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The papers deals with the problem of catching the elephants in the Internet traffic. The aim is to investigate an
algorithm proposed by Azzana based on a multistage Bloom filter, with a refreshment mechanism (called shift in the
present paper), able to treat on-line a huge amount of flows with high traffic variations. An analysis of a simplified
model estimates the number of false positives. Limits theorems of Markov chain that describes the algorithm for large
filters are rigorously obtained. In this case, the asymptotic behaviour of the analytical model is deterministic. The
limit has a nice formulation in terms of a M/G/1/C queue, which is analytically tractable and which allows to tune
the algorithm optimally.
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Introduction
One traditionally distinguishes two kinds of flows in the Internet traffic: long flows, called elephants,
which are the less numerous (typically 5-10%), and short flows, called mice, which are the most numer-
ous. The convention is to fix a threshold C and to call elephant any flow having more than C packets, and
mouse any flow having strictly less than C packets. For various reasons, detections of attacks, pricing,
statistics, it is an important task to be able to “catch” the elephants, that means to be able to have the list of
all elephants, with the IP addresses, flowing through a given router. We emphasize the fact that this task
is distinct from the one consisting only in providing numerical estimates of the traffic. A simple on-line
counting of the number of distinct flows reveals to be a difficult task due to the high throughput of the
traffic. There is a large literature on algorithms for fast estimations of cardinality (i.e. the number of dis-
tinct elements in a set with repeated elements) of huge data sets (see [6], [9],[12]). A similar task consists
in finding the k most frequent flows – the so-called “icebergs” (see [4],[13]). If one asks the proportion
of elephants or the size distribution of elephants, it is possible to use the Adaptive Sampling algorithm
proposed by Wegman and analyzed by Flajolet [8], which provides a sample of the flows independently
from their size. This sample can then be used to compute statistics for the elephants (and actually for all
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flows). For counting the elephants, Gandouet and Jean-Marie have proposed in [11] an algorithm, which
uses very few memory. It is based on sampling, thus requiring a knowledge on the flow size distribution,
which reduces its application. For the target applications, a unique elephant hidden in a huge traffic of
mice – which does not exist from a statistical point of view – has to be detected.

An algorithm based on Bloom filters has been already presented by Estan and Varghese [7] in 2002.
The principle of this latter algorithm is the following. The IP header of each packet is hashed with
k independent hashing functions in a k-multi-stage filter. Counters are incremented and when a counter
reaches C, the corresponding flow is declared as an elephant and its packets are counted to give eventually
its size. The problem is that in fact, under a heavy Internet traffic, the multistage filter quickly gets totally
filled. To avoid this problem, Estan and Varghese propose to periodically (every 5 seconds) reinitialize
the filter to zero. But without any a priory knowledge about the traffic (intensity, flows arrival rate...) 5
seconds can either be too long (in which case the filter can be saturated) or too short (a lot of long flows
can be missed in this case). Therefore the accuracy of the algorithm depends closely on characteristics of
the traffic trace.

In order to settle this problem, Azzana [2] introduces a refreshment mechanism, that we will call shift,
in the multi-stage filter algorithm. It is an efficient method to adapt the algorithm to traffic variations: The
filter is refreshed with a frequency depending on the current traffic intensity. Moreover the filter is not
reinitialized to zero, but a softer technique is used to avoid missing some elephants. The main difference
with the Estan and Varghese algorithm is its ability to deal with traffic variations. Azzana shows in [2] that
the refreshment mechanism improves notably the efficiency and accuracy of the algorithm (see Section
3 for practical results). Parameters, as the filter size and the refreshment mechanism, are experimentally
optimized. Azzana proposes some elements of analysis for this algorithm. Our purpose is to get further
and to provide analytical results when the filter is large.
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Fig. 1: The multistage filter

Description of the algorithm
The algorithm designed by Azzana uses a Bloom filter with counters (defined below) and involves four
parameters in input: the number k of stages in the Bloom filter, the number m of counters in each stage,
the maximum value C of each counter, i.e. the size threshold C to be declared as an elephant and the
filling rate r.

A Bloom filter is a set of k stages, each of these stages being a set of m counters, initially set at 0 and
taking values in {0, . . . , C}. Together with the k stages F1, . . . , Fk one supposes that k hashing functions
h1, . . . , hk are given, one for each stage. We make the (strong) assumption that these hashing functions
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are independent, which implies that k is small (k = 10 is probably the upper limit). Each hashing function
hi maps the part of the IP header of a packet indicating the flow to which it belongs, to one of the counters
of stage Fi.

The algorithm works on-line on the stream, processing the packets one after the other. The list of flows
identified as elephants is stored in a list E . When a packet is processed, it is first checked if it belongs to
a flow already identifed as an elephant (that is as a flow already in E). Indeed, in this case, there is no
interest in mapping it to the k counters, and the algorithm simply forgets this packet. If not, it is mapped
by the hashing functions on one counter per stage and increases these counters by one, except for those
that have already reached C, in which case they remain at C. When, for a given packet, all the k counters
have already the value C, the flow is declared to be an elephant and stored in the dedicated memory E .
When the proportion of nonzero counters reaches r in the whole set of the km counters, one decreases all
nonzero counters by one. This last operation is called the shift. See Figure 1 for an illustration.

Motivation of the algorithm
Packets of a same flow hit the same k counters, but in a stage, two distinct flows may also increase
the same counter. The idea to use several stages where flows are mapped independently and uniformly,
intends to reduce the probability of collisions between flows. The shift is crucial in the sense that it
prevents the filters to be completely saturated, that is, to have many counters with high values. Without
the shift operation, mice would be very quickly mapped to counters equal to C and declared as elephants.
The algorithm would have a finite lifetime because when the filter is saturate, nothing can be detected.

