waves (WWE), itself derived from the incompressible Euler equations.71

These derivations can be found in [11] or [23]. Our geometric setting is summarized72

in Figure 2.1. We place ourselves in a domain Ω that describes the body of our fluid:73

Ω =
{
(x, y) ∈ R2| − d ≤ y ≤ η(t, x)

}
.74

The two main functions of interest are: ψ(t, x, y) the velocity potential, at points75

(x, y) and time t and η(t, x), the free surface elevation at point x and time t. −d is76

a flat bottom. As described in [11] or [23] for water waves with a horizontal bottom77

and as described in [6] if we add the periodicity, ψ is harmonic in space:78

(2.1) ∆ψ(t, x, y) = 0, (x, y) ∈ Ω, t ∈ [0,+∞).79

Moreover, ψ is subject to the following boundary conditions:80

(2.2)

∂yψ(t, x, y) = 0, on y = −d,
∂tψ(t, x, y) = −gη(t, x), on y = 0,

∂tη(t, x) = ∂yψ(t, x, y), on y = 0,

ψ(t, x, y) = ψ(x+ L, y, t), (t, x, y) in [0,+∞)×Ω.

81

The first boundary condition is referred to as the bottom boundary condition82

(BBC ), the second as the dynamic free surface boundary condition (DFSBC ), the83

third as the kinematic free surface boundary condition (KFSBC ), and the last as84
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Figure 2.1. Boundary problem for periodic water waves with flat bottom.

the periodic boundary condition (PBC ). Readers are again referred to [6], [23] or [11,85

Section 2.3] to see how the linearization around the rest state y = 0 of the Bernoulli86

equation leads to those conditions. Moreover, for computation simplification, we87

consider here x being on the torus T = R/2πZ , i.e. choosing L = 2π. Under all these88

assumptions and after applying the boundary conditions, it is shown [11, 2.3] that89

the velocity potential ψ(t, x, y) can be expressed simply at the surface as a function90

ϕ(t, x) = ψ(x, 0, t), and reconstructed throughout the whole domain Ω. This results91

in the following system of equations which is now on variables ϕ and η, respectively92

the velocity potential at the surface and the free surface displacement:93

(2.3)


∂tϕ(t, x) = −gη(t, x),
∂tη(t, x) = G(ϕ(t, x)),
ϕ(0, x) = ϕ0(x), η(0, x) = η0(x),

(t, x) ∈ [0,+∞)× T,94

where the operator G can be seen as a Dirichlet-to-Neumann map that does the95

link between the velocity potential throughout the whole domain ψ, and the velocity96

potential at the surface ϕ. This operator is such that G : ϕ 7→ ∂yψ(t, x, y)y|y=0.97

Therefore, following [11, Section 2.3], the operator G is in Fourier space98

(2.4) F [G(ϕ)] (n) = |n| tanh(d|n|)F [ϕ] (n), n ∈ Z.99

where F [·] is the Fourier transform on T. Due to (2.4), it is easy to obtain that100

functions of the form:101

(2.5) (ϕ, η)t = (ϕ0e
i(nx−ωnt), η0e

i(nx−ωnt))t102

with ωn the angular frequency, are solutions of (2.3), provided that103

(2.6) iωnϕ0 = gη0,104

and the following (dispersion) relation holds:105

(2.7) (ωn)
2 = g|n| tanh(d|n|).106
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3. Functional setting. Let us give now some appropriate functional setting.107

Let us introduce the spaces108

L2
p = L2(T) =

{
f =

∑
n∈Z

fne
inx such that ||f ||2L2

p
:=
∑
n∈Z

|fn|2 < +∞

}
,109

110

H1/2
p =

{
f =

∑
n∈Z

fne
inx ∈ L2

p such that ||f ||2
H

1/2
p

:= |f0|2 +
∑
n∈Z∗

|n||fn|2 < +∞

}
,111

112

H1
p =

{
f =

∑
n∈Z

fne
inx ∈ L2

p such that ||f ||2H1
p
:= |f0|2 +

∑
n∈Z∗

n2|fn|2 < +∞

}
.113

Each of these spaces is endowed with the scalar product naturally associated to the114

norm appearing in the definition. With these scalar products, they are Hilbert spaces.115

Remark that, notably, by the Plancherel Theorem,116

(3.1) ||f ||2L2
p
=

1

2π

∫
T
|f |2, ∀f ∈ L2

p.117

Thanks to (2.4), the operator G can be expressed as follows:118

(3.2) ∀f =
∑
n∈Z

fne
inx ∈ H1

p , Gf(x) =
∑
n∈Z∗

|n| tanh(d|n|)fneinx
(
∈ L2

p

)
.119

Now, consider the operator A defined as:120

(3.3) A :=

(
0 −gI
G 0

)
,121

with state space H = H
1/2
p ×L2

p and domain D(A) = H1
p×H

1/2
p , endowed respectively122

with the hilbertian norms (for which they are Hilbert spaces)123

||(f, g)||2H = ||f ||2
H

1/2
p

+ ||g||2L2
p
, ||(f, g)||2D(A) = ||f ||2H1

p
+ ||g||2

H
1/2
p
.124

In this setting, the linearized water waves equations for periodic waves with an hori-125

zontal bottom given in (2.3) can be written as:126

(3.4)

{
∂ty(t, x) = Ay(t, x),

y(0, x) = y0(x),
(t, x) ∈ [0,+∞)× T,127

where y = (ϕ, η)t and y0 = (ϕ0, η0)t.128

3.1. Spectral analysis of G and A. With the expression (3.2), it is easy129

to see that the distinct eigenvalues of the self-adjoint operator G are given by the130

eigenvalue 0 (associated to the constant eigenfunction 1), and by the eigenvalues131

µk = |k| tanh(d|k|), k ∈ N∗, which are of multiplicity 2, with the associated orthogo-132

nal basis of eigenfunctions given by eikx and e−ikx.133

Contrarily to many usual situations, let us emphasize that 0 is an eigenvalue of134

A, so that A is not a positive definite operator, but only a semi-definite operator.135

Hence, the usual theory to pass from first-order to second-order operators (see e.g.136

[34, Section 6.8]) cannot be applied, and notably, A is not a skew-adjoint operator.137
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This will be an additional difficulty, taking into account that many results in the138

literature of Luenberger observers (or stabilization) are restricted to this case (see139

notably various results in [24, 15, 4, 5]).140

However, it is quite easy to discover that A is “almost” skew-adjoint and to derive141

an appropriate spectral decomposition. The distinct eigenvalues of A are given by the142

two families143

λ+k = i
√
gµk = i

√
gk tanh(dk), λ−k = −i√gµk = −i

√
gk tanh(dk), k ∈ N∗,144

each different eigenvalue being of algebraic and geometric multiplicity 2, together145

with the eigenvalue 0, which is of algebraic multiplicity 2 and geometric multiplicity146

1 (which means that we have a generalized eigenfunction associated to the eigenvalue147

