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Abstract

This thesis develops algorithms for rail transportation problems, conducted in relation-
ship with the company Eurotunnel which operates the tunnel under the Channel. This
partnership is a scientific chair with the École des Ponts et Chaussées, where this thesis
was realized. We study three topics throughout the thesis: the first one is an operational
problem faced by Eurotunnel, whereas the two other ones are prospective and theoretical
problems inspired by their process.

The planning process for rail transportation can be divided into several phases (demand
estimation, line planning, scheduling of the departure times, rolling stock and crew
planning). In a first part, we focus on the scheduling phase on a time interval, applied
to the specific case of Eurotunnel. The objective is to compute the departure times
of the trains for each of the two stations (Calais in France and Folkestone in England),
satisfying operation constraints (security, loading, ...) and commercial agreements with
their partners (Eurostar, ...). Moreover, it is essential to take into account the delays in the
scheduling phase to limit the propagation of the disturbances from train to train in the
network. We develop scheduling algorithms for Eurotunnel that consider the operation
and commercial constraints, and the random distributions of the delays for each train.
These algorithms use standard tools of Operations Research to model and solve these
optimization problems.

Pricing is a main issue for transportation companies. Many algorithms have been pro-
posed to help airline companies to define optimized prices of the plane tickets for different
classes of passengers. In a second part, we apply some standard pricing frameworks (dis-
crete choice models) in order to optimize in a global way the prices and the departure
times of the trains for rail transportation companies. Standard tools of stochastic op-
timization, discrete choice models, and some heuristics are used in our algorithms to
compute the best possible solutions in a limited computation time.

We focus in a last part on a class of transportation problems inspired form Eurotunnel.
We give efficient algorithms to solve exactly or to approximate the optimal solutions of
these problems. These algorithms give an upper bound of the time complexity of this
class of problems. The problems studied consist in scheduling the departure times of
shuttles on a fixed trip, to transport passengers, arriving continuously at an initial station,
to a given destination. The shuttles are potentially allowed to perform several rotations
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to transport several groups of passengers. The objective is to minimize the waiting time
of the passengers before the depart of their shuttle. Custom combinations of convex
optimization and graph theory (shortest path problems) are used in our algorithms.

Key words: rail transportation, scheduling, delays, stochastic optimization, pricing, heuris-
tics, time complexity, convex optimization, shortest path problems.
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Résumé

Cette thèse développe des algorithmes pour des problèmes de transport ferroviaire et est
réalisée en partenariat avec l’entreprise Eurotunnel qui exploite le tunnel sous la Manche.
Ce partenariat s’est établi sous la forme d’une chaire avec l’École des Ponts où cette thèse
a été menée. Nous développons trois sujets dans cette thèse : le premier est un problème
opérationnel rencontré par Eurotunnel, les deux autres sont plus prospectifs et théoriques,
et sont inspirés des problèmes de transport ferroviaire d’Eurotunnel.

Le processus de création de grilles horaires pour le transport ferroviaire se découpe en
plusieurs phases (estimation de la demande, détermination du réseau, planification des
départs, affectation des trains et du personnel). Nous nous intéressons dans une pre-
mière partie à la phase de planification des départs des trains sur un intervalle temporel,
appliquée au cas spécifique d’Eurotunnel. L’objectif est de calculer les horaires des dé-
parts des trains depuis chacune des deux stations (Coquelles en France et Folkestone
en Angleterre) en respectant des contraintes d’exploitation (sécurité, chargement, ...) et
des accords commerciaux signés avec leurs partenaires (Eurostar, ...). De plus, la prise
en compte des retards dès la planification des départs est primordiale pour limiter la
propagation des perturbations de train en train sur le réseau. Nous avons développé des
algorithmes de planification pour Eurotunnel tenant compte des contraintes du réseau et
de la probabilité de retard pour chaque train. Ces algorithmes utilisent des outils standard
de la Recherche Opérationnelle pour modéliser et résoudre ces problèmes d’optimisation.

La tarification des billets est un enjeu majeur pour les entreprises de transport. Pour
les compagnies aériennes, de nombreux algorithmes ont été étudiés pour définir le prix
optimal des billets pour différentes classes de passagers. Nous appliquons dans une
deuxième partie des méthodes standard de tarification (modèles de choix discrets) afin
d’optimiser de manière globale les prix et les horaires des départs pour des entreprises de
transport ferroviaire. Des outils classiques de l’optimisation stochastique, des modèles
de choix discrets et des heuristiques sont utilisés dans nos algorithmes pour donner les
meilleures solutions possibles en un temps de calcul limité.

Nous nous intéressons dans une dernière partie à une classe de problèmes de transport,
inspirés de ceux rencontrés par Eurotunnel, en donnant des algorithmes efficaces de réso-
lution exacte ou approchée. Ces algorithmes permettent de donner une borne supérieure
de la complexité temporelle de ces problèmes. La classe de problèmes étudiés consiste
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en la planification des départs de navettes sur une ligne fixe, pour transporter d’une
station A vers une station B des usagers arrivant de manière continue. Les navettes sont
éventuellement autorisées à faire de multiples rotations pour transporter plusieurs vagues
d’usagers. L’objectif est de limiter le temps d’attente des passagers avant le départ de
leur navette. Des combinaisons originales de l’optimisation convexe et de la théorie des
graphes (problèmes de plus court chemin) sont utilisées dans nos algorithmes.

Mots clés : transport ferroviaire, grilles horaires, retards, optimisation stochastique, tarifi-
cation, heuristiques, complexité algorithmique, optimisation convexe, plus court chemin.
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1 Introduction

Three research topics of rail transportation are developed along this thesis. They were
conducted with Eurotunnel, the company which operates the tunnel under the Channel,
throughout an industrial partnership with the École des Ponts ParisTech. The aim is
to improve the scientific knowledge on rail transportation. The objective is to develop
methods to operate the Channel tunnel in an optimal way. The principal issue is to face
the future significant increase of the freight and passengers demand. The first topic was
conducted with a strong relationship with Eurotunnel. It deals with the computation of
optimal schedules of departures which satisfy the commercial and operational constraints
of operating the Channel tunnel. We use standard techniques of Operations Research to
model and solve this optimization problem.

The second topic is more forward-looking and deals with a joint scheduling and pricing
problem for a virtual transportation company. The objective is to compute optimal
schedules of shuttle departures and to fix the price of the trips for customers belonging to
different classes. We model this problem and propose various methods to compute good
feasible solutions in a reasonable computation time.

The third research topic deals with a class of transportation problems inspired by Euro-
tunnel. We give efficient algorithms to solve exactly or approximately these problems,
and estimate their running time. The algorithms are based on standard methods from
Operations Research such as the shortest path computation.

The thesis has three main parts and each one develops one of these topics. The contribu-
tions are:

• A simple and efficient algorithm to compute feasible and optimized schedules for
Eurotunnel.

• A method to deal with the delays for Eurotunnel.
• A proof that optimizing in a joint way the departures and the prices leads to an

increase of the revenue.
• Algorithms to compute such departures and prices.
• Theoretical results and algorithms for transportation problems inspired by Euro-
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Chapter 1. Introduction

tunnel.

Some of the work on the problem of scheduling and pricing was done at EPFL during a
visit to Michel Bierlaire.

1.1 Cyclic scheduling at Eurotunnel

The planning process to compute schedules of departures in rail transportation can be
divided into five successive phases, given in Figure 1.1.
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Figure 1.1 – Planning process in rail transportation

The demand estimation consists in estimating the number of passengers who want to
travel from an origin to a destination on a time period, either in an aggregated way,
or in a continuous way. The aggregated information is given in an Origin-Destination
matrix. The line planning is generally done in a second phase. The aim is to decide the
future transportation lines and connexions in order to face the estimated demand. The
objective is to limit the operational costs and to minimize the number of connexions
for the passengers. The scheduling phase comes next and it is about figuring out the
departure times of the trains for each line which satisfy the operation constraints on the
rail network. The objective is to minimize the trip time of the passengers or the connexion
time between the lines in order to maximize their comfort. This phase is precisely studied
in the first part of the thesis, in the case of Eurotunnel. Once the schedule is computed,
it must be decided which train will cover each scheduled departure. The rolling stock
planning has to satisfy several constraints (number of trains, capacity, engine power,
maintenance, . . . ). Finally, on-board crew and dock crew have to be assigned to each
train. As for airline transportation, the crew plan needs to satisfy several labour rules.
The objective is to compute the crew plan which minimizes the costs (hotels for the crew,
overtime, . . . ) and maximizes the crew satisfaction. Often, computing a feasible plan a
complex task because of the huge combinatorics of the problem.

2



1.1. Cyclic scheduling at Eurotunnel

The planning process is usually done sequentially because of the algorithmic complexity
of all the phases. A usual way to keep computation times acceptable and to improve the
process is to create a feedback loop between the several planning phases (see Figure 1.1)
and to iterate several times the process taking into account the previous phases.

In the particular case of Eurotunnel, the rail network is only composed of two stations
with a line track for each direction. This rail track is one of the world’s busiest commercial
rail track, with Eurostars connecting London to the major European capitals, freight trains,
and passengers and freight shuttles operated by Eurotunnel. As we already explained, we
focus on the scheduling of the departure times in the first part. The objective is first to
maximize the number of shuttles in a schedule, while satisfying operation constraints
in the Channel tunnel and commercial constraints, with Eurostar mainly. This issue is
presented in a first chapter and is dealt with a standard tool in Operations Research: Mixed
Integer Linear Programming.

It considers optimization problems with a particular form. These problems are described
by a linear objective function, linear constraints and integer variables. The canonical form
of this class of problems is expressed as

Minimize c Tx

Subject to Ax ≤ b

x ≥ 0

x ∈ Zn ,

where b and c are real vectors and A is a real matrix. Various resolution techniques are
available for this class of problems and many different commercial solvers gather most
of these techniques to compute optimal solutions in an efficient way. In the case of
Eurotunnel, we get optimized schedules of departures on a given time period.

Our algorithms give the maximum number of freight shuttles that can be scheduled in
a given period, with a fixed number of Eurostars, freight trains and passengers shuttles.
For instance, for a one-hour cyclic schedule with 4 Eurostars, one freight train, and 5
passengers shuttles, the maximum number of freight shuttles that can be scheduled is
4 and an example of such a schedule is given in Figure 1.2. Moreover, we also show by
our algorithms that relaxing some operational or commercial constraints may improve
significantly the number of freight shuttles in the schedule. For example, relaxing a
constraint on the loading platforms improves from 8 to 10 the maximum number of
freight shuttles in a schedule with 2 Eurostars and 2 passengers shuttles.

The second chapter deals with the computation of schedules of departures minimizing
the propagation of delays. It relies on Stochastic Optimization which studies optimiza-
tion problems that involve random objective functions or random constraints. Indeed,
randomness is everywhere and can occur at any time which leads to random delays on
the schedule. These delays may propagate train after train and the objective is to com-
pute feasible schedules minimizing the average total delay of each train. We model this
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Figure 1.2 – An example of such a schedule

problem by a recourse stochastic program whose general formulation is of the form

Minimize c Tx +Eξ[Q(x ,ξ)]

Subject to Ax ≤ b

x ≥ 0,

where Eξ[·] is the expected value over ξ and Q(x ,ξ) is a recourse function.

The variables x are the first stage variables, b and c are deterministic real vectors and A
a deterministic real matrix. The parameter ξ contains all the randomness in the second
stage. In this problem, the variables x have to be optimized in a first stage before the
randomness ξ has been revealed. These problems are much more difficult to solve that
the deterministic ones. A method applied in the thesis to solve such problems consists in
sampling the randomness ξwith scenarios and optimizing the problem on the scenarios
with an estimator on the expected value. Under specific conditions, solving the problem
with a large number of samples gives a very good approximation of the recourse function.

In this chapter, we compute schedules of departures taking into account the probability
of a delay for each train in order to minimize their propagation. We propose algorithms
for two versions of the problem, whether the order of the trains is fixed in input or not.
The results show a significant improvement: for instance, for a schedule with 2 Eurostars,
one freight train, 4 passengers shuttles and 7 freight shuttles per hour, the average delay
of the trains in the current schedule in around 7’20” whereas it is less than 6’ with our
algorithm. It represents an improvement of almost 20%.
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1.2. Joint pricing and scheduling

1.2 Joint pricing and scheduling

On the one hand, computing optimized schedules of departure times for rail transporta-
tion has been studied a lot. On the other hand, pricing problems have also been studied a
lot, mainly for airline companies and the hotel industry. Often called yield management
or revenue management, it deals with the study of the prices and the capacity manage-
ment issues of products to offer to different categories of customers. The objective of
such problems is to maximize the revenue of the company. The problem of computing
schedules and fixing the prices is usually done sequentially: first an optimized schedule of
departures is computed, and then a price and capacity policy is applied for each category
of customers.

However, the customers willing to purchase a ticket for a trip are sensitive both to the
departure times and the prices. This is the reason why the study of a joint scheduling and
pricing problem could lead to higher revenues for the companies and a better customers’
satisfaction. This is already the case for airline companies which combine these two
subjects. To measure the attractiveness of a product for a customer, we use discrete choice
models, known and developed originally for marketing. They are used when one wants to
model and understand the customers’ behaviour. They allow to identify key parameters
among several ones and to quantify their influence on the customer’s choices. This can
be useful to optimize the strategic decisions of a company. Random behaviours can also
be modelled this way. In our case, the price and the departure time of a train are key
parameters in the choice of a customer. We model the problem by a stochastic recourse
program and we sample the problem with scenarios of randomness as it is described in
the previous section.

Moreover, heuristic algorithms are also presented in order to improve locally the solutions.
In particular, we use a Lagrangian heuristic and a Gauss-Seidel algorithm, which are
standard algorithms in Operations Research and Optimization.

With these techniques, we are able to compute good solutions for our joint scheduling and
pricing problem. We propose two algorithms to compute the departures times and the
prices and we compare the results with the natural sequential approach of first scheduling
the departures, and then fixing the prices. Surprisingly, the sequential approach gives
good results, but we are able with our algorithms to compute better feasible solutions.
For instance, we get the following result. Consider 50 customers, belonging to three
distinct economic classes with various sensitiveness to the prices and different preferred
departure time. These customers want to buy a ticket for a trip, and the operator has
3 shuttles to schedule. The feasible solution computed with the sequential algorithm
provides a revenue of 574, and our algorithms provide a revenue of 599. The improvement
is almost 5% in this case.

Moreover, we also propose algorithms to compute upper bounds on the optimal value.
One algorithm is based on Lagrangian relaxation. This standard technique of Operations
Research consists in relaxing some “difficult” constraints of the problem and to set a
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penalization if they are not satisfied. We are thus able to assess the quality of the solutions.

1.3 Theoretical transportation problems

The third part of the thesis gives algorithms to solve a class of rail transportation problems.
This class consists in scheduling the departure times of a fleet of S shuttles to transport
passengers arriving continuously according to a cumulative demand D(·), on a fixed trip.
The shuttles have a capacity C and are potentially allowed to perform several rotations
and come back after a return time π. The loading speed of the passengers in the shuttles
is ν. The objective is to minimize the maximum waiting time or the average waiting time
of the passengers before the depart of their shuttle. This class of problems is inspired by
our partnership with Eurotunnel but similar problems can also be found in chemistry and
computer science, for example. The results are polynomial algorithms which compute
optimal solutions or feasible solutions approximating the optimal value of the problem.
Whereas the usual methods for such problems are mainly based on linear programming,
we developed original methods dealing with convex optimization and shortest path
computation.

We also give the complexity of the algorithms which is an important deal in the study
of decision problems. It consists in determining the number of elementary operations
performed during the execution of the algorithm. It is commonly expressed using the
expression O(·) depending on the amount of information needed to encode the input
parameters of the algorithm.

Consider the version in which the shuttles are not allowed to perform several rotations.
We have the following result:

Theorem 1. Assume that the demand D(·) is a step function defined with K discontinuities,
supposed to be part of the input. Suppose moreover that the loading speed ν is equal to 0.
Then one can compute a schedule minimizing the average waiting time in O(K 2S). The
same holds for problem minimizing the maximum waiting time.

We also get another result regarding the case where all passengers are present from the
beginning in terminal and where we have a single shuttle. To show the relevance of our
result in other contexts, let us reformulate the problem. A given quantity D of some
product is in a warehouse and has to be carried using a single shuttle. This shuttle is
allowed to perform several rotations: when the shuttle leaves, it comes back after a return
time π> 0. The shuttle has a limited capacity C ≥ 0 and the loading speed of the product
in the shuttle is ν≥ 0. The objective is to schedule the departures d j of the shuttle and
the quantity of product x j in each shuttle, in order to minimize the holding costs of the
product in the warehouse. The naive strategy of loading the shuttle completely for each
departure is not optimal. A tricky feature of the problem consists in showing that there
exists an optimal solution and that it requires a finite number of trips.
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Theorem 2. The problem has an optimal solution and it is necessarily of the form

x0 = 0

x j =


C if j ≤ a,

D −aC

θ(a)−a
+ π

ν

(
a +θ(a)+1

2
− j

)
if a +1 ≤ j ≤ θ(a),

0 otherwise,

d j = ν
j∑

i=1
xi + ( j −1)π

with a ∈Z+ such that a ≤ D
C and where

θ(a) = a +

ÈÌÌÌÌ
−1+

√
1+ 8ν

π (D −aC )

2

ÉÍÍÍÍ .

This theorem allows to compute very quickly the optimal solution by checking the dD/Ce+
1 possible solutions.
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1 Introduction (version française)

Trois thématiques de recherche liées au transport ferroviaire sont présentées dans cette
thèse. Elles ont été réalisées en partenariat avec Eurotunnel, l’entreprise qui exploite le
tunnel sous la Manche, via une chaire scientifique avec l’École Nationale des Ponts et
Chaussées. Cette chaire a été créée dans le but d’améliorer les connaissances dans le
domaine du transport ferroviaire et la thèse développée ici s’est effectuée dans ce cadre.
L’objectif est la gestion optimisée du tunnel sous la Manche exploité par Eurotunnel
et la principale problématique est d’anticiper la hausse significative de la demande de
transport de fret et de passagers dans un futur proche. La première thématique a nécessité
un dialogue soutenu avec Eurotunnel et l’objet est la création optimisée de grilles horaires
satisfaisant les contraintes opérationnelles et commerciales liées à l’exploitation du tunnel
sous la Manche. Des méthodes standard de la Recherche Opérationnelle sont utilisées
pour modéliser et résoudre ce problème d’optimisation.

La deuxième thématique est plus prospective et consiste en un problème de planification
et tarification jointes pour un opérateur de transport. L’objectif est d’établir une grille ho-
raire de départs de navettes et de fixer le prix chaque navette pour un ensemble d’usagers
appartenant à différentes classe économiques. Nous avons modélisé ce problème et
donné des méthodes variées de résolution dans le but de produire de bonnes solutions en
un temps de calcul raisonnable.

La troisième thématique de recherche traite d’une classe de problèmes de transport
inspirés de ceux rencontrés par Eurotunnel. Elle présente des algorithmes efficaces
de résolution ou d’approximation et donnent une estimation leur temps de calcul. Ils
utilisent des méthodes originales de la Recherche Opérationnelle comme le calcul de plus
courts chemins.

La thèse comporte trois parties, chacune développant une des thématiques. Les contribu-
tions sont:

• Un algorithme simple et efficace pour calculer des grilles horaires réalisables et
optimisées pour Eurotunnel.

• Une méthode pour prendre en compte les retards pour Eurotunnel.

9



Chapter 1. Introduction (version française)

• Une démonstration qu’une optimisation jointe des départs et des prix mène à une
augmentation des revenues.

• Des algorithmes pour calculer ces départs et ces prix.
• Des résultats théoriques et des algorithmes pour des problèmes de transport in-

spirés de ceux rencontrés par Eurotunnel.

Une partie du travail du problème de planification et tarification a été menée à l’EPFL
durant un séjour avec l’équipe de Michel Bierlaire.

1.1 Grilles horaires chez Eurotunnel

Le processus de création de grilles horaires pour un opérateur de transport ferroviaire
peut se découper en cinq décisions successives, illustrées dans la Figure 1.1.
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Figure 1.1 – Processus de création de grilles horaires en transport ferroviaire

L’estimation de la demande consiste à estimer le nombre d’usagers voulant voyager d’une
station origine à une station destination, soit de manière agrégée, soit de manière con-
tinue, sur un intervalle temporel. Les informations agrégées sont généralement rassem-
blées dans une matrice pour chaque paire Origine-Destination. La détermination des
lignes du réseau est généralement réalisée dans un deuxième temps. Il s’agit de décider
des futures lignes de transport et de leurs connexions afin de répondre à la demande
de déplacement des usagers, l’objectif étant de contrôler les coûts d’exploitation et de
minimiser le nombre de connexions pour les usagers. La phase de planification des
départs intervient ensuite et le but est de déterminer les horaires de départs des trains
pour chaque ligne en respectant des contraintes d’exploitation du réseau. L’objectif est
ici de minimiser les temps de transport moyen des usagers ou les temps de connexion
entre deux trains afin de maximiser le confort des usagers. Nous nous intéressons à cette
phase dans la première partie de la thèse, dans le cas spécifique d’Eurotunnel. Une fois
les horaires des départs planifiés, l’affectation des trains pour chaque départ doit avoir
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1.1. Grilles horaires chez Eurotunnel

lieu en respectant les contraintes de flotte (nombre, capacité, puissance, maintenance
...). Toutes ces contraintes doivent être prises en compte lors de la phase d’affection.
Enfin, du personnel de bord (conducteur, contrôleurs, ...) et du personnel à quai doivent
être affectés pour chaque train. À l’image du transport aérien, les horaires de travail du
personnel sont très encadrés et soumis à de nombreuses réglementations. L’objectif de
cette phase est de créer l’emploi de temps du chaque agent afin de minimiser les frais
liés au découchage du personnel et de maximiser leur satisfaction (respect des demandes
de congés, demandes pour certaines lignes, ...). Le simple fait de générer un emploi du
temps respectant toutes les réglementations et affectant le personnel requis pour chaque
train est souvent déjà un problème difficile.

