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Abstract. How to assign colors to occurrences of cars in a car factory ? How to divide fairly a
necklace between thieves who have stolen it ? These two questions are addressed in two combina-
torial problems that have attracted attention from a theoretical point of view these last years, the
first one more by people from the combinatorial optimization community, the second more from
the topological combinatorics and computer science point of view.

The first problem is the paint shop problem, defined by Epping, Hochstättler and Oertel in 2004.
Given a sequence of cars where repetition can occur, and for each car a multiset of colors where the
sum of the multiplicities is equal to the number of repetitions of the car in the sequence, decide the
color to be applied for each occurrence of each car so that each color occurs with the multiplicity
that has been assigned. The goal is to minimize the number of color changes in the sequence.

The second problem, highly related to the first one, takes its origin in a famous theorem found
by Alon in 1987 stating that a necklace with t types of beads and qau occurrences of each type u
(au is a positive integer) can always be fairly split between q thieves with at most t(q − 1) cuts.
An intriguing aspect of this theorem lies in the fact that its classical proof is completely non-
constructive. Designing an algorithm that computes theses cuts is not an easy task, and remains
mostly open.

The main purpose of the present paper is to make a step in a more operational direction for
these two problems by discussing practical ways to compute solutions for instances of various sizes.
Moreover, it starts with an exhaustive survey on the algorithmic aspects of them, and some new
results are proved.

Introduction

The paintshop-necklace problem. There is a beautiful combinatorial problem, which, depend-
ing on the point of view, appears as an hard optimization problem or as one of the most beautiful
applications of algebraic topology in combinatorics.

The optimization version of the problem is called the paint shop problem, and was defined by
Epping, Hochstättler and Oertel [11]. The origins of the model lie in car manufacturing with
individual demands, which is reported to occur often in Europe. Given a sequence of cars where
repetition can occur, and for each car a multiset of colors where the sum of the multiplicities is
equal to the number of repetitions of the car in the sequence, decide the color to be applied for
each occurrence of each car so that each color occurs with the multiplicity that has been assigned.
The goal is to minimize the number of color changes in the sequence. If cars are considered to be
letters in an alphabet, the following is a formalisation.

Key words and phrases. combinatorial optimization; integer programming; local search; paintshop problem; path-
following method; splitting necklace; TFNP problem.
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Paint shop problem

INPUT: A finite alphabet Σ whose elements are called letters, a word w = (u1, . . . , un) ∈ Σ∗, a
finite color set C and a requirement r : Σ× C → Z+.

TASK: Find a coloring c = (c1, . . . , cn) ∈ Cn, such that for all u ∈ Σ and c ∈ C, we have

|{i ∈ {1, . . . , n} : ui = u and ci = c}| = r(u, c),

and the number of color changes within c is minimized.

We say that we have a color change in c whenever ci 6= ci+1. The minimum of the number of
color changes is denoted γ = γ(w; r).

The paint shop problem has a solution only if
∑

c∈C r(u, c) is exactly the number of occurrences
of u in w.

A special case has received a special attention: the binary paint shop problem, which is the case
when |C| = 2 and r(u, c) = 1 for the two elements c in C and for all u ∈ Σ. In this case, we have
n = 2|Σ|.

The other version of this problem is the necklace splitting problem, which found its motivation
in a theorem of Alon [1] (for a didactic proof, see [14]). q thieves have stolen a precious necklace,
which has n beads. These beads belong to a set Σ of t different types. Assume that the number of
beads of each type is a multiple of q, say qau beads of type u ∈ Σ, where au is a positive integer.
Remark that we have q

∑
u∈Σ au = n.

As we do not know the exact value of each type of beads, a fair division of the necklace consists
in giving the same number of beads of each type to each thief. The number of beads of each type
is a multiple of q, hence such a division is always possible: cut the chain at the n − 1 possible
positions. Isn’t it possible to do the division with less cuts? The answer is yes, as shown by the
following theorem proved by Alon:

Theorem 1. [1] A fair division of the necklace with t types of beads between q thieves can be done
with no more than (q − 1)t cuts.

It was first proved by Goldberg and West in 1985 [13] when q = 2 (this last theorem got a simpler
proof in 1986, found by Alon and West and using the Borsuk-Ulam theorem [4]).

Note that this theorem tells nothing about the way of finding such cuts. Given a necklace
satisfying the condition of the theorem, the necklace splitting problem requires to find the (q− 1)t
(or less) cuts giving a fair division.

To make the parallel with the paint shop problem, the necklace can be seen as a word w where
the letters are the types of beads and the colors are the thieves. A formalisation is (only to respect
the symmetry with the presentation of the paint shop problem)

Necklace splitting problem

INPUT: A finite alphabet Σ of size t whose elements are called letters, a wordw = (u1, . . . , un) ∈ Σ∗

in which each letter u is present qau times where au is a non negative integer.

TASK: Find a coloring c = (c1, . . . , cn) ∈ {1, . . . , q}n such that for each u ∈ Σ, we have

|{i ∈ {1, . . . , n} : ui = u and ci = 1}| = . . . = |{i ∈ {1, . . . , n} : ui = u and ci = q}|,
and such that the number of color changes is less than or equal to (q − 1)t.

An instance of the necklace splitting problem is a special instance of the paint shop problem
where each letter must occur a multiple of q times, where the set C of colors has cardinality q and
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r(u, 1) = . . . = r(u, q) = au for all u ∈ Σ. ci indicates which thief (numbered 1, . . . , q) gets the ith
bead. Theorem 1 states that in this case γ(w, r) ≤ (q − 1)t.

Finding solutions for the necklace splitting theorem, in addition to the motivation from a com-
plexity point of view explained below, has applications for instance in VLSI circuit design [8, 18]
or for hashing problems [3].

Plan. The paper starts with a survey of known algorithmic approaches and complexity properties
(Section 1); new results are also proposed in this section. In the second section (Section 2),
we describe a linear programming formulation, and discuss some variants. The computation of
solutions for the necklace splitting problem through a pivoting scheme on cubical complexes of [16]
is described in Section 3. For large instances, local searches can be tried (Section 4). Finally, all
these approaches are evaluated and compared in Section 5.

1. What is known from the algorithmic point of view

1.1. The paint shop problem. The paint shop problem is hard.

Theorem 2. [9, 17] The paint shop problem is APX-hard, even if |C| = 2 and r(u, c) = 1 for all
c ∈ C and u ∈ Σ (the binary case).

Theorem 3. [11] The paint shop problem is NP-hard even if |Σ| = 2.

An exact algorithm is proposed by Epping, Hochstättler and Oertel in [11] using a dynamic

programming approach. The algorithm runs in O
(
|C|n(|C|−1)|Σ|) where n is the length of w, hence

it seems unlikely to be applicable in practice.

1.2. The binary paint shop problem.

1.2.1. Polynomial time solvability. For the binary case, which is APX-hard according to Theorem
2 a little more is known. In [9], the problem is translated into the matroid framework : the binary
paint shop problem becomes the problem of finding a minimum size circuit containing a special
element in a binary matroid. The authors note that finding the minimum number of changes for
the binary paint shop problem is polynomial when the binary matroid satisfies the strong max-
flow-min-cut property. In [17], it is explained how to find a minimum coloring itself in this case.
Nevertheless, the strong max-flow-min-cut property for the binary matroid does not translate easily
in terms of paint shop. In [17], some attempt is made in this direction and for instance, the following
corollary is derived :

Proposition 1. [17] The binary paint shop problem is polynomially solvable if the graph whose
vertices are the letters and the edges are the pairs of crossing letters (that is, letters a, b, which
occur in the order a, b, a, b) is bipartite.

In the same paper, the following theorem is proved, roughly through an equivalence with the
min-uncut problem in 4-regular graphs, leading to “good solutions” for the binary paint shop
problem.

Theorem 4. [17] Let t = |Σ| be the size of the alphabet. A binary paint shop problem has a solution
with at most 1/4p+ 3/4t color changes, where p is a lower bound of the optimal solution, and both
p and the solution can be computed in polynomial time.

It improves the easy bound γ ≤ t which can be obtained with a simple greedy algorithm (it is
also a consequence of Theorem 1 for q = 2).