False positive and false negative
A false positive is a mouse detected as an elephant by the algorithm. A false negative is an elephant not
declared as such (hence considered as a mouse) by the algorithm. Generally, a false negative is worst
than a false positive. Think at an attack. One does not want to miss it, and a false alarm has less serious
consequences than a successful attack.

In our context, a false positive is a mouse one packet of which is mapped onto counters all ≥ C. A
false negative is due to the shift, and if it happens, it means that there were at least f −C shifts during the
transmission time of some elephant of size f . If shifts do not occur too often, a false negative is then an
elephant whose packets are broadcasted at a slow rate.

Intuitively, and it will be confirmed by the forthcoming analysis, if the parameters (actually r) are
chosen so as to maintain counters at low values, then shifts occur often, and if one tries to decrease the shift
frequency, then the counters tend to have high values. Therefore, a compromise has to be found between
these two properties (frequency of the shifts, height of the counters), which translates into a compromise
between false positives and false negatives. This last compromise depends on the applications.

A Markovian representation
In this paper, we will focus our analysis on the case when k = 1 and when the traffic is made up only of
mice of size 1. From this analysis, we will then derive results for the general case. Let us now introduce
our main notations.

We assume now that k = 1 and that all flows have size 1. Throughout the paper, Wm
n (i) denotes the

proportion of counters having value i just before the nth shift in a filter with m counters. According to
this notation, one has Wm

n (0) is close to 1 − r and
∑C
i=0W

m
n (i) = 1. Notice that the nth shift exactly
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Let h1, . . . , hk : D → {1, . . . ,m} hash functions from domain D to the counters of stages F1, . . . , Fk.
Let E be a memory storing the list of elephants.

Algorithm NOM (inputM : multiset of items from domain D).
initialize for each i = 1, . . . , k, the m counters Fi[j], j = 1, . . . ,m, of filter Fi to 0, and the variable R to 0; R is
the number of nonzero counters

for v ∈M \ E do if v belongs to an elephant, it is not mapped into the filter.
set e = true; e is a flag that will be false is the flow is not an elephant
for i = 1, . . . , k do

set xi := hi(v) ;
if Fi[xi] < C then set e := false; up to v, the flow is certainly not an elephant
if Fi[xi] = 0 then set R := R+ 1 ;
set Fi[xi] := min(Fi[xi] + 1, C);

if e then put v in E ;
if R > rkm
then for i = 1, . . . , k do

for j = 1, . . . ,m do Fi[j] := max(Fi[j]− 1, 0);
return E . the set of elephants

Fig. 2: The algorithm.

decreases the number of nonzero counters by mWm
n (1). A important part of our analysis will consist

in estimating Wm
n (C). Indeed, it gives an upper bound on the probability that a flow is declared as an

elephant (that is a false positive) between the n− 1-th and the n-th shifts, because there is no elephant at
all.

The algorithm has a simple description in terms of urns and balls. Each flow is a ball thrown into one
of m urns (each urn being one of the m counters) uniformly at random. When a ball falls into an urn with
C balls, it is immediately removed, in order to have at most C balls in each urn. When the proportion of
non empty urns reaches r, one ball is removed in every non empty urn.

For m fixed, (Wm
n )n∈N =

(
(Wm

n (i))i=0,...,C

)
n∈N

is an ergodic Markov chain on the finite state space

P(r)
m =

{
w = (w(0), . . . , w(C)) ∈

(
N
m

)C+1

,

C∑
i=0

w(i) = 1 and
C∑
i=1

w(i) =
drme
m

}
.

with transition matrix Pm. Its invariant probability measure πm is the distribution of some variable Wm
∞ .

For C = 2, the first non-trivial case, even the expression of Pm is combinatorially quite complicated and
an expression for πm seems out if reach. In practice, the number m of counters per stage is large. This
suggests to look at the limiting behavior of the algorithm when m → ∞. We use as far as possible the
Markovian structure of the algorithm in order to derive rigorous limit theorems and analytical expressions
for the limiting regime. This is the longest and most technical part of the paper, which also contains the
main result, from a mathematical point of view.

Main results
The model considered in the paper describes the collisions between mice in order to evaluate the number
of false positives due to these collisions. In a one-stage filter where all flows are mice of size 1, the Markov
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chain (Wm
n )n∈N describes the evolution of the counters observed just before shift times. The main result

is that, when m is large, the random vector Wm
∞ converges to some deterministic value w.

This fact is partially proved. The way to proceed is classical for large Markovian models (see for
example [5] and [1]). The idea is to study the convergence of the process over finite times. It is shown that
the Markov chain given by the empirical distributions (Wm

n )n∈N converges to a deterministic dynamical
system wn+1 = F (wn), which has a unique fixed point w. The situation is analog in discrete time to
the study by Antunes and al. [1]. A Lyapunov function for F would allow to prove the convergence in
distribution of Wm

∞ . Such a Lyapounov function is exhibited in the particular case C = 2. The dynamical
system provides a limiting description of the original chain which stationary behavior is then described
by w.

The stationary limit w is identified as the invariant probability measure µλ of the number of customers
in an M/G/1/C queue where service times are 1 and arrival rate is some λ satisfying the fixed point
equation

µλ(0) = 1− r

or equivalently

λ = log
(

1 +
µλ(1)
1− r

)
.

As a byproduct, the stationary time between two shifts divided by m converges in distribution to the
constant λ. Thus the inter-shift time (closely related to the number of false negatives) and the probability
of false positives are respectively given when m is large by λm and µλ(C).

When mice have general size distribution, the previous model is extended to an approximated model
where packets of a given mouse arrive simultaneously. The involved quantity is the invariant measure
of an M/G/1/C queue with arrival by batches with mouse size distribution. The multistage filter is
investigated.