Ce processus de création de grilles horaires est effectué de manière séquentielle dans
la plupart des cas à cause de la complexité algorithmique de chacune des phases. Une
méthode standard pour garder des temps de calcul acceptables est de boucler le processus
(voir Figure 1.1) et de recommencer plusieurs fois la boucle en tenant compte des étapes
précédentes.

Dans le cas particulier d’Eurotunnel, le réseau ferroviaire se résume à deux stations reliées
par une voie unique dans chaque sens. Ce réseau est un des plus empruntés au monde
avec des Eurostars reliant Londres aux grandes capitales européennes, des trains de
marchandises et des navettes de passagers et de frets exploitées par Eurotunnel. Comme
nous l’avons dit, nous nous concentrons exclusivement à la phase de planification des
départs dans la première partie. L’objectif est dans un premier temps de maximiser le
nombre de départs de navettes dans une grille horaire satisfaisant des contraintes opéra-
tionnelles fortes liées au transport ferroviaire en tunnel, et des contraintes commerciales
notamment avec Eurostar. Cette problématique est présentée dans un premier chapitre
et est abordée avec un outil standard de la Recherche Opérationnelle : la programmation
linéaire en nombres entiers (PLNE).

Cette branche de la Recherche Opérationnelle considère des problèmes d’optimisation
ayant une forme particulière. Ces problèmes sont décrits par une fonction objectif (ou
fonction de coût) linéaire, des contraintes linéaires et des variables entières. La forme
canonique de cette classe de problèmes est la suivante :

Minimiser c Tx

Sous les contraintes Ax ≤ b

x ≥ 0

x ∈ Zn ,

où A est une matrice réelle, et b et c sont des vecteurs réels. De nombreuses techniques
de résolution sont connues pour ces types de problèmes et un grand nombre de solvers
commerciaux rassemblent la plupart de ces méthodes pour calculer les solutions opti-
males de manière efficace. Nous obtenons dans le cas d’Eurotunnel des grilles horaires
optimisées planifiant les départs des trains sur une période et satisfaisant les contraintes

11



Chapter 1. Introduction (version française)

spécifiques à un réseau en tunnel.

Nos algorithmes donnent le nombre maximal de navettes de fret pouvant être planifiées
sur une période donnée, avec un nombre fixé d’Eurostars, de trains de marchandises et
de navettes de passagers. Par exemple, pour une grille horaire cyclique d’une heure avec
4 Eurostars, un train de marchandises et 5 navettes de passagers, le nombre maximal
de navettes de fret est 4 et un exemple d’une telle grille horaire est donné en Figure 1.2.
De plus, nous montrons également avec nos algorithmes que la relaxation de certaines
contraintes opérationnelles ou commerciales peuvent améliorer de manière significative
le nombre de navettes de fret dans la grille horaire. Par exemple, relâcher une contrainte
liée au terminal de chargement améliore le nombre maximal de navettes de fret de 8 à 10,
pour une grille horaire avec 2 Eurostars et 2 navettes de passagers.
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Figure 1.2 – Un exemple de grille horaire

Un second chapitre étudie la création de grilles horaires minimisant la propagation des
retards. Ce chapitre rentre dans le cadre de l’Optimisation Stochastique qui étudie des
problèmes d’optimisation avec des objectifs aléatoires et des contraintes aléatoires. En
effet, l’aléa est présent partout et peut intervenir à tout moment ce qui implique des
retards sur les départs dans la grille horaire. Ces retards peuvent se propager de train en
train et l’objectif est de créer une grille horaire valide minimisant le retard moyen des
trains. Nous modélisons ce problème par un programme stochastique de recours dont la
forme générale est la suivante :

Minimiser cTx +Eξ[Q(x ,ξ)]

Sous les contraintes Ax ≤ b

x ≥ 0,
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1.2. Tarification et planification jointes

où Eξ[·] est l’espérance mathématique par rapport à ξ et Q(x ,ξ) est une fonction de
recours.

Les variables x sont les variables de la première étape, b et c sont des vecteurs réels
déterministes et A une matrice réelle déterministe. Le paramètre ξ contient les infor-
mations sur l’aléa dans le second niveau. Dans ce problème, les variables x doivent être
optimisées dans un premier temps avant d’avoir l’information sur l’aléa. Ces problèmes
sont beaucoup plus difficiles à résoudre que les problèmes déterministes. Une méthode
employée dans la thèse consiste tirer au hasard un grand nombre de scénarios de l’aléa ξ
et d’optimiser sur ces scénarios en donnant un estimateur de l’espérance mathématique.
Sous certaines conditions, résoudre le problème avec un grand nombre de scénarios donc
une très bonne approximation de la fonction de recours.

Nous calculons ici des grilles horaires réalisables qui prennent aussi en compte les proba-
bilités de retards de chaque train pour en minimiser la propagation dans la grille. Nous
proposons des algorithmes pour deux versions de ce problème, l’une pour laquelle l’ordre
des trains est fixé dans l’input, l’ordre pour laquelle il est libre. Les résultats montrent une
amélioration significative : par exemple, pour une grille horaire avec 2 Eurostars, un train
de marchandises, 4 navettes de passagers et 7 navettes de fret par heure, le retard moyen
des trains dans une grille horaire courante est d’environ 7’20” alors qu’il est inférieure à 6’
avec nos algorithmes. Cela représente un gain de presque 20%.

1.2 Tarification et planification jointes

D’un côté, la création de grilles horaires optimisées pour le transport est un problème
très étudié. De l’autre côté, les problèmes de tarification sont aussi très bien connus,
développés notamment pour les compagnies aériennes ou l’industrie hôtelière. Souvent
appelé “yield management”, de l’anglais yield : rendement, ou bien “revenue manage-
ment”, il s’agit de l’étude des prix et de la gestion capacitaire de biens à offrir à différentes
classes d’usagers. L’objectif de ce problème étant la maximisation du chiffre d’affaires.
Les problèmes de création de grilles horaires et de tarification sont généralement étudiés
de manière séquentielle : d’abord une grille horaire de départs optimisée est générée, puis
une politique tarifaire et capacitaire y est appliquée donnant le prix de chaque départ,
pour chaque classe d’usagers.

Cependant, les usagers voulant acheter un titre de transport sont sensibles de manière
combinée aux horaires de départs des trains et à leur prix. C’est pourquoi une étudie jointe
de la planification et de la tarification pourrait mener à des revenues plus importants pour
les opérateurs et à une satisfaction supérieure pour les usagers. Ceci est déjà le cas pour
les compagnies aériennes qui combinent de plus en plus ces deux aspects. Pour mesurer
l’attrait d’un client vis-à-vis d’un produit, on utilise les modèles de choix discrets, connus
et développés notamment en marketing. Ceux-ci sont utilisés lorsque l’on veut modéliser
et comprendre le comportement des usagers. Ils permettent d’identifier les paramètres
décisifs parmi un panel de choix proposés et de quantifier leur influence, ce qui peut
être utile pour optimiser les décisions stratégiques d’une compagnie. Les événements
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et comportements aléatoires peuvent aussi être modélisés par ce biais. Dans notre cas,
le prix et l’horaire de départ d’un train sont des paramètres décisifs dans le choix des
usagers. Nous modélisons ce problème par un programme stochastique de recours et
nous échantillonnons le problème avec des scénarios de l’aléa comme dans la section
précédente.

De plus, des algorithmes heuristiques sont aussi présentés afin d’améliorer la qualité des
solutions de manière locale. Ces algorithmes sont notamment basés sur des heuristiques
lagrangiennes et des algorithmes de type Gauss-Seidel, qui sont des algorithmes standard
de la Recherche Opérationnelle et de l’Optimisation.

Avec ces techniques, nous sommes capables de calculer de bonne solutions pour notre
problème de planification et tarification jointes. Nous proposons deux algorithmes pour
calculer les départs et les prix, et nous comparons les résultats avec une approche naturelle
séquentielle qui consiste à planifier les horaires de départs dans un premier temps, et de
fixer les prix dans un second temps. De manière surprenante, l’approche séquentielle
donne de bons résultats, mais nous sommes capables avec nos algorithmes de calculer de
meilleures solutions. Nous obtenons, par exemple, le résultat suivant. Considérons 50
clients, appartenant à trois classes économiques distinctes, ayant des sensibilités aux prix
et des heures de départs privilégiées différentes. Ces clients veulent acheter un ticket pour
un destination et l’opérateur de transport veut planifier 3 navettes. La solution calculée
avec l’approche séquentielle donne un revenu de 574, alors que nos algorithmes donnent
un revenu de 599. Le gain est d’environ 5% dans ce cas.

De plus, nous proposons des algorithmes pour calculer des bornes supérieures sur la
valeur optimale. Ces algorithmes sont basés sur la relaxation lagrangiennes. Cette tech-
nique standard de la Recherche Opérationnelle consiste à relâcher des contraintes ”diffi-
ciles” du problème et à instaurer une pénalisation si elles ne sont pas satisfaites. Nous
pouvons ainsi apprécier la qualité des solutions réalisables que nous trouvons.

1.3 Problèmes théoriques de transport

La troisième partie de la thèse donne des algorithmes de résolution d’une certaine classe
de problèmes liés au transport ferroviaire. Cette classe de problèmes consiste en la plani-
fication des départs d’une flotte de S navettes sur un trajet donné. des usagers arrivent de
manière continue suivant une demande cumulée D(·). Les navettes ont une capacité C
et sont éventuellement autorisées à faire de multiples rotations et reviennent après un
temps π. La vitesse de chargement des usagers dans les navettes est ν. L’objectif est de
minimiser le temps d’attente maximal ou le temps d’attente moyen des usagers avant le
départ de leur navette. Cette classe de problèmes est inspirée de notre partenaire Eurotun-
nel, mais on peut retrouver des problèmes similaires dans des domaines variés comme
l’informatique ou la chimie. Les résultats sont des algorithmes polynomiaux donnant
une solution optimale ou approchée du problème. Alors que les méthodes de résolution
pour ces types de problèmes sont généralement basées sur de la programmation linéaire,
nous avons développé dans cette thèse des méthodes originales de résolution qui font
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1.3. Problèmes théoriques de transport

notamment appel à l’optimisation convexe calcul de plus court chemin.

De plus, nous donnons la complexité de ces algorithmes, qui est une donnée importante
lors de l’étude algorithmique de problèmes de décisions. Elle consiste en la recherche du
nombre d’instructions de base nécessaires lors de l’exécution de l’algorithme et utilise
la notion de domination O(·) en fonction de la quantité d’informations nécessaire pour
encoder les paramètres d’entrées de l’algorithme.

Considérons la version du problème pour laquelle les navettes ne font pas plusieurs
rotations. Nous avons le résultat suivant.

Théorème 1. Supposons que la demande D(·) soit une fonction constante par morceaux
définie par K discontinuités faisant partie de l’input. Supposons aussi que la vitesse de
chargement ν soit nulle. Alors il existe un algorithme calculant une solution minimisant le
temps d’attente moyen des usagers en O(K 2S). Il en est de même le problème minimisant le
temps d’attente maximal.

Nous avons également un résultat pour le cas où tous les usagers sont présents au début
sur le terminal, et où nous ne disposons que d’une seule navette. Pour montrer la perti-
nence du résultat dans d’autres contextes, nous reformulons le problème. Une quantité
D de produit est stockée dans un entrepôt et doit être transportée en utilisant une navette.
Cette navette peut faire plusieurs rotations : quand elle quitte le terminal, elle revient
après un temps π > 0. La navette à une capacité C ≥ 0 et la vitesse de chargement du
produit dans la navette est ν ≥ 0. L’objectif est planifier les départs d j de la navette et
la quantité de produit x j transportée à chaque départ, afin de minimiser les coûts de
stockage du produit dans l’entrepôt. La stratégie naïve consistant à remplir les navettes
à chaque départ n’est pas optimale. Un point clé du problème consiste à montrer qu’il
existe une solution optimale et que celle-ci nécessite un nombre fini de départs.

Théorème 2. Le problème possède une solution optimale et elle est nécessairement de la
forme

x0 = 0

x j =


C si j ≤ a,

D −aC

θ(a)−a
+ π

ν

(
a +θ(a)+1

2
− j

)
if a +1 ≤ j ≤ θ(a),

0 sinon,

d j = ν
j∑

i=1
xi + ( j −1)π

avec a ∈Z+ tel que a ≤ D
C et où

θ(a) = a +

ÈÌÌÌÌ
−1+

√
1+ 8ν

π (D −aC )

2

ÉÍÍÍÍ .
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Chapter 1. Introduction (version française)

Ce théorème permet de calculer très rapidement une solution optimale en testant les
dD/Ce+1 solutions possibles.
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2 The company Eurotunnel

2.1 History

Eurotunnel is a French and British company, which operates the Channel Tunnel, between
France and the United Kingdom. It has its own shuttle services for freight and passengers,
and earns revenue on other trains, such as Eurostars, or other freight trains.

Before the Tunnel as we know it today, architects suggested a lot a different ideas. The
first one was proposed by the French mining engineer Albert Mathieu-Favier in 1802 who
put forward the first design for a cross-Channel fixed link based on a bored two-level
tunnel: a paved one for horse-drawn carriages and another one for groundwater flows. It
included an artificial island halfway across for changing horses. In 1803, Henry Mottray
proposed a submerged tunnel made of prefabricated iron sections. In the mid 19th
century, the advent of steam machines and the construction of the first railway lines in
the United Kingdom led to the first proposal for a rail tunnel by Aimé Thomé de Gamond.
His proposal was approved by Queen Victoria and Napoleon III and was presented in
the World Exposition in Paris in 1867. The boring started on both sides in 1880 but was
stopped by the English for security reasons.

The project as it is today was finally launched in 1973 at Chequers (England) by Edward
Heath, British Prime Minister, and Georges Pompidou, French President, when a Franco-
British Channel Tunnel Treaty was signed. But in 1975, Harold Wilson, British Minister,
announced that the project was stopped and withdrawn for financial reasons and in par-
ticular because of the oil crisis. The project has been stopped until 1984 when the British
and French Governments reached an agreement on a consultation process with private
promoters for the construction and operation of the tunnel, without public funding. On
January 20th 1986, François Mitterrand and Margaret Thatcher announced the coopera-
tion of France and the United Kingdom, for the construction of a tunnel between the two
countries. The company Eurotunnel was founded on August 13th, 1986. Its missions were
to finance, build, and operate the Tunnel. The tunnel cost 80% more than expected and
the construction took 6 years. It was officially opened by Queen Elizabeth II and François
Mitterrand on May 6th, 1994.
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But the financial situation degraded very fast, mainly because of the strong increase of
the construction and operational costs. A freight truck caused a huge fire in the tunnel
in 1995 which also worsen the financial situation. The value of the share was divided by
more than 20 between 1986 and 2003! In 2006, the company was placed into bankruptcy
protection by a French court for six months. In 2007, a restructuring plan was approved
by shareholders and the company made its first net profit in 2008, despite the costs
associated with traffic losses from September 2008 to February 2009, following another
fire in the tunnel.

Today, the company’s profit is increasing: over 12 million passengers travel in the tunnel
every year and its revenue was more than 1 billion Euros in 2016. Since the beginning,
more than 390 million passengers (around 6 times the British population), 350 tonnes
of goods, and more than 70 million vehicles crossed the Channel through the Tunnel.
Around 100,000 trains travel in the Tunnel per year.

2.2 Technical characteristics

2.2.1 The Tunnel

The Channel Tunnel (also referred as “The Chunnel”) is the Tunnel with the longest
undersea portion in the world, with a section of 37 km. Its total length is about 50 km,
between Coquelles (near Calais in France) and Folkestone (near Dover in England).

The tunnel was bored into the geological chalk marl section, which has the advantages of
being impermeable and strong. On the British side, the chalk marl runs along the entire
length of the tunnel, while on the French side, it crosses several geological layers which
complicated the boring. The Tunnel is about 40 m under the sea floor (about 107 m under
the sea level at its lowest point).

The cross-section of the Channel Tunnel is illustrated on Figure 2.1. It is composed of
two major railway tunnels (A), one for each direction, and one service tunnel. The two
major tunnels have 7.6 m diameter, and are 30 m apart. They are connected to a 4.8 m
diameter service tunnel (B), for special service vehicles, by cross-passages (C) every 375 m,
and with piston relief ducts (D) connecting the rail tunnels at 250 m spacing. The service
tunnel allows access to maintenance, emergency rescue teams and serves as a safe haven
if passengers need to be evacuated. The air pressure in the service gallery is sightly higher
than in the major tunnels, in order to preserve it from smoke in case of fire. Two undersea
crossovers allow trains to pass from one tunnel to the other during night maintenance
periods to isolate a section of the tunnel, which brings flexibility on the operations. Two
fire stations are set at the crossovers. These stations throw water on a train in case of a fire
and help contain the fire.

The walls inside the tunnels are covered with concrete blocks, linked with large joints,
which gives elasticity to the Tunnel in case of earthquakes. Indeed, the North of France is
a seismic zone, and since Great Britain is an island, the length of the Tunnel may vary of a
few centimetres.
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2.2. Technical characteristics

Figure 2.1 – Cross-section of the Tunnel

2.2.2 The terminals

On the French side, the Coquelles terminal, near Calais, is one of the biggest complexes
in Europe. Covering 650 ha and having a 23 km long perimeter, it has the equivalent size
of an international airport. It was built on a marshy soil, which had to be covered with a
50 cm thick layer of sand in order to ensure a good base for the foundations.

The Folkestone terminal is 8 km away from the Shakespeare Cliff. It covers about 150 ha,
i.e. one third of the area of the French terminal.

Both terminals are loading and unloading points for vehicles travelling on the terminal.
To travel through the Tunnel, all vehicles have to drive through tolls, and to pay fees
depending on their size.

2.2.3 The different trains

Several types of trains may travel in the Tunnel. Eurotunnel has a shuttle service from
Coquelles to Folkestone (CAFO) and from Folkestone to Calais (FOCA). These are the
different trains travelling in the Tunnel:

• HGV shuttles which carry Heavy Gross Vehicles on open wagons, with a separate
passenger wagon at the front of the train for the drivers. These shuttles travel at
140 km/h and are operated by Eurotunnel. They are Eurotunnel’s major activity.

• PAX shuttles which carry passengers in closed wagons. Half of a typical shuttle
(the rear rake) carries cars and other low vehicles in double-deck wagons. Coaches,
buses and other high vehicles travel in the single-deck rake at the front of the shuttle.
Passengers can stay in their vehicles or walk in their wagon during the trip, there
is no special wagon for passengers is these shuttles. The PAX shuttles travel at
140 km/h as well and are also operated by Eurotunnel.

• High-Speed Trains (Eurostars) also travel through the tunnel. They are not operated
by Eurotunnel itself, and they use the Tunnel in return for a fee. They travel at
160 km/h.

• Freight trains also use the Tunnel to travel through the Channel. They are not
operated by Eurotunnel and are encouraged to travel at night, because the traffic is
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Figure 2.2 – The process of arrival, loading, and departure in the terminal.

lower. According to the types of goods they carry, these trains may travel at 100 km/h
(MA100) or at 120 km/h (ME120).

2.2.4 The loading process

The loading process on the terminals has some specificities. There is no booking system
for Heavy Gross Vehicles and their loading follows a FIFO policy. When a vehicle (usually
a truck) arrives in the terminal, it drives through different tolls and enters a queue before
loading in a shuttle. This queue closes when all vehicles which leave with the shuttle have
arrived in the queue. The loading then starts in this shuttle and the next vehicles enter
another queue. Vehicles can enter a new queue only if the previous one is closed.

The loading process is quite different for individual passengers. Passengers have to book
in advance to travel in the Tunnel. When a passenger arrives, he waits until the operator
calls him and enters a queue before loading in the shuttle. The same way as for HGV
shuttles, the queue closes when all the passengers who will leave with the shuttle have
arrived in the queue and then the loading starts.

The process is illustrated in Figure 2.2.

2.2.5 The Block Safety System

The Block Safety System is used to manage the Tunnel at an operation level. Each tunnel
is divided into blocks of about 500 m long. The driver of a shuttle receives information on
the required speed at the beginning of each block, depending on the speed and location
of the other trains.

In the terminals and in the Tunnel, this information is given by the TVM (Transmission
Voie-Machine, i.e. Track to Train Transmission) signalling. It is composed of two major
systems:

20



2.3. Main objective

• The rail system, which gives information on the location and on the speed of the
other trains directly to the computer aboard the train.

• The system aboard which is autonomous and takes into account the information
given by the rail to create orders that the driver has to follow. These orders are the
maximum speed allowed for the train, at the end of the next block, or mandatory
speed immediately requested.

The Rail Control Centre also ensures the security on the terminals and in the Tunnel.
Controllers are in attendance 24 hours a day, ready to take manual control in the event of
technical failure.

This block safety system allows to satisfy the security constraints between the differ-
ent trains in the Tunnel. These constraints consist in a security headway between two
consecutive trains at any point in the Tunnel.