0). For |n| = k with k ̸= 0, a basis of orthonormal eigenfunctions associated to the148

corresponding eigenspace is given by149

(3.5) ν+n =
1√
2|n|g

(
i
√
geinx√
|n|einx

)
, ν−n =

1√
2|n|g

(
−i√geinx√

|n|einx
)
.150

A normalized eigenfunction associated to 0 is given by151

(3.6) ν+0 =
1√
2

(
1
0

)
.152

and an (orthogonal) generalized and normalized eigenfunction is given by153

(3.7) ν−0 =
1√
2

(
0
1

)
.154

The family of usual and generalized eigenfunctions forms a Hilbert basis in L2
p.155

3.2. Well-posedness and conserved quantities. Let us introduce some addi-156

tional notations, that will be useful for proving well-posedness of (2.3). We introduce157

L2
p,0 =

{
f ∈ L2

p such that

∫
T
f = 0

}
=

{∑
n∈Z

fne
inx ∈ L2

p such that f0 = 0

}
,158

159

H
1/2
p,0 =

{
f =

∑
n∈Z∗

fne
inx ∈ L2

p,0 such that ||f ||2
H

1/2
p,0

:=
∑
n∈Z∗

|n||fn|2 < +∞

}
,160

161

H1
p,0 =

{
f =

∑
n∈Z

fne
inx ∈ L2

p,0 such that ||f ||2H1
p,0

:=
∑
n∈Z∗

n2|fn|2 < +∞

}
.162

These spaces are endowed with the natural scalar product and norms induced by their163

definitions, that we denote respectively by ||·||L2
p,0
, ||·||

H
1/2
p,0
, ||·||H1

p,0
(notice that we can164

extend these norms as semi-norms respectively on L2
p, H

1/2
p , H1

p , which corresponds165

to forgetting the mode 0, i.e. the mean, of the functions under study, and that these166

norms are nothing else than the restrictions of the norms || · ||L2
p
, || · ||

H
1/2
p
, || · ||H1

p
on167

L2
p,0, H

1/2
p,0 , H

1
p,0).168

Following the proof of [36, Theorem 1], we obtain that A, with domain169

D0(A) = H1
p,0 ×H

1/2
p,0 ,170
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is the generator of a C0-semigroup of operators on H0 := H
1/2
p,0 × L2

p,0 endowed with171

the natural scalar product, so that for any (ϕ0, η0) ∈ H0, there exists a unique solution172

(ϕ, η) ∈ C0([0,+∞), H0) (We are exactly in the setting of [36], in this case). Moreover,173

it is easy to check that in the space H0, D0(A
∗) = D0(A) and A

∗ = −A, so that A is174

in fact a generator of a C0-group of operators on H0.175

Our next goal is now to understand how to obtain a well-posedness result on the176

whole state space H. This is the purpose of the following proposition.177

Proposition 3.1. A is the generator of a C0-group of operators on H, so that178

for any (ϕ0, η0) ∈ H, there exists a unique solution (ϕ, η) ∈ C0([0,+∞), H) to (2.3).179

Proof. We write H
1/2
p × L2

p = H0 ⊕⊥ E0, where H0 is in fact the closure of180

the nonzero eigenspaces of A and E0 is the generalized eigenspace associated to 0.181

Associated with this decomposition, we have a natural decomposition of A = A0+A1,182

where183

A0|H0
= A, A0|E0

= 0 and A1|H0
= 0, A1|E0

= A.184

Hence, by the previous discussion, it is clear that A0 is the generator of a strongly185

continuous semigroup on H. Moreover, A1 is clearly a bounded operator, since E0186

is a finite-dimensional space. We deduce (see e.g. [34, Theorem 2.11.2]) that A187

is indeed the generator of a C0-semigroup of operators on H. Moreover, the same188

analysis applies if we replace A by −A (because A0 is skew-adjoint, so −A0 is also189

the generator of a strongly continuous semigroup on H, and −A1 is still bounded),190

so −A is also the generator of a strongly continuous semigroup on H. We deduce by191

applying [34, Proposition 2.7.8] that A is the generator of a strongly continuous group192

on H.193

For a solution y = (ϕ, η) of (3.4), we introduce the following energy194

(3.8) E(y, t) =
1

2

(
g

∫
T
(η(t, x))2dx+

∫
T
(
√
Gϕ(t, x))2dx

)
.195

Differentiating formally this expression, using (3.4), and the fact that G is selfadjoint,196

we deduce that197

d

dt
E(y, t) = g

∫
T
η(t, x)∂tη(t, x)dx+

∫
T

√
Gϕ(t, x)∂t

(√
Gϕ
)
(t, x)dx

= g

∫
T
η(t, x)Gϕ(t, x)dx+

∫
T

√
Gϕ(t, x)

√
G (∂tϕ) (t, x)dx

= g

∫
T
η(t, x)Gϕ(t, x)dx+

∫
T
Gϕ(t, x) (∂tϕ) (t, x)dx

= g

∫
T
η(t, x)Gϕ(t, x)dx+

∫
T
Gϕ(t, x)(−gη(t, x))dx

= 0,

198

so that E(y, t) is conserved:199

(3.9) E(y(t, x)) =
1

2

(
g

∫
T
(η0)2 +

∫
T
(Gϕ0)2

)
.200

These computations can be made rigorous by taking initial conditions in D(A) and201

using an easy density argument.202
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Let us give some invariant quantities that are inherent to (3.4). By the definition203

of G given in (3.2), for any f ∈ H1/2(T), we have
∫
T Gf = 0. Notably, using the second204

equation of (3.4) and integrating in space on T, formally, any solution (ϕ, η) is such205

that206

∂t

(∫
T
η(t, ·)

)
=

∫
T
Gϕ(t, ·) = 0,207

so that
∫
T η(t, ·) remains constant over time:208

(3.10) ∀t ⩾ 0,

∫
T
η(t, ·) =

∫
T
η0.209

Hence, the first equation of (3.4) integrated in space on T also gives that210

∂t

(∫
T
ϕ(t, ·)

)
= −g

∫
T
η0,211

so that212

(3.11) ∀t ⩾ 0,

∫
T
ϕ(t, ·) =

∫
T
ϕ0 − gt

∫
T
η0.213

These quantities are perfectly known as soon as the initial conditions are known.214

Conversely, knowing the mean value of ϕ and η at any time t ⩾ 0 is enough to recover215

the zero mode of η0 and ϕ0. Hence, if we assume that for some extra reason, we are216

able to reconstruct or guess what are the mean value of η(t, ·) and ϕ(t, ·), then, it is217

possible to reconstruct the first mode of η0 and ϕ0. Here also, these computations218

can be made rigorous by taking initial conditions in D(A) and using an easy density219

argument.220

The core idea of this paper is that, unlike in [36], we place ourselves in a setting221

where we only get a partial measurement of the surface η(t, x): y(t, x) = 1ω(x)η(t, x),222

where ω is an open subset of T that is distinct from T. However, contrarily to the223

result given in [36], this partial measurement is not enough to reconstruct the solution224

of (3.4), as it is proved later on, and we need to find another strategy to recover at225

least low frequencies different from 0. The first Luenberger-like observer we will study226

is the following natural one:227

(3.12)


∂tϕ̂(t, x) = −gη̂(t, x),
∂tη̂(t, x) = Gϕ̂(t, x)− γ1ω(x)(η(t, x)− η̂(t, x)),

ϕ̂(0, x) = ϕ̂0(x), η̂(0, x) = η̂0(x),

228

where γ > 0 the correction gain, and (ϕ̂, η̂)T the observer trajectory of the state229

(ϕ, η)T.230

Then, (ϕer, ηer) := (ϕ− ϕ̂, η − η̂) is solution to231

(3.13)


∂tϕer(t, x) = −gηer(t, x),
∂tηer(t, x) = Gϕer(t, x)− γ (1ω(x)ηer(t, x)) ,

ϕer(0, x) = ϕ0er(x), ηer(0, x) = η0er(x),

232

where ϕ0er(x) = ϕ0(x)− ϕ̂0(x) and η0er(x) = η0(x)− η̂0(x).233

7

This manuscript is for review purposes only.



