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Abstract—We propose an efficient method for reconstructing
traffic density with low penetration rate of probe vehicles.
Specifically, we rely on measuring only the initial and final
positions of a small number of cars which are generated
using microscopic dynamical systems. We then implement a
machine learning algorithm from scratch to reconstruct the
approximate traffic density. This approach leverages learning
techniques to improve the accuracy of density reconstruction
despite constraints in available data. For the sake of consistency,
we will prove that, if only using data from dynamical systems,
the approximate density predicted by our learned-based model
converges to a well-known macroscopic traffic flow model when
the number of vehicles approaches infinity.

Index Terms—Machine Learning, Neural Networks, Nonlin-
ear Systems Identification, Optimization, Differential Equations,
Traffic Management

I. INTRODUCTION

Vehicular traffic is often described at two distinct levels,
microscopic and macroscopic. The microscopic approach
focuses on individual vehicles and their interactions. It con-
siders the behavior of each driver capturing detailed dynamics
such as velocity and acceleration. It enables to account for
the impact of individual decisions on overall traffic flow.
The macroscopic approach relies on a continuity assumption,
describing traffic flow in terms of density, flow rate and mean
speed. It treats traffic as a continuous fluid, governed by
conservation principles such as the conservation of vehicles.
It allows for large-scale traffic management. We refer to
the survey papers [1], [3], [10] for a general discussion
about traffic models at different scales. Because the state of
continuous systems or high-dimensional microscopic systems
is impossible to fully monitor, being able to reconstruct it
from limited traffic data is a paramount challenge that has
attracted a strong attention in the last two decades [2], [6],
(91, [11].

We aim to construct a model that closely approximates the
original (or intrinsic) traffic model while observing consider-
ably fewer vehicles. This approach is motivated by the fact
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that monitoring all vehicles on a roadway is very challenging
and often impractical due to technical limitations or resource
constraints. Our main contribution is to implement a machine
learning algorithm that reconstructs traffic flow using only the
initial and final positions of probe vehicles. A key advantage
of our approach is that it implicitly satisfies conservation laws
without having to enforce them with additional constraints.
This is achieved by using artificial data created by adjusting
well-known traffic flow models and using activation functions
in neural networks tailored to underlying physical problems.

The paper is organized as follows. In section 2, we
introduce the traffic models used throughout our study. Sec-
tion 3 paves the way for the formulation of a constrained
optimization problem that will be the core of our machine
learning algorithm in section 4. Section 5 provides a theoret-
ical guarantee of our model. In section 6 we will illustrate
the efficiency of our learning-based method by numerical
experiments. Finally, Section 7 concludes the paper and
suggests directions for future research.

II. TRAFFIC FLOW MODELS

A. Microscopic model

We consider a system of [V 4 1 vehicles moving on a one
dimensional single-lane road. The first vehicle is designated
as the leader while the remaining vehicles are referred to
as followers. The position of each vehicle ¢, denoted z;, is
expressed as a function of time ¢. Each vehicle, regarded as
a particle, moves at a speed which is computed via a velocity
map v and a distance to the vehicle immediately ahead of it.
We assume that the leader has no vehicle in front of it and
therefore maintains constant and maximal velocity denoted
Umax- Additionally, the cumulative length of the vehicles is
given by L. In other words, L = [N, where [ is the average



length of a single car. Then the Follow-the-Leader (FtL)
microscopic model consists of the dynamical system

N (1) = Vmax, t>0,

N (4 L

) (t) =v (N(a:ﬁl(t)—xf\’(t))) , t>0, (1)
va(o):jla iZO,...7N7

where Z; denotes the initial position of vehicle i. In [5], the
authors established well-posedness of system (1) under the
condition that the initial positions satisfy Zp < 71 < --- <
ZTn—1 < Zpy. This nonlinear model not only becomes high-
dimensional and computationally expensive when dealing
with a large number of vehicles but also assumes that drivers
react solely to the vehicle immediately ahead, disregarding
the influence of other vehicles and overall traffic conditions.
Thus when we have a large number of vehicles it is often
more adapted -at least computationally- to consider a macro-
scopic model as described in the following.