2.3 Main objective

Eurotunnel’s main objective is to face the future increase of the traffic in the Tunnel. This
increase is due to three main phenomena:

• The natural growth of the traffic due to the global growth of exchanges between
Paris and London, and between Brussels and London mainly. Based on the Gross
Domestic Product (GDP) growth forecasts and the elasticity of rail traffic to the GDP
growth, Eurotunnel expects a natural growth of 2.4% per year until 2020.

• The competitiveness of rail transportation compared to other means of transport.
The ferry companies between France and the United Kingdom are collapsing and
the major part of the freight traffic will turn towards Eurotunnel to cross the Chun-
nel.

• New direct lines and ease of transportation will also play a major role in the traffic
increase. Eurotunnel expects 2.5 million additional passengers by 2020 generated
by these new lines.

21





Part ICyclic schedules for trains and
shuttles in the Tunnel

23





3 Scheduling at Eurotunnel

This chapter describes the problem of computing a schedule for all trains travelling in
the Tunnel. The current method for computing such schedules at Eurotunnel is also
described.

3.1 Objective

A natural way for Eurotunnel to face the increase of freight and passengers demand in the
Tunnel is to compute schedules maximizing the number of freight and passengers shuttles.
These objectives are conflicting, adding one HGV shuttle may decrease the number of
PAX shuttles. Since the major increase will occur for freight, Eurotunnel focuses on HGV
shuttles and maximizes their number in the schedule while the number of PAX shuttles is
given as a constraint.

3.2 Rules to be satisfied by the schedules

This section describes the operational and commercial rules that the schedules have to
satisfy.

3.2.1 Cyclic schedules

For operational reasons, the schedules are cyclic with a period of one hour. According to
the variation of the demand, the global daily schedule is composed of repeated patterns
of one-hour cyclic schedules.

3.2.2 Symmetric schedules

Since the fleet of shuttles is finite, the rotation of each shuttle has to be taken into account.
To address this difficulty, Eurotunnel uses the same schedules for both directions France-
United Kingdom and United Kingdom-France: the schedules are completely symmetric,
the departures occur exactly at the same time for both stations. The interest of a symmetric
schedule lies in regulating the number of shuttles on each side of the Tunnel at any time.
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Moreover, combining this symmetry with the cyclic feature of the schedules also has a
major benefit: a given shuttle leaves a same station exactly every two hours.

3.2.3 Discrete departure times

For operational reasons, Eurotunnel uses departure times on full minutes, or more rarely
on half minutes. This is the case because a departure requires a lot of different people
(driver, loading personnel, traffic regulator, ...) and it is impossible to guarantee a depar-
ture at a very precise instant. It is also easier for the customer to have a departure time on
a full minute.

3.2.4 Security headways

A security headway between two trains has to be satisfied for security reasons. The block
safety system (see Section 2.2.5) is used to guarantee this headway at any point in the
Tunnel. The security headways are fixed by Eurotunnel.

Because of the differences between the speeds of the trains, the headway that has to be
satisfied at the entrance gate of the Tunnel may be larger than the minimum security
headway at any point of the Tunnel (see Figure 3.1). This figure shows time-space diagrams
of 2 trains in the Tunnel. The x-axis represents the time and the y-axis represents the
Tunnel. The lines represent the location of the trains in the Tunnel in according to the
time.

FR

UK

t t t
(a) (b) (c)

Figure 3.1 – Time-space diagrams representing the security headways

Computing these security headways for all ordered pairs of trains is also an important
issue. Annexe A is devoted to the description of the mathematical model we propose to
compute more accurate headways satisfying the security rules. They are given in Tables 3.1
and 3.2. The leading train is indicated in the first column and the following one in the first
line.
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Eurostar PAX shuttle HGV shuttle MA100 ME120
Eurostar 0’53” 0’48” 0’48” 0’48” 0’48”

PAX shuttle 6’22” 2’49” 2’49” 1’21” 1’21”
HGV shuttle 6’22” 2’49” 2’49” 1’21” 1’21”

MA100 12’21” 7’34” 7’34” 1’30” 5’59”
ME120 7’48” 3’02” 3’02” 1’15” 1’18”

Table 3.1 – Security headways for direction CAFO

Eurostar PAX shuttle HGV shuttle MA100 ME120
Eurostar 0’53” 0’31” 0’31” 0’32” 0’40”

PAX shuttle 6’07” 2’35” 2’35” 1’42” 1’50”
HGV shuttle 6’07” 2’35” 2’35” 1’42” 1’50”

MA100 13’02” 8’14” 8’14” 1’57” 6’43”
ME120 7’48” 3’02” 3’02” 1’15” 1’18”

Table 3.2 – Security headways for direction FOCA

Buffer times

Moreover, the schedules have to be designed in such a way that it limits the impact of the
perturbations (delays, incidents, problems with a train, ...). To cope with this problem, a
schedule is usually designed with buffer times between two consecutive train departures,
and the travel times for all the trains are slightly over-evaluated.

Delays occur when a real-time operation (a departure for instance) is subject to an external
or internal disturbance. There can be of two types: the first one is called primary delay.
It corresponds to a delay directly implied by a disturbance. For instance, if there is an
incident during the loading of a shuttle, the delay implied is a primary delay since it is
directly caused by the incident. The second type is the secondary delay. It corresponds to
a delay indirectly implied by a disturbance by propagation in the schedule. For instance,
the previous incident on the loading of a shuttle may imply a delay on the following
shuttle since its loading will start later. This delay is not implied by a disturbance on this
shuttle, but on another train which impacts this shuttle. Adding buffer times between
the departures cannot reduce the primary delays since they are directly implied by the
disturbance, but may reduce the secondary delays.

To deal with the delays and design more robust timetables, arbitrarily buffer times are
added to the security headway between any two ordered trains. For instance, if the
security headway between two trains is theoretically 2’22”, Eurotunnel may add a 38-
second buffer time in order to have a 3-minute minimum headway between these trains.
These minimum headways contain the security headways and the buffer times. Adding
these buffer times decreases the secondary delays. It is also a way for Eurotunnel to get
minimum headways in full minutes which eases the design of their timetables. Moreover,
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they systematically add a 5-percent increase of the travel time of every train in order to
prevent delays during the trip. Buffer times are useful to minimize the impact of a delay
on the following trains, but they decrease the capacity of the network by allowing fewer
trains to be scheduled.

The minimum headways used by Eurotunnel for both directions are given in Table 3.3.

Eurostar PAX HGV MA100 ME120
Eurostar 3’00” 2’30” 2’30” 5’00” 5’00”

PAX 7’00” 3’30” 3’30” 4’00” 4’00”
HGV 7’00” 3’30” 3’30” 4’00” 4’00”

MA100 15’00” 8’30” 8’30” 3’00” 7’00”
ME120 10’00” 4’00” 4’00” 5’00” 5’00”

Table 3.3 – Minimum headways used by Eurotunnel

3.2.5 Commercial agreements with Eurostar

Some commercial agreements between Eurotunnel and Eurostar constraint the schedul-
ing. The agreements specify that for some periods of time in a day, the Eurostars have to
be somehow evenly scheduled in the cyclic hour.

If there is an even number of Eurostars to schedule in the one-hour cyclic period, they
have to be grouped by pairs of twin Eurostars whose departure times are separated by
exactly 30 min. It means that if a Eurostar leaves a station at time t , another has to leave
30 min later at time t +30 (see Figure 3.2(a)). If there is an odd number of Eurostars to
schedule, they are also grouped by pairs of twin Eurostars whose departure times are
separated by exactly 30 min and there is thus a remaining Eurostar without any twin (see
Figure 3.2(b)) whose departure time can be anywhere in the schedule. These agreements
only apply during peak periods, mainly in the morning and in the evening.

Figure 3.2 represents feasible one-hour cyclic timetables satisfying the commercial agree-
ments with Eurostar, for the case of 4 Eurostars (a) and 3 Eurostars (b). In both cases,
the Eurostar represented with solid lines have their departure times separated by exactly
30 min. For case (b), the second dashed Eurostar is the remaining one.

3.2.6 Loading platforms

Because of a defect in the layout of the loading platforms, it is impossible to load three
HGV shuttles or three PAX shuttles at the same time. Eurotunnel schedules at most
two HGV shuttles in any 12-minute time window, and at most two PAX shuttles in any
12-minute time window.

Figure 3.3 describes this constraint for the HGV shuttles. After the first departure, there
is a buffer time represented by the hatched zone of 12 min where only one additional
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Figure 3.2 – Time-space diagrams representing the commercial agreement with Eurostar

departure can occur.
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Figure 3.3 – Time-space diagram representing the platform constraint for the HGV shuttles

3.2.7 Equal distribution of PAX shuttles within the cycle

In order to guarantee a good quality of service to its passengers, Eurotunnel tries to
schedule the PAX shuttles as evenly distributed as possible in the cyclic period. Thus,
the time between two consecutive PAX shuttle departures must not be too long. This
constraint is not clearly formalized by Eurotunnel and we propose the following rule: for
any PAX shuttle, the following PAX shuttle has to depart at most T /N PAX×1.5 min later. For
instance, in a one-hour cyclic schedule with 2 PAX shuttles, their departures are separated
by at most 45 min. In a schedule with 5 PAX shuttles, for any PAX shuttle departure, the
next PAX shuttle has to depart at most 18 min later.

3.3 Current scheduling technique at Eurotunnel

The scheduling of trains and shuttles is currently done without any mathematical model at
Eurotunnel. A few pre-calculated symmetric one-hour cycles are designed and combined
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into a global schedule for one day.

3.3.1 Standard train path and Tunnel capacity

A train path is the infrastructure capacity needed to run a train between two places over
a given time period. The capacity of a tunnel is the maximum number of trains that
can travel during a time lapse. The initial objective of Eurotunnel was to have 20 trains
travelling through the tunnel per hour, and for each direction, with identical speeds, and
spaced by 3 min. Indeed, 3 min was considered at first as the minimum headway between
two shuttles.

A shuttle travels through the Tunnel at 140 km/h, and the total travel time, from gate to
gate is around 26 min. Eurotunnel considers that a 3 min inter-time between 2 shuttles
is needed for security reasons. Based on these considerations, Eurotunnel designed its
own standard train path, corresponding to the train path of a shuttle through the Tunnel
(26 min), and on an inter-time of 3 min between two trains. Only considering shuttles, the
capacity of the Tunnel would be 20 shuttles per hour, i.e. 20 standard train paths per hour.
These are shown on Figure 3.4. This time-space diagram would represent the standard
schedule designed by Eurotunnel if there were only shuttles.

FR t

UK

0 3 6 9 5760

26

Figure 3.4 – Time-space diagram representing the standard schedule for the 20 standard
train paths

3.3.2 Dealing with trains

When taking into account the different trains, the design of the timetable becomes harder
because of the different speeds. To build the schedule, the train path corresponding to the
different trains are inserted in the standard schedule. Since the speeds of the Eurostars
and the shuttles are nonidentical, it crosses more than one standard train path in the total
capacity of the Tunnel (see Figure 3.5).

For each train which travels through the Tunnel, the part of the total capacity used by the
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Figure 3.5 – Time-space diagram for the Eurostar train path

train is measured by the standard train path. For all the different trains, these values are
summed up in the following Table 3.4.

Trains
Eurostar Shuttles Freight Freight

160 km/h 140 km/h 120 km/h 100 km/h
Travel time (min) 21 26 27 32

Standard train paths 8/3 1 4/3 3

Table 3.4 – Travel times of all the different trains

Eurotunnel uses the standard train path and the capacity used by each train to compute
by hand their cyclic schedules. By the way, the capacity used by Eurostars and freight
trains determines the price they pay to travel in the Tunnel.

An example of a feasible schedule in given on Figure 3.6. This schedule represents a cyclic
timetable of one hour, where the departure time of each train is indicated.
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Figure 3.6 – An example of a feasible schedule designed by Eurotunnel
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4 Cyclic scheduling deterministic
problem

This chapter describes a model for the scheduling problem faced by Eurotunnel and
introduced in Chapter 3. A general model is presented and some numerical experiments
have been performed to test the model. We present in the last section some schedule
improvements that can be achieved by relaxing some constraints.

4.1 Problem

The aim is to compute a cyclic various trains: Eurostars, freight trains MA100 and ME120,
HGV and PAX shuttles in a single direction. Since the schedules are symmetric (see
Section 3.2.2), they are the same for both directions. There is thus no mention of FOCA
and CAFO directions in this chapter. The objective is to maximize the number of HGV
shuttles under the constraints defined in Section 3.2:

• Cyclicity: the schedule has to be cyclic with a period of length T .
• Discrete departure times: the trains can only be scheduled on discrete instants of

step η in the cyclic period. The parameter η is a divisor of T , which means that T
can be written as aη where a is an integer.

• Security and buffer times: a minimum headway has to be scheduled between each
pair of trains. The minimum headway for each ordered pair (A,A’) being a train of
type A followed by a train of type A’ is denoted K A,A’. These quantities are positive.

• Commercial agreements with Eurostar: we try to figure out what could be a gener-
alization of the rule given in Section 3.2.5 for two Eurostars. During peak periods,
the Eurostars are gathered into groups of T /C Eur Eurostars, whose departure times
separated by C Eur during the whole cyclic period. The remaining ones, which cannot
form a group of T /C Eur Eurostars, are scheduled in a row, with their departure times
separated by C Eur, but not during the whole cycle. Note that in the real case faced
by Eurotunnel, Eurostars are gathered into pairs (T /C Eur = 2), and there is possibly
one remaining Eurostar. In order to have a feasible cyclic schedule, we need C Eur

to be a divisor of T and a multiple of η. If the schedule is not in a peak period, the
parameter C Eur will be set to T .

• Loading platforms: At most two HGV shuttles can be scheduled in any time window
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of length LHGV, and at most two PAX shuttles can be scheduled in any time window
of length LPAX, these parameters being given in input.

• Equal distribution of PAX shuttles among the cycle: for any PAX shuttle, the following
PAX shuttle (potentially using the cyclicity of the schedule) has to depart at most
T /N PAX ×1.5 min later.

Moreover, the number of trains of each type (except the number of HGV shuttles that we
want to maximize) is fixed. The following Table 4.1 provides the parameters given in input
of the problem.

T Length of the cyclic period
η Discretization of the departure times

M Set of train types:
{
Eur, MA100, ME120, PAX, HGV

}
N A Number of trains of type A ∈M \

{
HGV

}
LA Size of the time window in which 3 shuttles of type

A ∈ {
PAX, HGV

}
cannot be scheduled

C Eur Time between twin Eurostars in the commercial agreements

K A,A’ Minimum headway between departures of a train of type A ∈M

followed by a train of type A’ ∈M

Table 4.1 – Sets and parameters

4.2 Model

Let N HGV be any upper bound on the objective function (e.g. min
(⌊

T
K HGV,HGV

⌋
,2

⌊
T

LHGV

⌋)
).

The problem is modelled as a Mixed Integer Linear Program.
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4.2. Model

Max
N HGV∑

j=1
x j

s.t. d Eur

j+nF S+1 −d Eur

j = C Eur j ∈ {
1, . . . , (nF S +1)(N Eur −nF Sn)−1

}
(i)

d Eur

j+nF S
−d Eur

j = C Eur j ∈ {
(nF S +1)(N Eur −nF Sn)+1, . . . ,

N Eur −nF S
} (ii)

d A
j −d A’

j ′ ∈ [
K A’,A,T −K A, A’

]
T

A, A’ ∈M \
{
HGV

}
, A 6= A’,

j ∈ {
1, . . . , N A

}
, j ′ ∈ {

1, . . . , N A’
} (iii)

x j ≤ x j−1 j ∈ {
2, . . . , N HGV

}
(iv)

d HGV

j −d A
j ′ ∈ [

K A,HGVx j ,T −K HGV,Ax j
]

T
A ∈M \

{
HGV

}
, j ∈ {

1, . . . , N HGV
}

,
j ′ ∈ {

1, . . . , N A
} (v)

d A
j −d A

j−1 ≥ K A,A A ∈M \
{
HGV

}
,

j ∈ {
2, . . . , N A

} (vi)

d HGV

j −d HGV

j−1 ≥ K HGV,HGVx j j ∈ {
2, . . . , N HGV

}
(vii)

d A
1 +T −d A

N A ≥ K A,A A ∈M (viii)

d PAX
j −d PAX

j−2 ≥ LPAX j ∈ {
3, . . . , N PAX

}
(ix)

d HGV

j −d HGV

j−2 ≥ LHGVx j j ∈ {
3, . . . , N HGV

}
(x)

d A
1 +T −d A

N A−1
≥ LA A ∈ {

PAX, HGV
}

(xi)

d A
2 +T −d A

N A ≥ LA A ∈ {
PAX, HGV

}
(xii)

d PAX
j −d PAX

j−1 ≤ T /N PAX ×1.5 j ∈ {
2, . . . , N PAX

}
(xiii)

d PAX
1 +T −d PAX

N PAX ≤ T /N PAX ×1.5 (xiv)

d A
j ∈ {

0,η, . . . ,T −η}
A ∈M , j ∈ {

1, . . . , N A
}

x j ∈ {0,1} j ∈ {
1, . . . , N HGV

}
,

where n = T /C Eur, nF S = ⌊
N Eur/n

⌋
, and [`,u]T is a cyclic time-window (see p. 36).

The model uses the following decision variables:

d A
j ∈ {

0,η, . . . ,T −η}
for all A ∈M and j ∈ {

1, . . . , N A
}

x j =
{

1 if HGV shuttle j is scheduled
0 otherwise

for all j ∈ {
1, . . . , N HGV

}
.

The variable d A
j represents the discrete value of the departure time of the j th train of type

A, regarding the discretization η.

The objective of the problem is to maximize the number of HGV shuttles in the timetable.
The variables x j are binary and are set to 1 if the j th HGV shuttle is really scheduled. This
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objective function can thus be written as

Max
N HGV∑

j=1
x j .

This Mixed Integer Linear Program correctly models the problem describes in Chapter 3
and all the constraints are obvious except the commercial agreements ((i) and (ii)) and
the minimum headways constraints between different types of trains ((iii) and (v)) .

Commercial agreements constraints

The constant n = T /C Eur represents the number of Eurostars in a group with all their de-
partures separated by C Eur during the whole cycle. The constant nF S = ⌊

N Eur/n
⌋

represents
the number of such groups of Eurostars. Since the schedule is cyclic, if the set of optimal
solutions is nonempty, then there exists an optimal solution for which the N Eur −nF Sn
remaining Eurostars are scheduled in a row at the beginning of the period, after the first
departures of the full sequences (see Figure 4.1).

The constraints can be expressed as follows:

d Eur

j+nF S+1 −d Eur

j =C Eur for all j ∈ {
1, . . . , (nF S +1)(N Eur −nF Sn)−1

}
d Eur

j+nF S
−d Eur

j =C Eur for all j ∈ {
(nF S +1)(N Eur −nF Sn)+1, . . . , N Eur −nF S}.

When C Eur is set to T , the sets
{

1, . . . , (nF S+1)(N Eur−nF Sn)−1
}

and
{

(nF S+1)(N Eur−nF Sn)+
1, . . . , N Eur −nF S} are empty and there is no more constraint.

d Eur
1 d Eur

2 d Eur
3 d Eur

4 d Eur
5 d Eur

6 d Eur
7 d Eur

8 d Eur
1 d Eur

2 d Eur
3 d Eur

4 d Eur
5 d Eur

6 d Eur
7 d Eur

8

FR

UK

t

Figure 4.1 – Time-space diagram representing a feasible schedule for the commercial
agreement with Eurostar

Minimum headways constraints

We define a cyclic time-window as a time-window repeated periodically. The notation
[`,u]T is used to represent a time-window [`,u] repeated with a period T . The constraint
x ∈ [`,u]T means x mod T ∈ [`,u].
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Serafini and Ukovich [62], and Voorhoeve[69] showed that the constraint d A
j − d A’

j ′ ∈[
K A’,A,T −K A, A’

]
T can be linearised as follows:

K A’,A ≤ d A
j −d A’

j ′ +T pAA’
j j ′ ≤ T −K A, A’

where pAA’
j j ′ is a binary variable. The same linearisation is used for d HGV

j −d A
j ′ ∈

[
K A,HGVx j ,T −

K HGV,Ax j
]

T . These two constraints model the minimum headways constraints between
different types of trains. If the j th HGV shuttle is not scheduled, x j = 0 and the last
constraint is always satisfied.

4.3 Numerical results

We tested the model on several real instances of Eurotunnel. This section reports the
numerical results of these experiments. For solving the Mixed Integer Linear Program,
we used the MIP solver CPLEX 12.6 with its standard settings. The computation time is
limited to 3600 s. All the experiments were performed on a MacBook Pro of 2014 with four
2.2 Ghz processors and 16 Gb of ram.

4.3.1 Instances

We fix the input parameters of the model. The length of the period is one hour (T = 3600 s)
and the discretization is one minute (η= 60 s). The loading platforms constraints give
LPAX = LHGV = 720 s and the commercial agreements impose C Eur = 1800 s if these agree-
ments should apply (peak periods) and C Eur = T = 3600 s if they do not. The minimum
headways K A,A′ for A,A’ ∈ M are given in Table 3.3. The number of Eurostars, ME120,
MA100, and PAX shuttles may vary.