To conclude, let us introduce the control and feedback operators. We consider234

the control space U to be the same as the state space H. They are respectively given235

by236

(3.14) B =

(
0 0
0 1ω

)
∈ Lc(H) and K = γId ∈ Lc(H),237

so that (3.13) can be also abstractly written as238

(3.15)


∂t

(
ϕer(t, x)

ηer(t, x)

)
= (A−BK)

(
ϕer(t, x)

ηer(t, x)

)
,(

ϕer(0, x)

ηer(0, x)

)
=

(
ϕ0er(x)

η0er(x)

)
.

239

4. Non-reconstruction results for the localized Luenberger observer on240

the whole state space.241

4.1. Obstruction coming from the mean value. Let us prove the following242

easy fact.243

Proposition 4.1. (3.13) is not asymptotically stable: there exists y0 ∈ H such244

that the corresponding solution y to (3.13) does not verify ||y(t)||H → 0 as t→ +∞.245

Proof. This is just a question of remarking that ν+0 defined in (3.6) is still an246

eigenfunction of the operator A − BK, associated to the eigenvalue 0. Indeed, we247

have248

(A−BK)ν+0 = Aν+0 − γBν+0 =

(
0
0

)
.249

Hence, the corresponding solution to (3.13) is constant in time and given by250

(ϕer(t, x), ηer(t, x)) = ν+0 .251

Hence, for such a solution, ||y(t)||H is a non-zero constant and cannot go to 0 as252

t→ +∞.253

According to Proposition 4.1, it is tempting to try to stabilize all frequencies254

except the 0 one, corresponding to the mean value.255

4.2. Obstruction coming from the high frequencies for the original Lu-256

enberger observer. A key point in order to prove that the Luenberger observer257

does not converge exponentially even if we do not wish to reconstruct the mean value258

is the following result, which might be of independent interest.259

Lemma 4.2. Let H and U be two Hilbert spaces. Assume that A is the generator260

of a C0-group of operators on H, and that B ∈ Lc(U ,H). Assume that P ∈ Lc(H) is261

a projection on the closed subspace F = P(H), and that P commutes with A. Let us262

introduce the growth bound of −A, given by263

(4.1) ω0(−A) := lim
t→+∞

t−1 log
(
||e−tA||

)
.264

Assume that there exists K ∈ Lc(H,U), C > 0 and λ > ω0(−A) such that for any265

y0 ∈ F , the solution to the abstract linear feedback system266

(4.2)

{
y′ = Ay + BKy,
y(0) = y0

267
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verifies268

(4.3) ∀t ⩾ 0, ||Py(t)||H ⩽ Ce−λt||y0||H .269

Then, there exists T > 0 such that for any y0 ∈ F , there exists u ∈ L2((0, T ),U) such270

that the solution y to the control system271

(4.4)

{
y′ = Ay + Bu,
y(0) = y0

272

verifies P(y(T )) = 0.273

Proof. Our proof is inspired by [24, Theorem 2.4]. Assume that (4.3) holds. Let274

T > 0 and275

(4.5) J(T ) = Pe−TAeT (A+BK) ∈ Lc(F),276

Where F is endowed with the norm on H. Moreover, since P commutes with A,277

(4.6) ||J(T )|| ⩽ ||e−TA|| ||PeT (A+BK)||.278

(4.3) gives that as an operator from F to F endowed with the norm of H, we have279

||PeT (A+BK)|| ⩽ Ce−λT .280

Hence, the above inequality combined with (4.6) (remind that λ > ω0(−A)) ensures281

that ||J(T )|| < 1 for T large enough. Hence, setting J = J(T ) for such a fixed T , we282

have that I − J is invertible and (I − J)−1 ∈ Lc(F).283

Now, let y0 ∈ F . For t ∈ [0, T ], we set284

z1(t) = et(A+BK)(I − J)−1y0 ∈ H, z2(t) = etA(I − (I − J)−1)y0 ∈ H.285

Seeing (I − J)−1y0 and (I − (I − J)−1)y0 as elements of H and using a perturbation286

property of semigroups (see [28, Section 3.1, Formula (1.2)], we have287

(4.7) y(t) := z1(t) + z2(t) = etAy0 +

∫ t

0

e(t−s)ABKz1(s)ds.288

Clearly, y(0) = y0. Moreover, from the expression of J given in (4.5), together with289

the fact that P and A commute, we deduce that290

PeT (A+BK) = eTAJ.291

Using that y0 ∈ F = P(H), that P and A commute, and that P is a projection292

on F , (so that P((I − J)−1)y0 = ((I − J)−1y0), we obtain293

P(y(T )) = P
(
eT (A+BK)(I − J)−1y0

)
+ P

(
eTA(I − (I − J)−1)y0

)
= eTA (J(I − J)−1 + (I − (I − J)−1)

)
y0

= 0,

294

whence the result by taking as a control295

u(t) = Kz1(t) ∈ L2((0, T ),U),296

using (4.7) and the Duhamel formula.297
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Applying the previous proposition gives the following negative result.298

Proposition 4.3. (3.13) is not exponentially stable with respect to the semi-norm299

|| · ||
H

1/2
p,0

× || · ||L2
p,0

.300

Proof. We reason by contradiction. We assume that for any (ϕ0er, η
0
er), the solution301

(ϕer, ηer) to (3.12) converges exponentially to 0 in the || · ||
H

1/2
p,0

× || · ||L2
p,0

semi-norm302

as t→ +∞.303

We can apply Lemma 4.2 with A = A (which is of growth bound 0), B = B,304

K = K and P is the orthogonal projection on F = H0 = H
1/2
p,0 ×L2

p,0, which commutes305

with A (see the beginning of the proof of Proposition 4.1). We deduce that there exists306

T > 0 for which for any (ϕ0, η0) ∈ H
1/2
p,0 × L2

p,0, there exists v ∈ L2((0, T ),T) such307

that the solution (ϕ, η) to308

(4.8)