Even if µλ is not explicit, which complicates the exhibition of Lyapunov function, the quantities λ and
µλ(C) can be numerically computed. It appears that µλ(C) is an increasing function of r (as r varies
from 0 to 1). Hence, given the mouse size distribution, one can numerically determine the values of r for
which the algorithm performs well.

Finally, we investigate the empirical distribution Wm
1 of the counters at the first shift time when there

is no limit of capacity and get the close expression of the generating function involving their mean values.
Our result generalizes the case r = 1 analyzed by Foata, Han and Lass [10].

Plan

Section 1 is the most technical part of the paper. It investigates the probability of false positives by
studying the stationary behavior of the counters of a one-stage filter in case of size 1 flows. In Section 2,
this analysis is generalized to a general mouse size distribution in a rough model and to a multi-stage filter.
The last section (Section 3) is devoted to discussing the performance of the algorithm, to experimental
results and improvements (validated through an implementation) , and to studying the duration of the first
phase (before the first shift) and obtaining to the exact expression of the empirical distribution at the first
shift with no capacity limit.
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1 The Markovian urn and ball model
In this section, C is fixed and we consider the sequence (Wm

n )n∈N, where Wm
n denotes the vector of the

proportions of urns with 0, . . . , C balls just before the n-th shift time. Form ≥ 1, (Wm
n )n∈N is an ergodic

Markov chain on the finite state space

P(r)
m =

{
w = (w(0), . . . , w(C)) ∈

(
N
m

)C+1

,

C∑
i=0

w(i) = 1 and
C∑
i=1

w(i) =
drme
m

}
,

(where drme denotes the smallest integer larger or equal to rm) with transition matrix Pm defined as
follows: If Wm

n = w ∈ P(r)
m , then Wm

n+1, distributed according to Pm(w, .), is the empirical distribution
of m urns when, starting with distribution w, one ball is removed from every non empty urn and then
balls are thrown at random until drme urns are non empty again, balls overflowing the capacity C being
rejected. The required number of thrown balls is

τmn =
drme−1∑

l=drme−Wm
n (1)m

Yl, (1)

where Yl, l ∈ N are independent random variables with geometrical distributions on N∗ with respective
parameters l/m, i.e. P(Yl = k) = (l/m)k−1(1− l/m), k ≥ 1.

Let F be defined on P =
{
w ∈ RC+1

+ ,
∑C
i=0 w(i) = 1

}
by

F (w) = TC
(
s(w) ∗ Pλ(w)

)
(2)

where

s : w 7→ (w(0) + w(1), w(2), . . . , w(C), 0) on P

TC : P(N) =

{
(wn)n∈N,

+∞∑
i=0

wi = 1

}
→ P, w 7→ (w(0), . . . , w(C − 1),

∑
i≥C

w(i))

λ : P → R+, w 7→ log
(

1 +
w(1)

(1− r)

)
and Pλ is the Poisson distribution with parameter λ. Notice that F maps P to P and, by definition of λ,

P(r) def=
{
w ∈ RC+1

+ ,
∑C
i=0 w(i) = 1 and

∑C
i=1 w(i) = r

}
to P(r).

1.1 Convergence to a dynamical system
We prove the convergence of (Wm

n )n∈N to the dynamical system given by F as m tends to +∞. The
following lemma is the key argument. The uniform convergence stated below appears as the convenient
way to express the convergence of Pm(w, .) to δF (w) in order to prove both the convergence of (Wm

n )n∈N,
and, later on, the convergence of the stationary distributions.

Lemma 1 Define ‖ x ‖= supCi=0 |xi| for x ∈ RC+1. For ε > 0,

sup
w∈P(r)

m

Pm(w, {w′ ∈ P(r)
m : ||w′ − F (w)|| > ε}) −→

m→+∞
0.
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Proof: The first step is to prove that, for ε > 0,

sup
w∈P(r)

m

Pw
(∣∣∣∣τm1m − λ(w)

∣∣∣∣ > ε

)
→

m→∞
0 (3)

where λ(w) = log
(

1 +
w(1)
1− r

)
and Pw(.) denotes P(.|Wm

0 = w). By Bienaymé-Chebychev’s inequal-

ity, it is enough to prove that

sup
w∈P(r)

m

∣∣∣∣Ew (τm1m
)
− λ(w)

∣∣∣∣ →m→∞ 0 (4)

and

sup
w∈P(r)

m

Varw

(
τm1
m

)
→

m→∞
0. (5)

By equation (1), as E(Yl) = 1/(1− l/m), using a change of index,

Ew
(
τm1
m

)
=

drme−1∑
l=drme−w(1)m

1
m− l

=
m−drme+w(1)m∑
j=m−drme+1

1
j
. (6)

A comparison with integrals leads to the following inequalities:

log
1− drmem + w(1) + 1

m

1− drmem + 1
m

≤ E
(
τm1
m

)
≤ log

1− drmem + w(1)

1− drmem

.

It is then easy to show that the two extreme terms tend to λ(w) = log(1 + w(1)/(1 − r)), uniformly in
w(1) ∈ [0, 1]. This gives (4). For (5), as Var(Yl) = (l/m)/(1− l/m)2, by the same change of index,

Varw

(
τm1
m

)
=

1
m

m−drme+w(1)m∑
j=m−drme+1

m− j
j2

=
m−drme+w(1)m∑
j=m−drme+1

1
j2
− 1
m

Ew
(
τm1
m

)
. (7)

The first term of the right-hand side is bounded independently of w by
∑+∞
j=m−drme+1 1/j2, which tends

to 0 as m tends to +∞. The second term tends to 0 uniformly in w using (4) together with the uniform
bound λ(w) ≤ log(1 + 1/(1− r)).