4.3.2 Results

Table 4.2 gives the numerical results for real instances of Eurotunnel. The first 4 columns
give respectively the number of Eurostars, ME120 trains, MA100 trains, and PAX shuttles.
The fifth column gives the value of C Eur (which varies weather the commercial agreements
apply or not). The next two columns give respectively the lower bound (value of the best
feasible solution) and the upper bound. The next column is the optimality gap. The last
column provides the CPU time spent solving the problem, given in seconds.

4.3.3 Comments

The results are convincing. The real instances faced by Eurotunnel are solved in less than
one second for all the cases. Moreover, the optimal value is the same as the one computed
by Eurotunnel “by hand” without any optimization technique. The second instance of the
table with 4 Eurostars, 1 ME120 trains and 5 PAX shuttles leads to a maximum of 4 HGV
shuttles. Eurotunnel schedules this instance with the schedule given in Figure 3.6 as an
example. This schedule also has 4 HGV shuttles.
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N Eur N ME120 N MA100 N PAX C Eur LB UB Gap(%) CPU (s)
4 1 0 5 1800 4 4 0.0 0.2
4 1 0 4 1800 5 5 0.0 0.1
4 1 0 3 1800 6 6 0.0 0.2
4 1 0 2 1800 7 7 0.0 0.1
4 1 0 1 1800 8 8 0.0 0.1
4 1 0 0 1800 8 8 0.0 0.0
3 1 1 3 1800 5 5 0.0 0.1
2 1 0 4 3600 7 7 0.0 0.3
1 0 0 5 3600 8 8 0.0 0.0

Table 4.2 – Numerical results for real instances of Eurotunnel

The first 6 instances of the table have 4 Eurostars, 1 ME120, and a number of PAX shuttles
varying from 0 to 5. Note that it allows to build a Pareto frontier of the maximum number
of PAX and HGV shuttles, which can be an interest for Eurotunnel.

This model allows Eurotunnel to compute very quickly one hour cyclic schedules for any
instance.

4.3.4 Schedule improvements

Some constraints are very limiting while computing an optimal cyclic schedule. This
section compares the optimal value of the real problem with the problem where some of
these constraints have been relaxed. It is useful for Eurotunnel to “price” these constraints
in order to have objective arguments for future investments or negotiations.

Cyclic period

Eurotunnel computes one-hour cyclic schedules which are repeated hour after hour. But
this may not be optimal and computing longer cycles may improve the number of HGV
shuttles in the period. Table 4.3 compares the number of HGV shuttles in duplicated
one-hour cyclic schedules with the optimal value of a cyclic schedule with a longer cyclic
period. The parameters are exactly the same as the ones described in Section 4.3.1 except
for T which varies here.

The first four columns give respectively the number of Eurostars, ME120 trains, MA100
trains, and PAX shuttles, and the fifth column gives the value of C Eur. The sixth column
gives the length of the period in hours. The next column is the value of the feasible solution
computed with a duplicated one-hour schedule. Columns 8 and 9 give respectively the
lower bound (best feasible solution) and the upper bound computed with the longer
cyclic period. The next column is the optimality gap and the next one provides the CPU
time spent solving the problem, given in seconds. The last column gives the improvement.

38



4.3. Numerical results

N Eur N ME120 N MA100 N PAX C Eur T (h) SOL LB UB Gap(%) CPU (s) Imp(%)
4 2 2 10 1800 2 8 9 9 0.0 194.6 12.5
8 4 4 8 1800 4 24 30 30 0.0 1.2 25.0
6 2 2 8 1800 2 8 9 9 0.0 46.5 12.5
6 6 6 24 3600 6 36 42 53 26.2 3600 16.7

Table 4.3 – Numerical results for longer cyclic periods

The improvement is very significant for the few instances given in the table. This is mainly
the case when there are several MA100 or ME120 freight trains which can be scheduled
consecutively in the longer schedule. The computational time is much higher than for
the one-hour cycle but since the schedules are computed days before, this time remains
acceptable.

Loading platforms

Enlarging the terminal to allow 3 simultaneous loadings for shuttles (see Section 3.2.6)
is possible but costs a lot of money. Relaxing this constraint gives the potential gain of
having such a larger terminal in terms of number of shuttles. Table 4.4 compares the
values of one-hour cyclic schedules with and without the loading platforms constraints.
The parameters are exactly the same as the ones described in Section 4.3.1 except for LPAX

and LHGV which are equal to 0 here.

The first four columns give respectively the number of Eurostars, ME120 trains, MA100
trains, and PAX shuttles and the fifth column gives the value of C Eur. The next column is
the value of the one-hour cyclic schedule with the loading platforms contraints. Columns
7 and 8 give respectively the lower bound (best feasible solution) and the upper bound
computed without the loading platforms constraints. The next column is the optimality
gap and the next one provides the CPU time spent solving the problem, given in seconds.
The last column gives the improvement.

N Eur N ME120 N MA100 N PAX C Eur SOL LB UB Gap(%) CPU (s) Imp(%)
0 0 0 0 1800 10 15 15 0.0 0.0 50.0
0 0 0 3 1800 10 12 12 0.0 0.0 20.0
2 0 0 2 3600 8 10 10 0.0 0.1 25.0
1 0 0 3 1800 9 10 10 0.0 0.0 11.1

Table 4.4 – Numerical results for relaxed loading platforms constraints

Relaxing the loading platforms constraints improves significantly the maximal number of
HGV shuttles in the cycle in comparison to the real problem. This is not surprising since
this constraint is very limiting while computing the schedules. See for example the first
instance with only HGV shuttles!
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Discretization of the departure times

Eurotunnel computes schedules with departure times on full minutes (see Section 3.2.3).
Relaxing this constraint by scheduling continuous departure times may thus improve their
schedules. Note that relaxing this constraint could be still applicable in practice: since the
scheduled departures times are at the entrance gate of the Tunnel, adapting the speed of
the trains between loading platforms and the entrance gate would lead to departure times
on full minutes at the loading platforms, which would be acceptable for the passengers
and the staff. Table 4.5 compares the value of a schedule with departure times on full
minutes with the optimal value of a one-hour cyclic schedule with continuous departure
times. The parameters are exactly the same as the ones described in Section 4.3.1 and the
variables d A

j are continuous in the set [0,T ].

The first four columns give respectively the number of Eurostars, ME120 trains, MA100
trains, and PAX shuttles and the fifth column gives the value of C Eur. The next column
gives the value of the schedule with departure times on full minutes. Columns 7 and 8 give
respectively the lower bound (best feasible solution) and the upper bound computed with
continuous departures. The next column is the optimality gap and the next one provides
the CPU time spent solving the problem, given in seconds. The last column gives the
improvement.

N Eur N ME120 N MA100 N PAX C Eur SOL LB UB Gap(%) CPU (s) Imp(%)
4 0 0 3 1800 7 8 8 0.0 0.0 14.3
2 1 0 5 3600 6 7 7 0.0 0.1 16.7
1 1 1 3 1800 7 8 8 0.0 0.1 14.3
4 0 1 5 1800 3 4 4 0.0 0.1 33.3

Table 4.5 – Numerical results for continuous departure times

Relaxing the discretization of the departure times on full minutes to continuous departure
times allows to schedule one HGV shuttle more than for the real problem for some
instances.

Commercial agreements with Eurostar

The commercial agreements with Eurostar specify that Eurostars must be scheduled in
groups where the departure times are separated by exactly 30 min. Relaxing totally this
constraint is not a option for Eurostar, but relaxing the strict equality of 30 min by a
time-window [27 min, 33 min] for instance may be possible. It gives Eurotunnel objective
arguments for future negotiations. The constraints modelling the commercial agreements
in the model can easily be adapted. Table 4.6 compares the value of a schedule with the
current commercial agremments with the optimal value of a one-hour cyclic schedule
with the relaxed commercial agreements of [27 min, 33 min]. The parameters are exactly
the same as the ones described in Section 4.3.1 with the value of C Eur set to 1800.

40



4.3. Numerical results

The first four columns give respectively the number of Eurostars, ME120 trains, MA100
trains, and PAX shuttles. The next column gives the value of the schedule with the current
commercial agreements. Columns 7 and 8 give respectively the lower bound (best feasible
solution) and the upper bound computed without the relaxed commercial agreements.
The next column is the optimality gap and the next one provides the CPU time spent
solving the problem, given in seconds. The last column gives the improvement.

N Eur N ME120 N MA100 N PAX SOL LB UB Gap(%) CPU (s) Imp(%)
2 0 1 0 7 8 8 0.0 0.0 14.3
2 0 1 1 7 8 8 0.0 0.0 14.3
3 1 1 0 7 8 8 0.0 0.0 14.3
3 0 1 1 7 8 8 0.0 0.0 14.3

Table 4.6 – Numerical results for the relaxed commercial agreements

Relaxing these constraints improve the schedules for some particular instances for which
one more HGV shuttle can be scheduled in one hour.

Conclusion

Increasing the length of the cyclic period or relaxing the discretization of the departure
times are operational levers to improve the schedules. Changing these rules and reshaping
the operational constraints would allow Eurotunnel to increase the number of shuttles in
the Tunnel.

Enlarging the terminal and the platforms would lead to a very important gain (up to 50%
for some instances). The current constraint of the loading platforms is technical and
relaxing it would cost money to the company. Changing may be more complicated than
for the previous constraints but it is a decision within Eurotunnel and remains feasible.

Relaxing the commercial agreements with Eurostar leads to a gain of one shuttle per hour
for some instances. The constraint is maybe the more difficult one to set up in practice
since it implies negotiations.

Relaxing these constraints allows to schedule more HGV shuttles with an important gain
(more than 10% for the instances presented here). But combining them would lead to an
even more important gain for Eurotunnel.

Literature review. This section provides a review of the research on train scheduling
and cyclic timetabling. Apart from [62] and [69], our work is not directly related to
this review.
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The train planning process can be decomposed into network design, timetabling,
rolling stock and personnel planning. Assad [1] and Cordeau et al. [18] give a general
overview of mathematical models for train transportation. For more contributions
on train scheduling in general, we refer to the contributions by Caprara et al. [16],
Guihaire et Hao [29], Huisman et al. [33], Kroon et al. [38], and Larson and Odoni
[43]. The timetabling part consists in giving the departure and arrival times for each
train and for each station in the railway network.

We do not review the literature on noncyclic train scheduling, but the important
contributions are referred in the reviews from Assad [1] and Cordeau et al. [18].
Cacchiani et al. [13] and Zhou and Zhong [73] provide interesting methods to solve
these problems.

In a cyclic schedule, train departure and arrival times are operated regularly with
respect to a cyclic period. In the general case, this period can last any time, it can
be for example one hour, two hours, or a whole day. For other companies, cyclic
timetables are mainly used for passenger trains, thought freight railway schedules
can also be built this way. For instance, Swiss, Dutch and German companies usually
design such timetables with a cyclic period of one hour. This kind of timetable is
very convenient for customers since the departure times for the trains at any station
are the same every hour. They do not have to memorize complex departure times for
their regular trains, but only the minutes of the hour at which they leave. Moreover,
these timetables also have many advantages for the operator himself. It makes easier
the computation of the total daily schedule since one only has to focus on a single
cyclic period. Rush hours and low-demand hours still need some adjustments but
the total computation is reduced. It also makes easier the management of the fixed
rolling stock of all the trains. In the particular case of Eurotunnel, a train leaves the
same station every two hours. The operator thus has an easy control on the rolling
stock during the period. These timetables are also less complex for the drivers and
the staff since their working hours remain the same period after period. However,
cyclic timetables may imply higher operational costs since the service is globally the
same whereas the demand varies. Although it can be adjusted, it yields to a lower
occupation of the trains for some departures. For a classical railway operator, this
issue can be avoided using longer trains when the demand is high and shorter ones
when the demand is low.

The cyclic train scheduling was introduced by Serafini and Ukovich [62] who pre-
sented the Periodic Event Scheduling Problem (PESP). They considered the problem
of scheduling periodic events and activities which are repeated at a constant rate.
The relative position of pairs of events is affected by time-window constraints and
the objective is to find a feasible timetable which gives the instants at which the
events take place.

Voorhoeve [69] was one of the first to consider the PESP model for the train schedul-
ing problem. He considered the Cyclic Railway Timetable Problem (CRTP) which
modelled the timetabling problem with cyclic time window constraints for each
pair of trains. Schrijver and Steenbeek [61] used the CRTP model by Voorhoeve and
improved it using constraint programming algorithms. They performed a lot of tests
on the real Dutch railway network.

Nachtigall [50, 52] also used the PESP model for a problem of computing a cyclic
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train schedule with periodic constraints on pairs of events. He added an objective
function of minimizing the passenger waiting times in the network and the passenger
total transit time. This objective function was also studied with Voget in [53]. They
created heuristics to build feasible timetables which were improved with genetic
algorithms. Nachtigall also proposed bi-criteria objective functions minimizing both
the passengers waiting times and the rolling stock costs, or minimizing the cost of
the infrastructure while maximizing the total revenue for the operator. He improved
the PESP model in [51] considering several trains lines with different cyclic periods.
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5 Buffer time allocation

This chapter describes the problem of buffer time allocation met by Eurotunnel and
already introduced in Section 3.2. We give our model for two versions of the problem and
a method to approximate an optimal solution. We performed numerical experiments to
test our methods. In a last section, we describe a related problem maximizing the number
of HGV shuttles and minimizing the expected average waiting time.

5.1 Problems

The aim is to compute a cyclic schedule with a period of length T and a fixed number N A

of trains of every type A. The cyclic schedule is then evaluated on H consecutive periods
and all the departures are subject to a primary disturbance from a probability distribution
depending on the type of train. All the departures are subject to these primary distur-
bances, but they are also impacted by secondary disturbances implied by the primary
ones.

The objective is to minimize the expected average delay of each departure for H consecu-
tive periods of the cyclic schedule, the delay being the difference between the scheduled
departure time and the effective departure time taking into account the disturbances. The
problem is thus to allocate buffer times between the departures of two consecutive trains.
Naturally, the cyclic schedule has to satisfy the constraints defined in Section 3.2: cyclic-
ity, discrete scheduled departure times, commercial agreements with Eurostar, loading
platforms, and even distribution of PAX shuttles among the cycle. Only the minimum
headways constraints are different: since the buffer times are allocated by the optimiza-
tion process, we must consider only the security headways between two consecutive
departures and not the minimum headways (which contain the security headways and
the buffer times, see Section 3.2.4). We denote by SA,A’ the security headways between two
consecutive trains respectively of types A and A’. Moreover, the effective departure times
for the H consecutive periods only have to satisfy the security and the loading platforms
constraints. They do not need to satisfy the discretization constraint, the commercial
agreements with Eurostars and the even distribution of PAX shuttles since these con-
straints are operational constraints for the scheduling , but can be violated by the effective
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departures. The objective is to compute a schedule minimizing the expected value of the
average delay of each departure for H consecutive periods.

The parameters given in input of the problem are the same as the ones for the previous
chapter provided in Table 4.1, except, of course, the security headways which are given
in Tables 3.1 and 3.2. We are also given in input the number N HGV of HGV shuttles, the
number H of consecutive periods, and of each type of train, the probability distribution
∆A for the primary disturbances. We define the total number of trains in the schedule
N all = N Eur+N PAX+N HGV+N MA100+N ME120. We set n = T /C Eur and nF S = ⌊

N Eur/n
⌋

respectively
the number of Eurostars in a group with all their departures separated by C Eur and the
number of such groups of Eurostars.

We consider two versions of this problem:

• In a first version, we consider that the relative order of the departures in the schedule
is given in input.

• In a second version, we consider that only the number of trains of each type is given
in input, but without the order of the departures in the schedule. This version may
give a better objective value than the first version.

5.2 First version

For this version, the number of trains of each type and the order in which they are
scheduled is given. We denote by A f the type of the last train of the schedule.
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5.2.1 Model

The first version of the problem can be modelled with a two-stage recourse stochastic
model:

Mind f (d ) := E [Q1(d ,δ)]

s.t. d Eur

j+nF S+1 −d Eur

j = C Eur j ∈ {
1, . . . , (nF S +1)(N Eur −nF Sn)−1

}
d Eur

j+nF S
−d Eur

j = C Eur j ∈ {
(nF S +1)(N Eur −nF Sn)+1, . . . ,

N Eur −nF S
}

d t ( j ,A)
i ( j ,A) −d A

j ≥ SA,t( j ,A) (
A, j

) ∈M ×{
1, . . . , N A

}
\
{(

N A f ,A f
)}

d
t (N A f ,A f )

i (N A f ,A f )
+T −d

A f

N A f
≥ SA f ,t (N A f ,A f )

d A
j −d A

j−2 ≥ LA A ∈ {
PAX, HGV

}
, j ∈ {

3, . . . , N A
}

d A
1 +T −d A

N A−1
≥ LA A ∈ {

PAX, HGV
}

d A
2 +T −d A

N A ≥ LA A ∈ {
PAX, HGV

}
d PAX

j −d PAX
j−1 ≤ T /N PAX ×1.5 j ∈ {

2, . . . , N PAX
}

d PAX
1 +T −d PAX

N PAX ≤ T /N PAX ×1.5

d A
j ∈ {

0,η, . . . ,T −η}
A ∈M , j ∈ {

1, . . . , N A
}

,

(5.1)
where Q1(d ,δ) is the recourse function defined hereafter, the d A

j ’s are variables represent-
ing the departure times of trains of type A, and δ are random variables modelling the
primary disturbances.

Q1(d ,δ) = Mine
1

H N all

∑
A∈M

N A∑
j=1

H−1∑
h=0

(
eA

j h −d A
j −hT

)
s.t. e t ( j ,A)

i ( j ,A)h −eA

j h ≥ SA,t ( j ,A)

(
j , A

) ∈ {
1, . . . , N A

}×M \
{(

N A f ,A f
)}

,
h ∈ {

0, . . . , H −1
}

e
t (N A f ,A f )

i (N A f ,A f )h+1
−e

A f

N A f h
≥ SA f ,t (N A f ,A f ) h ∈ {

0, . . . , H −2
}

eA

j h −eA

j−2,h ≥ LA A ∈ {
PAX, HGV

}
, j ∈ {

3, . . . , N A
}
,

h ∈ {
0, . . . , H −1

}
eA

1,h+1 −eA

N A−1,h
≥ LA A ∈ {

PAX, HGV
}
,h ∈ {

0, . . . , H −2
}

eA

2,h+1 −eA

N Ah
≥ LA A ∈ {

PAX, HGV
}
,h ∈ {

0, . . . , H −2
}

eA

j h −d A
j −hT ≥ δA

j h

A ∈M , j ∈ {
1, . . . , N A

}
,

h ∈ {
0, . . . , H −1

}
,

eA

j h ∈ R A ∈M , j ∈ {
1, . . . , N A

}
,

h ∈ {
0, . . . , H −1

}
,

(5.2)
where i ( j , A) and t ( j , A) are two functions which respectively give the index and the type of
the train immediately following the j th train of type A, δA

j h is the primary disturbance of

47



Chapter 5. Buffer time allocation

the j th train of type A in period h, and eA

j h is the effective departure time of the j th train
of type A in period h.

In the recourse function (5.2), the variables d are fixed, the random disturbances δ have
been revealed and the recourse variables e are optimized.

5.2.2 Method

Computing an optimal solution of (5.1) is difficult. As Kroon et al. [41] did in their paper,
we use the Sample Average Approximation which is a Monte-Carlo method to sample the
problem. Suppose that a random sample (δ1, . . . ,δR ) of R independent realizations of the
random variable is generated, where R is fixed independently of the problem. Denoting
by X the set of feasible solutions d of (5.1) and replacing f (·) by an approximation give
the following program:

Mind∈X
{

f̂R (d ) := 1

R

R∑
r=1

Q1(d ,δr )
}
, (5.3)

where Q1(·, ·) is given in (5.2). Note that E
[

f̂R (d )
]= f (d ). We denote by v∗ and the random

variable v̂R the optimal values of respectively program (5.1) and program (5.3).

Proposition 1. We have E[v̂R ] ≤ v∗ and v̂R converges to v∗ with probability 1.

Proof. We denote by X ∗ the set of optimal solutions of (5.1). We have

E [v̂R ] = E[
mind∈X f̂R (d )

]≤ E[
mind∈X ∗ f̂R (d )

]≤ mind∈X ∗ E
[

f̂R (d )
]= v∗,

which proves the first inequality. The convergence properties of such problems have also
been studied (see King and Rockafellar [36], Shapiro and Homem-de-Mello [64], Kleywegt
et al. [37], and Shapiro et al. [63]). In our case, the proof is immediate with [37, Proposition
2.1] since X is finite (the scheduled departure times are discrete), E

[
Q1(d ,δ)

]
and Q1(d ,δr )

are measurable for all d ∈ X , and the probability distributions ∆A are bounded (see
Section 5.4.1).

Moreover, we define for all ε> 0, the sets of ε-optimality solutions

X ∗
ε = {

d̄ ∈ X : E
[
Q1(d̄ ,δ)

]≤ mind∈X E
[
Q1(d ,δ)

]+ε}
X ∗

Rε = {
d̄ ∈ X : 1

R

∑R
r=1 Q1(d̄ ,δr ) ≤ mind∈X

1
R

∑R
r=1 Q1(d ,δr )+ε} .