B. Macroscopic model

The Lighthill-Whitham-Richards (LWR) model describes
traffic flow using the one-dimensional conservation law. In-
deed, vehicles are treated as a continuous medium similar to
particles in fluid which leads us to the initial value problem

S(t,x) + 2 (t,2) = 0,
p(O,x) = ﬁ($)a

r € R,
z € R,

t>0
)

where p(t,x) is the traffic density at position = and at time
t, f(p) is the flux function representing the flow rate of
vehicles and p is the initial vehicular density. Typically, the
flux function is expressed as f(p) := pv(p), where v(p)
is representing the average velocity of vehicles at a given
density. Obviously, this model does not capture the behavior
of individual vehicles as it focuses on aggregate traffic flow
variables such as density and flow rate.

The convergence analysis of the microscopic FtL. model
(1) towards the macroscopic LWR model (2) has been
extensively studied in recent years [4], [7]. The procedure
involves considering an initial density p which is discretized
to determine the initial positions of N + 1 vehicles. We then
allow the FtL system (1) to evolve according to its dynamics
and compare the resulting solution with the one that satisfies
the LWR model (2) as the number of vehicles approaches
infinity and the length of each car tends to zero.

C. Data-driven based model

In our scenario, it is crucial to note that, unlike previous
works that often rely on a given initial density, we do not have
access to this critical information. It represents a significant
challenge, as density is a key component for accurately
predicting traffic flow. We must compensate for this lack of
density data by leveraging other available information, such
as the initial and final positions of probe vehicles.

In [2], [9], the authors considered probe vehicles regarded
as mobile sensors within the traffic flow. These vehicles
are governed by an Ordinary Differential Equation (shortly
ODE) system analogous to (1) where traffic density evolves
according to a Partial Differential Equation (shortly PDE)
related to (2). To reconstruct density, vehicle positions x; (),
local density p;(t) = p(t,z;(t)) at vehicle locations and
instantaneous speed v;(t) = @;(t) were needed in real time.
This physics-informed learning method relies on explicit
enforcement of conservation laws through PDE-derived La-
grangian terms in their optimization. The main drawback of
this method is the lack of theoretical guarantee to prove that
the reconstructed density converges to the conservation law
added as a constraint in the optimization problem.

In [8] the authors adopted a Physical Informed Neural
Network (PINN) strategy using density and flow measure-
ments from synthetic data computed at fixed spatial locations.
They illustrated that accuracy of their traffic state estimation
improves when the number of locations increases.

In [6], the authors conducted the Mobile Century field
experiment where they studied the feasibility of using GPS-
enabled mobile phones as a cost-effective traffic monitoring
system. The system collected continuous trajectory data, with
position and velocity updates recorded every three seconds.
This extensive data collection ensured sufficient information
for traffic monitoring. Their results suggested that a 2 — 3%
penetration of GPS-equipped phones in the driver population
could provide accurate measurements of traffic flow velocity.

In contrast, our approach requires fewer information than
[2], [6], [8], [9] as it only assumes the knowledge of initial
and final positions of the probe vehicles, thereby simplifying
the data collection process and reducing the need for real-
time measurements.

III. MATHEMATICAL FORMULATION

To formalize our model, we first adapt the FtL. microscopic
model (1) to a modified framework that involves an optimiza-
tion variable and a finite time horizon.

A. Parametrized ODE system
We consider the ODE system with finite time 7'

15@) = Umax; te (0, T],
N =v il te(0,7], 3
i N(zN, (®)—2N (@) |7 b
va(o):i‘za 'l.:O,...,TL,
where o = (af,ad,...;al )T € R" is a parameter

and L is still representing the total length covered by all
of the vehicles in a bumper-to-bumper configuration. In
the new system (3), we insist on the fact that considered
vehicles represent only a subset of the total involved. For
i =0,...,n—1, ; and y; denote respectively the given
initial and final positions of car 7. The goal is to gather



observations from a significantly reduced number n of probe
vehicles compared to the total number V.