These “good solutions” are the best known today. Whether there is a constant factor approxi-
mation algorithm for the binary paint shop problem (asked implicitly in [11] and explicitly in [9])
is an open question.
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Open question. Is there a constant factor polynomial approximation algorithm for the binary
paint shop problem ?

1.2.2. Greedy approaches. The greedy algorithm can be quite efficient in some cases, as the following
theorems proved in [5] show. The greedy algorithm for an instance of the binary paint shop problem
consists in the coloring of the letters in the given order so as to change the current color only
at the second occurrences of letters, and only if necessary. A word w′ is a subword of a word
w = (u1, . . . , un) if w′ is a subsequence of w (two consecutive occurrences of a letter in w′ are not
necessarily consecutive in w).

Theorem 5. [5] The instances of the binary paint shop problem having neither a subword of the
form xyxzzy nor a subword of the form xyyzxz are solved optimally by the greedy algorithm.

Note that the two excluded subwords are the same up to a mirror symmetry.

Theorem 6. [5] Let Σ be a finite alphabet of size t. When the instances of the binary paint shop
problem are chosen uniformly at random among all instances of fixed size 2t with alphabet Σ, then

E(g) ≤ 2

3
t,

where g is the number of color changes when one applies the greedy algorithm.

Actually, in [6], it is proved that actually we have (conjectured in [5])

Theorem 7. Let Σ be a finite alphabet and let t be its size. When the instances of the binary paint
shop problem are chosen uniformly at random among all instances of fixed size 2t with alphabet Σ,
then

lim
t→+∞

1

t
E(g) =

1

2
where g is the number of color changes when one applies the greedy algorithm.

In the same paper, another greedy algorithm, the “recursive greedy algorithm”, is presented and
it is proved that

Theorem 8. Let Σ be a finite alphabet and let t be its size. When the instances of the binary paint
shop problem are chosen uniformly at random among all instances of fixed size 2t with alphabet Σ,
then

2

5
t+

8

15
≤ E(rg) ≤ 2

5
t+

7

10
where rg is the number of color changes when one applies the recursive greedy algorithm.

1.2.3. Lower bounds and quality of the optimal solution. In [9], a lower bound – computable in
polynomial time through dynamic programming – has been proposed for this problem. The same
bound has been used in [5] to prove Theorem 5. This bound is given in Proposition 2. We give a
new result, which is a necessary and sufficient condition for this bound to be optimal, and also a
new one about instances for which all feasible requirement r have solutions with less than t colors
changes. We start also a discussion about the expected value of the optimal value of the binary
paint shop problem.

Define for each input w = (u1, . . . , u2t) of the binary paint shop problem an hypergraph on the
set {1, . . . , 2t− 1} defined as

I(w) := {{i, i+ 1, . . . , j − 1} : 1 ≤ i < j ≤ 2t, ui = uj}.
The hyperedges are intervals. In terms of the paintshop problem one can think of the elements
of {1, . . . , 2t− 1} as possible moments for color change: if moment i (i = 1, . . . , 2t − 1) is chosen,
that means changing the color right after the occurrence of ui (before the occurrence of ui+1). The
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binary paint shop problem consists in designing a minimum number of color changes so that each
hyperedge – each interval – of I(w) contains an odd number of them. Less formally, suppose given
a finite set of intervals on the real line, the binary paint shop problem aims to find the minimum
number of points such that each interval contains an odd number of them. Any finite set of intervals
is not a I(w). Easily,

Claim 1. All intervals in I(w) have distinct right endpoints. The same holds for left endpoints.

Let C be a set of subsets of a finite set V . Two subsets A,B ∈ C are said to be crossing if

A * B and B * A and A ∩B 6= ∅.
If there are no crossing subsets in C, then C is said to be laminar. The notion of laminar set is a
very classical one in combinatorial optimization. In the case of binary paintshop problem, one will
need a more specific notion. A set C is evenly laminar if

• it is laminar, and
• for all A ∈ C, there is an even number of subsets of C contained in A and distinct from A:

the set {B ∈ C : B $ A} has an even cardinality.

The following proposition is proved in [9].

Proposition 2. [9] Let w be an input of the binary paint shop problem and let B ⊆ I(w). If B
is evenly laminar, then one has γ(w) ≥ |B|. In other words, the cardinality of any evenly laminar
subset of I(w) is a lower bound for the binary paint shop problem.

As already noted, the greedy algorithm allows us to find a solution of the binary paint shop
problem with at most t changes. In general, the optimum γ(w) is smaller than t, but Proposition
2 shows that if the input w is such that I(w) is evenly laminar, then we cannot do better than t.
In fact, the evenly laminar inputs are precisely the inputs for which we cannot do better than t.

Proposition 3. Let w be an input of the binary paint shop problem and let t = |Σ| be the size of
the alphabet. Then γ(w) = t if and only if I(w) is evenly laminar.

In terms of the necklace splitting problem, this proposition characterizes completely the case
when we cannot do better than the number of cuts given by the necklace splitting theorem (Theorem
1) for two thieves and for au = 1 for all u ∈ Σ. For more than two thieves or for different values of
the au, such a characterization is not known.

The evenly laminar instances have another interesting property.

Proposition 4. Let w be an input of the binary paint shop problem and let t = |Σ| be the size of
the alphabet. For each letter, fix the repartition of the colors you want among the two occurrences
(r(u, c) = 0, 1 or 2). If I(w) is evenly laminar, then it is always possible to get this repartition
with at most t colors changes. t color changes are necessary only when r(u, c) = 1 for each color c
and for each letter u ∈ Σ.

This proposition is a consequence of Proposition 3 above and Corollary 3 of the paper “Necklace
bisection with one cut less than needed” by Simonyi [24]. This latter states

If we can use at most t − 1 cuts and fair splitting is not possible then the thieves
still have the following option. Whatever way they specify two disjoint sets D1, D2

of the types of beads with D1 ∪D2 6= ∅, it will always be possible to cut the necklace
(with t− 1 cuts) so that the first thief gets more of those types of beads that are in
D1 and the second gets more of those in D2, while the rest is divided equally.

It can also be proved directly, as we do it below. The proof shows even that the greedy algorithm
finds a solution. Note also that conversely Proposition 3 and Proposition 4 together prove the
result by Simonyi for the case when au = 1 for all u ∈ Σ.

To prove Proposition 3, we will need the following lemma.
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Lemma 1. Let w be an input of the binary paint shop problem such that I(w) is evenly laminar.
Let T ⊆ {1, . . . , 2t − 1} be such that for each I ∈ I(w), the cardinality of T ∩ I is odd. Then for
each I ∈ I(w) there is xI ∈ I ∩ T in T such that xI /∈ K whenever K ∈ I(w) and K $ I.

Proof. By induction, on the cardinality of I(w). Delete an interval J of I(w) that is maximal for
inclusion. Apply induction. We get an xI for each interval I 6= J such that xI ∈ I ∩ T but xI /∈ K
whenever K ∈ I(w) \{J} and K $ I. It is easy to see that, since I(w) is evenly laminar and since
|T ∩ I| is odd for all I ∈ I(w) such that I ⊆ J , there is an element of T which is contained in J
but in no other interval of I(w). �

Proof of Proposition 3. Assume first that I(w) is evenly laminar. A solution with at most |I(w)|
changes can be found through the greedy algorithm. Proposition 2 allows us to conclude that it is
optimal.

For the other direction, assume now that γ(w) = |I(w)|. We will prove by induction on t, which
is |I(w)|, that in this case I(w) is evenly laminar. For t = 1, it is obvious.

Assume t ≥ 2.
Let T be a subset of {1, . . . , 2t− 1} such that each interval of I(w) contains an odd number of

elements of T and suppose that T is minimum. In other words, T is an optimal solution.
Denote by J the interval that has 2t − 1 as right endpoint. Denote by k the new highest right

endpoint of an interval in I(w)\{J} (note that k = 2t−2 or k = 2t−3). By induction, I(w)\{J}
is evenly laminar otherwise the greedy algorithm would extend an optimal solution on I(w) \ {J}
to an optimal solution for I(w) that is smaller than T .

Suppose now for a contradiction that there exists an interval I in I(w) such that I and J are
crossing. Take T ′ an optimal solution for I(w) \ {J}. According to Lemma 1, there is an x ∈ T ′
such that x is in I but in no other interval K ⊆ I. Deleting x from T ′ and replacing it by one
of the endpoints of I (depending on whether x ∈ J or not), we get a solution for I(w) with only
|T ′| < |T | color changes. Contradiction.