The set X ∗
Rε is a random set. We also have with [37, Proposition 2.1] that for R large enough

and for all ε > 0, the probability P
(
X ∗

Rε ⊂ X ∗
ε

) = 1. Thus, the set of optimal scheduled
departure times for the sampled problem converges with probability 1 to the set of optimal
scheduled departure times of (5.1). In particular, if there is a unique optimal schedule, the
optimal schedule of the sampled problem converges to this solution with probability 1.
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Lower bound estimation

The expected value E[v̂R ] ≤ v∗ can be estimated. We generate Ω independent samples
of (δ1, . . . ,δR ). The sample δωr corresponds to the ωth sample of the r th realization with
ω ∈ {1, . . . ,Ω} and r ∈ {1, . . . ,R}. We solve the approximated program (5.3) for all ω and
denote by v̂ωR and d̂

ω
R respectively its optimal value and an optimal solution. We compute

the average v̄RΩ of these objective values and an estimator σ2
RΩ of its variance:

v̄RΩ = 1

Ω

Ω∑
ω=1

v̂ωR and σ2
RΩ = 1

Ω−1

Ω∑
ω=1

(
v̄RΩ− v̂ωR

)2 .

The average objective value v̄RΩ and the estimator of the variance σ2
RΩ are unbiased

estimators of respectively E[v̂R ] and Var(v̂R ), and v̄RΩ provides an estimator of a lower
bound on v∗. We have with the Central Limit Theorem

p
Ω (v̄RΩ−E[v̂R ])

L−→
R→+∞

N
(
0,σ2

RΩ

)
and an approximate (1−α)-confidence interval for E[v̂R ] which is a lower bound of our
real problem: [

v̄RΩ− zα/2σRΩp
Ω

, v̄RΩ+ zα/2σRΩp
Ω

]
,

where zα/2 is the (1−α/2)-quantile of the standard normal distribution.

Upper bound estimation

Picking any feasible solution d̂ ∈ X of (5.1) provides an upper bound f (d̂ ) on the opti-
mal value. This upper bound can be estimated. We generate an independent sample
(δ1, . . . ,δΛ) of the random variables and we define

f̄Λ(d̂ ) = 1

Λ

Λ∑
λ=1

Q1(d̂ ,δλ)

which is an unbiased estimator of f (d̂ ). The computation of Q1(d̂ ,δλ) is done via simula-
tion and is almost immediate. However, the variance of this estimator is quite large since
the values Q1(d̂ ,δλ) may vary a lot. A classical way to reduce the variance is to generate Z
independent samples of (δ1, . . . ,δΛ), the same way as it is done for the estimation of the
lower bound. The sample δζ

λ
corresponds to the ζth sample of the λth realization with

ζ ∈ {1, . . . , Z } and λ ∈ {1, . . . ,Λ}. We define

f̄ΛZ (d̂ ) = 1

Z

Z∑
ζ=1

f̄ ζΛ(d̂ ),

where f̄ ζΛ(d̂ ) is the value f̄Λ(d̂ ) for the ζth sample of δ.

The method to compute a good feasible solution is to pick the feasible solution d̂
ω
R among
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the set
{

d̂
ω
R , ω ∈ {1, . . . ,Ω}

}
of feasible solutions computed for the lower bound estimation,

for which f̄ΛZ (d̂
ω
R ) is minimal. We also have with the Central Limit Theorem

p
Z

(
f̄ΛZ (d̂ R )− f (d̂ R )

) L−→
R→+∞

N
(
0,σ2

ΛZ

)
,

where σ2
ΛZ = 1

Z−1

∑Z
ζ=1

(
f̄ΛZ (d̂ R )− f̄ ζΛ(d̂ )

)2
is an estimator of the variance. We have an

approximate (1−α)-confidence interval for f (d̂ R ) which is an estimator of an upper
bound of v∗: [

f̄ΛZ (d̂ R )− zα/2σΛZp
Z

, f̄ΛZ (d̂ R )+ zα/2σΛZp
Z

]
.

5.3 Second version

For this version, only the number of trains of each type to schedule is given.

5.3.1 Model and Method

The second version of the problem can almost be modelled with the same two-stage
recourse stochastic model as for the first version. Only the security constraints change
since the order of the departures is not given here. The model is the following one:

Mind E [Q2(d ,δ)]

s.t. d Eur

j+nF S+1 −d Eur

j = C Eur j ∈ {
1, . . . , (nF S +1)(N Eur −nF Sn)−1

}
d Eur

j+nF S
−d Eur

j = C Eur j ∈ {
(nF S +1)(N Eur −nF Sn)+1, . . . ,

N Eur −nF S
}

d A
j −d A’

j ′ ∈ [
SA’,A,T −SA, A’

]
T

A, A’ ∈M , A 6= A’,
j ∈ {

1, . . . , N A
}

, j ′ ∈ {
1, . . . , N A’

}
d A

j −d A
j−1 ≥ SA,A A ∈M and j ∈ {

2, . . . , N A
}

d A
j −d A

j−2 ≥ LA A ∈ {
PAX, HGV

}
, j ∈ {

3, . . . , N A
}

d A
1 +T −d A

N A−1
≥ LA A ∈ {

PAX, HGV
}

d A
2 +T −d A

N A ≥ LA A ∈ {
PAX, HGV

}
d PAX

j −d PAX
j−1 ≤ T /N PAX ×1.5 j ∈ {

2, . . . , N PAX
}

d PAX
1 +T −d PAX

N PAX ≤ T /N PAX ×1.5

d A
j ∈ {

0,η, . . . ,T −η}
A ∈M , j ∈ {

1, . . . , N A
}

,
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where Q2(d ,δ) is the recourse function defined as

Q2(d ,δ) = Mine
1

H N all

∑
A∈M

N A∑
j=1

H−1∑
h=0

(
eA

j h −d A
j −hT

)

s.t. eA

j hr −eA′
j ′hr ∈ [

SA’A, Mr −SAA’
]

Mr

A, A’ ∈M , A 6= A’, j ∈ {
1, . . . , N A

}
,

j ′ ∈ {
1, . . . , N A’

}
,h ∈ {

0, . . . , H −1
}
,

r ∈ {
1, . . . ,R

}
eA

1,h+1,r −eA′

N A′hr
≥ SA’A A, A’ ∈M ,h ∈ {

0, . . . , H −2
}
,

r ∈ {
1, . . . ,R

}
eA

j hr −eA

j−1,hr ≥ SAA A ∈M , j ∈ {
2, . . . , N A

}
,

h ∈ {
0, . . . , H −1

}
,r ∈ {

1, . . . ,R
}

eA

j h −eA

j−2,h ≥ LA A ∈ {
PAX, HGV

}
, j ∈ {

3, . . . , N A
}
,

h ∈ {
0, . . . , H −1

}
eA

1,h+1 −eA

N A−1,h
≥ LA A ∈ {

PAX, HGV
}
,h ∈ {

0, . . . , H −2
}

eA

2,h+1 −eA

N Ah
≥ LA A ∈ {

PAX, HGV
}
,h ∈ {

0, . . . , H −2
}

eA

j h −d A
j −hT ≥ δA

j h

A ∈M , j ∈ {
1, . . . , N A

}
,

h ∈ {
0, . . . , H −1

}
,

eA

j h ∈ R
A ∈M , j ∈ {

1, . . . , N A
}
,

h ∈ {
0, . . . , H −1

}
,

where Mr = T + ∑
A∈M

N A∑
j=1

H−1∑
h=0

δA

j hr for all r ∈ {0, . . . ,R}.

The constraints modelling the security constraints for the effective departures are different
than for the first version since the order is unknown. We need cyclic time windows (see
p.36) for the scheduled departure times d and for the effective departure times e of the
recourse program. The order of the trains in the schedule and the effective departures are
the same and thus, the dummy variables pAA’

j j ′ used to model the cyclic time windows are
also the same for these two set of variables. The constant Mr is an upper bound on the
value of eA

j hr for all j ,h,r, and A. Among all the effective departures from the same period
h, this constraint acts as if for every scenario r , the schedule was cyclic with a huge period
Mr .

We also use the Sample Average Approximation method for our problem. We have the
convergence in probability 1 with the same arguments as for Proposition 1 and the same
methods to compute confidence intervals for a lower bound and an upper bound.

5.4 Numerical results

We tested the model on several instances provided by Eurotunnel. This section reports
the numerical results of these experiments. The results give the 95%-confidence intervals
for some lower and upper bounds on the optimal value for various instances, for Versions
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1 and 2. These results are compared to the 95%-confidence intervals on the average
delay with the scheduled departure times with no stochastic optimization computed in
Chapter 4. These scheduled departure times are computed with minimum headways
containing a priori buffer times. We simulateΛ samples of delays, the same way as for the
upper bound estimation in Section 5.2.2, to compute the objective value.

For solving the Mixed Integer Linear Programs, we used the MIP solver CPLEX 12.6 with
its standard settings. The computation time is limited to one hour. All the experiments
were performed on a MacBook Pro of 2014 with four 2.2 Ghz processors and 16 Gb of ram.

5.4.1 Instances

The parameters T , LHGV, LPAX, and C Eur are the same as the ones given in Section 4.3.1. The
number of consecutive periods for which the cyclic schedule is duplicated is set to H = 6 h.
The number R of scenarios differs for the two versions. It is fixed to 500 for the first version
and to 10 for the second since the computation time is much larger. The number of
samples Ω to estimate a lower bound is not fixed a priori, the algorithm computes as
many iterations as possible in the limited time of one hour. The value ofΩ is given in the
results. The size of the samples and the number of these samples generated to estimate an
upper bound is respectively fixed to Λ= 10000 and Z = 100. As described in Section 5.2.2,
the method to compute the upper bounds consists in using the feasible solutions used
for the computation of the lower bounds. Once these solutions have been computed, the
computation time to simulate they values is negligible.

Security headways

The security headways SA,A′ for A,A’ ∈M are given in Tables 3.2 and 3.1.

The discretization of the schedule also plays an important role in the results. Indeed, using
a full minute discretization imposes to schedule artificial buffer time between consecutive
departures. Relaxing the discretization to continuous scheduled departure times (as it is
done in Section 4.3.4) leaves more freedom to the schedule. Both cases are used: η= 60
for the full minute discretization and η= 1 for the continuous departures.

Primary disturbances

We set the primary disturbances δA using the data of the real delays for one month at
Eurotunnel. These delays combine the primary disturbances and the secondary ones.
We did not manage to separate them and we decided to use these values for the primary
disturbances in our experiments. These delays are given in full minutes. We gathered all
the delays of each type of trains (Eurostar, PAX shuttle, and HGV shuttle) and we draw
uniformly one of these delays for each primary disturbance. We do not have real data for
the delays of MA100 and ME120 freight trains, but since these trains are mainly scheduled
at night time, when the traffic is low, we can consider that they are not delayed when
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arriving at the terminal and thus not subject to any primary disturbance. The probability
distributions for Eurostars, PAX shuttles, and HGV shuttles are given in the following
Figure 5.1.

(a) (b)

(c)

Figure 5.1 – Probabilities of a delay for an HGV shuttle (a), a PAX shuttle (b), and a Eurostar
(c)

5.4.2 Results

Table 5.1 gives the numerical results for the buffer time allocation problem. The first
column gives the order of the different trains. The value ‘E’ represents a Eurostar, ‘Ma’ a
MA100 freight train, ‘Me’ a ME120 freight train, ‘P’ a PAX shuttle, and ‘H’ an HGV shuttle.
The second column is the value of C Eur, the third column provides the direction (FOCA or
CAFO). The fourth column gives the discretization for the scheduled departure times. The
next column provides the confidence interval on the average delay using the scheduled
departure times computed in Chapter 4 (see Table 4.2). The next two columns give
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respectively the 95%-confidence intervals of a lower bound and an upper bound on the
optimal value for the first version. The last two columns give the same values for the
second version.

Instance Version 1 Version 2
Order C Eur Dir η SOL LB UB LB UB

EHHPPHHPHHPHHP 3600
FOCA

60
477.89±0.61

450.20±1.90 449.33±0.66 439.45±11.83 448.29±0.76
1 447.31±1.19 446.98±0.69 424.98±12.12 447.96±0.66

CAFO
60

505.53±0.75
479.92±2.16 477.34±0.64 459.91±12.45 475.74±0.86

1 474.99±1.26 475.70±0.80 447.53±10.83 475.34±0.59

EEPHHPHHMeHPHPH 3600
FOCA

60
439.14±0.55

400.95±1.87 402.90±0.54 357.57±25.99 371.77±0.57
1 397.91±1.22 397.95±0.47 330.70±15.01 370.88±0.57

CAFO
60

460.87±0.79
424.31±1.83 423.79±0.55 376.64±19.28 385.75±0.53

1 419.16±1.18 419.65±0.68 347.31±26.79 384.04±0.48

EEHHPHHEPHMaMeP 1800
FOCA

60
377.11±0.59

368.84±1.34 368.17±0.60 305.37±54.01 328.69±0.50
1 362.11±1.06 361.98±0.57 303.73±28.04 318.10±0.53

CAFO
60

385.29±0.63
373.67±1.57 374.10±0.92 326.20±20.51 331.32±0.49

1 369.21±1.04 369.55±0.57 298.07±28.69 324.50±0.47

EPMePHPEEPHHPHE 1800
FOCA

60
433.36±0.80

420.38±1.48 422.20±0.60 364.85±15.43 378.94±0.44
1 419.78±1.10 420.13±0.67 355.33±28.56 377.88±0.44

CAFO
60

453.37±0.73
443.25±1.43 442.58±0.77 373.79±19.89 399.29±0.63

1 440.83±1.13 440.67±0.72 376.78±18.56 398.78±0.53

Table 5.1 – Numerical results for the buffer time allocation problem

5.4.3 Comments

The results are very convincing since the best upper bound (best feasible solution) for
both versions is lower than the average waiting time given by the current solution. For the
first version, the lower and upper bounds are very close for all the instances with and the
confidence intervals are very tight. The lower and upper bounds and thus very accurate
and give a good approximation of the optimal value.

For the second version, since the upper bounds are compute with the same number
of samples Λ and Z than for the first version and since their computation is almost
immediate, the confidence intervals are as tight as the first version. They also provide a
significant improvement compared to the first version for some instances. However, the
confidence interval on the lower bounds are not as tight since their computation is much
slower than for the first version and the accurateness of the values is thus lower.

For both versions, there is an improvement of having a discretization fixed to one second
compared to one minute, but this improvement is very small.
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5.5 A related problem

5.5.1 Problem

We describe in this section the problem of computing a cyclic schedule with the two
lexicographic objectives of maximizing the number of HGV shuttles and minimizing the
expected value of the average delay of each train. On the one hand, Eurotunnel wants
to maximize the number of HGV shuttles in a cyclic schedule, as explained in Chapter 4.
On the other hand, operators like Eurotunnel want to compute schedules minimizing
the expected value of the average delay of each train for H consecutive periods. The
constraints are the same as the ones described in Sections 3.2 and 5.1. Additionally, we
want to guarantee a certain amount of buffer time ρ (usually 5% or 10% of the size of
the period) in the schedule: the sum of the security headways between the scheduled
departures must not exceed (1−ρ)T . Indeed, a schedule without buffer times is not
feasible in practice. According to the period of the day for example, operators sometimes
require a better punctuality of the trains and thus want to guarantee more buffer times in
the schedules. For some periods where the disturbances are low, they can require more
trains and thus less buffer times. This constraint cannot be modelled as a linear constraint
since the order of the departures in an optimal solution is not known a priori.

5.5.2 Method

The method to solve the problem is a heuristic computing good feasible solutions. The
idea of the heuristic is first to compute a deterministic cyclic schedule on a period of
length (1−ρ)T maximizing the number of HGV shuttles (with the method described in
Chapter 4 and with a parameter (1−ρ)C Eur for the commercial agreements with Eurostar).
We use then the output of the previous algorithm to compute a cyclic schedule of a
period of length T minimizing the expected value of the average delay of each train for H
consecutive periods. We either keep the same order of the trains (for which we use the
model given in Section 5.2.1) or only the number of different trains (for which we use the
model given in Section 5.3.1).

5.5.3 Numerical results

The parameters for this problem are the same ones as in Table 4.1 and in Section 5.1, with
a discretization η always set to 1.

Results

Table 5.2 gives the numerical results for this heuristic. The first four columns give re-
spectively the number of Eurostars, ME120 freight trains, MA100 freight trains, and PAX
shuttles in the instance. The next two columns are the parameter C Eur the direction (FOCA
or CAFO), and the next one is the value of ρ. The next column gives the maximum number
of HGV shuttles in the schedule. As for Table 4.1, the next two columns give respectively
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the 95%-confidence intervals of an upper bound on the optimal value respectively for the
first version and the second version.

Instance Version 1 Version 2
N Eur N ME120 N MA100 N PAX C Eur Dir ρ N HGV Average delay Average delay

1 0 0 5 3600 FOCA

0 10 1074.50±3.03 990.71±1.74
5 8 501.12±0.80 447.92±0.68

10 8 491.07±0.91 447.58±0.59
15 8 451.70±0.71 444.62±0.69
20 7 400.41±0.57 367.99±0.42

2 1 0 4 3600 CAFO
0 10 1061.37±2.44 1006.97±2.67

10 8 571.34±1.32 451.00±0.50
20 7 423.50±0.70 383.47±0.64

3 1 1 3 1800 FOCA

0 8 704.68±2.11 504.44±1.03
5 8 706.70±1.59 503.72±1.00

10 8 581.09±1.25 506.27±0.90
20 6 421.82±0.66 354.23±0.53

4 1 0 5 1800 CAFO

0 8 770.00±1.96 679.82±1.20
10 8 681.71±1.03 668.03±1.01
15 6 553.10±1.07 497.18±1.02
20 6 498.08±1.05 495.74±0.87

Table 5.2 – Numerical results for the heuristic

Comments

First note that ρ = 0 corresponds to the model where no buffer time is guaranteed a priori.
The first part of the heuristics is then exactly the problem described in Chapter 4 with a
cyclic period of length T . The number of scheduled HGV shuttles in thus larger than for
other values of ρ but the average delay is also much larger.

First note that the average delays with the second version of the algorithm are much lower
than the ones with the first version. The gain is about 30% for some instances.

For the first instance with 1 Eurostar and 5 PAX shuttles, the maximum number of HGV
shuttles with 5, 10 and 15% of guaranteed buffer times is equal to 8, and it is equal to 7
for a schedule with 20% of guaranteed buffer time. For the first version of the problem
minimizing average delay with the order of the trains in input, the results seem surprising:
for the first instance with 5, 10 and 15% of buffer times, while the input is the same (1
Eurostar, 5 PAX shuttles) and the output of the first part of the algorithm is 8 HGV shuttles
for all these values of ρ, the average delay decreases when ρ increases. The order of the
trains plays a major role in the second part of the algorithm for the average delay. It seems
that for large values of ρ, the first part of the algorithm computes a schedule with an order
of the trains which leads to smaller average delays than for small values of ρ, whereas this
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objective is not taken into account at this step. We did not manage to give a satisfactory
explanation to this. For the second version of the algorithm, the order of the trains is
recomputed in the second part of the algorithm and thus, these instances give comparable
average delays.

We performed complementary experiments on the heuristic. The results show that the
first version of the algorithm cannot lead to smaller average delays than the ones given
in Table 5.2 by computing lower bounds. For the second version, the results show that
the upper bounds given in Table 5.2 may be improved, but they still give much smaller
average delays than the first version.

Literature review. The robustness of train schedules is a major issue and has been
studied a lot. Odijk [54, 55] used the PESP (see Chapter 4) with the objective of
computing a feasible stable timetable. Stable meant reliable and low sensitive in
minor operational online changes. The stochastic nature of train transportation
had to be taken into account. Kroon and al. [39, 41] imagined a method to improve
existing cyclic railway timetables to take train delays into account. Our work is
inspired by these two articles. Their work is based on MIP models, Sample Average
Approximation and simulation to provide a schedule minimizing the expected value
of delays for all the trains. Cacchiani and Thot [14] and Fischetti et al. [26] also
gave advanced methods based on heuristics and bi-criteria Lagrangian to compute
robust timetables. Liebchen [47] and Vromans et al.[70] modelled with a Mixed
Integer Programs the problem on computing delay resistant railway timetables. The
allocation of supplements buffer time was described a lot (see Vromans [71]).

The improvement of the reliability of railway schedules can also be done with the
Max-Plus algebra, described by Goverde [27, 28] and de Kort [21]. Other general
analytic methods have been studied (see Peterson and Taylor [57], Hallowell and
Harker [30], Higgins and Kozan [32], Carrey [17], Huisman and Boucherie [34], and
Yuan’s PhD thesis [72]).
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6 A joint scheduling and pricing prob-
lem

Consider a one-way trip from an origin station to a final one. The aim of the work in this
chapter is to schedule a fixed number of shuttles on a period of time and to fix their prices.

We make the following assumptions. Each customer wants to purchase a ticket for this
trip and has a preferred departure time in the period. He is also sensitive to the price
of the trip. There are several economic classes of customers. For example, a business
customer is much less sensitive to the price than a tourist, but much more sensitive to his
departure time. A customer always purchases a ticket for the departure that satisfies him
the most, if there is one, or does not buy any if none of the departures suits him. There is
also a capacity constraint and thus, he cannot buy a ticket for a departure that is already
full. We consider that the customers who are the most sensitive to the prices purchase
their ticket first. The operator knows the total number of customers, the repartition of the
classes, and the probability distribution of their preferred departure times.

What is the schedule and what are the prices of the tickets that maximize the expected
revenue for the operator? This is the question addressed in this chapter.

This chapter gives a model for this problem and a Sample Average Approximation (SAA)
method to solve it. A relaxation algorithm which gives upper bounds is also proposed,
as well as two heuristics to compute good feasible solutions. Numerical experiments are
performed to test the model and the heuristics.