To obtain the lemma, it is then sufficient to prove that, for each ε > 0,

sup
w∈P(r)

m

Pw
(
||Wm

1 − F (w)|| > ε,

∣∣∣∣τm1m − λ(w)
∣∣∣∣ ≤ ε

2

)
→

m→∞
0. (8)

Since Wm
1 and F (w) are probability measures on {0, . . . , C}, to get (8), it is sufficient to prove that for

j ∈ {0, . . . , C − 1},

sup
w∈P(r)

m

Pw
(
|Wm

1 (j)− F (w)(j)| > ε,

∣∣∣∣τm1m − λ(w)
∣∣∣∣ ≤ ε

2

)
→

m→∞
0. (9)
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Let w ∈ P(r)
m . Define the following random variables: For 1 ≤ i ≤ m, Nm

i (respectively Ñm
i (w)) is the

number of additional balls in urn i when τm1 (respectively mλ(w)) new balls are thrown in the m urns.
One can construct these variables from the same sequence of balls (i.e. of i.i.d. uniform on {1, . . . ,m}
random variables), meaning that balls are thrown in the same locations for both operations until stopping.
This provides a natural coupling for the Ni’s and Ñi’s. Let j ∈ {0, . . . , C−1} be fixed. Given Wm

0 = w,
as j ≤ C − 1, the capacity constraint does not interfere and Wm

1 (j) can be represented as

Wm
1 (j) =

1
m

j∑
k=0

∑
i∈Im

w,k

1{Nm
i =j−k} (10)

where Imw,k is the set of urns with k balls in some configuration of m urns with distribution s(w), so
that cardImw,k = ms(w)(k). The sum over i is exactly the number of urns that contains k balls after the
removing of one ball per urn, and having j balls after new balls have been thrown. By coupling, on the
event {Wm

0 = w, |τm1 /m− λ(w)| ≤ ε/2}, the following is true:

card{i,Nm
i 6= Ñm

i (w)} ≤ ε

2
m (11)

thus, denoting W̃m
1 (j) = 1

m

∑j
k=0

∑
i∈Im

w,k
1{Ñm

i =j−k}, on the same event,

|Wm
1 (j)− W̃m

1 (j)| ≤ ε

2
.

To prove equation (9), it is then sufficient to show that

sup
w∈P(r)

m

Pw
(
|W̃m

1 (j)− F (w)(j)| > ε
)
−→
m→∞

0.

This will result from sup
w∈P(r)

m
|Ew(W̃m

1 (j))− F (w)(j)| −→
m→∞

0 and

sup
w∈P(r)

m
Varw(W̃m

1 (j)) −→
m→∞

0.
(12)

To prove (12), by definition of W̃m
1 (j) and F (w), since the Ñm

i (w)’s have the same distribution,

|Ew(W̃m
1 (j))− F (w)(j)| =

∣∣∣∣∣
j∑

k=0

s(w)(k)
(
P(Ñm

1 (w) = j − k)− Pλ(w)(j − k)
)∣∣∣∣∣

≤
j∑

k=0

∣∣∣P(Ñm
1 (w) = j − k)− Pλ(w)(j − k)

∣∣∣ . (13)
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Moreover, writing the variance of a sum as the sum of variance and covariance terms and forgiving w in
Ñm

1 (w) for more compact notations,

Varw(W̃m
1 (j)) =

1
m2

j∑
k=0

ms(w)(k)[P(Ñm
1 = j − k)− P(Ñm

1 = j − k)2]

+
1
m2

j∑
k=0

ms(w)(k)(ms(w)(k)− 1)[P(Ñm
1 = j − k, Ñm

2 = j − k)− P(Ñm
1 = j − k)P(Ñm

2 = j − k)]

+
1
m2

∑
k 6=k′

ms(w)(k)ms(w)(k′)[P(Ñm
1 = j − k, Ñm

2 = j − k′)− P(Ñm
1 = j − k)P(Ñm

2 = (w)j − k′)].

Bounding s(w)(k) by 1 and probabilities in the first sum by 1, one obtains

sup
w∈P(r)

m

Varw(W̃m
1 (j)) ≤ 2(j + 1)

m
+

j∑
k=0

sup
w∈P(r)

m

∣∣∣P(Ñm
1 = j − k, Ñm

2 = j − k)− P(Ñm
1 = j − k)2

∣∣∣
+

j∑
k=0

sup
w∈P(r)

m

∣∣∣P(Ñm
1 = j − k, Ñm

2 = j − k′)− P(Ñm
1 = j − k)P(Ñm

1 = j − k′)
∣∣∣ .

(14)

The key argument, of standard proof, is the following: If Lmi is the number of balls in urn iwhen throwing
mλ balls at random in m urns, if 0 < a < b, then, for all (i1, i2) ∈ N2,

(i) sup
λ∈[a,b]

|P(Lm1 = i1)− Pλ(i1)| −→
m→∞

0,

(ii) sup
λ∈[a,b]

|P(Lm1 = i1, L
m
2 = i2)− Pλ(i1)Pλ(i2)| −→

m→∞
0.

Since λ(w) ∈ [0, log(1 + 1/(1− r)], using (i) and (ii), it is straightforward to obtain that the right-hand
sides of the inequalities (13) and (14) tend to 0 as m tends to +∞, which gives (12). It ends the proof. 2

Proposition 1 If Wm
0 converges in distribution to w0 ∈ P(r)

m then (Wm
n )n∈N converges in distribution to

the dynamical system (wn)n∈N given by the recursion wn+1 = F (wn), n ∈ N.