In system (3), a stands for the number of vehicles in the
segment [x;(-), xH_l(o)) between consecutive probe vehicles
i and ¢ + 1. Therefore, we impose physical conditions

o el,z], i=0,...,n—1,
n—1
4
> o W
j=0
where for : =0,...,n—1
_ . N (Ziy1 — %) N (Jir1— i)
i = 3 . 5
: mln{ : 1 (5)

The lower bound of 1 is trivial, as the segment must contain
at least one vehicle. The upper bound ensures that there is
enough space between the consecutive probe vehicles for this
number of vehicles. Since L/N is the length of a car, there
cannot be more than k cars on a segment. This is because
kL/N is the minimal possible space required by k cars on
the road. Moreover, a key assumption of our model is that
overtaking between probe vehicles is not allowed. In other
words, similarly to FtL system (1), the number of vehicles
between consecutive probe vehicles remains constant over
time which translates in the fact that oY is constant with
time.

To handle constraints (4) efficiently, we introduce the notation

AN::{aER”: ,n—l}.
(6)
Introducing the parameter o"¥ enables modelling multiple
unobserved vehicles between consecutive probe vehicles. The
inclusion of " in ODE system (3) preserves the well-
posedness of the system while allowing for a parametric
adjustment to the dynamics of the vehicles. It will also play
a role in establishing convergence to macroscopic model (2)
which facilitates the transition from discrete, vehicle-level
dynamics to continuous, density-level dynamics.
Although trajectories obtained from solving system (3) de-
pend on N, we choose from now on to drop the superscript
when referring to the trajectories for simplicity of notation.

o e(l,z], i=0,...

N

B. Global existence and uniqueness

We assume that the velocity function satisfies the following
hypotheses
(vl) v e CH][0, +0)),
(v2) v is decreasing on [0, +00),
(v3) v(0) = vmax for some vpyax € R.
Since the parameter oV is bounded and v is smooth, it is
straightforward to show local existence and uniqueness of the
solution to ODE system (3) from Picard-Lindelof Theorem.
To ensure that the solution exists globally, we have to prove
that the distance between two consecutive probe vehicles
never vanish. The result has been shown by Di Francesco
and Rosini in [5] for the classical FtL. model (2) involving

all vehicles in the system. We briefly outline it in our context,
where the same principle must hold.

Lemma IIL1. Let (xo(-),...,x,(-)) be the solution of ODE
system (3) and v satisfy hypotheses (vI)-(v3).

Then the discrete maximum principle holds: for all i =
0,...,n—1and for all t € [0,T],

aNL _
W S (Ei+1(t) ( ) S T + (/Umax - U(M)) tv (7)
where M = max ( ) denotes the maximum
i=0,...,n—1 N7

discrete density at initial time t = Q.

Lemma III.1 can be proven using a similar approach to
that presented in [5].

C. Discrete density

To clearly articulate the relationship between the state of
ODE system (3) and the unknown density in equation (2) we
introduce for ¢ = 0,...,n — 1 the discrete density as

aNL
N(wip1(t) — @i(t))’
where the trajectories x(-) of the probe vehicles are solutions
to system (3). pN(-) represents the local density in the
interval between consecutive probe vehicles localised at z;(-)

and x;11(-). Based on (8), we define for z € R the piecewise
constant Eulerian discrete density as

E:m

where x 4 is the characteristic function of the set A.
As proved in [7], pN in (9) can be seen as a discrete
approximation of the solution to the initial value problem

Q).

pp (t) = e,7],  ®

WXwi(t),zi02 () (), tE[0,T], (9)

IV. LEARNING-BASED DENSITY ESTIMATION

Our main focus is to reconstruct the traffic density only
using initial and final positions of probe vehicles. To that end,
we will solve an optimization problem that will allow us to
construct a traffic discrete density p” in (9) that converges to
the solution of the LWR model (2) when N tends to infinity
when using only artificial data.

A. ODE constrained optimization problem

We address our optimization problem with an innovation
which contrasts with physics-informed methods. It lies in
deliberately avoiding direct incorporation of the PDE into
the system due to the lack of theoretical guarantee induced
by these methods. We instead leverage the established con-
vergence under certain conditions of FtL. microscopic model
(1) to LWR macroscopic model (2). This convergence im-
plicitly ensures mass conservation without requiring explicit
PDE constraints, thus maintaining flexibility in the recon-
structed solution space while preserving physical consistency.