Hence, I(w) is laminar, and necessarily evenly laminar otherwise any solution for I(w) \ {J}
would be a solution for I(w). �

Proof of Proposition 4. We prove the proposition by induction on the number of letters. It is
trivially true if t = 1.

Assume that t > 1. Since I(w) is evenly laminar, there is somewhere in w a sequence of
consecutive terms of the form XY Y ZZT , letters X and T being possibly the same or empty, but
not necessarily. Let w′ be the word obtained by deleting Y Y ZZ from w. By induction, we can
get any repartition in at most t− 2 color changes. Extend greedily the coloring on Y Y ZZ starting
from X. We get at most 3 color changes on XY Y ZZT : at most one for the Y ’s, at most one for
the Z’s and at most one for T . If we get 3 color changes, the color of X and the color of T are
distinct, which means that we already have one color change between X and T at that place in w′.
In any case, the increase of color changes is at most 2.

The same inductive scheme allows us to prove the statement about the instances for which t
color changes are necessary. �

In [6], it is asked whether it is possible to find the expected value of the optimal value when the
instances are drawn uniformly at random. According to Theorem 8, we have E(γ) ≤ 2

5 t + 7
10 . We

were not able to propose an interesting lower bound on E(γ), but we conjecture that E(γ) = o(t).
Anyway, with the help of the formulation of Subsection 2.1 and with the help of CPLEX (see
Section 5 for more details) we have computed the average value γ̄ of γ for various values of |Σ|.
Each value γ̄ in the following array results from the computation of the optimal solution of 10
instances of the binary paint shop problem uniformly taken at random among instances for fixed
|Σ|.
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|Σ| 10 20 40 80 90 100 110 120
γ̄ 4.1 7.2 13 23.4 26.1 28.2 31.1 35.4

Remark. When looking at the lower bound provided by Proposition 2, it is tempting to use it
in a branch-and-bound scheme. Partial solutions are given naturally in this context by subsets
S ⊆ {1, . . . , 2t− 1} and by fixing an element in {0, 1}S : if i ∈ S is fixed to 1, it means that i must
be a color change (the color of ui and ui+1 must be different), and if i is fixed to 0, then ui and ui+1

must have the same color. We see that, to get lower bounds for partial solutions, we shall generalize
the notion of evenly laminar set. Indeed, when a partial solution is already fixed, the binary paint
shop problem becomes: let I be a set of intervals of {1, . . . , 2t − 1}; let α : I → {0, 1}; design a
minimum number of color changes so that each interval I of I contains a number = α(I) mod 2
of them. We could call this problem the generalized binary paint shop problem.

So, the suitable generalization of evenly laminar is the α-laminar set. A set C is α-laminar, with
α : C → {0, 1}, if

• it is laminar, and
• for all A ∈ C, the set {B ∈ C : B $ A} has a cardinality = α(I) + 1 mod 2.

It is not too difficult to prove that the cardinality of α-laminar subsets of an input of a general-
ized binary paint shop problem is a lower bound for this latter problem. To compute the largest
α-laminar subset, the dynamic programming approach described in [9] can be straightforwardly
adapted. Having a way to encode partial solutions and to compute lower bounds can lead to a
branch-and-bound scheme. We have implemented it but it is not at all competitive in comparison
with the linear programming approach of the next section (some evenly laminar bounds are com-
puted in Subsection 5.2 and are far from the optimum). Nevertheless, this can be used to derive
valid inequalities for programs (1) or (2) specialized for the binary paintshop of the type∑

i∈
⋃
J

yi ≥ |J |

for some α-laminar subsets J . Violated inequalities of this type can be computed through a similar
dynamic programming approach, but we have not tested this possibility of improvement.

1.3. The necklace splitting problem. From a complexity point of view, the question of finding
the number of cuts stated in Theorem 1 is an intriguing open question. Problems of similar nature
are BROUWER, BORSUK-ULAM, SECOND HAMILTONIAN CIRCUIT, NASH, etc. (see [21]
for their definitions). They are problems for which there is no chance to prove their NP-hardness,
unless NP=co-NP [15], since the objects that have to be found always exist. Motivated by the
question of computing a Nash equilibrium, Megiddo and Papadimitriou [15] defined the complexity
class TFNP, consisting exactly of all search problems in NP for which every instance is guaranteed
to have a solution.

A subclass of the TFNP class is the PPAD class (see [22]) for which the existence is proved
through the following argument :

In any directed graph with one unbalanced node (node with outdegree different from
its indegree), there must be another unbalanced node.

This class was defined by Papadimitriou in 1994 [21] in a paper in which he also shows that there
exists PPAD-complete problem, that is a problem in PPAD for which the existence of a polynomial
algorithm would imply the existence of a polynomial algorithm for any problem in PPAD. The
necklace splitting problem for q = 2 belongs to the class PPAD, since it is a consequence of the
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Borsuk-Ulam theorem that belongs to PPAD1. Nevertheless, even if the search problem associated
to the Borsuk-Ulam theorem is PPAD-complete, it is not known whether the necklace splitting
problem for q = 2 is PPAD-complete. This leads to the following question.

Open question. Is the necklace splitting problem for q = 2 PPAD-complete ?

Or, a counterpart (asked for instance in [2])

Open question. Is the necklace splitting problem polynomial ?

Even in the case with two thieves (q = 2), and even after some effort, the best running times
known so far are O(nt−2) for t ≥ 3 and O(n) for t = 2 [13]. Actually, when checking the details of
the algorithm, the running time in this paper is Θ(nt−2). It means that there is constant α such
that the algorithm requires at least αnt−2 evaluations of splittings: roughly speaking, the algorithm
computes the value of a function on more or less all discrete points – each of them corresponding to
a splitting – of a piecewise linear manifold of dimension t−2 in order to decide the relative position
of this manifold (the “winding number” in the terminology of this paper) with respect to a special
point (ā still with the notations of the paper); it does it for many manifolds in order to find by a
binary search the one containing the special point. This has seemed to be sufficiently prohibitive,
in addition with other implementation difficulties (each point on which the function is evaluated
requires a Gaussian elimination in O(t3), the algorithm requires degeneracy checks, ...) and we did
not try to implement this method.

The GRAPH ISOMORPHISM problem is an NP problem which is not known to belong to either
the P class or the NP-complete class, and for which all attempts to settle its complexity have failed.
It is usually suspected to lie somewhere between the P class or the NP-complete class.

We cannot resist to make the supposition that we have with the NECKLACE SPLITTING
problem a counterpart in the PPAD context. The NECKLACE SPLITTING problem (even for
q = 2) is maybe somewhere between the P class and the PPAD-complete class.

An algorithmic proof of the case with two thieves exists [16]. It is a path-following method
similar to the one used by Scarf [23] to prove Sperner’s lemma. But, contrary to this latter proof,
the path travels in a cubical complex, instead of a simplicial complex, and the labels are vertices of
a cube, instead of being integers (see Section 3). Whether there is similar proof for more than two
thieves remains open. This question is probably difficult since, although there are several proofs of
this kind for the Borsuk-Ulam theorem, which hides behind the necklace splitting theorem for two
thieves, there is no proof at all of this kind for the more general Dold theorem (see for instance the
work by de Longueville and Zivaljevic [10]), which hides behind the necklace splitting theorem for
an arbitrary number of thieves.

Open question. Is there a path-following proof of the necklace splitting theorem for an arbitrary
number of thieves ?

2. Linear programming

2.1. A first formulation. Consider an instance (w, r) of the paint shop problem with alphabet Σ
and color set C. Assume w = (u1, . . . , un) to be of length n. To ease the discussion, we introduce
the notation P (u) which indicates for u ∈ Σ the positions of the letter u in w.

1In [21], the necklace splitting problem is stated to belong to PPAD for any q but it seems unlikely to be true
since in the general case, the necklace splitting theorem is a consequence of the more general Dold theorem, which is
in PPA-q.
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Any solution c = (c1, . . . , cn) can be encoded through variables xi,c for all i ∈ {1, . . . , n} and
c ∈ C where

xi,c =

{
1 if ci = c
0 if not.