Proof: Assume that Wm
0 converges in distribution to w0 ∈ P(r)

m . Convergence of (Wm
0 , . . . ,Wm

n ) can
be proved by induction on n ∈ N. By assumption it is true for n = 0. Let us just prove it for n = 1, the
same arguments holding for general n, from the assumed property for n − 1. Let g be continuous on the
(compact) set P(r)2

m . Since the distribution µm of Wm
0 has support in P(r)

m ,

E (g(Wm
0 ,Wm

1 )) =
∫
P(r)2

m

g(w,w′)Pm(w, dw′)dµm(w)

=
∫
P(r)

m

∫
P(r)

m

(g(w,w′)Pm(w, dw′)− g(w,F (w))) dµm(w) +
∫
P(r)

m

g(w,F (w))dµm(w).
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Since g(., F (.)) is continuous on P(r)
m (F being continuous as can be easily checked), the last integral

converges to g(w0, w1) by assumption (or case n = 0). The first term is bounded in modulus, for each
η > 0, by

sup
w∈P(r)

m

∣∣∣∣∫
P(r)

m

g(w,w′)Pm(w, dw′)− g(w,F (w))
∣∣∣∣

≤ 2 ‖ g ‖∞ sup
w∈P(r)

m

Pm

(
w,
{
w′ ∈ P(r)

m , ‖ w′ − F (w) ‖> ε
})

+ η

where ε is associated to η by the uniform continuity of g on P2. By Lemma 1, this is less than 2η for m
sufficiently large. Thus, as m tends to +∞,

E (g(Wm
0 ,Wm

1 ))→ g(w0, w1).

2

1.2 Convergence of invariant measures
Proposition 2 Let, for m ∈ N, πm be the stationary distribution of (Wm

n )n∈N. Define P as the transition
on P(r) given by P (w, .) = δF (w).

Any limiting point π of (πm)m∈N is a probability measure on P(r) which is invariant for P i.e. that
satisfies F (π) = π.

Proof: A classical result states that, if P and (Pm)m∈N are transition kernels on some metric space E
such that, for any bounded continuous f on E, Pf is continuous and Pmf converges to Pf uniformly on
E then, for any sequence (πm) of probability measures such that πm is invariant under Pm, any limiting
point of Pm is invariant under P . Indeed, for any m and any bounded continuous f , πmPmf = πmf . If a
subsequence (πmp

) converges weakly to π then πmp
f converges to πf . Writing πmp

Pmp
f = πmp

Pf +
πmp

(Pmp
f−Pf), since Pf continuous (and bounded since f is), the first term πmp

Pf converges to πPf
and the second term tends to 0 by uniform convergence of Pmf to Pf . Equation πmp

Pmp
f = πmp

f thus
gives, in the limit, πPf = πf for any bounded continuous f .

Here the difficulty is that the Pm’s and P are transitions on P(r)
m and P(r), which are in general disjoint.

To solve this difficulty, extend artificially Pm and P to P by setting:

Pm(w, .) = δF (w) for w ∈ P \ P(r)
m

P (w, .) = δF (w) for w ∈ P \ P(r)

The proposition is then deduced from the classical result if we prove that, for each f continuous on P
(notice that then Pf = f ◦ F is continuous),

sup
w∈P(r)

m

|Pmf(w)− f(F (w))| −→
m→∞

0,

which is straightforward from Lemma 1. The fact that the support of π is in P(r) is deduced from
Portmanteau ’s theorem (see Billingsley [3]) using the sequence of closed sets

P(r),n =

{
w ∈ P, r ≤

C∑
i=1

w(i) ≤ r +
1
n

}
.
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2

The fixed points of the dynamical system are the probability measures w on P(r) such that

w = F (w) = TC(s(w) ∗ Pλ(w))

where λ(w) = log(1 + w(1)/(1 − r)). This is exactly the invariant measure equation for the number of
customers just after completion times in an M/G/1/C queue with arrival rate λ(w) and service times 1
so that it is equivalent to

w = µλ(w) (15)

where µλ (respectively νλ) is the limiting distribution of the process of the number of customers in an
M/G/1/C (respectively M/G/1/∞) queue with arrival rate λ(w) and service times 1.

Indeed, it is well-known that this queue has a limiting distribution for λ ∈ R+ (respectively 0 ≤ λ < 1)
which is the invariant probability measure of the embedded Markov chain of the number of customers
just after completion times. The balance equations here reduce to a recursion system, so that, even when
λ ≥ 1, νλ is well defined up to a multiplicative constant (which can not be normalized in a probability
measure in this case). Moreover, νλ is given by the Pollaczek-Khintchine formula for its generating
function: ∑

n∈N
νλ(n)un = νλ(0)

gλ(u)(u− 1)
u− gλ(u)

, for |u| < 1 (16)

where gλ(u) = e−λ(1−u) and for λ < 1, νλ(0) = 1 − λ (see for example Robert [14] p176-77). Notice
that νλ(n) (n ∈ N) has no close form. For example, the expressions of the first terms are

νλ(1) = νλ(0)(eλ − 1),

νλ(2) = νλ(0)eλ(eλ − 1− λ)

νλ(3) = νλ(0)eλ
(
λ(λ+ 2)

2
− (1 + 2λ)eλ + e2λ

)
. (17)

where νλ(0) = 1− λ if λ < 1. For the M/G/1/C queue,

µλ(i) =
νλ(i)∑C

m=0 νλ(m)
, i ∈ {0, . . . , C}. (18)

The following proposition characterizes the fixed points of F .