6.1 Problem

We are given a fleet of N shuttles, all having a capacity C ≥ 0, and situated at the origin
station ready to leave. We want to determine their departure times d j for all j ∈ {1, . . . , N }
on a period of time modelled as the interval [0,T ]. The departures have to satisfy the
security constraint: two consecutive departures must be separated by a minimum security
headway K ≥ 0. We also want to fix the price p j ∈ R+ of each departure j . Note that
the price for each departure is common to all customers. We define a product as a
pair (d j , p j ). A feasible solution of this problem is characterized by a set of N products
(d , p) = (d j , p j ) j∈{1,...,N }.
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We are given I customers. Each of them has to choose at most one product among the
ones that are offered by the operator. A fake “opt-out” product is added to capture the
customers who do not want to purchase any product. Each customer i has a preferred
departure time, modelled as a random variable χi ∈ [0,T ] at which he prefers to leave.
The random variables χi are supposed to be independent. He also belongs to a class
bi ∈ {1, . . . ,B} of customers, each class b having its own “value of time” vb ∈ [0,1]. We
assume that v1 ≤ v2 ≤ ·· · ≤ vB . Customers of class b make their choice before those of
class b′ > b. In a given class b, the customers make their choice in a random order. The
“opt-out” product is identified to a product indexed by 0 and with a price p0 = 0.

We follow the traditional methodology of discrete choice models, explained in Section 6.1.
For each customer i ∈ {1, . . . , I } and each product j ∈ {1, . . . , N }, we define a utility Ui j =
Vi j +ξi j where

• Vi j is the deterministic part defined as

Vi j = A− vbi gi (d j )− (1− vbi )p j (6.1)

with
gi (d) = h max(0,d −χi )+max(0,χi −d) (6.2)

and A some positive real constant,
• ξi j is a random variable following a Gumbel distribution (see Section 6.1).

We also set Ui 0 = ξi 0. The probability that customer i chooses product j is

Pi j (d , p) =P(
Ui j = max{Ui k : for all k not full}

)
.

It means that every customer i is utility-maximizing: he chooses the product j ∈ {0, . . . , N }
which maximizes his utility function Ui j , among all the departures which are available
(i.e. which are not full). We assume the “opt-out” to have an infinite capacity.

We assume that for all j and k, the probability P
(
Ui k =Ui j

)
is equal to 0, which implies in

particular that if Pi j (d , p) > 0, then the departure j is not full.

The problem can be written as the following program

Maxd ,p

N∑
j=1

p j

I∑
i=1

Pi j (d , p)

s.t. d j ≥ d j−1 +K j ∈ {2, . . . , N }

d j ∈ [0,T ] j ∈ {1, . . . , N }

p j ∈ R+ j ∈ {1, . . . , N }.

(6.3)

We present in Section 6.2 a first special case for which the probabilities Pi j (d , p) take an
explicit form. We give in Section 6.3 a Mixed Integer Piecewise Affine Program to model
this problem and a method based on SAA to solve it. We then give a natural heuristic to
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compute feasible solutions in Section 6.5. This heuristic mimics what could be a natural
way of scheduling the departure times and fixing their prices. Another heuristic based of
a Gauss-Seidel algorithm in presented in Section 6.6.

Discrete choice model

This section gives complementary explanations on the discrete choice model used for the
utility functions. The choices depend on many factors: some of them are observable and
others are not. The utility Ui j is decomposed in an observable deterministic part Vi j and a
nonobservable stochastic one ξi j . The error term ξi j is a random variable which captures
everything that cannot be explicitly modelled by the operator. The random variables
representing the error terms ξi j are supposed to be independent and to follow a standard
Gumbel distribution. This is a classical assumption in the discrete choice model theory
since it leads to closed formulas of the choice probabilities in some cases (see Section 6.2).

The utility Vi j depends on the customer and on the product, and captures everything
that is observable. The observable utility Vi 0 of the “opt-out” is set to 0, whereas for every
other product, Vi j is a function of the departure time d j and the price p j defined in
Equation (6.1). The positive real constant A represents the value of the “initial satisfaction”
of the customers. The function gi (·) represents the weighted delay of a departure time
compared to the preferred departure time χi . The value h ∈R+ represents the importance
of a delay compared to a departure in advance; it is the same for all customers. A value
h < 1 means that leaving at a departure time d j > χi is more acceptable than leaving at
d j < χi . A value h > 1 means that leaving in advance is more acceptable than leaving
with a delay (the most common case in practice). The values vb ∈ [0,1] are the “values of
time” and give the part of the total sensitiveness of the customers of class b that is for the
departure time: a value vb = 0 means that the customers of class b are not sensitive to the
departure time and a value vb = 1 means that they are not sensitive to the prices.

6.2 A first special case

We have been able to identify a special case for which their is an explicit form of the
objective function. In an even more specific case, we are able to give an explicit solution.
We assume C = +∞, K = 0, and that the random variables χi are deterministic. With
these assumptions, it is known that Pi j (d , p) has an explicit expression (see Ben-Akiva
and Bierlaire [4], Ben-Akiva et al. [5], Bussieck et al. [11], and Train [66]):

Pi j (d , p) = eVi j∑N
k=0 eVi k

= eVi j

1+∑N
k=1 eVi k

.

Program (6.3) can be expressed as follows:
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Maxd ,p

N∑
j=1

p j

I∑
i=1

eVi j

1+∑N
k=1 eVi k

s.t. Vi j = A− vbi gi (d j )− (1− vbi )p j i ∈ {1, . . . , I }, j ∈ {1, . . . , N }.

where the function g (·) is defined in Equation (6.2).

Note that already in this case, the objective function has many local maxima. It explains
why it is difficult to solve to the optimum. Consider the special case where there is one
single customer (i.e. I = 1). The problem becomes

Maxd ,p

N∑
j=1

p j
eV j

1+∑N
k=1 eVk

s.t. V j = A− vb g (d j )− (1− vb)p j j ∈ {1, . . . , N }.

(6.4)

Let W0(·) be the unique function satisfying W0(x)eW0(x) = x for all x ≥−1/e (this function
is the “upper branch of the Lambert-W function” (see [20])).

Proposition 2. If vb < 1, the solution (d̃ , p̃) with (d̃ j , p̃ j ) =
(
χ1,

1+W0(Ne A−1)

1− vb

)
for all

j ∈ {1, . . . , N } is optimal for program (6.4) and the optimal value is W0(Ne A−1)
1−vb

. Otherwise,
there is no optimal solution and the optimal value is +∞.

Proof. We denote by f (d , p) the objective function. We assume first that vb < 1. Since
the function x 7→ ex

a+ex is increasing (where a is a constant), and since Vi j is maximal for
d j =χi , it is clear that for all j , d j =χi for any optimal solution. Moreover, the function
f (·, ·) is differentiable for all p j and we have

∂ f

∂p j
(d , p) = eV j(∑N

k=1 eVk
)2

(
(1− (1− vb)p j )(1+

N∑
k=1

eVk )+ (1− vb)
N∑

k=1
pk eVk

)
.

If a solution (d , p) is an optimal solution, then ∇ f = 0 and then for all j , we have (1−
(1−vb)p j )(1+∑N

k=1 eVk )+ (1−vb)
∑N

k=1 pk eVk = 0. Subtracting this equality for all j and j ′

gives p j = p j ′ . Problem (6.4) becomes

Maxp∈R+φ(p),

where
φ : R+ −→ R+

p 7−→ p Ne A−(1−vb )p

1+Ne A−(1−vb )p .

Let p̄ ∈R∗+. There exists p̂ ∈R+ such that for all p > p̂, 0 <φ(p) <φ(p̄) since lim
p→+∞φ(p) = 0.

Thus, φ(·) can be restricted to φ : [0, p̂] →R+ and has a maximum value for p = p∗ where
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p∗ ∈ (0, p̂). The function φ(·) is differentiable and

φ′(p) = Ne A−(1−vb )p (1+Ne A−(1−vb )p − (1− vb)p)

(1+Ne A−(1−vb )p )2
.

Since p∗ is a local maximum, we have necessarily

1+Ne A−(1−vb )p∗ − (1− vb)p∗ = 0. (6.5)

Denoting X = Ne A−(1−vb )p∗
, we have X e X = Ne A−1 and thus X = W0(Ne A−1) because

Ne A−1 ≥ 0. Then there is a unique possible value for p∗ and p∗ = A−ln N−lnW0(e A−1)
1−vb

which

gives p∗ = 1+W0(Ne A−1)
1−vb

.

If vb = 1, f (·, ·) converges to +∞ when p j tends to +∞ and the optimal value in +∞.

6.3 Model and Sample Average Approximation

We provide an alternate expression for the objective function which will turn to be useful.
We denote by ξ= (ξi j ), and by χ= (χi ). Let X be the set of feasible solutions

X = {
(d , p) ∈ [0,T ]N ×RN

+ : d j ≥ d j−1 +K , j ∈ {2, . . . , N }
}

.

Program (6.3) can be equivalently written as a two-stage recourse program

Max(d ,p)∈X f (d , p) := E[
Q(d , p ,χ,ξ)

]
. (6.6)

Here, Q(d , p ,χ,ξ) is the recourse function defined as

Q(d , p ,χ,ξ) =
I∑

i=1

J∑
j=1

p j wi j (6.7)

where the wi j ’s are solutions of the following system

yi j =
{

1 if
∑i−1

i ′=1 wi j <C
0 otherwise

i ∈ {1, . . . , I }, j ∈ {1, . . . , J }

yi 0 = 1 i ∈ {1, . . . , I }

Ui j = A− vbi gi (d j )− (1− vbi )p j +ξi j i ∈ {1, . . . , I }, j ∈ {1, . . . , J }

Ui 0 = ξi 0 i ∈ {1, . . . , I }

wi j =
{

1 if Ui j = max
{
Ui k : for all k such that yi k = 1

}
0 otherwise.

i ∈ {1, . . . , I }, j ∈ {1, . . . , J }

(S )

The functions gi (·) are defined in Equation (6.2). The variables yi j represent the availabil-
ity of product j for customer i , the variables Ui j are the utilities and the variables wi j

represent the choice of customer i for product j . The variables d and p are fixed before
knowing the realization of the random variables χ and ξ.
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As we did in Chapter 5, we can solve program (6.6) with a Sample Average Approximation
method as follows. We generate samples (χ1, . . . ,χR ) and (ξ1, . . . ,ξR ) of R realizations of
the random variables. We can approximate the objective function f (·, ·) and program (6.6)
becomes

Max(d ,p)∈X fR (d , p) := 1

R

R∑
r=1

Q(d , p ,χr ,ξr ), (MIPAP)

where Q(·, ·, ·, ·) is the recourse function defined in (6.7). The recourse function can easily
be determined for fixed χ and ξ. This is because (S ) can be described by piecewise affine
inequalities, making it accessible to standard solvers.

As for Proposition 1, we have the convergence with probability 1 of fR (d , p) to f (d , p) as
R goes to +∞, for all (d , p) ∈ X . The proof is obtained with the same arguments.

As it is described in Section 5.2.2, an upper bound on the optimal solution of program (6.6)
is be computed by generating Ω samples of (ξ1, . . . ,ξR ) and solving program (MIPAP)
for some predetermineΩ. We can estimate this upper bound with a (1−α)-confidence
interval. For each of these Ω feasible solutions, Z samples of size Λ, (ξ1, . . . ,ξΛ), give
an estimation of its value (and thus a lower bound on the optimal value) with a (1−α)-
confidence interval. We return the feasible solution that has the largest estimated value.

6.4 Lagrangian relaxation

As an alternative way to get upper bounds on the optimal value, we propose a Lagrangian
method. We use a standard trick: we add the variables d j r and p j r to model the departure
times and prices for each scenario r . We add the constraints d j r = d j and p j r = p j

to ensure that the departure times and prices are the same for all scenarios, and the
constraints d j r ≥ d j−1,r +K to ensure that the departures satisfy the security constraint.
Let us rewrite program (MIPAP) with these new variables:

Max(d ,p)∈X
1

R

R∑
r=1

Q(d r , pr ,χr ,ξr )

s.t. d j = d j r j ∈ {1, . . . , N },r ∈ {1, . . . ,R} (i)

p j = p j r j ∈ {1, . . . , N },r ∈ {1, . . . ,R} (ii)

d j r ≥ d j−1,r +K j ∈ {2, . . . , N },r ∈ {1, . . . ,R} (iii)

d j r ∈ [0,T ] j ∈ {1, . . . , N },r ∈ {1, . . . ,R} (iv)

p j r ∈ R+ j ∈ {1, . . . , N },r ∈ {1, . . . ,R} (v).

(6.8)

We define λ ∈ RN ×RR and µ ∈ RN ×RR to be the Lagrangian multipliers respectively
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associated with constraints (i) and (ii). The Lagrangian relaxation is

LR (λ,µ) = sup(d ,p)∈X
1

R

R∑
r=1

Q(d r , pr ,χr ,ξr )+
N∑

j=1

R∑
r=1

(
λ j r (d j r −d j )+µ j r (p j r −p j )

)
s.t. d j r ≥ d j−1,r +K j ∈ {2, . . . , N },r ∈ {1, . . . ,R}

d j r ∈ [0,T ] j ∈ {1, . . . , N },r ∈ {1, . . . ,R}

p j r ∈ [0,P+] j ∈ {1, . . . , N },r ∈ {1, . . . ,R}.

This program is decorrelated for the R scenarios and can be expressed as follows.

LR (λ,µ) = 1

R

R∑
r=1

sup(d r ,pr )∈X

(
Q(d r , pr ,χr ,ξr )+

N∑
j=1

(λ j r d j r +µ j r p j r )

)

− inf(d ,p)∈X

N∑
j=1

(
R∑

r=1
λ j r d j +

R∑
r=1

µ j r p j

)
.

(6.9)

We denote v∗
R the optimal value of program (MIPAP). For anyλ and µ, the value LR (λ,µ)

provides an upper bound on v∗
R . To obtain the sharpest possible upper bound, we solve

the following Lagrangian Dual program:

L∗
R = infλ,µLR (λ,µ). (6.10)

We have that the optimal value L∗
R of the Lagrangian Dual program (6.10) provides an

upper bound on the value vR of any feasible solution of program (MIPAP):

vR ≤ v∗
R ≤ L∗

R ≤ LR (λ,µ). (6.11)

Note that the primal program (MIPAP) has integer variables and there is thus no reason
that L∗

R = v∗
R .

To solve the Lagrangian Dual program (6.10), we use a subgradient method (see [6]). At any
step k, from the current state vector (λk ,µk ), we compute a subgradient ∇LR (λk ,µk ) =(
(d∗k

j r −d∗k
j ), (p∗k

j r −p∗k
j )

)
, where d∗k

j r ,d∗k
j , p∗k

j r , and p∗k
j are the optimal solutions of (6.9).

We then update the Lagrangian multipliersλk and µk as follows:

λk+1
j r ←− λk

j r −θk (p∗k
j r −p∗k

j )

µk+1
j r ←− µk

j r −θk (d∗k
j r −d∗k

j ).

The step θk at each iteration specifies how far we move in the opposite direction of
a subgradient. To ensure that this method converges, it is known that the following
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convergences are required.

θk −→
k→+∞

0 and
k∑

i=1
θk −→

k→+∞
+∞.

Choosing θk = 1
k would work but leads to a bad convergence speed in certain cases. We

choose the following heuristic for selecting the step:

θk =αk
LR (λk ,µk )−LB

‖∇LR (λk ,µk )‖2
,

where αk is a scalar chosen between 0 and 2, empirically chosen equal to 0.5×0.75k , and
LB is the value of the best-known feasible solution of program (6.9). We stop the algorithm
when there is no improvement of L̂R and when the value |LR (λk ,µk )− L̂R | is nonlarger
than L̂R /100 for 10 consecutive iterations, where

L̂R = min`∈{1,...,k} LR (λ`,µ`).

The estimation of a confidence interval for the upper bound is done the same way as for
the previous model given in Section 6.3.

Note that we can easily build feasible solutions (d̂ , p̂), which gives raise to a Lagrangian
heuristic. At each iteration of the Lagrangian relaxation, we draw uniformally at random
the departure times and prices such that

(d̂ , p̂) ∈ convr∈{1,...,R}(d r , pr ).

6.5 Sequential heuristic

As mentioned in the introduction, we try here to mimic what would be a natural way of
scheduling the departure times and fixing their prices. First, we compute the departure
times d j ’s. To do that, we use a surrogate optimization program minimizing the sum of
the weighted delays gi (d j ) for each customer i .

Min E

[
I∑

i=1

N∑
j=1

gi (d j )xi j

]

s.t.
N∑

j=1
xi j ≥ 1 i ∈ {1, . . . , I }

d j ≥ d j−1 +K j ∈ {0, . . . , N }

d j ∈ [0,T ] j ∈ {0, . . . , N }

xi j ∈ {0,1} i ∈ {1, . . . , I }, j ∈ {0, . . . , N }.

(6.12)
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The variables xi j model the choice of customer i . This program can be linearized with
standard techniques. The rational is to define the departure times which satisfy the
customers the best.

Second, we compute the prices p j ’s with program (MIPAP) as in Section 6.3, where the
d j ’s are fixed.

6.6 Gauss-Seidel heuristic

This algorithm is inspired from the block nonlinear Gauss-Seidel algorithm. Let m be any
positive integer and J1 ∪ J2 ∪·· ·∪ Jm a partition of {1, . . . , N } such that their cardinalities
differ by at most one.

We initialize (d , p) to some (d 0, p0). The algorithm generates a sequence of feasible
solutions (d k , pk ). The solution (d k+1, pk+1) is computed using the solution (d k , pk ) of
previous step by solving(

(d k+1
j ) j∈J` , (pk+1

j ) j∈J`

) ∈ argmax(
(d j ) j∈J`

,(p j ) j∈J`

)
f
((

(d k+1
j ) j∈J1 , . . . , (d j ) j∈J` , . . . (d k

j ) j∈Jm

)
,
(
(pk+1

j ) j∈J1 , . . . , (p j ) j∈J` , . . . (pk
j ) j∈Jm

))
for all ` ∈ {1, . . . ,m}. The function f (·) is defined in (6.6) and the maximum is taken among
the

(
(d j ) j∈J` , (p j ) j∈J`

) ∈ [0,T ]J` ×RJ`+ such that d j+1 ≥ d j +K .

The value of m is empirically fixed equal to max(1,dI N /5e) when I ≤ 5 (i.e. m ≤ N ). If
I > 5, we use a variant where (d k+1

j , pk+1
j ) is computed by solving a similar program for

each variable sequentially (i.e. d k+1
1 , then pk+1

1 , then d k+1
2 , . . .).

We initialize (d 0, p0) either with the solution of sequential heuristic described in Sec-
tion 6.5 or the best feasible solution of with the Lagrangian heuristic described in Sec-
tion 6.4.

6.7 Numerical results

We tested the models on several instances. To compute the upper bounds with the MIPAP
algorithm and the Lagrangian relaxation, we used the MIP solver CPLEX 12.6 with its
standard settings. To compute the lower bounds with the MIPAP algorithm, the sequential
heuristic, and the Gauss-Seidel heuristic, we used the same version of CPLEX with a
special setting boosting the computation of feasible solutions (see Fischetti et al. [25]). All
the experiments were performed on a MacBook Pro of 2014 with four 2.2 Ghz processors
and 16 Gb of ram. The computation time is limited to one hour for the upper bounds, and
to twenty minutes for the lower bounds.
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6.7.1 Instances

We build our own instances since the problem is completely prospective for Eurotunnel.
The size of the period is one hour (T = 3600 s) and the security headway is fixed to
K = 155 s (corresponds to the security headway between two HGV shuttles for direction
FOCA). The capacity of each train is fixed to C = bI /Nc.

Utilities

The value h is fixed to 3/2 and the preferred departure times χi follow a customized proba-
bility distribution given in the following Figure 6.1. The economic classes of the customer
are Business, Economic, and Low-Cost. We take one third of Low-Cost customers (b = 1),
one third of Economic customers (b = 2), and one third of Business customers (b = 3).
The values of vb for each class are given in Table 6.1. The parameter A is equal to 15. The
error terms ξi j follow a standard Gumbel distribution, represented in Figure 6.2.

Class vb

Low-cost 0.25
Economic 0.50
Business 0.75

Table 6.1 – Values of time for the different economic classes

Figure 6.1 – Probability distribution of the preferred departure times

Confidence intervals

The number R of scenarios taken in the Sample Average Approximations varies according
to the instance. Since the number of variables and constraints of the programs can be
very large for some instances, the value R has to be fixed according to the number of
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Figure 6.2 – Probability density function of standard Gumbel distribution

departures N and the number of customers I . We empirically fix R to
⌊

5000/(I 2N 2)
⌋

for
the computation of the upper bounds and

⌊
200/(I 2N 2)

⌋
for the computation of the lower

bounds. The number of samplesΩ to estimate an upper bound is not fixed a priori, the
algorithm computes as many as possible is the limited computation time. The size of
the samples and the number of these samples generated to estimate a lower bound is
respectively fixed toΛ= 1000 and Z = 100.

6.7.2 Results

Table 6.2 gives the numerical results for the joint scheduling and pricing problem. The first
two columns are the instance and give respectively the number I of customers and the
number N of trains. The next two columns are respectively the 95%-confidence intervals
of a lower bound and an upper bound on the optimal value the Mixed Integer Piecewise
Affine Program (MIPAP). The next two columns give the confidence interval on a lower
bound respectively for the sequential heuristic and the Gauss-Seidel heuristic. The last
column gives the confidence interval on the upper bound of the Lagrangian relaxation.