These variables must satisfy∑
i∈P (u)

xi,c = r(u, c) for all c ∈ C and u ∈ Σ

(the requirement is satisfied) and∑
c∈C

xi,c = 1 for all i ∈ {1, . . . , n}

(each occurrence of a letter receives exactly one color).
Adding a variable yi encoding whether there is a color change between ui and ui+1, we can

formulate the binary paint shop problem as an integer linear program. Define for all i ∈ {1, . . . , n−
1}

yi =

{
1 if xi,c 6= xi+1,c for some c ∈ C
0 if not.

The formulation is then

(1)

min
n−1∑
i=1

yi

s.t.
∑
i∈P (u)

xi,c = r(u, c) for all c ∈ C and u ∈ Σ (i)

∑
c∈C

xi,c = 1 for all i ∈ {1, . . . , n} (ii)

yi ≥ xi,c − xi+1,c for all c ∈ C and i ∈ {1, . . . , n− 1} (iii)

yi ≥ xi+1,c − xi,c for all c ∈ C and i ∈ {1, . . . , n− 1} (iv)

xi,c ∈ {0, 1} for all c ∈ C and i ∈ {1, . . . , n} (v)

yi ∈ {0, 1} for all i ∈ {1, . . . , n− 1}. (vi)

To solve the necklace splitting problem, we can use this formulation in a branch-and-bound and
stop as soon as a solution with at most (q − 1)t color changes is found (as always in this paper
q = |C| and t = |Σ|). Moreover, we can use (q − 1)t + 1 as an upper bound in order to cut a
subtree in the branch-and-bound tree even before having found a feasible solution (consequence of
Theorem 1).

In the special case of the necklace splitting problem, we face a problem with high symmetries,
similar to the ones in the graph coloring or of the bin-packing problems. The following solution is
classical in such a situation.

2.2. Killing symmetries. Let us consider the necklace splitting problem. Any solution can be
encoded (up to symmetry) through 1 ≤ j ≤ i ≤ n

zj,i =

{
1 if cj = ci and ck 6= cj for all k < j
0 if not.

9



These variables must satisfy

∑
i∈P (u) and i≥j

zj,i = auzj,j for all u ∈ Σ and all j ∈ {1, . . . , n}

(the requirement is satisfied) and

∑
j≤i

zj,i = 1 for all i ∈ {1, . . . , n}

(each occurrence of a letter receives exactly one color).
An alternative formulation to (1) by an integer linear program for the necklace splitting problem

is the following one.

(2)

min

n−1∑
i=1

yi

s.t.
∑

i∈P (u) and i≥j

zj,i = auzj,j for all u ∈ Σ and all j ∈ {1, . . . , n}

∑
j≤i

zj,i = 1 for all i ∈ {1, . . . , n}

yi ≥ zj,i+1 − zj,i for all 1 ≤ j ≤ i+ 1 ≤ n

yi ≥ zj,i − zj,i+1 for all 1 ≤ j ≤ i+ 1 ≤ n

zj,i ∈ {0, 1} for 1 ≤ j ≤ i ≤ n

yi ∈ {0, 1} for all i ∈ {1, . . . , n− 1}.

zj,i is equal to 1 if ui gets the same color as uj and if uj is the first occurrence of a letter getting
this color. It is clear that any solution of the necklace splitting problem can be encoded in such a
way. More interesting, this formulation has not the drawback of the formulation (1): two solutions
identical up to a permutation of C lead to the same solution of (2).

2.3. Another formulation when there are only two colors. If there are only two colors, an-
other formulation is possible, namely the following one, which uses less variables than the preceding
ones.

Fix one of the colors c ∈ C. The interpretation of the variables is now straightforward.
10



(3)

min
n−1∑
i=1

yi

s.t.
∑
i∈P (u)

xi = r(u, c) for all u ∈ Σ (i)

yi ≥ xi − xi+1 for all i ∈ {1, . . . , n− 1} (ii)

yi ≥ xi+1 − xi for all i ∈ {1, . . . , n− 1} (iii)

xi ∈ {0, 1} for all i ∈ {1, . . . , n} (iv)

yi ∈ {0, 1} for all i ∈ {1, . . . , n− 1}. (v)

2.4. Lagrangian relaxation. The first formulation (1) suits Lagrangian relaxation. We haven’t
implemented it. If we relax constraints (iii) and (iv), we get the following Lagrangian subproblem

∑
u∈Σ

lu(µ,µ′) + min
y∈{0,1}n

n−1∑
i=1

(
1 +

∑
c∈C

(
µi,c + µ′i,c

))
yi,

where y = (y1, . . . , yn), µ = ((µi,c))i∈{1,...,n},c∈C and µ′ = ((µ′i,c))i∈{1,...,n},c∈C and lu(µ,µ′) is the
value of

min
∑

i∈P (u),c∈C

(µc,i−1 + µ′c,i−1 − µc,i − µ′c,i)xc,i

s.t.
∑
i∈P (u)

xi,c = r(u, c) for all c ∈ C and u ∈ Σ

∑
c∈C

xi,c = 1 for all i ∈ P (u)

xi,c ∈ {0, 1} for all c ∈ C and i ∈ P (u)

,

which is the value of an optimal b-matching in a bipartite graph, computable in strongly polynomial
time.

Since for any values of µ and µ′, the Lagrangian subproblem has integer solutions, it has the
so-called integer property, and the Lagrangian relaxation does not provide a better bound than the
linear relaxation. Anyway, such a relaxation is interesting here since solving the Lagrangian mul-
tiplier problem is probably more efficient than solving the linear programming relaxation directly.

3. Necklace splitting through cubical complexes

We come now back to the necklace splitting problem. The problem is the following.

11



Necklace splitting problem for two thieves

INPUT: A finite alphabet Σ of size t whose elements are called letters, a wordw = (u1, . . . , un) ∈ Σ∗

in which each letter u is present an even number of times.

TASK: Find a coloring c = (c1, . . . , cn) ∈ {1, 2}n such that for each u ∈ Σ, we have

|{i ∈ {1, . . . , n} : ui = u and ci = 1}| = |{i ∈ {1, . . . , n} : ui = u and ci = 2}|,
and such that the number of color changes is less than or equal to t.

Recall that more poetically the letters are the types of beads, the word w is the sequence of
beads on the chain, and that the two colors correspond to the two thieves: for instance, ci = 1
indicates that the ith bead goes to the thief number 1.

The only known algorithmic proof deals with the case q = 2 (two thieves) and is given in [16]. We
describe in the sequel the algorithm but give first a short overview. The existence of a fair splitting
is a consequence of a theorem by Ky Fan, which asserts the existence of a cube with certain labels
(a “full” t-cube) in a cubical complex whose vertices get labels satisfying particular conditions
(somewhat in the spirit of Sperner’s lemma). We first explain this theorem (Subsection 3.1). Then
we describe the algorithm finding the full t-cube whose existence is asserted by Ky Fan’s theorem
(Subsection 3.2). The correctness of the algorithm proves actually Ky Fan’s theorem. Then, we
explain how to encode the necklace splitting problem in the framework of cubical complexes, labels
and Ky Fan’s theorem (Subsection 3.3), in order to get an algorithm finding a fair splitting, which
appears to be in this context a full t-cube. Finally, we give some details on how to exploit the
particular features of the necklace to make quickly the checks and computations required by the
algorithm (Subsection 3.4).

3.1. Cubical complexes and Ky Fan’s theorem. Let C be a cube, ∂C the boundary of C, and
V (C) the set of vertices of C. Two facets of an m-cube are said to be adjacent if their intersection
is a (m−2)-cube. For a given facet σ of C, there is only one non-adjacent facet. Two non-adjacent
facets are opposite.

A cubical complex is a collection K of cubes embedded in a Euclidean space such that

• if τ ∈ K and if σ is a face of τ then σ ∈ K and
• if σ and σ′ are in K, then σ ∩ σ′ is a face of both σ and σ′.

V (K) is the set of vertices of the cubical complex K.
A cubical complex is said to be pure if all maximal cubes with respect to inclusion have same

dimension.
A m-dimensional cubical pseudo-manifold K is a pure m-dimensional cubical complex in which

each (d−1)-dimensional cube is contained in at most two m-dimensional cubes. The boundary of K,
denoted by ∂K, is the set of all (m− 1)-cubes σ such that σ belongs to exactly one m-dimensional
cube of K.