Proposition 3 F defined by (2) has one unique fixed point denoted by w̄ on P(r) given by the limiting
distribution µλ of the number of customers in an M/G/1/C queue with arrival rate λ and service times
1, where λ is determined by the implicit equation µλ(0) = 1− r which is equivalent to

λ = log
(

1 +
µλ(1)
1− r

)
(19)

where µλ is given by (18) and νλ by the Pollaczek-Kintchine formula (16). Moreover,

r ≤ λ ≤ − log(1− r).
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The upper bound on λ, obtained from equation (19) using µλ(1) ≤ r just says that the stationary mean
number of balls is less than the mean number of balls thrown until the first shift (starting with empty urns).
Moreover, writing (18) for i = 0 and using

∑C
m=0 νλ(m) ≤ 1 in (18), λ ≥ r. This is exactly the fact

that the asymptotic stationary mean number of balls λm arriving between two shift times is greater than
the number of removed balls at each shift, which is drme, because of the losses due to the capacity limit
C.

Proof: Only the existence and uniqueness result remains to prove. According to (15), w is some fixed
point if and only if it is a fixed point of the function

P(r) −→ P(r)

w 7−→ µλ(w)

with λ(w) = log(1 +w(1)/(1− r)). This function being continuous on the convex compact set P(r), by
Brouwer’s theorem, it has a fixed point. To prove uniqueness, let w and w′ two fixed points of F in P(r).
By definition of P(r),

µλ(w)(0) = µλ(w′)(0) = 1− r. (20)

A coupling argument shows that, if λ ≤ λ′ then µλ is stochastically dominated by µλ′ , and in particular,

µλ(0) + µλ(1) ≥ µλ′(0) + µλ′(1). (21)

It can then be deduced that λ(w) = λ(w′). Indeed, if for example λ(w) < λ(w′), by equations (20) and
(21),

µλ(w)(1) ≥ µλ(w′)(1).

thus, using (17) together with (20),

λ(w) = log
(

1 +
µλ(w)(1)

1− r

)
≥ λ(w′) = log

(
1 +

µλ(w′)(1)
1− r

)
.

which contradicts λ(w) < λ(w′). One finally gets λ(w) = λ(w′), and then by equation (15), w = w′. 2

A Lyapunov function for the dynamical system given by F on P(r) is a function g on P(r) such that, for
each w ∈ P(r), g(F (w)) ≤ g(w) with equality if and only if w is the fixed point of F . In the particular
case C = 2, a Lyapunov function can be exhibited, resulting from a contracting property of F in this case.

Indeed, restricted to P(r), F is here given by:

w = (1−r, w(1), w(2) = r−w(1)) 7−→ F (w) =
(

1− r, (1− r)
[
log
(

1 +
w(1)
1− r

)
+

r − w(1)
1− r + w(1)

]
,

1− (1− r)
[
log
(

1 +
w(1)
1− r

)
+

1
1− r + w(1)

])
.

P(r) is some one dimensional subvariety of R3, so that any w ∈ P(r) can be identified with its second
coordinate w(1) ∈ [0, r], or equivalently with λ(w) = log(1 + w(1)

1−r ) ∈ [0, log(1/(1− r))].
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Using this last parametrization of P(r), it is easy to show that F rewrites as G, mapping the interval

I = [0, log(1/(1− r))] to itself and defined, for λ ∈ I , by G(λ) = log
(
λ+

e−λ

1− r

)
.

An elementary computation shows that G has derivative on I taking values in the interval ] − 1, 0],
which gives the already known existence and unicity of a fixed point λ for G (or F , both assertions being
equivalent, and λ being equal to λ(w)). Moreover, the following inequality holds for λ ∈ I:

|G(λ)− λ| ≤ |λ− λ|,

equality occurring only at λ = λ. As a result, g defined on P(r) by:

g(w) = |λ(w)− λ| = |λ(w)− λ(w)| =
∣∣∣∣log

1− r + w(1)
1− r + w(1)

∣∣∣∣ ,
is a Lyapunov function for the dynamical system defined by F .

For C > 2, we conjecture the existence of such a g.

Theorem 1 Assume that a Lyapunov function exists for the dynamical system given by F on P(r) then,
as m tends to +∞, the invariant measure of (Wm

n )n∈N converges to δw̄ where w̄ is the unique fixed point
of F . Thus the following diagram commutes,

(Wm
n )n∈N

(d)−−−−−→
n→+∞

Wm
∞

m→+∞
y(d)

y(d)

(wn)n∈N −−−−→ w̄

Proof: We prove that δw̄ is the unique invariant measure π of P with support in P(r). Let g be the
Lyapunov function of F on P(r). π is P -invariant, thus πP = π and πPg = πg which can be rewritten∫

(g ◦F − g)dπ = 0. This implies that g = g ◦F π−p.p. because g− g ◦F ≥ 0. By the case of equality,
π has support in {w̄}. 2

2 A more general model
2.1 Mice with general size distribution
Let (Wm

n )n∈N be the sequence of vectors giving the proportions of urns at 0, . . . , C just before the n-th
shift time in a model where balls are thrown by batches. The balls in a batch are thrown together in a
unique urn chosen at random among the m urns. The i-th batch is composed with Si balls and (Si)i∈N
is a sequence of i.i.d. random variables distributed as a random variable S on N∗. Let φ the generating
function of S. The quantity Si is called the size of i-th batch. The dynamic is the same: If, before
the n-th shift time, the state is w ∈ P(r)

m , it becomes s(w) and then a number τmn defined by (1) of
successive batches are thrown in urns until drme urns are non empty. The model generalizes the previous
one obtained for S = 1.
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Let F defined on P by

F (w) = Tc(s(w) ∗ Cλ(w),S) (22)

where TC , λ and S are already defined and Cλ(w),S is a compound Poisson distribution i.e. the distribution
of the random variable

Y =
X∑
i=1

Si (23)

where X is independent of (Si)i∈N with Poisson distribution of parameter λ.
We mimic the arguments in Section 1 to obtain the convergence of the stationary distribution of the

Markov chain (Wm
n )n∈N asm tends to +∞ to a Dirac measure at the unique fixed point ofF . Propositions

1 and 2 hold. The fixed points of F are described in the following proposition.