Enforcing directly the PDE constraints would not pose a
computational challenge but would instead create a data
dependency. Indeed, it would require time-varying density
measurements at specific points in space, which we exclude
from our problem set-up since our methodology assumes no
density measurements.

We first compute the leader’s trajectory

Zn(t) = Umaxt + Tn, t€1[0,T].

We then introduce for oY € Ay the matrix W~ that
accounts for interaction between the probe vehicles

N

(WaN)i,i ::_m, i=0,...,n—1,
(Wan)iie1 = =g, i=1,...,n—2, (10)
(W )ij =0, otherwise,
and function b~ (-) defined as
ban (t) = (0,...,0,b,_1(t))" € R, (11)
where b,_1(t) = QNLL (Umaxt + T,) accounts for the
influence of the leader towards its followers.
Setting V' such that
1
V(z)=v (z) , z€R, (12)
we can rewrite system (3) as
2(t) =V (Wanz(t) + bon (1)), t € (0,77, (13)
.13(0) = (jOa s 7~in—1)T
where the state variable z(-) == (2(),...,7n_1(-)) " repre-

sents the trajectories of the probe followers.

We emphasize that initial density p of the entire fleet is
unknown, as we do not have access to the initial positions
of all vehicles. Consequently, the discretized initial density
pY which would typically depend on initial positions of all
vehicles, cannot be determined. Equivalently, the ground truth
value of oV is unknown as it relies on information that is
not available to us. This limitation highlights the challenge
of reconstructing the system’s behavior based on our limited
data collection.

Based on (13) and (6) we write our ODE constrained
optimization problem as

minimize % (T — g||? (14a)
st @(t) =V (Wonaz(t) + bon (1)), te€[0,T], (14b)
z(0) =z, (14¢)
o e Ay. (14d)

The objective function (14a) is a final position matching
term which minimizes the discrepancy between the observed
final positions y of probe vehicles and the corresponding final
positions x(7T) predicted by the microscopic ODE model.

Moreover, the problem involves constraints related to dynam-
ics of the probe vehicles (14b)-(14c) whose velocities depend
on inter-vehicle spacing influenced by oV that must satisfy
(14d). This formulation enables traffic density reconstruction
from sparse observations by enforcing realistic vehicle dy-
namics, without directly incorporating PDE constraints.

Machine learning is effective at finding patterns in data
even if the unknown relationships are complex. Our method is
based on the use of a neural network designed to understand
the dynamics of traffic by breaking down the process into
small time steps.

B. Dataset generation

Dataset consist of artificial data based on simulated FtL

dynamics. This choice allows us to capture the physics of
the model we aim to approximate. Precisely, we let evolve
N +1 vehicles using the classical FtL. model (1) until time 7'
is reached. 10% of the total fleet serve as probe vehicles for
training data. These vehicles provide initial and final position
data used in the machine learning training process. The probe
vehicles represent a balanced sample of the overall traffic
dynamics.
An additional 2.5% of the total fleet are selected for testing
purposes so that 80% of the artificial data are for training
and the remaining 20% are test data. Test data are strictly
reserved for testing the model and are not used in any
part of the training process. It is crucial to emphasize that
the optimization network never “sees” or interacts with the
initial and final positions of test vehicles. This separation
is fundamental to our methodology, as it allows for an
unbiased assessment of the model’s performance. This choice
enables us to evaluate whether the model has truly learned
the underlying physics of traffic flow, rather than merely
memorizing training data.

C. Learning architecture

We have designed the network architecture using a residual
network (ResNet) approach. Each residual block in our
ResNet corresponds to a single time step in the simulation.

The network starts with an input representing the initial
positions of probe vehicles. This state is then propagated
through time using a single, repeating residual block. The
number of times this block is applied corresponds to the
number of time steps in the simulation. Starting from initial
traffic positions, the network predicts the next traffic state
based on the current one. This repeated process allows
step-by-step simulation of traffic flow until final time is
reached. The structure described mirrors the first-order Euler
discretization for ODE system (13).