Denote by Cm the cubical complex which is the union of the cube �m := [−1, 1]m and all its
faces. ∂Cm, its boundary, is a (m− 1)-dimensional cubical pseudo-manifold without boundary.

Let k ≥ 0 be an integer. Given k distinct integers i1, i2, . . . , ik, each of them in {1, 2, . . . ,m},
and k numbers ε1, ε2, . . . , εk, each of them belonging to {−1,+1}, we denote

F

(
i1 i2 . . . ik
ε1 ε2 . . . εk

)
:= {(x1, x2, . . . , xm) ∈ {−1,+1}m : xij = εj for j = 1, 2, . . . , k},

which is the set of vertices of an (m− k)-face of �m. For k = 0, we get all vertices of �m.
Let n, t ≥ 1 be integers and M be the cubical pseudo-manifold without boundary obtained by

subdividing ∂Ct+1 by means of the hyperplanes Hi,j = {x ∈ Rt+1 : xi = j
n where i ∈ {1, 2, . . . , t+1}
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and j ∈ {−n + 1,−n + 2, . . . ,−1, 0, 1, . . . , n − 2, n − 1}. Let λ : V (M) → V (Cm) be a labelling of
its vertices with vertices of Cm such that the labels of two adjacent vertices are either identical or
neighbors on the 1-skeleton of Cm. A d-cube of K (with 0 ≤ d ≤ m) is said to be full if the image
of its vertices under λ is of the form

F

(
d+ 1 d+ 2 . . . m
ε1 ε2 . . . εm−d

)
.

We have then the following theorem by Ky Fan (in a specialized version of Theorem 5 in [12]).

Theorem 9 (Ky Fan’s theorem). If λ is antipodal (i.e. such that λ(−v) = −λ(v) for all vertices
v ∈ M), there exists always at least one full t-cube.

We explain in Subsection 3.3 how the necklace splitting problem can be embedded in this frame-
work. The vertices of M will encode the different splittings. The labelling λ of a vertex will indicate
the thief advantaged for each type of bead, for the splitting encoded by the vertex. The existence
of a full t-cube will imply the existence of a fair splitting.

3.2. An algorithm finding a full t-cube. We endow M with hemispheres. These hemispheres
are denoted +H0, −H0, +H1, −H1, . . ., +Ht, −Ht. +Hi (resp. −Hi) is the set of points
(x1, x2, . . . , xt+1) of ∂�t+1 such that xi+1 ≥ 0 (resp. xi+1 ≤ 0), and such that, if i ≤ t − 1,
then xj = 0 for j > i+ 1. Note that the boundary of an hemisphere of dimension i is the union of
the two hemispheres of dimension i− 1.

The sign of the hemisphere +Hi (resp. −Hi) is +1 (resp. −1) and we denote it by sign(+Hi) =
+1 and sign(−Hi) = −1.

On Figure 1, the hemispheres of M obtained by subdividing ∂C3 for n = 2 are highlighted.
The carrier hemisphere CarrHem(σ) of a cube σ is the hemisphere of smallest possible dimension

containing σ.
Now, assume that we have a labelling λ of M for some m ≥ t and assume moreover that λ is

antipodal, that is that −λ(v) = λ(−v) for any vertex v ∈ V (M). We define the notion of sign for a
full d-cube σ with d < m: let

F

(
d+ 1 d+ 2 . . . m
ε1 ε2 . . . εm−d

)
be the image of its vertices. ε1 is then its sign, denoted by sign(σ).

A d-cube is said to be almost-full if it is not full but one of its facets is full. Lemma 3.2 of [16]
shows that all full facets of an almost-full cube have always the same sign, which allows to define
the sign sign(σ) of an almost-full d-cube σ to be the common sign of its full facets.

In [16], the following method for finding a full t-cube is described. Consider the following graph
G = (N,E). The nodes of G are the cubes τ in one of these three situations.

Situation (1): τ is full, dim τ = dim (CarrHem(τ))− 1 and sign(τ) = sign(CarrHem(τ))
Situation (2): τ is almost-full, dim τ = dim (CarrHem(τ)) and sign(τ) = sign(CarrHem(τ))
Situation (3): τ is full and dim τ = dim (CarrHem(τ))

Two nodes τ and τ ′ are adjacent in G if all the following hold:

(a) τ ′ is a facet of τ ,
(b) τ ′ is full,
(c) dim τ = dim (CarrHem(τ)), and
(d) sign (CarrHem(τ)) = sign(τ ′).

It can be checked that all nodes have degree 1, 2 or 4. A cube has degree 1 only if its dimension
is 0 (it is either the 0-cube (1, 0, . . . , 0) or (−1, 0, . . . , 0), no other 0-cube being contained in +H0

or −H0) or if it is a full t-cube. It can also be proved that in a connected component of G, there is
13



x1

x2

x3

+H2

−H2

+H0

−H0

+H1

−H1

Figure 1. An illustration of M for n = 2 and t = 2.

at most one 0-cube node. If a cube τ is of degree 4, it can be proved that we are in Situation (2)
and that it has exactly 4 full facets, two pairs of opposite facets. We make then two copies of τ ,
each of them linked to one of these pairs. G becomes a collection of cycles and paths. Following
the path starting at (1, 0, . . . , 0), we eventually arrive at a full t-cube (and prove Theorem 9).

We get Algorithm 1. It is a path-following algorithm, similar to Scarf’s algorithm computing
fixed point for continuous mapping [23]. In the pseudocode Algorithm 1, τ is the current cube and
σ the current cube of the previous iteration. Note that σ and τ are such that one is always the
facet of the other and that the maximal one has always the dimension of its carrier hemisphere.
The dimension of the current carrier hemisphere decreases when the next cube σ′ is a facet of τ
lying on the boundary of the carrier hemisphere of τ ; it can happen in Situation (2) and also in
Situation (3) when τ is a facet of σ. The dimension of the current hemisphere increases by one
precisely when we are in Situation (3) with σ a facet of τ .

Since it is very far from the exhaustive enumeration of the t-cubes of M, we may hope that a
similar phenomenon as for Scarf’s algorithm happens, that provides a fast algorithm to find full
t-cubes. The experimentation is made in Section 5.

3.3. Application to the necklace. The necklace is identified with the interval ]0, n[⊂ R. The
beads are numbered with the integers 1, 2, . . . , n, from left to right. The kth bead occupies uniformly
the interval ]k − 1, k[.

For S ⊆]0, n[, we denote by φi(S) the quantity of beads of type i in positions included in S.
More precisely, we denote by 1i(u) the mapping which indicates if there is a bead of type i at point

14



Algorithm 1 The algorithm finding a full t-cube whose existence is claimed by Ky Fan’s theorem.

σ ← (1, 0, . . . , 0)
let τ be such that σ is a facet of τ and CarrHem(τ) = sign(σ)H1 // τ is an edge in ±H1

while τ is not full or dim τ 6= t do
if τ is full and dim τ = dim (CarrHem(τ))− 1 then

// Situation (1)
let τ ′ ∈ CarrHem(τ) be such that τ is a facet of τ ′ and τ ′ 6= σ

else if τ is almost-full then
// Situation (2)
let τ ′ be the facet of τ such that σ ∩ τ ′ = ∅ // σ and τ ′ are opposite

else if τ is full and dim(CarrHem(τ)) = dim τ then
// Situation (3)
d← dim τ
if σ is a facet of τ then

//the dimension of the carrier hemisphere is going to increase
let τ ′ be such that τ is a facet of τ ′ and CarrHem(τ ′) = sign(τ)Hd+1

else
//the dimension of the carrier hemisphere is going to decrease
let τ ′ be such that τ ′ is full, is a facet of τ and sign(τ ′) = sign(CarrHem(τ))

end if
end if
σ ← τ
τ ← τ ′

end while
return τ

u of ]0, n[:

Bi(u) =

 2 if the dueth bead is of type i and if it is the first bead of this type.
1 if the dueth bead is of type i and if it is not the first bead of this type.
0 if the dueth bead is not of type i.

We have then

φi(S) :=

∫
S
Bi(u)du.

The definition of Bi may be surprising since the first bead of each type is counted twice; this is
only a trick to avoid tie between the two thieves.