Proposition 4 F defined for w ∈ P by

F (w) = Tc(s(w) ∗ Cλ(w),S)

has a unique fixed point on P(r) which is exactly the invariant measure µλ̄ of the number of customers in
a M/G/1/C queue with batches of customers arriving according to a Poisson process with intensity λ̄,
batch sizes being i.i.d. distributed as S and service times 1, where λ̄ is determined by the implicit equation

µλ(0) = 1− r

which is equivalent to

λ̄ = log
(

1 +
µλ̄(1)
1− r

)
where for i ∈ {0, . . . , C},

µλ̄(i) =
νλ̄(i)∑C

m=0 νλ̄(m)

and νλ is given by
+∞∑
n=0

νλ(n)un = νλ(0)
g ◦ φ(u)(u− 1)
u− g ◦ φ(u)

, |u| < 1

where νλ(0) = 1− λE(S) when λ < 1.

Recall that the first terms of νλ are given by

νλ(1) = νλ(0)(eλ − 1),

νλ(2) = νλ(0)eλ(eλ − 1− λP(S = 1)).

where νλ(0) = 1 − λE(S) when λ < 1, which generalizes the previous expressions. For C = 2, the
Lyapunov function defined when S = 1 still works. Furthermore, for C > 2, we assume the existence of
a Lyapunov function for F . Theorem 1 still holds.
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2.2 A multi-stage filter

An informal argument suggests that in this multi-stage case, the number τm1 of thrown balls in each
stage when the system is initialized at some state w, should also be approximately mλ(w), where w(i),
i = 0, . . . , C, is the proportion of urns with i balls in the whole filter. If one denotes by wj(i) the
proportion of urns with i balls in the stage j, one has w(i) = 1

k

∑k
j=1 wj(i). For the same reasons as in

the one-stage case, Theorem 1 is still expected to hold.
Indeed, mkλ(w) is the approximate number of thrown balls in the one-stage filter with mk urns ob-

tained by concatenating the k original stages; for this system, by the Law of Large Numbers, each of the
k concatenated stages approximately receives the same number (mλ(w)) of balls, so that this one-stage
experiment essentially amounts to throwing one ball per stage up to reaching the correct global proportion
of non-empty urns.

The convergence in distribution when n goes to infinity andm is fixed is a straightforward consequence
of the fact that the (Wm,j

n ) (proportions of urns with 0, . . . , C balls in stage j, just before the nth shift) is
an ergodic Markov chain.

3 Discussions
3.1 Synthesis: false positives and false negatives

From a practical point of view, the main results are Propositions 3 and 4. Given a size distribution of the
flows (the generating function φ of Section 2), these propositions show how the values of the counters
can be computed with the different parameters of the algorithm, since these values are encoded by the
fixed point w of F : according to Theorem 1, w is the state reached in the stationary regim when there is
one stage and also when there are several stages (see Subsection 2.2: one has

∑k
j=1 wj(C) = kw(C)).

Moreover, the convergence is experimentally really fast (see the remark below), which ensures that in
practice the algorithm lives in the stationary phase. The component w(i) of w gives the approximate
proportion of counters having value i in the whole Bloom filter. λ is the number of packets that arrive
between two shifts. w and λ are respectively connected to the number of false positives and to the number
of false negatives.

Indeed, the probability that a packet is a false positive is less than w(C)k, since in stage j, the proba-
bility to hit a counter at height C is at most wj(C) and

∏k
j=1 wj(C) ≤ w(C)k.

The quantity mλ is the time (number of packets) between two shifts, which is connected to the number
of false negatives according to the discussion “False positive and false negative” of the Introduction.

3.2 Implementation, tests and practical issues

Here, we present some tests and practical ressults. The algorithm is implemented with an improvement
already proposed by Estan and Varghese and called the min-rule. Instead of increasing the k counters,
one increases – among these k counters – only those having the minimum values. Any elephant that is
caught by the first version is not missed by this one. Indeed, one needs more flows to reach high values
of the counters and hence one has fewer false positives. Moreover, this trick naturally increases the time
between two shifts and hence the number of false negatives is decreased. But the exact analysis of such a
strategy seems to be a difficult task.
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The theoretical results are tested against two real traffic traces from the France Telecom commercial IP
backbone network carrying ADSL traffic. The first trace is described in Subsection 2.3. Some character-
istics of the second trace are given in the following table.

Traces Nb. IP packets Nb. TCP Flows Duration
trace2 26 695 937 1 053 689 1 hour

Tab. 1: Characteristics of trace2 considered in experiments

In the experiments the multistage filter consists of 10 stages (k = 10) associated to 10 independent ran-
dom hashing functions with issues in {1, . . . , 217}. The total size of the filter equals 1.31MB. Elephants
are here defined as flows with at least 20 packets (C = 20). To evaluate the performance of the algorithm,
the real number of elephants is compared to its estimated value given by the algorithm. For a filling up
threshold r equal to 90%, the algorithm gives a good estimation of the elephants number both two traffic
traces (see Figures 3).
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Fig. 3: Relative error for r < rc.

However, when r is close to 100%, the algorithm becomes unstable as the relative error on elephants
number is always increasing (see Figures 4). In this case, the real number of elephants is largely overesti-
mated. This result is in agreement with the existence of a critical filling up threshold rc, corresponding to
a packets arriving rate λ = 1 in the M/G/1/C queue. When r > rc, the quantity w(C) becomes large,
close to 1. For convergence and stability reasons, the filling up rater must be below some threshold.