∂tϕ(t, x) = −gη(t, x),
∂tη(t, x) = Gϕ(t, x) + 1ω(x)v(t, x),

ϕ(0, x) = ϕ0(x), η(0, x) = η0(x),

309

is such that P(ϕ(T, ·), η(T, ·)) = 0. Since F⊥ = E0 (the generalized eigenspace asso-310

ciated to 0), this implies that both ϕ(T, ·) and η(T, ·) are constants.311

Now, we introduce312

u =
i

√
g

√
Gϕ+ η.313

Then, using (4.8), u solves314 {
∂tu = −i√g

√
Gu+ 1ωv,

u(0, x) = i√
g

√
Gϕ0(x) + η0(x) ∈ L2

p,0(T).
315

Clearly,316

(ϕ0, ξ0) ∈ H
1
2
p,0 × L2

p,0 7→ i
√
g

√
Gϕ0(x) + η0(x) ∈ L2

p,0(T)317

is onto. We deduce that for any u0 ∈ L2
p,0, there exists318

(ϕ0, ξ0) ∈ H
1
2 (T)p,0 × L2

p,0319

such that320

u0(x) =
i

√
g

√
Gϕ0(x) + η0(x).321

For such ϕ0, ξ0, there exists v ∈ L2((0, T )× T) such that the solution (ϕ, η) to (4.8)322

is such that ϕ(T, ·) and ϕ(T, ·) are constants. Hence, posing u as above, we deduce323

that the solution u of324

(4.9)

{
∂tu = −i√g

√
Gu+ 1ωw,

u(0, x) = u0(x),
325

verifies that u(T, ·) is a constant.326

Let us prove that we are in the setting of [21, Proposition 27], that enables to327

recover (under certain conditions) a full controllability result from a “partial” one, of328
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the form as set out above. Let us locally use the notations of this article, for the sake329

of clarity.330

We set H = L2
p, that is indeed a complex Hilbert space for the natural scalar331

product. We set U = L2
p, UT = U = L2((0, T ), L2

p). It verifies the “extension by 0332

property”: if w ∈ UT , a, b > 0, then the function w̃ defined by w̃(t) = 0 for 0 < t < a,333

w̃(t) = w(t − a) for a < t < T + a, and w̃(t) = 0 for T + a < t < T + a + b is in334

L2((0, T + a+ b), L2
p).335

We also set A = −i√g
√
G, which is an unbounded operator with domain H

1
2
p ,336

F = span(1) (which is finite-dimensional and stable by etA), S = L2
p,0 = span(1)⊥1337

(which is closed and finite codimensional), and B = 1ω. We have just proved that338

for any u0 ∈ S, there exists w ∈ UT such that the solution u of (4.9) verifies that339

u(T, ·) ∈ F .340

Moreover, A is diagonalizable and its eigenfunctions are the family of the complex341

exponentials {einx}n∈Z, which is well-known to be a linearly independent family on342

any open subset of T. Hence, since B∗ = 1ω, we indeed have by [21, Remark 28] that343

for any for every finite linear combination of generalized eigenfunctions g0 of A∗, we344

have B∗etA
∗
g0 = 0 on (0, ε) for any ε > 0 implies that g0 = 0.345

Hence, we can apply [21, Proposition 27] and obtain the null controllability of346

(4.8) on the whole state space L2
p(T) at any time T ′ > T .347

However, this turns out to be false. Indeed, using the formalism of [20], we can348

write349

i
√
g
√
G = ρ

(√
−∆

)
,350

with351

ρ(x) = i
√
g
√
x tanh(x).352

Remark that ρ is holomorphic on C∗ and continuous on C, and that ρ(z) = o(z) as353

z → ∞. Then, we can apply [20, Theorem 1.4] to obtain that (4.9) is not controllable354

in L2
p(T), whence the desired result by contradiction.355

5. Modifying the state space and the Luenberger observer. As we have356

seen, we cannot have exponential stability of (3.13) because of two obstructions, one357

coming from the mean values and one coming from the high frequencies. Let us give358

two remedies to these problems.359

5.1. State space of initial conditions with null mean value: polynomial360

decay. Let us restrict our state space to the set of initial conditions with null mean361

values, i.e. we take as a state space H0. Remark that it is not very convenient to look362

at (3.12) with initial state H0. Indeed, if we are looking at (3.13), we observe that363

H0 is not stable by the semigroup generated by the operator appearing in (3.13): if364

we start with initial conditions in H0, then, in general, the term 1ωηer do not have365

mean value zero. One natural remedy is to “force” in some sense this property by366

projecting again on H0. We call ΠH0
the orthogonal projection in H on the closed367

subspace H0. According to the previous discussion, we first propose a new Luenberger368

observer leading to the system369

(5.1)


∂tϕ̂(t, x) = −gη̂(t, x),
∂tη̂(t, x) = Gϕ̂(t, x)−γΠH0

1ω(x)(η(t, x)− η̂(t, x)),

ϕ̂(0, x) = ϕ̂0(x), η̂(0, x) = η̂0(x),

370

1We modified the notation G in [21, Proposition 27] into S, to avoid confusions with the operator
G
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where (ϕ̂0(x), η̂0(x)) ∈ H0. If (ϕ0(x), η0(x)) ∈ H0 and (ϕ, η) is the corresponding371

solution to (3.4), then, (ϕer, ηer) := (ϕ− ϕ̂, η − η̂) is solution to372

(5.2)


∂tϕer(t, x) = −gηer(t, x),
∂tηer(t, x) = Gϕer(t, x)− γΠH0

(1ω(x)ηer(t, x)) ,

ϕer(0, x) = ϕ0er(x), ηer(0, x) = η0er(x),

373

where ϕ0er(x) = ϕ0(x) − ϕ̂0(x) and η0er(x) = η0(x) − η̂0(x) are in H0. For later374

purpose, we need to put our the control under the form of a collocated control. An375

explicit computations shows that γΠH0
1ω is a selfadjoint and non-negative operator376

on H0. Hence, by functional calculus, it admits a unique square root denoted by377

B̃ =
√
γΠH01ω, which is also selfadjoint. Hence, this system can be rewritten in an378

abstract way as379

(5.3)


∂t

(
ϕer(t, x)

ηer(t, x)

)
= (A− B̃B̃∗)

(
ϕer(t, x)

ηer(t, x)

)
,(

ϕer(0, x)

ηer(0, x)

)
=

(
ϕ0er(x)

η0er(x)

)
.