Let x := (x1, x2, . . . , xt+1) be a vertex of M. We order the xi in the increasing order of their
absolute value. When |xi| = |xi′ |, we put xi before xi′ if i < i′. This gives a permutation π such
that

|xπ(1)| ≤ |xπ(2)| ≤ . . . ≤ |xπ(t+1)| = 1.

It encodes a cut as follows: the necklace is cut at points n|xi|. Since among the |xi|, at most t are
different from 1 (we are in M, which is embedded in ∂Ct+1), we get a splitting in at most t cuts,
as required. From left to right, we rank the subnecklaces. Given a subnecklace, we look at the
smallest k such that n|xk| is greater than or equal to the coordinate of any point of the subnecklace
(i.e the cut with smallest index at the right of the subnecklace). The sign of xk indicates the thief
who gets this subnecklace: if it is +, it goes to the first thief; it is −, it goes to the second one.
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|x2| |x1| |x4| |x3|

: color 1.

: color 2.

: color 3.

Figure 2. The cuts associated to the vertex x1 = 6
16 , x2 = − 3

16 , x3 = −1, x4 = −12
16 .

According to this assignment rule, we define λ = (λ1, λ2, . . . , λt) : V (M) → {−1,+1}t = V (Ct)
as follows: we cut the necklace at points n|xi|. By convention, xπ(0) := 0; we define

λi(x) :=

{
+1 if

∑t
j=0 sign(xε(j))φi

(]
n|xπ(j)|, n|xπ(j+1)|

[)
> 0

−1 if not,

for i = 1, 2, . . . , t, where ε(j) is the smallest integer k such that |xk| ≥ |xπ(j+1)|, and with the
convention sign(0) := 0.

This formula can be understood as follows: λi(x) equals +1 (resp. −1) if the first thief gets
strictly more (resp. strictly less) beads of type i than the second one, when we cut the necklace
at points n|xj |, and assign the subnecklaces to the thieves according to the rule described in the
previous paragraph.

Let us give an example. Figure 2 shows a necklace with n = 16, t = 3, and 4 cuts. These 4 cuts
are compatible for instance with the vertex (x1, x2, x3, x4) where

x1 =
6

16
, x2 = − 3

16
, x3 = −1, x4 = −12

16
.

There are 4 subnecklaces. The first subnecklace goes to the first thief since 6
16 ≥

∣∣− 3
16

∣∣ (the minimal
index k such that 16|xk| is greater than all points of this subnecklace is 1) and x1 > 0. The second
subnecklace goes also to the first thief exactly for the same reasons. The third subnecklace goes
to the second thief since the minimal index k such that 16|xk| is greater than all points of both
subnecklaces is 3 and x3 < 0. The fourth one goes also to the second thief, for the same reasons.
The image of this vertex through λ is (+1,−1,−1) where the first component corresponds to the
blue beads (color 1), the second one to the red beads (color 2), and the third one to the green beads
(color 3).

It can be checked that λ maps adjacent vertices to the same vertex or to adjacent vertices, and
that it is antipodal. We are thus in the framework of Subsection 3.1 and Theorem 9 can be applied.
A full d-cube σ is obtained by d cuts sliding on d beads and since it is full, each of these cuts
“slides” along distinct beads of distinct types, from type 1 to type d. More precisely, take the
splitting encoded by the vertex of σ with the highest (resp. lowest) coordinates : the first thief
(resp. the second thief) is advantaged for all the first d types of beads.

A full t-cube having necessarily a vertex encoding a fair splitting (changing the assignment of
the type i bead changes the thief advantaged for type i), Algorithm 1 solves the necklace splitting
problem. Nevertheless, we have a priori no guarantee on the time needed to solve a real problem.
In Section 5, this algorithm is experimented.

3.4. Some details of implementation.
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3.4.1. Cubes. A cube σ of ∂M is encoded through a couple (LowerPoint,UpperPoint) where LowerPoint
(resp. UpperPoint) is the coordinate of the vertex having the lowest (resp. highest) values for each
coordinate. Note that there are no ambiguity and that the dimension of σ is the number of coor-
dinates that differ between LowerPoint and UpperPoint.

3.4.2. Full cubes. To check if a d-cube is full, it is enough to check if the first thief is advantaged
for each of the first d types by the splitting encoded by UpperPoint and if the second thief is
advantaged for each of the first d types by the splitting encoded by LowerPoint.

3.4.3. Sign. The sign of a d-cube is given by the thief advantaged for type d+ 1.

3.4.4. Carrier hemisphere. The carrier hemisphere of a vertex is given by the rank and the sign of
its last nonzero coordinate.

4. Local searches

We have developed two local search models, one for the paintshop problem, and one for the
necklace splitting.

4.1. Paintshop moves. For the general paint shop problem, the objective to minimize is the
number of color changes. The initial configuration is an admissible coloring (c1, . . . , cn) ∈ Cn such
that it satisfies the coloring constraints, i.e.

|{i ∈ {1, . . . , n} : ui = u and ci = c}| = r(u, c) for all u and c.

The local search algorithm performs swap moves in the sequence between two positions i1 < i2
such that

• ui1 = ui2 and
• ci1 6= ci2 .

In order to intensify the search, i1 is chosen just before or after a color change. We have used the
same moves for the binary paintshop problem.

4.2. Necklace splitting moves. The local search designed for the paint shop version can be
applied to the necklace version – the search must be stopped as soon as the number of cuts becomes
less than or equal to (q − 1)t. It appears that in the special case of the necklace, we can design
another local search.

For the necklace splitting problem, the objective is to find a fair division between q thieves, with
the number of cuts N = (q − 1)t given by the theorem 1. Remark that this number of cuts is not
always the minimum.

The model is made of 2∗N variables, i.e for each cut we have 2 variables, the place (in {1, . . . , n})
of the cut and the thief who receives the part just after the cut. For breaking symmetries, we give
the first part to the first thief. The initial configuration is made of N random cuts and each part is
randomly assigned to a thief. The objective function to minimize is the sum of the deviations for
each type and thief couple between the current division and a fair one. The algorithm stops when
a fair division is found, or when a timeout is reached.

The local search algorithm performs 2 types of moves :

• Displacement of a cut : a cut is chosen, and is displaced to a new place which is distant of
less than D places from the current place.
• Change of thief : a part is chosen and given to another thief, distinct from the thieves that

own the next left and right parts, in order to keep constant the number of cuts.
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We wanted to perform small moves, that can be efficiently incrementally evaluated. We limited
therefore each cut displacement by a maximum distance of D = 20 places to the left or to the right
of the current place. We experimentally fixed the ratio between the 2 types of moves (displacements
and changes of thief) to 4, i.e we try with a probability of 0.8 a displacement move and a probability
of 0.2 a change of thief.

We have implemented a simplified variant for 2 thieves, where the only variables are the N cuts
places and a single type of moves, the cut displacements (also limited with a maximum distance
equal to 20).

4.3. Metaheuristic. For both problems, the metaheuristic used for escaping local minima is ID-
Walk [20]. It is a very simple metaheuristic, based on the size of the explored neighborhood. Like
all local search algorithms, the algorithm changes a current configuration by performing at each
step a local transformation, i.e. a local move as described above. At the end of the walk, it returns
the best configuration found during the walk.

The pseudo-code described in Figure 2 shows in details the main step of the algorithm : how
the neighbor that will become the next current configuration is selected. IDWalkStep randomly
performs an incomplete exploration of the neighborhood of the current configuration. It selects the
first improving or equal neighbor found if any, and in case all MaxNeighbors visited neighbors de-
grade the objective function, it selects the less degrading one. The parameter MaxNeighbors of the
algorithm is the size of the randomly explored neighborhood. This parameter controls the behavior
of the algorithm. If the MaxNeighbors potentially explored neighbors represent an important part
of the neighborhood, the algorithm will perform more intensification than if MaxNeighbors is small
w.r.t. the size of the neighborhood.

In addition, the diversification performed by the algorithm also mainly depends on this param-
eter. If MaxNeighbors is small, it is not likely to find a configuration better than or equal to the
current one among these explored neighbors. The degradation of the objective obtained then by
choosing the less degrading explored neighbor will be greater than if a larger number of neighbors
would be tested. With a small part of the neighborhood being explored, it is also not likely that
the algorithm returns in the following moves to an already visited configuration and the presence
of a tabu list device becomes unnecessary.