6.7.3 Comments

Several comments can be made in the light of these results. For some large instances, the
confidence intervals for the upper bounds were so large that they had no sense compared
to the lower bounds. The values in such cases were replaced by the upper bound of the
confidence intervals with means that these values are upper bounds on the optimal value
of the problem with a probability of 95%. The upper bounds computed by the Lagrangian
relaxation are much worse than the ones computed with the MIPAP algorithm.

The feasible solutions computed with the sequential heuristic give values which are
surprisingly close to values of the solutions computed with the MIPAP algorithm. These
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Instance Lower bounds Upper bounds
I N MIPAP Seq. heur. G-S heur. MIPAP Lag. relax.
1 1 8.3±0.0 8.3±0.0 8.3±0.0 8.3± 0.0 14.7± 0.0
2 1 14.3±0.0 14.1±0.0 14.3±0.0 14.7± 0.1 25.8± 0.1

10 1 66.0±0.1 65.8±0.1 66.0±0.1 77.1± 0.9 96.6± 3.6
100 1 652.8±0.8 651.4±1.1 652.2±1.3 769.6± 89.1 ≤ 1050.4
200 1 1304.9±1.8 1301.9±2.0 1303.4±1.8 ≤ 1862.4 ≤ 2668.3

2 2 17.5±0.0 17.4±0.0 17.4±0.0 23.3± 2.1 33.4± 0.1
4 2 37.2±0.0 36.8±0.0 37.2±0.0 48.9± 2.2 63.4± 1.5

20 2 199.4±0.1 198.6±0.2 198.7±0.2 305.0± 11.6 307.4± 31.0
100 2 986.9±1.3 998.4±1.1 1001.8±1.2 ≤ 2229.3 ≤ 4008.6

50 3 557.2±0.7 591.4±0.5 593.0±0.6 834.7± 103.8 847.5±204.9
100 3 1159.6±0.8 1162.7±1.1 1165.5±1.1 1847.4± 769.8 ≤ 4302.1
100 4 1241.3±0.8 1263.4±1.5 1274.8±1.0 1958.9± 385.5 ≤ 2989.9
200 4 2567.5±1.8 2531.5±3.0 2568.9±2.1 3944.5±1127.6 ≤ 6974.2
200 5 4290.7±2.2 4353.1±2.8 4461.1±2.2 5957.1±1339.7 ≤ 9687.2
300 6 4445.3±2.6 4471.4±2.9 4589.6±2.9 6579.6±1209.3 ≤ 9608.4

Table 6.2 – Numerical results for the combined scheduling and pricing problem

values are even better for some large instances. However, the Gauss-Seidel algorithm
manages to improve these solutions for all the instances. The feasible solutions computed
with this algorithm give values which are very close to the ones computed with the MIPAP
algorithm for some small instances, and which are much better for some large instances.
The values are also much better than the ones computed by the sequential heuristic with
proves the gain of optimizing in a joint way the departure times and the prices.

Literature review. We give a review on discrete choice models and interactions
between network design and pricing. We did not find any literature dealing with
scheduling and pricing for rail transportation. Since network design and pricing
are a lot studied in transportation theory, we naturally looked at this literature.
The problem involves two different kinds of agents: the operator who designs the
network and fixes the prices for all the products in order to maximize the profit of
the company, and the customers who act to maximize their own profits individually.
These two parts act non cooperatively and the company aims to fix high prices to
increase their profit and the customers want to buy at low prices. They usually
act sequentially and the operator models the behaviour of the customers in its
optimization model. This problem was described in economy by Van Ackere [68]
where a principal wants to hire an agent at the best salary. These two agents have
antagonist objectives, the behaviour of the agent is modelled by the principal in his
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optimization process.

To model the customers’ behaviours, we use a discrete choice model to describe
and predict the choices of customers for a finite set of alternatives. Such methods
contrast with continuous models for which the choices are continuous among a
set of continuous alternatives. The discrete choice models have been studied a
lot by Ben-Akiva and Lerman [5] and Ben-Akiva et al. [4]. Some sets of models
use a deterministic utility function and probabilistic decisions such as Luce [49] or
Tversky [67]. Another set of models uses random utility functions and deterministic
choices to describe uncertainty. We use in our work the latter models with random
utility functions and deterministic choices. The different methods and discrete
choice models are described in [4].

Assortment optimization is a common problem faced by companies. It consists in
selecting a finite set of products among a large panel to offer to a group of customers
so as to maximize the revenue. This problem is very close to the want we present
here, and was studied for example by Talluri and Van Ryzin [65], Bront et al. [8], and
by Rusmevichientong et al. [59, 60].

Network design and pricing have mostly been addressed sequentially: the prices
are optimized on a network computed in a first step. However, these two issues
are linked and have to been treated in a joint way. This joint problem has already
been studied by Lederer [44], and Brotcorne et al. [9, 10] for instance. Bertsimas [7]
combined network pricing with resource allocation and Erdelyi et al. [24] used
decomposition methods for pricing problems on a network.

Discrete choice models are very useful in train scheduling to represent the behaviour
of customers during their trip. Robenek et al. [58] studied cyclic and noncyclic
scheduling on a network where discrete choice models are used to represent the
route taken by a customer in the rail network. Hetrakul et al. [31] studied the optimal
seat allocation and pricing for railway transportation. We mainly use the work of
Pacheco et al. [56] who modelled with Mixed Integer Programs customer choices.
We add the scheduling issue to their work.
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Part IIIMinimizing the waiting time for a
one-way shuttle service
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7 A theoretical problem

7.1 Introduction

The original motivation of this chapter comes from our partnership with Eurotunnel.
Eurotunnel is currently facing an increasing congestion due to the trucks waiting in the
terminal before being loaded in the shuttles. A way to address this issue consists in
scheduling the shuttles so that the trucks do not wait too long in the terminal.

Since the trip of the trucks in the tunnel is a small part of their whole journey, it is a
reasonable approximation to assume that they cannot choose their arrival time in the
terminal. Moreover, changing the size of the fleet in the day to feat the changes in the
demand is not possible (the shuttles are expensive and the tunnel is used by other vehicles,
which limits the maximal number of shuttle trips over a day). Similarly, the capacity of the
shuttles cannot be changed (the length of the platform constrains their size). We face thus
a different problem than the one addressed in the literature: the demand is assumed to
be fixed and nonelastic to the departures times, and the capacity of shuttles, as well as
their number, cannot be adjusted to the demand. Given a fleet of shuttles and a demand
of transportation known in advance, the problem consists in designing a schedule for
the shuttles that minimizes the waiting time of the users. Moreover, in the present work,
the schedules have to be designed in an offline manner. In a transportation context, and
especially for Eurotunnel, computing the schedule in advance is mandatory.

We study several versions of the problem, mainly according to two features. The first
feature is whether the shuttles are allowed to come back at the terminal after having
realized the trip. The second feature is the objective function. We consider in turn the
following two quantities to be minimized: the maximum waiting time and the average
waiting time. The first objective is perhaps a fairer one regarding the users, while the
second one is relevant for the global efficiency.

It seems that the question we address in the present chapter is new. Moreover, it may be
relevant for any situation where a demand, known in advance, has to be processed by
batches and for which we want to minimize the processing time. This kind of situation is
often met in chemical industry. An example whose motivation is very close to ours con-
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siders a test to be performed on samples, which arrive continuously (Lehoux-Lebacque et
al. [45]). The test takes a certain amount of time and can be performed on several samples
simultaneously. The question is then to determine the test schedule that minimizes the
processing time. Another example is provided by the TCP protocol: a server faces a flow
of packets that it has to treat by batches, while minimizing the waiting time of the packets.
Actually, only the online version of the problem makes sense in practice, but the offline
version, close to our problem, is used for comparison purpose, see Dooly et al. [23]. Bar-
bosa and Friedman [2] have considered a dynamic lot-sizing problem with a motivation
similar to ours: a continuous demand is known in advance and replenishments have to
be scheduled in order to satify the demand at a minimum cost.

We propose efficient algorithms for the different versions. “Efficient” here means “theo-
retically efficient”, according to their time complexity and the performance guarantee. It
also means “practically efficient” for almost all cases, as shown by numerical experiments
conducted on real-world instances. It might also be worth noting that, depending on the
version considered, the proof techniques rely on various fields of optimization (convexity,
Karush-Kuhn-Tucker conditions, binary search, domination results, shortest paths in
finite graphs, ...).

7.2 Model

7.2.1 The problems

We are given a fleet of S shuttles, for which departure times have to be determined.
All shuttles have a capacity C ≥ 0 and are situated in the same loading terminal at the
beginning of the day. The users are infinitesimal and arrive continuously in the terminal
over a finite period of time, modeled as the interval [0,T ], following the cumulative
nondecreasing function D : [0,T ] →R+, where D(t ) is the total number of users arrived in
the terminal during the interval [0, t ]. We assume throughout this chapter that D(T ) > 0.
The shuttles have to carry the users over a fixed trip.

The loading process is the one described in Section 2.2.4 for Heavy Gross Vehicles: when
the users arrive in the terminal, they enter a queue. This queue closes when all the users
who will leave with the next shuttle have arrived in the queue and users can enter a new
queue only if the previous one is closed. When a queue is closed, the users in that queue
can start boarding the shuttle. The process in illustrated on Figure 2.2. Loading a shuttle
with a total of x users takes a time νx. This ν is a parameter, which we call the loading
speed. Note that setting ν to zero allows to model the case where the users do not have to
wait for the last user before boarding. Even if no users arrive strictly after time T , loading
and departures are allowed after that instant.

Two possibilities are considered regarding the shuttles. Either return is not allowed: once
the shuttles leave, they never come back to the terminal; or it is allowed: once the shuttles
leave, they come back to the terminal after a return time π≥ 0. Two objective functions to
be minimized are considered: the maximum waiting time and the average waiting time.
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We have thus four problems:

• Pmax
no return, which consists of not allowing return and minimizing the maximum

waiting time.
• Pave

no return, which consists of not allowing return and minimizing the average waiting
time.

• Pmax
return, which consists of allowing return and minimizing the maximum waiting

time.
• Pave

return, which consists of allowing return and minimizing the average waiting time.

Practical constraints impose that overtake is not possible and thus, when return is al-
lowed, the departure orders of the shuttles remain the same over the whole period. It is
nevertheless possible to have simultaneous trips. This is an approximation in the case
of Eurotunnel (we neglect the security distance and the length of the shuttles). For other
situations, as the chemical application mentioned in the introduction, it may match what
is met in practice.

7.2.2 The demand

Throughout the chapter, we assume that D(·) is upper semicontinuous. It allows to
model discontinuity in the arrival process (batch of users arriving simultaneously). Yet, a
weaker requirement could lead to mathematical difficulties, e.g., nonexistence of optimal
solutions even for very simple cases.

The pseudo-inverses of D(·), defined by

τ : [0,D(T )] −→ [0,T ]

y 7−→
{

inf
{

t ∈ [0,T ] : D(t ) > y
}

if y < D(T )

T otherwise,

and
τ̄ : [0,D(T )] −→ [0,T ]

y 7−→ inf
{

t ∈ [0,T ] : D(t ) ≥ y
}

play an important role in this chapter. Note that they are nondecreasing functions and
that τ(y) ≥ τ̄(y) for all y ∈ [0,D(T )]. Times τ(y) and τ̄(y) are respectively interpreted as
the arrival times of the first user after the y firsts and of the last user of these y first. Since
D(·) is upper semicontinuous, we have the following properties, with proofs for sake of
completeness.

Lemma 1. We have D(τ(y)) ≥ D(τ̄(y)) ≥ y for every y ∈ [0,D(T )].

Proof. Since D(·) is nondecreasing, the first inequality is a direct consequence of the
inequality τ(y) ≥ τ̄(y), which is obvious from the definition. To prove the second inequality,
consider (tn) a nonincreasing sequence converging toward τ̄(y) such that D(tn) ≥ y for all
n. By the upper semicontinuity of D(·), we get then D(τ̄(y)) ≥ y .
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Lemma 2. τ(·) is upper semicontinuous and τ̄(·) is lower semicontinuous.

Proof. We first prove that τ(·) is upper semicontinuous. Let α be some real number such
that {y : τ(y) <α} is nonempty and take from it an arbitrary element y0. We want to prove
that {y : τ(y) < α} is open for the induced topology on [0,D(T )]. If y0 = D(T ), then this
set is [0,D(T )] and thus open. Otherwise, by the definition of τ(·), we know that there
exists t0 <α such that D(t0) > y0. For any element y in [0,D(t0)), we have τ(y) ≤ t0, and
thus [0,D(t0)) is an open set containing y0 and fully contained in {y : τ(y) <α}. The set
{y : τ(y) < α} is thus an open set of [0,D(T )] for every real number α, which precisely
means that τ(·) is upper semicontinuous.

We prove now that τ̄(·) is lower semicontinuous. Let α be some nonnegative number.
Consider a converging sequence (yn) in [0,D(T )] such that τ̄(yn) ≤α for all n. We want to
prove that τ̄(limn→∞ yn) is at most α. This is obvious when α= T . We can thus assume
thatα< T . By definition of τ̄(yn), we know that D(α+ 1

n ) ≥ yn (we consider n large enough
so that α+ 1

n ≤ T ). Since D(·) is upper semicontinuous and nondecreasing, we get that
D(α) ≥ limn→∞ yn , and the conclusion follows.

Lemma 3. If D(·) is increasing, then τ(y) = τ̄(y) for every y ∈ [0,D(T )].

Proof. If τ̄(y) = T , then the equality is obvious. We can thus assume that τ̄(y) < T . For
every t > τ̄(y), we have D(t ) > D(τ̄(y)) since D(·) is increasing, and Lemma 1 implies that
D(t ) > y . By definition of τ(·), we have τ(y) ≤ τ̄(y). The reverse inequality being clear from
the definitions, we get the result.

7.2.3 Mathematical model

For the four problems Pmax
no return, Pave

no return, Pmax
return, and Pave

return, a feasible solution is char-
acterized by two nondecreasing sequences of nonnegative real numbers d = d1,d2, . . .
and y = y1, y2, . . .. The d j ’s are the successive departure times of the shuttles, and the y j ’s
are their successive cumulative loads: the j th departure occurs at time d j with a load of
y j − y j−1 users, where we set y0 = 0.

Denote by g max(d , y) the value of the maximum waiting time and by g ave(d , y) the value of
the average waiting time. There are explicit expressions of these objective functions. Note
that τ(y j ) can be interpreted as the first arrival time of a user leaving with the “( j +1)th
shuttle”.

g max(d , y) = max j : y j>y j−1

(
d j −τ(y j−1)

)
,

g ave(d , y) = 1

D(T )

∑
j

∫ y j

y j−1

(
d j − τ̄(y)

)
d y,

where the indices j range over all departures.
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Problems Pmax
no return and Pave

no return can be written under the following form,

Min g (d , y)

s.t. y j − y j−1 ≤ C j ∈ {1, . . . ,S} (i)

y j−1 ≤ y j j ∈ {1, . . . ,S} (ii)

d j−1 ≤ d j j ∈ {2, . . . ,S} (iii)

yS = D(T ) (iv)

τ̄(y j )+ν(y j − y j−1) ≤ d j j ∈ {1, . . . ,S} (v)

y0 = 0,

(Pno return)

where g (·) is either g max(·) or g ave(·). Constraint (i) ensures that the total number of
users in any shuttle does not exceed the shuttle capacity. Constraint (ii) ensures that the
indices of the y j variables are consistent. Constraint (iii) ensures that the shuttles do not
overtake. Constraint (iv) ensures that every user eventually leaves the terminal in a shuttle.
Constraint (v) ensures that the departure time of a shuttle occurs once the last user of this
shuttle has arrived and the loading is over.

Problems Pmax
no return and Pave

no return always admit optimal solutions when they are feasible,
i.e., when C S ≥ D(T ). Indeed, τ̄(y j ) + ν(y j − y j−1) is upper-bounded by T + νC and
adding a constraint d j ≤ T +νC for all j does not change the optimal value; since τ̄(·)
is lower semicontinuous (Lemma 2), the set of feasible solutions of the optimization
problem obtained with this new constraint is compact; its objective function is lower
semicontinuous (and even continuous in the case of Pave

no return).

The following properties for Pmax
no return and Pave

no return will be useful in some proofs.

Lemma 4. Replacing g max(·) by max j
(
d j −τ(y j−1)

)
does not change the optimal value of

Pmax
no return.

Proof. Let (d , y) be a feasible solution of Pmax
no return. We are going to build a feasible solution

(d ′, y) (with the same y) such that

g max(d , y) ≥ g max(d ′, y) = max
j

(
d ′

j −τ(y j−1)
)
. (7.1)

We set d ′
1 = τ̄(y1)+νy1 and define inductively d ′

j =
(
d ′

j−1, τ̄(y j )+ν(y j − y j−1)
)
. We have

d ′
j ≤ d j for all j and it implies the inequality in (7.1). Let us prove the equality of (7.1): if

max j
(
d ′

j −τ(y j−1)
)

is obtained for a ̄ such that y ̄−1 < D(T ), then there exists k ≥ ̄ such
that yk > yk−1 = y ̄−1 and d ′

k ≥ d ′
̄ , which means that the maximum is also obtained for a

k such that yk > yk−1; and if max j
(
d ′

j −τ(y j−1)
)

is attained for a ̄ such that y ̄−1 = D(T ),
then there exists `≤ ̄−1 such that y`−1 < y` = y ̄−1 and by construction d ′

`
= d ′

`+1 = ·· · =
d ′

S (since y` = y`+1 = ·· · = yS = D(T )), which means that the maximum is also obtained
for an ` such that y` > y`−1.
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Lemma 5. If D(·) is increasing, for any of Pmax
no return and Pave

no return, there is an optimal
solution such that d j = τ̄(y j )+ν(y j − y j−1) for all j ∈ {1, . . . ,S}.

Proof. Let (d , y) be an optimal solution (we do not care which objective function is used
yet). We choose this optimal solution with minimal

∑S
j=1 y j among all possible optimal

solutions. Such a solution exists by continuity and compactness: as explained right
before Lemma 4, we can add the constraint d j ≤ T +νC for all j , without changing the
optimal value and without changing the possible values for y at optimality. Without loss
of generality, we can moreover assume that d1 = τ̄(y1)+νy1 and that for all j ∈ {2, . . . ,S}
we have

d j = max
(
d j−1, τ̄(y j )+ν(y j − y j−1)

)
(7.2)

(just redefine d j according to these equalities if necessary). When ν= 0, a straightforward
induction on j shows that we have then always d j = τ̄(y j ). We can thus assume that ν> 0.

Suppose for a contradiction that there is a j such that d j > τ̄(y j )+ν(y j − y j−1). Denote
by j1 the smallest index for which this inequality holds. We necessarily have d j1 = d j1−1

(because of the equality (7.2)). Denote by j0 the smallest index j < j1 such that d j = d j1 .
Note that since D(·) is increasing, we have that τ̄(·) is continuous (it is upper and lower
semicontinuous with Lemma 3).

For some small ε> 0, we define (d̄ , ȳ) as follows:

ȳ j =
{

y j −ε for j ∈ { j0, . . . , j1 −1}

y j otherwise

and

d̄ j =
{

max
(
d̄ j−1, τ̄(ȳ j )+ν(ȳ j − ȳ j−1)

)
for j ∈ { j0, . . . , j1}

d j otherwise,

where d̄0 = 0. We first check that (d̄ , ȳ) is a feasible solution of (Pno return).

The definition of j1 implies that d j0 > 0. Thus if j0 = 1, we have y1 > 0 and for a small
enough ε, the vector ȳ satisfies constraint (ii). Otherwise, we have τ̄(y j0−1)+ν(y j0−1 −
y j0−2) = d j0−1 < d j0 = τ̄(y j0 )+ν(y j0 − y j0−1). It implies that y j0−1 < y j0 (as otherwise the
equality would imply that y j0−1 < y j0−2). Thus, for a small enough ε, we have ȳ satisfies
constraint (ii). It also satisfies obviously constraint (iv).

For j ∈ {2, . . . , j1}∪ { j1 +2, . . . ,S}, checking d̄ j−1 ≤ d̄ j is straightforward. The remaining
case is j = j1 + 1. A direct induction shows that d̄ j ≤ d j for j ≤ j1 − 1. Since τ̄(y j1 )+
ν(y j1 − y j1−1) < τ̄(y j1−1)+ν(y j1−1 − y j1−2) (because d j1−1 = d j1 ), for ε small enough, we
have d̄ j1−1 ≥ τ̄(ȳ j1 )+ν(ȳ j1 − ȳ j1−1). Here, we use the fact that τ̄(·) is continuous. Thus
d̄ j1 = d̄ j1−1. Since we have d̄ j1−1 ≤ d j1−1 by the above induction, we finally obtain d̄ j1 ≤
d j1 ≤ d j1+1 = d̄ j1+1. Therefore, d̄ satisfies constraint (iii).

Constraint (i) is satisfied for all j , except maybe for j = j1. We have proved that d̄ j1 = d̄ j1−1.
Since d̄ j1−1 = τ̄(ȳ j ′)+ν(ȳ j ′− ȳ j ′−1) for some j ′ ≤ j1−1, we have τ̄(ȳ j1 )+ν(ȳ j1− ȳ j1−1) ≤ d̄ j1 =
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τ̄(ȳ j ′)+ν(ȳ j ′ − ȳ j ′−1), and thus ν(ȳ j1 − ȳ j1−1) ≤ ν(ȳ j ′ − ȳ j ′−1) ≤ νC . Therefore constraint (i)
is also satisfied for j = j1.