380

Moreover, remind that we already remarked that A is the generator of a C0-381

group on H0 and that on H0, A is skew-adjoint. Here, the high frequencies are still a382

problem, as shown in the next Proposition.383

Proposition 5.1. (5.3) is not exponentially stable with respect to the || · ||
H

1/2
p,0

×384

|| · ||L2
p,0

-norm.385

Proof. The proof is similar to the one of Proposition 4.3, but a little bit simpler.386

We reason by contradiction and we assume that (5.3) is exponentially stable. Since A387

is now skew-adjoint on H0, one can apply [24, Theorem 2.3] (by seeing B̃B̃∗ = ΠH0
1ω388

as a control and Id as a feedback operator) and deduce that (5.3) is exactly controllable389

at some time T > 0. Following the proof of Proposition 4.3, we reason by contradiction390

and we obtain that391

(5.4)

{
∂tu = −i√g

√
Gu+ 1ωv,

u(0, x) = u0(x)
392

is null controllable in the state space L2
p,0 at some time T > 0. By duality (see393

e.g.[Theorem 11.2.1]TW), this means that there exists C > 0 such that for any φ0 ∈394

L2
p,0, we have395

(5.5) ||φ(T, ·)||2L2 ⩽
∫ T

0

∫
ω

|φ(t, x)|2dxdt,396

where φ is the solution of the adjoint problem397 {
∂tφ = −i√g

√
Gφ,

φ(0, x) = φ0(x).
398

It turns out that (5.5) is false. Indeed, the counterexample provided in [20, Proof399

of Theorem 1.4, Page 3145] is the periodization of a family of functions (gh)h∈(0,1),400
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defined on R, that are compactly supported in the Fourier variable, with support away401

from ξ = 0. Notably, all the gh are of mean 0 and are in L2
p, so they lie in L2

p,0 and402

furnish a counterexample for (5.5).403

However, even if one cannot expect exponential stabilization, we still have the404

following result.405

Theorem 5.1. (5.3) is asymptotically stable with respect to the ||·||
H

1/2
p,0

×||·||L2
p,0

-406

norm, in the sense that the solution of (5.3) converges strongly to 0 as t → +∞.407

Moreover, (5.3) enjoys the following polynomial decay: there exists C > 0 such that408

for any (ϕ0er, η
0
er) ∈ D0(A), the corresponding solution of (5.3) verifies409

(5.6) ||(ϕer(t, ·), ηer(t, ·))||H0
⩽

C√
1 + t

||(ϕ0er, η0er)||D0(A), t ⩾ 0.410

Remark 5.2. Remind that (5.6) cannot hold if we replace ||(ϕ0er, η0er)||D0(A) by411

||(ϕ0er, η0er)||H0
in the right-hand side, because of [13, Proposition V.1.7] (which asserts412

that in this case, (5.3) would be exponentially stable).413

Proof. We would like to prove that [32, Theorem 3.6] applies. Here, A∗ = −A has414

compact resolvents, and the feedback is under the form −B̃B̃∗ (see (5.3)), which is415

exactly the form of the feedback constructed in [32, Theorem 3.6] (since it relies on [32,416

Theorems 3.3, 3.4, 3.5]). Moreover, what is called “complete controllability” in [32]417

is exactly what is called approximate observability in infinite time in [34, Definition418

6.5.1]. Applying [34, Proposition 6.9.1], we deduce that approximate observability in419

infinite time holds as soon as the Fattorini-Hautus test holds: there does not exists420

any eigenfunction φ of the operator A∗ such that B̃∗φ = 0, which is equivalent to421

B̃B̃∗φ = 0. Reason by contradiction. For such an eigenfunction φ(x) =

(
ϕ(x)
η(x)

)
of422

A∗ = −A associated to an eigenvalue λ ̸= 0, B̃∗φ = 0 is therefore equivalent to: for423

every x ∈ ω, we have η(x) = 0. In view of the eigenfunctions given in (3.5), η is424

a linear combination of a at most two distinct complex exponentials, that are well-425

known to form a linearly independent family on any interval (and so on ω), we deduce426

that η(x) = 0, ∀x ∈ T. In view of the expression of A, the fact that Aφ = λφ notably427

gives (by looking at the first component) that −gη = λϕ. Since λ ̸= 0, we also obtain428

that ϕ(x) = 0,∀x ∈ T, which concludes the proof of the asymptotic stabilisation result429

by applying [32, Theorem 3.6].430

Let us now explain how to prove (5.6). Our idea is to apply [5, Theorem 3.9]. In431

order to apply this Theorem, our first goal is to estimate432

s||D̃∗((1 + is)2 + G−1)
−1D̃||, s ∈ R+,433

where D̃ = D̃∗ =
√
γΠH0

1ω, and G−1 is the extension of G in Lc(H0, D0(A)
′).434

Remark that by [5, Section 2B], we have that for s ⩾ 0,435

(5.7) (sD̃∗((1 + is)2 + G−1)
−1D̃) = B̃∗((1 + is)−A−1)

−1B̃,436

where A−1 is the extension of A in Lc(L
2
p,0, (H

1
p,0)

′). Since B̃∗ is bounded, we have,437

for any s ⩾ 0,438

(5.8) ||B̃∗((1 + is)−A−1)
−1B̃|| ⩽ ||B̃∗|| ||((1 + is)−A−1)

−1|| ||B̃||.439

Since A has purely imaginary spectrum, we have the existence of C > 0 such that for440

any s ⩾ 0,441

||B̃∗((1 + is)−A−1)
−1B̃|| ⩽ C.442
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Hence,coming back to (5.7), we have existence of some constant C > 0 such that for443

any s ⩾ 0, we have444

(5.9) s||D̃∗((1 + is)2 + G−1)
−1D̃|| ⩽ C.445

Moreover, the eigenvalues
√
µk of

√
G behave asymptotically as C

√
k as k → +∞ for446

some C > 0. Notably, there exists C > 0 small enough such that for any k ∈ N∗, we447

have448 √
µk+1 −

√
µk ⩾

c
√
µk
.449

For s ⩾ 0, we set450

(5.10) δ0(s) =
c

4s
.451

Then, for any s ⩾ 0, the set [s − δ0(s), s + δ0(s)] contains at most one eigenvalue.452

We call WP (s) the “wavepacket” associated to s ⩾ 0, i.e. the spectral subspace453

associated to the set [s − δ0(s), s + δ0(s)], which is either empty, or limited to an454

eigenspace of a unique eigenvalue.455

Consider any eigenfunction f of
√
G associated to an eigenvalue

√
µ
k
. Then, f can456

be written as f(x) = ake
ikx + bke

−ikx with ak, bk ∈ C. Moreover, writing ω = (α, β)457

with α < β, using ΠH0f = f , the fact the scalar product on L2
p,0 is the restriction of458

the scalar product on L2
p, and (3.1),459

||D̃∗f ||2L2
p,0

= ⟨D̃∗f, D̃∗f⟩L2
p,0

= ⟨D̃D̃∗f, f⟩L2
p,0

= ⟨ΠH01ωf, f⟩L2
p

= ⟨1ωf,ΠH0f⟩L2
p

= ⟨1ωf, f⟩L2
p

=
1

2π

∫
ω

|f |2

=
1

2π

∫ β

α

(
|a|2 + |b|2 + 2Re(abe2ikx

)
dx

=
β − α

2π
(|a|2 + |b|2) + 1

2π
Re

(
ab

∫ β

α

e2ikxdx

)

=
β − α

2π
(|a|2 + |b|2) + Re

(
ab
e2ikβ − e2ikα

πik

)
.