For each instance to be solved, this MaxNeighbors parameter is automatically tuned. We alter-
nate tuning and running phases. During the tuning phases, the algorithm is run on small walks
with different parameter values. The parameter value that yields the best result is selected and
used during the next running phase.

5. Computational results

The algorithms described in the previous sections were implemented in C++. The implemen-
tations were tested on a computer with a Intel Core 2 Duo CPU 2.26 GHz processor, with 1.96
GB RAM, using the GNU-C++ compiler (gcc 3.4.5). For the linear programming resolution, we
have used CPLEX 12.2. The local search uses the version of IDWalk implemented in the INCOP

[19] C++ local search library.
The following notations are used.

LP linear programming.
LSp local search designed for the paintshop version (Subsection 4.1).
LSn local search designed for the necklace version (Subsection 4.2).
n the length of the word w,
t the cardinality of Σ and
q the number of colors
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Algorithm 2 ID WalkStep (x: current configuration, best: best configuration, MaxNeighbors:
maximum number of neighbors to be visited)

Candidate ← 1
RejectedCandidates ← ∅
Accepted? ← false
while (Candidate ≤ MaxNeighbors) and (not Accepted?) do

Select randomly a neighbor x′ of x
if cost(x′) ≤ cost(x) then
Accepted? ← true

else
RejectedCandidates ← RejectedCandidates ∪ {x′}

end if
Candidate ← Candidate +1

end while
if Accepted? then

x← x′

else

x← the configuration in RejectedCandidates with the smallest cost

end if

if cost(x) < cost(best) then

best← x
end if

All instances were generated at random, since no benchmark is available (as noted in the Intro-
duction, this problem had not been studied from a practical point of view). They can be downloaded
from

http://cermics.enpc.fr/∼meuniefr/PaintShopNecklaces Instances

5.1. General paint shop problem. The approaches tested for the (general) paint shop problem
are linear programming (Subsection 2.1) and the local search (Subsection 4.1). We have generated
15 instances, as follows. The parameters n, q, t are fixed. The ith letter is an element drawn
uniformly at random from Σ, independently from the other letters. Each time a letter is drawn, a
color is also drawn, therefore at the end we have for each letter a pool of colors to be attributed to
its occurrences.

For the local search method, as it is a stochastic incomplete method depending on the initial
configuration, we performed 2 sequences of 10 tries per instance, each try being limited to 1 min
CPU time for the first sequence, and to 5 min CPU time for the second sequence.

We report the best and the median solutions among these 10 tries.
The linear programming was experimented with a time limit equal to 30 min CPU time.
The results are given in Table 1.

Linear programming is able to solve optimally the general paint shop problem when the number
of types and the number of colors are quite small (≤ 5). As soon as these parameters grow, the
gap between the upper and lower bounds provided by the linear program becomes large. The local
search behaves well, even if we were not able to give a reasonable lower bound to estimate the gap
with the optima. The feasible solutions found by the local search are anyway largely better than
the ones obtained by the linear program, and in a laps of time really smaller.
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LP (1) 30 min LSp 60 s LSp 300 s
Instance n q t Solution Lower Bound best sol median sol best sol median sol

PS 200 1 200 3 4 7* (15 s) 7 7 7 7 7
PS 200 2 200 5 5 14 9 12 13 12 12
PS 200 3 200 5 10 24 17 21 21 21 21
PS 200 4 200 10 5 33 7 20 21 20 20
PS 200 5 200 10 10 43 18 32 33 32 32
PS 500 1 500 3 4 5* (3 min 42 s) 5 6 6 6 6
PS 500 2 500 5 5 16 9 17 18 15 17
PS 500 3 500 5 10 27 13 25 27 25 26
PS 500 4 500 10 5 68 7 32 33 29 32
PS 500 5 500 10 10 109 14 44 47 41 44
PS 1000 1 1000 3 4 5* (18 min 35 s) 5 8 10 7 8
PS 1000 2 1000 5 5 29 6 20 22 18 20
PS 1000 3 1000 5 10 58 12 37 38 33 35
PS 1000 4 1000 10 5 129 7 40 44 41 43
PS 1000 5 1000 10 10 211 15 65 67 58 62

Table 1. Results for the general paint shop problem.

LP (1) 30 min LP (2) 30 min LP (3) 30 min LSp 60 s LSp 300 s Evenly
Instance n q t Sol. Lower Sol. Lower Sol. Lower Best Median Best Median Laminar

Bound Bound Bound Sol. Sol. Sol. Sol. Bound

BPS 250 250 2 125 35∗ 35 35∗ 28 35∗ 35 35 35 35 35 19
BPS 500 500 2 250 70 52 133 18 71 51 70 71 70 71 29
BPS 1000 1000 2 500 143 71 - - 144 73 135 135 135 135 36
BPS 2000 2000 2 1000 365 105 - - 292 105 270 277 270 272 59
BPS 5000 5000 2 2500 895 162 - - 892 160 685 691 686 687 91

Table 2. Results for the binary paint shop problem.

5.2. Binary paint shop problem. The approaches tested are the three formulations of linear
programming, (1), (2) and (3), as well as local search.

We have generated instances, where a sequence of n letters with 2 occurrences of each letter is
randomly generated. The objective is to color this sequence with 2 colors, with a minimum of color
changes.

The results are given in Table 2.
Note that LP (2) behaves very badly – the ‘-’ means that CPLEX terminates because of an ‘out

of memory’ error. The reason is probably that it has too many variables.
The binary paintshop problem also proves the superiority of the local search to find good feasible

solutions, and again more quickly than linear programming. We can anyway note that the linear
programming approach (LP (1) and (3)) is efficient up to n ' 250 and the instances of this size are
solved to optimality in less than 30 minutes. The efficiency of the linear programming approach
was already noted in Subsection 1.2, in which it was tested on instances of size n ≤ 240.

The last column shows the size of the largest evenly laminar subset, which provides a lower
bound according to Proposition 2. We see that there is a large gap with the optimal solution, as
claimed at the end of Subsection 1.2. Even if it is better than the linear relaxation, which should
provide a 0 bound at the root of the branch-and-bound, CPLEX adds sufficiently many cuts to be
largely more efficient.
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LP (1) LSn LSp
Instance n q t Time Succ. Time (in s) Succ. Time (in s)

N20 3 5 1 300 3 5 7.42 s 10 0.15 10 0.10
N20 3 5 2 300 3 5 14.93 s 8 0.09 10 0.09
N20 3 5 3 300 3 5 3.14 s 9 0.03 10 0.05
N20 3 5 4 300 3 5 7.40 s 10 0.11 10 0.05
N20 3 5 5 300 3 5 15.07 s 9 0.02 10 0.03
N20 4 5 1 400 4 5 2 min 17 s 10 0.23 10 0.87
N20 4 5 2 400 4 5 4 min 52 s 10 0.18 10 0.60
N20 4 5 3 400 4 5 3 min 20 s 10 0.10 10 0.46
N20 4 5 4 400 4 5 35.79 s 10 0.04 10 0.32
N20 4 5 5 400 4 5 2 min 23 s 10 0.06 10 0.36
N20 5 5 1 500 5 5 – 10 0.69 10 2.37
N20 5 5 2 500 5 5 15 min 03 s 10 0.18 10 1.05
N20 5 5 3 500 5 5 – 10 0.41 10 1.38
N20 5 5 4 500 5 5 36 min 15 s 10 0.63 10 1.16
N20 5 5 5 500 5 5 – 10 0.87 10 1.88

Table 3. Results for the necklace splitting problem with q ≥ 3 – small instances.

5.3. Necklace splitting. When there are strictly more than two thieves, we have tested the two
formulations (1) and (3) of the linear programming and the two local search methods LSn and LSp.
(2) was not able to solve any instance, whence we have omitted its results in the table. When there
are exactly two thieves, we have added the path-following method of Section 3.

The instances were generated uniformly at random among the instances with the parameters n,
q and t fixed, and with the same number of beads of each type. We have generated 15 “small” and
15 “large” instances with q ≥ 3 and also 15 “small” and 25 “large” instances with q = 2.