The residual block incorporates physics-based principles
of traffic flow. The weights in (10) and biases in (11) of
the network are not independent variables, but are instead
functions of «. Nonlinear map (12) acts as a physics-
grounded activation function. Optimizing « determine the
entire network’s behavior.



D. Learning procedure

Our task is to minimize the cost between predicted and
observed final positions. We train our machine learning
algorithm with the training data. The predictions made by
the neural network follow traffic rules defined by dynamics
(14b) parameterized by . Indeed, the final traffic state x*(7T")
reconstructed through our ResNet architecture is compared to
the observed training data y. The loss function derived from
(14a) writes

1 (63 1
= (1) — gl (15)

and computes the error between this final predicted state and
the final observed state. Optimization parameter « is adjusted
using backpropagation to minimize prediction errors (15).
This iterative process of prediction, comparison and adjust-
ment enables the model to capture the complex dynamics of
traffic flow using just the initial condition and the observed
final state.

After training, we recover from « the discrete vehicle
densities (8). From these, we construct piecewise constant
Euler discrete density p" in the form of (9) and use it to
simulate on our test data. In particular, we solve system

(o=
2;(0) =z

t € (0,7,

1 =0,..., Mtest,

(16)

where p (¢, z;(t)") = lim
z—xi(t);x>a;(t)
that vehicle ¢ is affected by the density located in front and
where the density p” is the approximate density obtained
from training. We let evolve system (16) from initial test
positions Z;**=* and measure the error between simulated final

positions and observed test data g; .

p (t, z) which indicates

V. CONVERGENCE OF THE MODEL

In this section we prove that, if only using data from
dynamical systems, the approximate density p” constructed
by our machine learning model converges to the solution
of the LWR macroscopic traffic flow model (2) when the
number of vehicles approaches infinity.

Although our setting incorporates probe vehicles and pa-
rameter o, we can adapt most of the results established by
Di Franco and Rosini in [5] using analogous arguments. We
recall that the authors showed the convergence of the solution
to microscopic model (1) to the unique entropic solution to
macroscopic model (2) when N tends to infinity. To obtain
a similar result in our context, the main challenge lies in
imposing a condition on the distribution of o which would
guarantee convergence.

We demonstrate that the discrete initial density p™ (0, )
converges to the initial condition p in the LWR model
(2) under this additional assumption. In addition to the

Euler discrete density (9), we consider the empirical discrete
density defined by

n—1
R L
N (t,-) ::N;aﬁvéw)(-), telo0,7]. (17)

We make the important observation that by construction the
initial traffic density must satisfy for ¢ =0,...,n — 1

z aiL
xiH:sup{xER:/ ply)dy < i } (18)

T

Indeed, although we do not have access to the ground-truth
initial car density p, we do know that initial positions z; of
our probe vehicles verify (18) which states that the number
of unobserved vehicles between [z;, ;1) is given by .

The following result inspired from [5, Proposition 4]
ensures that the discretization aligns consistently with the
true initial density when N tends to infinity. To simplify
notations, let for t € [0, T, p(t) = p(t,-) and p(t) == p(t, -).
In particular, for t = 0, p(0) == p(0,-) and p(0) := p(0,-).
We will use the Wasserstein distance defined in [5] by

Wea(f.9) = £ — 00, ]) — 9 — o0 ey (19)
We refer readers to [5, Section 2.3] which provides a rigorous
introduction to this concept.

Proposition V.1. Let p satisfy (18) and assume that

max ol = o(N). (20)

. i
1=0,...,n—1

Then, both sequences (p™ (0))nen and (p™ (0))nen converge
to p in the sense of the Wy, 1 -Wasserstein distance in (19).

Remark V.2. A particular case of assumption (20) is when
f(N) = log N. This choice often used in practice ensures
controlled growth of ay.

Proof. Set Iy == L/N. Using the definition of the Wi .1-
Wasserstein distance and the expression of discrete density
in (8) and mimicking the proof of [5, Proposition 4], we have

Wi1(p™(0),7™(0))

n—1

=X [ iy o 0 - ) o
i=0 ¥ T

n—1 Tit1 _
) r—x;
i—0 T4 LTit1 — T4

< max {ozfv}lN (Zn, — Zo) -
1=0,...,n

EEREE}

2n

We deduce that it suffices to prove that (p™V(0)),en con-
verges to p with respect to the Wy, -Wasserstein distance.