460

Since
∫
T |f |

2 = |a|2 + |b|2, we deduce that as soon as f ̸= 0, we have ||D̃∗f ||2
L2

p,0
̸= 0461

and, by Young’s inequality,462

||D̃∗f ||2
L2

p,0∫
T |f |2

⩾
β − α

2π
− 1

πk
→ β − α

2π
> 0 as |k| → +∞.463

Hence, for some C > 0 small enough, we have have that464

(5.11) ||B̃∗f ||L2
p,0

⩾ C||f ||L2
p,0
, f ∈WP (s), s ⩾ 0.465
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Combining (5.9), (5.10) and (5.11), and applying [5, Theorem 3.9] gives that for466

some new C > 0467

||(isId− (A− B̃B̃∗))−1|| ⩽ Cs2, s ∈ R.468

Applying [3, Theorem 2.4] gives that (for the operator norm in H0)469

(5.12) ||et(A−B̃B̃∗)(A− B̃B̃∗)−1|| = O

(
1√
t

)
, t→ +∞.470

We easily deduce (5.6) by applying this estimate together with the identity: ∀φ ∈471

D0(A),472

et(A−B̃B̃∗)φ = et(A−B̃B̃∗)(A− B̃B̃∗)−1(A− B̃B̃∗)φ473

and remarking that using a triangular inequality,474

||(A− B̃B̃∗)φ|| ⩽ C||φ||D0(A).475

5.2. State space of low-frequency initial conditions with null mean476

value: exponential observer. A remedy is to look only at low-frequency func-477

tions. Let us fix some N ∈ N∗. We call HN the finite-dimensional space478

HN = span{ν+n , ν−n }1⩽|n|⩽N .479

We also introduceΠN
LF0⊥ the orthogonal projection onHN inH. We restrict ourselves480

to initial conditions in HN and we propose the following observer:481

(5.13)
∂tϕ̂(t, x) = −gη̂(t, x),
∂t ˆη(t, x) = G(ϕ̂(t, x))− γΠN

LF0⊥1ω (η̂(t, x)− η(t, x)) ,

ϕ̂(0, x) = ϕ̂0(x), η̂(0, x) = η̂0(x),

(t, x) ∈ [0,+∞)× T,482

resulting in the error equation:483

(5.14)


∂tϕer(t, x) = −gηer(t, x),
∂tηer(t, x) = G(ϕer(t, x))−ΠN

LF0⊥1ωηer(t, x),

ϕer(0, x) = ϕ0er(x), ηer(0, x) = η0er(x),

(t, x) ∈ [0,+∞)× T,484

where ϕ0er(x) = ϕ0(x)− ϕ̂0(x) and η0er(x) = η0(x)− η̂0(x). We then have the following485

result.486

Theorem 5.2. (5.14) is exponentially stable, and there exists C > 0, independent487

of N , such that for any (ϕ0er(x), η
0
er(x)) ∈ HN and any t ⩾ 0, we have488

(5.15) ||(ϕer(t, ·), ηer(t, ·))||H0
⩽ C||(ϕ0er(x), η0er(x))||H0

e−
C
N t.489

Proof. Introduce490

BN =

(
0 0
0 ΠN

LF0⊥1ω

)
491

and492

B̃N =

(
0 0

0
√
ΠN

LF0⊥
1ω

)
.493
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Remark that ||B̃N || ⩽ C , with C independent of N . Following the proof of The-494

orem 5.1, we deduce by using a similar estimate to (5.8) that we have an estimate495

similar to (5.9), namely,496

s||D̃∗
N ((1 + is)2 + G−1)

−1D̃N || ⩽ C,497

where D̃N =
√
ΠN

LF0⊥
1ω and C > 0 is independent of N . Moreover, following exactly498

the notations and reasoning of the proof of Theorem 5.1, we also have the analogous499

of (5.11)500

||D̃Nf ||L2
p,0

⩾ C||f ||L2
p,0
, f ∈WP (s), s ⩾ 0,501

where C > 0 is independent of N and the wavepacket is defined with the same δ0 as502

in (5.10). We deduce that a result similar to to (5.12), namely, for t ⩾ C1 for some503

C1 > 0 large enough, we have, for some C > 0 independent of N .504

(5.16) ||et(A−BN )(A−BN )−1φ||H ⩽
C||φ||H√

t
, ∀φ ∈ HN .505

Assume now that φ is an eigenvector of A−BN associated to an eigenvalue λ ∈ C.506

Such an eigenvalue is necessarily such that Re(λ) < 0.507

Then, (5.16) becomes508

etRe(λ)

|λ|
||φ||H ⩽

C||φ||H√
t

, t ⩾ C1.509

By an usual comparison principle, since the eigenvalue λ±k of A behaves asymptotically510

as
√
|k| as |k| → +∞ and since here |k| ⩽ N , we necessarily have that for some C > 0,511

|λ| ⩽ C
√
N.512

We deduce that for some new C > 0 and t ⩾ C1,513

etRe(λ) ⩽
C
√
N√
t
.514

Now, we have two possibilities:515

• Either −Re(λ) ⩾ 1/C1 (remind that Re(λ) < 0).516

• Or −Re(λ) < 1/C1. In this case, taking t = −1/Re(λ) ⩾ C1, we deduce that517

e−1 ⩽ C
√

−NRe(λ).518

Hence, in this case, for some new C > 0,519

−Re(λ) ⩾
C

N
.520

In both cases, for N large enough, we deduce that521

Re(λ) ⩽ −C

N
.522

Since λ can be any eigenvalue of A − BN , an usual reasoning enables to deduce our523

desired result (5.15).524
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6. Numerical Results. This section is structured into four parts. The first part525

addresses certain numerical aspects that are worth discussing before proceeding with526

numerical experiments. Specifically, it covers the distinction between performing com-527

putations in Fourier space versus classical space, the interpretation of low-frequency528

projectors, and the phenomenon of aliasing. The second part focuses on validating529

the theoretical results presented earlier through numerical simulations. The third part530

explores the behavior of the convergence rate as a function of the number of available531

frequencies. Finally, the fourth part shifts to an application beyond the theoretical532

framework. Here, we apply a Luenberger observer to the problem of wave field re-533

construction in open water. Data assimilation for wave fields is a crucial topic in534

addressing certain challenges in engineering and hydrodynamics. This research area535

has gained significant attention in recent years, with applications ranging from flood536

or tsunami prediction [30, 26] and bathymetry detection [18, 2] to the reconstruction537

and prediction of wave fields from observations [35, 12, 27, 22, 8]. Our last case focuses538

on the latter, making simplified assumptions while ensuring that the proposed method539

remains both relevant and practical. The approach is deliberately straightforward and540

easy to implement.541

6.1. Numerical aspects. In this section, we clarify some numerical aspects542

that are important to address in the following section.543

6.1.1. Fourier space and classical space. Let us first address the choice of the544

space (Fourier or classical) in which the numerical tests will be carried out. Compu-545

tations for subsection 6.2 and subsection 6.3 are done in Fourier space. Computations546

for subsection 6.4 are performed in the classical space.547

Concerning subsection 6.2 and subsection 6.3, this choice is motivated by the548

will to better represent the theoretical convergence results that we want to illustrate549

and to facilitate computations. But let us address the difference between running550

the simulations in a Fourier space and in classical space. Recall that for a periodic551

continuous function f on the torus T, there exists an equivalence between the rep-552

resentation of the function on the grid (f(xi))i={0,...,Nx−1} and its representation in553

the Fourier domain F [f ] (n)n={−Nf ,...,Nf} if Nf = (Nx − 1)/2. This equivalence can554

be reworked with a simple discrete Fourier transform computation. However, this555

equivalence is no longer valid for piecewise continuous functions, which is our case556

because of the operator 1ω. In this setting we therefore lose the uniform and absolute557

convergence, but we still have convergence in L2-norm, and almost everywhere con-558

vergence of the Fourier series to the function in the classical space thanks to classical559

theorems of Fourier analysis. It can be shown that the operators constructed there-560

after in a discretized Fourier space converge towards the same operators constructed561

in a discretized classical space as Nx (or Nf ) tends to infinity. The indicator operator562