For the linear programming approaches, we have initialized the branch-and-bound with an upper
bound (q − 1)t+ 0.1 since by the splitting necklace theorem (Theorem 1), we know that there is a
solution strictly better than this value, and we stop the branch-and-bound when the first integer
solution is found (in CPLEX, there is a so-called “MIP integer solution limit”).

For the LSn local search method, as described in previous section, we use a model where the
number of cuts is fixed to (q − 1)t cuts. This method stops with success when a fair division is
found. The LSp local search method works with fair divisions and tries to lower the number of
cuts. It stops with success when a solution with (q − 1)t or less cuts is found.

The results are given in Tables 3, 4, 5 and 6. For the local search methods, we performed 10
tries per instance, each try being limited to 1 min . CPU time. We report for each instance, the
number of successes and the average time for a successful try.

When there are 3 or more thieves (see Tables 3 and 4) the local search – especially LSn – is
efficient, and the linear programming approach hardly finds a solution for relative small instances
(n ' 400). For large instances (Table 4), linear programming and LSp were both unable to solve
any of them in the time limits.

We can remark – see Table 6 – that for the problem with 2 thieves and 3 types of beads, the
cubical path-following method is more efficient than the local search, in the sense that it is a
complete method that always finds a solution in a time comparable with the time of a successful

21



LSn
Instance n q t Success Time (in s)

N200 3 5 1 3000 3 5 5 2.4
N200 3 5 2 3000 3 5 7 1.6
N200 3 5 3 3000 3 5 8 8.9
N200 3 5 4 3000 3 5 6 3.6
N200 3 5 5 3000 3 5 6 5.5
N200 4 5 1 4000 4 5 5 14.3
N200 4 5 2 4000 4 5 8 11.9
N200 4 5 3 4000 4 5 4 6.9
N200 4 5 4 4000 4 5 5 12.7
N200 4 5 5 4000 4 5 3 33.5
N200 5 5 1 5000 5 5 2 34.3
N200 5 5 2 5000 5 5 1 35.2
N200 5 5 3 5000 5 5 3 15.2
N200 5 5 4 5000 5 5 1 11.5
N200 5 5 5 5000 5 5 3 34.9

Table 4. Results for the necklace splitting problem with q ≥ 3 – large instances.

Cubical LP (1) LP (3) LSn LSp
path-following

Instance n q t Time Time Time Succ. Time (s) Succ. Time (s)

N1000 2 3 1 6000 2 3 0.28 s 13 min 54 s 10 min 10 s 9 0.18 0 –
N1000 2 3 2 6000 2 3 0.22 s 13 min 50 s 12 min 18 s 10 1.23 7 25.48
N1000 2 3 3 6000 2 3 0.63 s 5 min 09 s 13 min 19 s 10 0.87 2 19.74
N1000 2 3 4 6000 2 3 1.39 s 5 min 46 s 21 min 40 s 9 1.18 0 –
N1000 2 3 5 6000 2 3 1.31 s 2 min 47 s 10 min 53 s 10 5.30 0 –
N100 2 10 1 2000 2 10 4 min 31 s 3 min 03 s 2 min 02 s 10 0.11 0 –
N100 2 10 2 2000 2 10 25 s 2 min 33 s 2 min 13 s 10 0.10 1 15.80
N100 2 10 3 2000 2 10 14 s 2 min 00 s 2 min 15 s 10 0.14 0 –
N100 2 10 4 2000 2 10 1 min 11 s 1 min 08 s 1 min 27 s 10 0.17 1 3.03
N100 2 10 5 2000 2 10 1 min 45 s 2 min 00 s 2 min 35 s 10 0.08 0 –
N20 2 20 1 800 2 20 3 min 22 s 12 s 1 s 10 0.10 10 0.15
N20 2 20 2 800 2 20 3 min 07 s 25 s 6 s 10 0.12 10 0.09
N20 2 20 3 800 2 20 1 min 45 s 6 s 9 s 10 0.11 10 0.36
N20 2 20 4 800 2 20 1 min 59 s 1 s 6 s 10 0.05 10 0.78
N20 2 20 5 800 2 20 7 min 57 s 6 s 4 s 10 0.25 10 0.11

Table 5. Results for the necklace splitting problem with q = 2 – small instances.

execution of the local search method. This latter method sometimes fails, depending on the initial
configuration. On the contrary, when the number of types grows, the cubical path-following method
becomes less efficient than the local search method.

We can also note – see Table 5 – that the linear programming approach and LSp work better
when the number of cuts (q − 1)t ensured by the necklace theorem becomes high. This can be
explained by the strategy followed by these approaches, which consists in decreasing the number
of cuts until reaching the target number.
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Cubical LSn
path-following

Instance n q t Time (in s) Success Time (in s)

N5000 2 3 1 30000 2 3 1.1 7 6.2
N5000 2 3 2 30000 2 3 4.8 7 1.9
N5000 2 3 3 30000 2 3 1.2 9 2.8
N5000 2 3 4 30000 2 3 2.7 7 2.5
N5000 2 3 5 30000 2 3 2.7 9 5.8
N10000 2 3 1 60000 2 3 5.4 5 7.0
N10000 2 3 2 60000 2 3 5.4 2 9.3
N10000 2 3 3 60000 2 3 4.9 1 27.1
N10000 2 3 4 60000 2 3 2.8 4 2.5
N10000 2 3 5 60000 2 3 3.4 8 1.4
N15000 2 3 1 90000 2 3 12.6 4 3.7
N15000 2 3 2 90000 2 3 3.0 0 –
N15000 2 3 3 90000 2 3 4.4 8 5.8
N15000 2 3 4 90000 2 3 4.3 2 3.4
N15000 2 3 5 90000 2 3 4.3 3 12.3
N1000 2 5 1 10000 2 5 7.36 10 1.9
N1000 2 5 2 10000 2 5 39.0 9 0.2
N1000 2 5 3 10000 2 5 9.72 10 9.4
N1000 2 5 4 10000 2 5 36.7 10 0.8
N1000 2 5 5 10000 2 5 620 10 1.5
N2000 2 5 1 20000 2 5 92.3 8 2.1
N2000 2 5 2 20000 2 5 259 8 6.8
N2000 2 5 3 20000 2 5 47 9 1.1
N2000 2 5 4 20000 2 5 143 6 1.5
N2000 2 5 5 20000 2 5 231 9 1.5

Table 6. Results for the necklace splitting problem with q = 2 – large instances.

5.4. Conclusion. The two local searches – when applied to the problems they have been designed
for – are really efficient. Exact approaches exist when the size of the word (the total number
of beads on the necklace) is small (linear programming) for both the necklace problem and the
paintshop problem, and for the necklace problem with two thieves and not too many types, say ≤ 5
(the path-following method). It is worth noting that the path-following method is very efficient for
the splitting of the necklace between two thieves, when there are only 3 types of beads, the solution
being computed in few seconds even for 90000 beads.

6. Some concluding remarks

On the theoretical hand, many questions remain open both for the paint shop and the necklace
versions – see Section 1. These questions come within complexity theory, discrete probability,
combinatorial optimization and combinatorial topology. So many areas meet rarely in the same
problem. On the practical hand, we know how to solve the paintshop-necklace problem for high
instances with local searches, and we propose approaches through linear programming and a path-
following method. An efficient exact method for the paintshop problem remains to be designed, as
well for the necklace problem for three thieves and more.
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Finally, let us emphasize that the path following method appears to be quite efficient. Actually,
it was designed to solve the problem of finding a full t-cube (see Section 3), which is more general
than the splitting of the necklace. The existence of a full t-cube is very close to Tucker’s lemma, the
combinatorial counterpart of the Borsuk-Ulam theorem. One may ask whether this method would
be efficient for the computation of the zeroes of an antipodal map f : Sd → Rd, whose existence
is ensured by the Borsuk-Ulam theorem. However, a step is missing, namely the existence of a
“cubical approximation theorem” which is a still open question: any continuous mapping can be
approximated by a simplicial map; it is not known if a similar statement holds for a cubical map (see
for instance Property 6.1 in [7]). Since cubical complexes are often more tractable than simplicial
complexes a positive answer to this latter question would provide a promising approach to the
computation of zeroes of antipodal maps.
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17. F. Meunier and A. Sebő, Paint shop, odd cycles and splitting necklace, Discrete Appl. Math. 157 (2009), 780–793.
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