The quantity rc is closely dependent on mice size distribution. In practice, Figures 4 show that for the
same filling up rate r = 99%, there is no stability for both traces but results obtained using trace 1 are
better than those given by trace 2. This difference can be explained by the fact that mice in trace 2 are
larger than in trace 1 (the mean mice size equals 7.13 packets in trace 2 against 4.66 packets in trace 1).
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Fig. 4: Relative error for r > rc.

3.3 Speed of convergence

Experimental evidences lead us to conjecture that the time (number of shifts) necessary to reach the
stationary phase of the Markov chain is greater than C, but not much greater. See Figure 3.3 that depictss
the value of τmn as a function of n (the time between the (n − 1)th and the nth shifts). It seems that not
much after C shifts, the statinnary phase is reached.

3.4 Combinatorial approach: Hyperharmonic numbers and the phratry of the
coupon collector

One may ask if it is possible, for fixed m, to derive exact expressions of the quantities involved in the
above analysis. If there is only one stage, the problem can be formulated in terms of balls and urns,
in which celebrated birthday paradox or coupon collector theorems can be treated from a combinatorial
point of view. We try here the same approach, but even with no capacity constraint and at the first shift,
it is a very difficult task. Indeed, in the special case r = 1, it is the so-called “phratry of the coupon
collector” problem, studied by Foata, Han and Lass in [10]. In the following, we assume that that the m
urns are initially empty with no capacity constraint. We generalize here some of the results of [10] for any
r ∈ [0, 1], that is, we get exact expressions for E(τm1 ), Var(τm1 ), and the generating function associated
to the mean of Wm

1 .

It is important to note that this study is not only interesting from a mathematical point of view. It can
lead to practical results since several algorithms in the area of elephants tracking use a so-called complete
deleting strategy, that is, each time the ratio r is reached, all counters are reseted to 0. With such a strategy,
the algorithm stays before the first shift time.
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Using equations (6) and (7), it is easy to derive the exact expressions

E(τm1 ) = m(Hm−1 −Hm−drme),

Var(τm1 ) = m2
m∑

j=m−drme+1

1
j2
−m(Hm−1 −Hm−drme),

where Hn is the nth harmonic number 1 + 1
2 + 1

3 + . . .+ 1
n . One has available the well-known formula

Hn = log n+ γ +
1

2n
+O(n−2), γ

.= 0.57722

which lead to the equality

E(τm1 ) = −m log(1− r) +
1
2

2− r
1− r

+O

(
1
m

)
. (24)

Moreover, using that
m∑

j=m−drme+1

1
j2

=
r

m− drme
+O

(
1
m2

)
one obtains that

Var(τm1 ) = m

(
r

1− r
+ log(1− r)

)
+O(1). (25)

The classical result of the coupon collector concerns the case r = 1. In this latter case, we recall that
one has

E(τm1 ) = m logm+ γm− 1
2 +O

(
1
m

)
, γ

.= 0.57722
Var(τm1 ) = m2 π2

6 −m logm− (γ + 1)m+ o(1),
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where γ is known as the Euler constant. Note that one can not recover these latter formulas from the first
ones. Concerning the generating function of E(W (j)

1 ), one can get the following results.

Lemma 2 Let r ≤ 1 and l ≤ drme. Let Nl be the number of balls at the first shift time in the l-th urn to
be hit. Its generating function is given by

E
(
uNl
)

= u

drme−1∏
j=l

1− aj
1− aju

, with aj =
1

m− j + 1
.

Proof: One has Nl = 1 +
∑drme−1
j=l B(Zj , 1

j ), where the Zj’s are the geometrical random variables with
parameters j/m. B(Zj , 1

j ) is the number of balls thrown in the l-th urn during the time when exactly j
urns are non empty for the first time and when exactly j+ 1 urns are non empty for the first time (B(n, p)
is a random variable having a binomial distribution with parameters n and p). The generating functions of
a variable X having a geometric distribution with parameter p and a binomial variable B(n, p) are given
by

E(uX) =
1− p

1− pu
and E

(
uB(n,p)

)
= (1− p+ up)n.

Composing the generating functions, it is straightforward to obtain that B(Zj , 1
j ) are independent random

variables with geometrical distributions with respective parameters 1/(m− j + 1). It proves the lemma.
2

From this lemma, one derives

Theorem 2 Let G(x) = 1 +
∑
j≥0 E (Wm

1 (j))xj . For r ≤ 1, t is given by

G(x) =
1
m
x+

(1− r) + 1
m∏m

j=m−drme+2(1− x
j )

. (26)

Proof: Let m′ = drme. Using that E(Wm
1 (k)) =

∑m′−1
l=1 P(Nl = k) and applying Fubini’s theorem, by

definition of G,

G(x) = x+m−m′ + 1 +
m′−1∑
l=1

E(xNl)

= x+ (m−m′ + 1)

1 + x

m′−1∑
l=1

1

(m− l + 1)
∏m′−1
j=l (1− x

m−j+1 )


because

∏m′−1
j=l (1− aj) =

∏m′−1
j=l (1− 1

m−j+1 ) =
∏m′−1
j=l

m−j
m−j+1 = m−m′+1

m−l+1 . Moreover with a change
of variables,

G(x) = x+ (m−m′ + 1)

1 + x

m′−1∑
l=1

1

(m− l + 1)
∏m−l+1
j=m−m′+2(1− x

j )

 (27)
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and can be rewritten

G(x) = x+ (m−m′ + 1)Am′(x)

where Am′(x) is the second factor of the secund term of the right-hand side of (27). By induction on
m′ ∈ {1, ...m}, it can be easily proved that

Am′(x) =
1∏m

j=m−m′+2(1− x
j )
. (28)

It ends the proof.
2

When one specializes the theorem above for r = 1, one gets the result of Foata, Han and Lass [10].
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