1ω is then passed into Fourier space, assuming ω = [π − a, π + a], with:563

(6.1) c0(1[π−a,π+a]) =
1

2π

∫ 2π

0

1[π−a,π+a](x)dx =
a

π
564

and, for n ∈ Z \ {0},565

(6.2) cn(1[π−a,π+a]) =
1

2π

∫ 2π

0

1[π−a,π+a](x) exp(−inx)dx =
a(−1)n

π

sin(na)

na
.566

Regarding subsection 6.4, computations are carried out in the classical space as567

we approach a realistic and practical problem.568
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6.1.2. Projectors. Let us we clarify what low-frequency projection means in a569

numerical setting. Indeed, from the moment we carry out a discretization (Fourier570

or classical), this already amounts to carrying out a low-frequency projection of our571

continuous problem into a finite dimension setting since a discretization of our function572

can only represent a finite number of frequencies.573

This is what is considered in the numerical test performed in subsection 6.4. The574

low-frequency projection is not visible in the formulations, but rather implied by the575

fact that we work in a discretized setting.576

Regarding the first numerical test in subsection 6.2, as our aim is there to support577

the theoretical assertions made in this paper, low-frequency projection is defined as578

the operator that projects the solution onto the frequencies subspace that is the579

one of the initial condition. For example, if the initial condition of our initial value580

problem contains two sines of frequencies 1 and 2 (i.e., sin(x) + sin(2x)), then the581

low-frequency projection operator projects a function in Fourier space onto frequencies582

{−2,−1, 0, 1, 2}. This initial condition is considered to be low-frequency.583

6.1.3. Aliasing. One of the other numerical aspects that is important to specify584

is aliasing [25]. It is also known as spectral folding and occurs when we try to represent585

a function which contains more frequencies than the discretization grid can allow.586

The frequencies that are too high for the grid are then folded onto the rest of the587

frequencies, hence introducing a numerical error that cannot be avoided.588

In order to avoid aliasing in subsection 6.2, we choose to concentrate on an initial589

condition that can be represented on the chosen frequency space. These are therefore590

sums of sines and cosines, which contain fewer frequencies than the frequency space591

can represent.592

In subsection 6.4, this phenomenon is present as we aim to apply our observer on593

a more realistic setting. We are then outside the theoretical frame exposed above.594

6.2. Numerical convergence of the error equation in the theoretical set-595

ting. In this section, we validate numerically the theoretical results presented above.596

Computations are performed in MATLAB [17]. We choose to emulate a discretization597

in space of the 1D torus [0, 2π[ with Nx points, i.e. a {x0, x1, . . . , xNx−1} grid with598

xi = i∆x, where ∆x = 2π/Nx. For simplicity, we assume Nx to be odd, so that the599

maximum number of frequencies that can be represented with this discretization is600

Nf = (Nx − 1)/2. We therefore suppose to use a grid with Nx = 26 + 1 equidistant601

points, equivalent to the same number of frequencies, ranging from −Nf = (Nx−1)/2602

to Nf = (Nx − 1)/2. Computation are actually carried out in this frequency space.603

We want to compare the results of different ODEs that describe the behaviour604

of the error without modifications (6.3), the error with a projector that removes the605

mean (6.4), and the error with a projector that removes the mean and high frequencies606

(6.5).607

(6.3) [E1] ⇔

{
∂tϕer(t, x) = −gηer(t, x)
∂tηer(t, x) = G(ϕer(t, x))− 1ωηer(t, x)

608

609

(6.4) [E2] ⇔

{
∂tϕer(t, x) = −gηer(t, x)
∂tηer(t, x) = G(ϕer(t, x))−Π⊥01ωηer(t, x),

610

611

(6.5) [E3] ⇔

{
∂tϕer(t, x) = −gηer(t, x)
∂tηer(t, x) = G(ϕer(t, x))−Π⊥0ΠLF1ωηer(t, x).

612
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Here ω is defined as the interval [π/2, 3π/2], representing an observation of half of the613

free surface.614

Regarding the initial condition, remember that ϕ0 and η0 must satisfy relation615

(2.6), i.e., F
[
η0
]
(n) = iωn

g F
[
ϕ0
]
(n) where F [·] is the Fourier transform on T. Same616

holds for η̂0 and ϕ̂0 and consequently, for ϕ0er and η0er. We therefore choose to define617

ϕ0er as a signal with no mean defined as a sum of Ninit = 4 sines and cosines:618

(6.6) ϕ0er(x) =

n=Ninit=4∑
n=1

βn,1 sin(nx) + βn,2 cos(nx),619

with βn,1 and βn,2 taken at random from [0, 1] for each mode. Once ϕ0er is set, we620

choose η0er so that it follows relation (2.6) on each Fourier mode.621

We discretize the operators associated with the dynamics of equations (6.3),622

(6.4) and (6.5) into matrices M1, M2 and M3 over 2Nf + 1 frequencies, sorted as623

{0, 1, . . . , Nf ,−Nf , . . . ,−1}. This leads to:624

(6.7)

M1 =

(
O −gI
G −Cω

)
, M2 =

(
O −gI
G −D⊥0Cω

)
, M3 =

(
O −gI
G −DLFD⊥0Cω

)
,625

with G = diag({0, tanh(d), . . . , Nf tanh(dNf ), Nf tanh(dNf ), . . . , tanh(d)}) is the di-626

agonal matrix corresponding to the Fourier multiplier operator G, I the identity ma-627

trix, O the null matrix, Cω the matrix representing in Fourier space the application628

of the convolution product of the Fourier coefficients of the operator 1ω onto a vector,629

D⊥0 the diagonal matrix which removes mode 0 and DLF the low-frequency projec-630

tion matrix onto frequencies {−Ninit, . . . , Ninit}. Note that, for simplicity reasons, we631

choose to set γ = 1. For a given matrix Mi, i ∈ {1, 2, 3} we solve the corresponding632

homogeneous linear ODE with MATLAB ode45 solver. Numerical results are shown633

in Figure 6.1.634

The non-convergence of the error equation (6.4) can therefore be observed, due to635

the obstruction coming from mode 0. Concerning the solution of the error equation636