Using the expression of both Euler (9) and empirical (17)
discrete densities, its holds that

WL,I (ﬁN (O)a /3)
n=2 .z

- Saliv- [ sty | ds
. 2 i

n=2 .z, i—1 7
=S [ (S - [ atwa
i=0 7 Ti j=0 To

T, [n=2 Tpo1
[ [ sy
Tn-1 \ j=0 To

+ (aﬁlllN —[ p(y)dy) dx.
Tn—1

From (18), we deduce that

.....

From assumption (20) and estimate (21) we conclude that
(p™(0))nen converges to p in the sense of the Wi ;-
Wasserstein distance, which achieves the proof. O

Moreover, by leveraging the expression of discrete density
(9), we can generalize the convergence to the entropy solution
of the conservation law (2), referring to the methodologies
from abovementioned work. Specifically, [5, Theorem 3]
which asserts the convergence of pV to the unique entropy
solution of (2) remains applicable in our case, requiring only
minor modifications to the original arguments.

VI. NUMERICAL EXPERIMENTS

In this section, we present the results of our numerical
simulations using the abovementioned training procedure. We
consider two distinct traffic scenarios where the maximum
allowable speed of traffic is vpmax = 120 km/h and the
maximum traffic density is pmax = 200 cars/km. We consider

(a) Neural Network learning us- (b) Test simulation using recon-
ing 5,000 training epochs structed density

Fig. 1: Comparison between prediction results and observed
data with NV = 2000

(a) Neural Network learning us- (b) Test simulation using recon-
ing 5,000 training epochs structed density

Fig. 2: Comparison between prediction results and observed
data with N = 3000

a special instance of function v, known as the Greenshields
velocity

’U(p) = Umax Max {1 - 70} , PE [Oa pmaz]~

Pmax
A time period of 0.1 corresponds to a real-world duration of
6 minutes. In the following illustrations, the origin represents
the initial position Zy = 0 of the last follower at ¢ = 0. The
right end of the x-axis corresponds to the leader’s position
at the final time 7'. The initial domain refers to the portion
of the road occupied by all probe vehicles at the start of the
simulation.

A. Shock wave simulation

The first traffic scenario represents an abrupt transition in
traffic conditions. The shock position where occurs a change
from low to high density is set at normalized position 0.5 with
respect to the initial domain, where position 0 corresponds
to the last vehicle and position 1 corresponds to the leader’s
initial position.

At initial time, to the right of the shock, traffic is congested
with a high density of 0.9p,,,x, meaning vehicles are packed
closely together. To the left of the shock, traffic flows more
freely with a lower density of 0.4pn,.x. Because we increase
the number of vehicles while maintaining the same density
profile, the actual distance covered by the congested region
at t = 0 is larger for simulations with higher number of cars
N.

The learning procedure outlined in the previous section
produced results as shown in Fig.1 and Fig.2. Specifically,



(a) N =5000, T =0.5 (b) N =3000, T =0.1

Fig. 3: Reconstructed final traffic density

during the testing phase where N = 2000, Mean Square
Error (MSE) was calculated to be 0.6681, while Relative Er-
ror (RE) was 0.0495. When the dimension of the simulation
was increased to N = 3000, MSE increased marginally to
0.7768 while RE slightly decreased to 0.0387. This shows
that even with large dimensionality, the method is efficient
across different scales.

Fig.3 illustrates that for large final times and a large num-
ber of vehicles, such as 5000, the reconstructed final density
converges well to the solution obtained from solving the PDE.
In shock simulations, longer times reduce system variations,
improving reconstruction consistency. More importantly, the
right side plot of the same figure presents a scenario with
fewer vehicles (3000) and a shorter time frame (6 minutes
compared to 30 minutes). Even under these more limited
conditions, the reconstruction maintains an obvious accuracy.
This suggests that the approach can effectively handle a range
of scenarios, from those with ample time and vehicles to
those with more limited resources.

Additionally, the method allows us to reconstruct density
for all times. Fig. 4 compares the reconstructed discrete
density with the solution to the LWR model, which is
computed using the Godunov scheme, as well as the ground
truth initial density from which the total fleet of vehicles
evolved before selecting probe vehicles.

(a) Reconstructed traffic density (b) Godunov traffic density

Fig. 4: Comparison between the predicted density and Go-
dunov scheme density with N = 3000 and 7' = 0.1

T N (p =0.1) | Training epochs | Time cost (hh:mm:ss)
0.1 1000 5000 00:09:49
0.1 1000 10000 00:17:07
0.1 2000 10000 00:30:53
0.1 3000 5000 00:27:22
0.2 4000 5000 00:50:38
0.2 5000 5000 01:41:36

TABLE I: Learning performance for shock wave

oot
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(a) Neural Network learning us- (b) Test simulation using recon-
ing 5,000 training epochs structed density

Fig. 5: Comparison between prediction results and observed
data with N = 2000

B. Stop-and-go wave simulation

The second scenario captures a more complex traffic
pattern characterized by alternating regions of congestion
and free flow, represented by multiple waves. The base
density is set at 0.6 p,,x, representing a moderately congested
state. The wave amplitude of 0.3pp,.x induces oscillations in
density between 0.3ppax and 0.9p,,x, mimicking the cyclic
nature of stop-and-go traffic.

T N (p =0.1) | Training epochs | Time cost (hh:mm:ss)
0.1 1000 5000 00:08:23
0.1 1000 10000 00:15:37
0.1 2000 10000 00:29:10
0.1 3000 5000 01:38:46
0.2 4000 5000 04:17:39
0.2 5000 5000 04:37:44

TABLE II: Learning performance for stop-and-go wave

Fig.5 and Fig.6 illustrate the errors obtained by both the
training and testing phases of our learning procedure in
the case of the stop-and-go simulation. Specifically, during
the testing phase where N = 2000, MSE was calculated
to be 0.0421, while RE was 0.0116. When the number of
vehicles was increased to N = 3000, both MSE and RE
slightly increased to 0.0792 and 0.0196 respectively. This
demonstrates that our methods maintains its robustness even
when applied to high dimensional data.

Fig. 7 presents the final reconstructed density for two val-
ues of IV, demonstrating a strong match with the final density
obtained by solving the PDE (2) using a Godunov scheme.
Notably, when N is increased to 4000, the reconstruction
captures the oscillations due to stop-and-go dynamics with
even greater precision, nearly perfectly matching the solution.



Tested vs Taget Finel Psitons

(a) Neural Network learning us- (b) Test simulation using recon-
ing 5,000 training epochs structed density

Fig. 6: Comparison between prediction results and observed
data with N = 3000

postion k]

(b) N = 4000, T = 0.1

(@) N = 2000, T = 0.1

Fig. 7: Reconstructed final traffic density

Fig. 8 shows that the model can achieve an accurate
reconstruction of traffic density over time, even when starting
from heterogeneous initial conditions.

VII. CONCLUSIONS AND PERSPECTIVES

In this article, we have developed a model that combines
traditional traffic flow models with a data-driven approach.
Our method is able to perform effectively with limited data
and sparse sensor information (only the starting and ending
positions of small number of vehicles) while maintaining
low computational complexity. We avoid the need for real-
time updates that often require high-frequency data inputs
and can be expensive. we opted to use exclusively data
generated by traffic FtL model (1) rather than real-world
data. The main reason lies on the fact that simulated data
allow us to precisely replicate the assumptions and condi-
tions required for the theoretical convergence analysis. Our
simulation focused on the use of artificial data generated by
microscopic traffic models due to its suitability for theoretical
convergence analysis. Indeed, we showed that simulated data
allow us to precisely replicate the assumptions and conditions
required for demonstrating the convergence of our model to
the macroscopic LWR model. The methodology developed
remains applicable to real-world data as a key strength of our
model is its ability to integrate both artificial and real data.
The use of real data would represent an important next step
in validating our approach under realistic traffic conditions.
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