(6.4), we can see the obstruction coming from the high frequencies, which prevents the637

desired convergence at low frequencies. Convergence is linear because, since the equa-638

tion is discretized, we are in a finite-dimensional regime. But the rate of convergence639

is determined by the highest frequency represented by the grid, and not by the highest640

frequency which constitutes the initial condition. We can also see in Figure 6.1 (top641

right) and (bottom left) that although not existing in the initial conditions, high fre-642

quencies appear due to the indicator operator which mixes the frequencies, therefore643

supporting our theoretical results.644

Finally, we can see that the solution to the error equation (6.5) converges at a645

linear rate determined by the highest frequency of the projector, which, as we know,646

is the same as in the initial condition. Figure 6.1 (bottom left) shows that this choice647

of observer does not create high frequencies.648

6.3. Numerical study of the convergence rate. In this test, we focus on649

the rate of convergence of the observer. Once discretized in space, the problem falls650

within the framework of the section 5. We have linear convergence of the observer.651

This rate of convergence is therefore given by the largest real part of the eigenvalues652

of the observer matrix, i.e. the matrix M2 as presented in (6.7). We also know that653

this convergence rate depends on the highest frequency for a fixed observation interval654

ω. In Figure 6.2, we are therefore interested in the relationship between the number655
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Figure 6.1. Convergence of the error equation for the initial condition in (6.6). Top
left: Convergence of the solution of [E1], [E2] and [E3], with the theoretical rate of conver-
gence found after an eigenvalue analysis of matrices M2 and M3. Top right: Same as top left,
where the solutions have been projected onto the low frequencies, i.e., {−Ninit, . . . , Ninit}. Bot-
tom left: Same as top left, where the solutions have been projected onto the high frequencies, i.e.,
{−Nf , . . . , Nf}\{−Ninit, . . . , Ninit}. Bottom right: Same as top left, where the solutions have been
projected onto the frequency 0.

of frequencies represented and the rate of convergence. For increasing values of Nf ,656

an increasingly large matrix M2 is constructed and its eigenvalue of largest real part657

is then extracted.658

Figure 6.2. Convergence factor α as in ∥(ϕer, ηer)(t)∥ ≈ exp(−αt) as function of the number
of frequencies Nf reprensented.

As can be seen in Figure 6.2, we therefore observe a linear convergence of the659
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error at rate (Nf )
−1/2. Recall that theoretically, by Theorem 5.2, we have found660

that the convergence rate is at least of rate (Nf )
−2 . Hence, it seems likely that our661

theoretical result is not optimal.662

6.4. Application to wave field reconstruction. In this section, we focus on663

applying a Luenberger observer to a wave field in open sea, within a simplified but664

still relevant framework. These data are generated over a basin of length L.665

(6.8) η(t, x) = Re

{
N∑

n=1

An exp(i(|kn|x− ωnt+ λn))

}
666

where An are wave amplitudes of N = 2048 different individual waves calculated from667

a JONSWAP spectrum [16] with a peak period of 10 seconds, and a significant height668

of 3 meters. We then choose L = 64lp where lp is the peak wavelength. We then have669

kn = n2π
L , and ωn =

√
g|kn| tanh(d|kn|), and λn are random phase shifts drawn on670

[0, 2π[.671

We then aim to set up an observer on the interval Ω = [0, L/4[, an interval divided672

into two, with an observation region Ω̃ = [0, L/8[ and a prediction region Ω\Ω̃ =673

[L/8, L/4[ as schematized in Figure 6.3. We therefore simulate a situation where we674

observe a wave field over an interval of size 8lp, and where we reconstruct this wave675

field over an interval twice as large, with the aim of predicting it over a region where676

we have no information. Ω is then discretized with a grid of NΩ = 256 points (we677

therefore have NΩ̃ = NΩ\Ω̃ = 128). We then solve the following observer equation on

x

0 L/8 L/4 L

Ω̃

Ω

Figure 6.3. Setting for the reconstruction of a synthetic wave field.

678
Ω × [0, Tend]:679

(6.9)


∂tηo(xl, t) = −gϕo(xl, t),
∂tϕo(xl, t) = G(ηo(xl, t)) + γΠ⊥01Ω̃(η(xl, t)− ηo(xl, t)),

ηo(xl, 0) = 1Ω̃η(xl, t),

ϕo(xl, 0) = 0.

680

The theoretical results given in section 5 no longer hold for two reasons. First, the681

η wave field is not periodic on Ω. Second is that the discretization of Ω is coarser682

than that used to generate η synthetically. As explained in subsection 6.1, this second683

reason leads to aliasing, preventing us from achieving the linear convergence described684

in section 5. However, as long as the spectrum support of η is largely covered by the685

discretization grid of Ω, we expect qualitative results. A prior statistical understand-686

ing of the spectrum of an open ocean wave field is therefore necessary, and this is why687

operations such as JONSWAP have been performed.688

To validate our results, we use a different metric from the one used so far, called689

SSP, (Surface Similarity Parameter), which is used in the hydrodynamics community690
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[29, 19, 9]. It is defined as follows, for two signals f1 and f2:691

(6.10) SSP(t) =

(∑
n |cn(f1)− cn(f2)|2

)1/2
(
∑

n |cn(f1)|2)
1/2

+ (
∑

n |cn(f2)|2)
1/2

.692

The SSP has values in the range [0, 1], where 0 corresponds to a perfect match and 1693

corresponds to a perfect mismatch between the two signals.694

Solving equation (6.9) with γ = 0.2 gives the results shown in Figure 6.4. Here, for695

a fixed time t, we compare the SSP score between the η function of the synthetic wave696

field evaluated at the grid points in Ω and the solution of (6.9). The corresponding697

snapshots are shown in Figure 6.5. The choice of γ = 0.2 is explained later.

Figure 6.4. SSP over time. Blue curve is the SSP on Ω, red curve is the SSP on Ω̃, yellow
curve is the SSP on Ω\Ω̃, blue dotted curve is the mean value of the SSP on Ω over time interval
[400, 900].

698

In Figure 6.4, we can see that the observer takes some time to reconstruct the699

whole Ω interval (around 400 seconds of simulation) before converging around an700

average SSP of 0.12. The snapshots in Figure 6.5 show a good reconstruction of the701

surface over Ω from t = 400 seconds. We are then interested in the impact of the702

gain constant γ on the observer, its convergence rate, and its average SSP once the703

first 400 seconds of simulation have elapsed. The results are shown in Figure 6.6.704

Figure 6.6 shows that, depending on the value chosen for the gain constant γ, the705

average SSP varies, and varies differently if we look at the whole simulation interval,706

only the observed one or only the reconstructed one. The results shown in Figure 6.4707

and Figure 6.5 are therefore those with γ = 0.2 which equalize the SSP over the708

observation interval and the reconstruction interval, but we note that we can obtain709

better results over one of these intervals individually if we choose another value of γ.710
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