Since the constraint (v) is clearly satisfied, (d̄ , ȳ) is a feasible solution of (Pno return).

We have proved that d̄ j1 ≤ d j1 . Therefore,

j1∑
j= j0

∫ ȳ j

ȳ j−1

(
d̄ j − τ̄(u)

)
du ≤

∫ ȳ j1

ȳ j0−1

(
d̄ j1 − τ̄(u)

)
du

<
∫ y j1

y j0−1

(
d j1 − τ̄(u)

)
du

=
j1∑

j= j0

∫ y j

y j−1

(
d j − τ̄(u)

)
du,

which shows that (d̄ , ȳ) is also an optimal solution of Pave
no return, which is in contradiction

with the minimality assumption on
∑S

j=1 y j . The case of Pmax
no return is dealt with similarly.

Problems Pmax
return and Pave

return can be written almost identically under the following form. We
use infinitely many variables since there is no a priori reason to have a bounded number
of departures, and there are indeed special cases for which there is no optimal solution
with a finite number of departures. However, if π> 0, we prove that any optimal solution
of Pmax

return requires a finite number of departures, see Proposition 5. The case of Pave
return

remains open.

Min g (d , y)

s.t. y j − y j−1 ≤ C j ∈ {1, . . . ,+∞} (i)

y j−1 ≤ y j j ∈ {1, . . . ,+∞} (ii)

d j−1 ≤ d j j ∈ {2, . . . ,S} (iii)

lim
j→+∞

y j = D(T ) (iv)

τ̄(y j )+ν(y j − y j−1) ≤ d j j ∈ {1, . . . ,+∞} (v)

d j +π+ν(y j+S − y j+S−1) ≤ d j+S j ∈ {1, . . . ,+∞} (vi)

y0 = 0,

(Preturn)

where g (·) is either g max(·) or g ave(·). Constraints (i), (ii), (iii), (iv), and (v) have the same
meaning as for the previous problems. Constraint (vi) ensures that the time between two
consecutive departures of a same shuttle is not smaller than the time required for a full
trip plus the time needed to load the users.

In the model (Preturn), the shuttles are not identified. Note, however, that their schedules
can be easily be recovered: the departure times of a shuttle s is of the form

ds ,ds+S ,ds+2S , . . .
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and the time at which the loading starts for a shuttle with departure time d j can be chosen
to be d j −ν(y j − y j−1) (the loading starts as late as possible).

While it can be shown that problem Pmax
return always admits an optimal solution when it is

feasible (see Proposition 5), we were not able to settle the case of problem Pave
return.

7.2.4 Computational model

We assume that the following operations take constant time:

• Evaluation of D(t ) for any t ∈ [0,T ].
• Integration of D(·) between two values.
• Evaluation of τ(y) and τ̄(y) for any y ∈R+.
• Evaluation of sup

{
y : τ̄(y)+νy ≤α}

for any α ∈R+.

Note that if D(·) is piecewise affine with a natural description, as it is usually the case
in practice, these assumptions are easily matched. Moreover, we set as constants of
the computational model the capacity C , the length of the period T , the cumulative
demand D(·), the loading speed ν, and the return time π. The complexity functions will
be expressed in terms of S and the accuracy of the computed solution.

7.3 Main results

In the present section, we present our main findings. Many results state the existence of
algorithms with a guarantee that the returned solution has a value close to the optimal
value OPT of the considered problem. Except for two easy results – Corollary 1 and
Proposition 5 – all proofs are postponed to other sections.

We organize the results presented in that section in three subsections. The first subsection
– Section 7.3.1 – deals with the special case where D(·) is a constant function, i.e., when
all users are in the loading terminal from the beginning of the period. It seems to us that
these results are also interesting for themselves: there are very efficient algorithms and the
situation where the demand is already present makes sense, whether it is for our original
motivation, for other logistic applications, or for the applications in chemical industry
mentioned in the introduction.

The second subsection – Section 7.3.2 – deals with the general case where the shuttles
are not allowed to come back, i.e., with the case covered by the problems Pmax

no return and
Pave

no return. The case where the shuttles are allowed to come back, i.e., when we deal with
the problems Pmax

return and Pave
return, is discussed in Section 7.3.3.

7.3.1 All users in the terminal from the beginning

In this subsection, we present results regarding the four problems when D(t ) = D(T ) for
all t ∈ [0,T ] (all users are from the beginning in the terminal). For the problems for which
return is not allowed (Pmax

no return and Pave
no return), an obvious optimal solution is given by
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y∗
j = j D(T )/S and d∗

j = νD(T )/S for j ∈ {1, . . . ,S} and the optimal value is νD(T )/S for
both problems, provided that D(T ) ≤C S (otherwise, there is no feasible solution at all):
the shuttles take all the same number of users, start immediately the loading process, and
have the same departure time.

The rest of the section is devoted to the results regarding the problems Pmax
return and Pave

return.
For the first one, there are closed-from expressions for the optimal value.

Proposition 3. When D(t ) = D(T ) for all t ∈ [0,T ], the optimal value of Pmax
return is

νD(T )

S
+

(⌈
D(T )

C S

⌉
−1

)
π.

In the proof, we actually provide a closed-form expression for an optimal solution. For
Pave

return however, there does not seem to be a closed-form expression for an optimal solu-
tion, and not even for the optimal value. There is nevertheless an efficient algorithm.

Proposition 4. Suppose π > 0. When D(t) = D(T ) for all t ∈ [0,T ], the optimal value of
Pave

return can be computed in constant time and an optimal solution can be computed in O(S).

If π= 0, it can be shown that the optimal value is νD(T )
2S , and it is not too difficult to see that

there is no optimal solution. In a transportation context, π= 0 looks unrealistic. However,
it corresponds to the problem where people must leave a building by an airlock (then,
νx is the time needed by x people to enter and leave an airlock; S is the total number of
airlocks, people being able to leave the building by any of them.)

7.3.2 When return is not allowed

We have the existence of an efficient approximation algorithm for Pmax
no return. The algorithm

is actually an easy binary search (Section 7.5.1).

Theorem 3. Let ρ > 0. A feasible solution (d , y) of Pmax
no return – if the problem is feasible –

satisfying g max(d , y) ≤OPT +ρ can be computed in O
(
S log 1

ρ

)
.

With an additional assumption on D(·), this theorem provides actually an approximation
scheme.

Corollary 1. If D(·) is increasing, the algorithm of Theorem 3 computes in O
(
S log S

ε

)
a

(1+ε)-approximation for Pmax
no return.

A schedule for the shuttles requires to specify S real numbers. Taking an output sensitive
point of view, this corollary states thus the existence of a polynomial approximation
scheme in this particular case.

Proof of Corollary 1. Suppose D(·) increasing. Let (d , y) be a feasible solution. According
to Lemma 3, we have then τ(y j−1) = τ̄(y j−1) for every j and the maximum waiting time
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for shuttle j is at least τ(y j )+ν(y j − y j−1)−τ(y j−1). Note that if y j = y j−1, this quantity is
zero. Hence, the sum of the maximum waiting times over all nonempty shuttles is at least
T +νD(T ) and the optimal value OPT of Pmax

no return is at least (T +νD(T ))/S. Setting ρ to
ε(T +νD(T ))/S in Theorem 3 leads to the result.

For Pave
no return, there exists an efficient approximation algorithm too. The algorithm is also

described later (Section 7.5.2). We already outline that this algorithm is not a binary search
as in the former case, but consists in building a quite simple weighted “approximative”
graph, in which a shortest path is computed.

Theorem 4. Suppose that D(·) admits right derivatives everywhere (denoted D ′+(t)) and
inft∈[0,T ) D ′+(t) is positive. Then, for any positive integer M, a feasible solution (d , y) of
Pave

no return – if the problem is feasible – satisfying

g ave(d , y) ≤OPT +O

(
S2

M

)
can be computed in O

(
SM 3

)
.

As for Corollary 1 above, this theorem could be interpreted as a polynomial approximation
scheme by using the fact that D(·) is increasing.

7.3.3 When return is allowed

The following proposition implies that when π is larger than 0, any optimal solution of
Pmax

return requires a finite number of nonempty departures.

Proposition 5. If π > 0, there exists an optimal solution of Pmax
return and the number of

nonempty departures in any optimal solution is at most(⌈
T

π

⌉
+1

)
S +

(
ν

π
+ 1

C

)
D(T ).

Proof. The schedule consisting in making the shuttles wait until time T , loading them
at full capacity (except maybe for the last departure), and making them leave as soon as
the loading is completed provides a feasible solution of Pmax

return with a value T +νD(T )/S +
(dD(T )/(C S)e−1)π.

Consider a feasible solution of Pmax
return with a number k (possibly infinite) of departures

after time T . The users in the last shuttle to leave have waited at least T + (k/S −1)π. To
get a solution as good as the one described above, we must have

T +
(

k

S
−1

)
π≤ T + νD(T )

S
+ πD(T )

C S
,

which is equivalent to

k ≤ νD(T )

π
+ D(T )

C
+S.
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Before time T , the number of departures is at most dT /πeS. Hence, we do not worsen the
optimal value by adding the constraint that the total number of departures is bounded by
the right-hand term of the inequality plus dT /πeS. The set of feasible solutions can thus
be reduced to the solutions where the number of nonempty departures is bounded by
such a quantity. Since τ̄(·) is lower semicontinuous (Lemma 2), it makes the set of feasible
solutions compact. The objective function being lower semicontinuous, there exists an
optimal solution. The bound on the number of departures has been proved along the
lines.

The next theorem states that there exists an algorithm computing arbitrarily good feasible
solutions for Pmax

return within reasonable computational times when S is small. As for Sec-
tion 7.3.2, this algorithm is described later in the chapter (Section 7.6). It is based on the
computation of a shortest path in an “approximative” graph, as for Theorem 4. It also uses
Proposition 5 in a crucial way (actually a slight variation of it: Lemma 15).

Theorem 5. Suppose that D(·) admits right derivatives everywhere, π is positive, and
inft∈[0,T ) D ′+(t) is positive. Then, for any positive integer M, a feasible solution (d , y) of
Pmax

return satisfying

g max(d , y) ≤OPT +O

(
S2

M

)
can be computed in O

(
β3S M 3S+2

)
, where β depends only on the constants of the computa-

tional model.

As above, the theorem actually ensures that the algorithm is an approximation scheme
since we can bound from below OPT using only the input values. If S is considered as
constant, this becomes even a polynomial approximation scheme.

We do not know whether there is a counterpart to Proposition 5 for problem Pave
return. If

such a counterpart existed, then almost the same technique as the one used in Section 7.6
would lead to a theorem similar to Theorem 5 for Pave

return. The existence of such a theorem
remains thus open.

7.4 All users in the terminal from the beginning

In this section, we prove Propositions 3 and 4, which are about the case where all users are
in the loading terminal from the beginning and where the shuttles are allowed to come
back. The case where the shuttles are not allowed to come back has been dealt with in
Section 7.3.1. To ease the reading, and for the present section only, we use D to denote
the quantity D(T ).

We treat first the case of problem Pmax
return.

Proof of Proposition 3. For Pmax
return, when S = 1, an optimal solution is obtained by loading

at full capacity the shuttle for each departure (except maybe for the last departure for
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which the shuttle load is D −CbD/Cc) and by making the shuttle leave immediately after
each loading process. The optimal value is then νD + (dD/Ce−1)π. When S > 1, consider
the problem Q defined as the problem Pmax

return without the constraint that the shuttles do
not overtake (constraint (iii) in (Preturn)). The optimal value of Q provides a lower bound
of the optimal value of Pmax

return. Since there is no constraint linking the different shuttles,
problem Q can be solved separately for each shuttle s with a demand Ds to carry, such
that

∑
s Ds = D . The optimal solutions of Q are thus obtained from the optimal solutions

of

Min max
s∈{1,...,S}

(
νDs +

(⌈
Ds

C

⌉
−1

)
π

)
s.t.

S∑
s=1

Ds = D

Ds ≥ 0 s ∈ {1, . . . ,S}.

The solution given by Ds = D/S for all s is clearly optimal (and it is actually the unique
optimal solution when ν > 0). Hence, there is an optimal solution for Q in which all
shuttles have the same departure times and, for each trip, carry the same number of users.
Its value is νD/S + (dD/(C S)e−1)π. Since the shuttles do not overtake in this optimal
solution of Q, it is actually a feasible solution for the problem Pmax

return, and thus an optimal
solution for this latter problem (its value being equal to a lower bound).

The rest of this section is devoted to the proof of Proposition 4, which ensures the existence
of an efficient algorithm solving problem Pave

return when D(t ) = D for all t ∈ [0,T ]. We start
by considering the special case of problem Pave

return when S = 1. In such a case, it is always
beneficial to define d j = ( j −1)π+νy j . Assuming that the y j ’s are given, it provides a
feasible solution since τ̄(y) = 0 for all y ∈ [0,D]. The objective function of Pave

return becomes
thus

1

D

+∞∑
j=1

(
( j −1)π+ν

j∑
i=1

xi

)
x j

where x j = y j − y j−1. It can be alternatively written as

1

D

(+∞∑
j=1

( j −1)πx j + 1

2
ν
+∞∑
j=1

x2
j

)
+ νD

2
.

Solving Pave
return when S = 1 reduces thus to solving

Min
+∞∑
j=1

( j −1)πx j + 1

2
ν
+∞∑
j=1

x2
j

s.t.
+∞∑
j=1

x j = D

0 ≤ x j ≤ C j ∈ {1, . . . ,+∞}.

(P (D))

which is a convex program (with infinitely many variables). We will show that there is
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7.4. All users in the terminal from the beginning

always an optimal solution of (P (D)) with a finite support. Then, we will solve (P0(D)),
defined as the program (P (D)) with the additional constraint |{ j : x j 6= 0}| < +∞, with the
help of the Karush-Kuhn-Tucker conditions (that do not apply otherwise).

Lemma 6. Suppose that π> 0. Then (P0(D)) has an optimal solution and it is necessarily
of the form

x∗
0 = 0

x∗
j =


C if j ≤ a,

D −aC

θ(a)−a
+ π

ν

(
a +θ(a)+1

2
− j

)
if a +1 ≤ j ≤ θ(a),

0 otherwise,

with a ∈Z+ such that a ≤ D
C and where

θ(a) = a +

ÈÌÌÌÌ
−1+

√
1+ 8ν

π (D −aC )

2

ÉÍÍÍÍ .

Proof. Consider the following program

Min
n∑

j=1
( j −1)πx j + 1

2
ν

n∑
j=1

x2
j

s.t.
n∑

j=1
x j = D

0 ≤ x j ≤ C j ∈ {1, . . . ,n}.

(P n
0 (D))

Note that (P n
0 (D)) is actually (P0(D)) with the additional constraint that sup{ j : x j 6= 0} ≤ n.

For n < D/C , (P n
0 (D)) has no feasible solutions, and for n ≥ D/C , the set of feasible

solutions is nonempty. In this case, by compactness and continuity of the objective
function, (P n

0 (D)) has an optimal solution x∗. We necessarily have x∗
j ≥ x∗

j+1 for every
j ∈ {1, . . . ,n −1}, otherwise, exchanging the two values would strictly decrease the objective
function. Let a be the largest index j such that x∗

j =C , with the convention that a = 0 if
there are no such index j , and let b +1 be the smallest index j such that x∗

j = 0, with the
convention that b = n if there is no such index j .

The constraints being all affine, the Karush-Kuhn-Tucker conditions apply. There is thus a
real number λ ∈R and two collections µ,ω ∈Rn+ such that for every j ∈ {1, . . . ,n} we have
simultaneously {

νx∗
j + ( j −1)π+λ+µ j −ω j = 0

ω j x∗
j =µ j (x∗

j −C ) = 0.
(7.3)

Summing the first equality from j = a + 1 to j = b and noting that µ j = ω j = 0 and∑b
j=a+1 x∗

j = D −aC by definition of a and b provides an expression of λ in terms of a and
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b. Replacing λ by this expression in the same equality leads to

x∗
j =


C if j ≤ a,

D −aC

b −a
+ π

ν

(
a +b +1

2
− j

)
if a +1 ≤ j ≤ b,

0 otherwise.

Using this equality for j = b gives the following equation.

(b −a)(b −a −1) < 2ν

π
(D −aC ).

Equation (7.3) specialized for j = b +1 gives

(b −a)(b −a +1) ≥ 2ν

π
(D −aC ).

These two inequalities together – treated as conditions on a second order polynomial in
b −a – imply the necessary condition

−1

2
+

√
1+ 8ν

π (D −aC )

2
≤ b −a < 1

2
+

√
1+ 8ν

π (D −aC )

2

which imposes a unique integer value for b −a and b takes a unique value θ(a) for each
value of a. We have proved that any optimal solution of (P n

0 (D)) is of this form. Now,
note that by definition of a, we necessarily have a ≤ bD/Cc. It means that there are only
finitely many optimal solutions of the (P n

0 (D))’s when n goes to infinity. Since the set
of feasible solutions of the (P n

0 (D))’s is nondecreasing when n goes to infinity, it means
actually that there exists an n0 such that any optimal solution of (P n

0 (D)) for n ≥ n0 is
an optimal solution of (P n0

0 (D)). Moreover, any feasible solution of (P0(D)) is a feasible
solution of (P n

0 (D)) for some n ≥ n0, and thus is dominated by the optimal solutions of
(P n0

0 (D)). These latter are thus the optimal solutions of (P0(D)).

Let v(D) and v0(D) be the optimal values of respectively (P (D)) and (P0(D)). Note that
v(D) ≤ v0(D).

Lemma 7. If π> 0, we have v0(D −ε) ≤ v(D) for every ε ∈ (0,D].

Proof. Let ε ∈ (0,D]. Consider a feasible solution x of (P (D)). Let Nε ∈ Z+ be such that∑+∞
j=Nε+1 x j < ε. Define inductively

x ′
j =


min

(
x j ,D −ε−

j−1∑
i=1

x ′
i

)
for j ≤ Nε

0 for j ≥ Nε+1.

This x ′ is a feasible solution of (P0(D −ε)). Since x ′
j ≤ x j for all j , the value given by x ′ to

90



7.5. When return is not allowed

the objective value of (P0(D −ε)) is nonlarger that the value obtained by x for (P (D)). The
inequality follows.

Proof of Proposition 4. Let us deal with the case S = 1. Using the fact that (P0(D)) is a
convex program, we easily get that v0(·) is a convex function. It is thus continuous on
(0,+∞), and since v0(0) = 0, we have that v0(·) is continuous everywhere on [0,+∞).
Making ε tend toward 0 in Lemma 7 and the inequality v(D) ≤ v0(D) imply that v0(D) =
v(D). Since any feasible solution of (P0(D)) is a feasible solution of (P (D)) with the same
value for the objective function, every optimal solution of (P0(D)) is an optimal solution
of (P (D)). An algorithm computing an optimal solution of (P (D)) can then be derived
from Lemma 6: we just have to try all the finitely many possible values for a. The proof for
any value of S will be obtained by showing that an optimal solution in this case consists
just in replicating optimal solutions for the one-shuttle case.

When S > 1, consider the problem Q defined as the problem Pave
return without the constraint

that the shuttles do not overtake (constraint (iii) in (Preturn)). The optimal value of Q
provides a lower bound of the optimal value of Pave

return. Since there is no constraint linking
the different shuttles, problem Q can be solved separately for each shuttle s with a demand
Ds to carry, such that

∑
s Ds = D. The optimal solutions of Q are thus obtained from the

optimal solutions of

Min
S∑

s=1

(
v(Ds)+ ν

2
D2

s

)
s.t.

S∑
s=1

Ds = D

Ds ≥ 0 s ∈ {1, . . . ,S}.

The fact that (P (D)) is a convex program implies that the map v(·) is convex. As a conse-
quence, the solution Ds = D/S for all s is an optimal solution of the previous program.
Hence, there is an optimal solution for Q in which all shuttles have the same departure
times and, for each travel, carry the same amount of users. Since the shuttles do not
overtake in this optimal solution of Q, it is actually a feasible solution for the problem
Pave

return, and thus an optimal solution for this latter problem (its value being equal to a
lower bound).

7.5 When return is not allowed

7.5.1 Minimizing the maximum waiting time

The algorithm

If C S < D(T ), there is no feasible solution. We can thus assume that C S ≥ D(T ). The
algorithm is a binary search starting with the values h+ = T +νD(T ) and h− = 0 which are
respectively upper and lower bounds of the optimal value. While the gap h+−h− is larger
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than ρ, we consider the tentative value h = h++h−
2 and the system

y j = supS h
j j ∈ {1, . . . ,S}

yS = D(T )

y0 = 0

d j = h +τ(y j−1) j ∈ {1, . . . ,S},

(Sh)

where S h
j = {

y ∈R+ : y ≤C + y j−1, τ̄(y)+ν(y − y j−1)−τ(y j−1) ≤ h, y ≤ D(T )
}

. Each itera-
tion of the binary search consists in deciding whether (Sh) has a feasible solution or not,
and it can be done in O(S) by computing the values of the y j ’s and the d j ’s iteratively (here
we use in particular the computational assumptions on D(·)). As we are going to prove,
(Sh) has a feasible solution if and only if the problem has a feasible solution with a value of
the objective function at most h. If (Sh) has a feasible solution, we update thus the value
of h+ with the current value of h, otherwise, we update h− with h. When h+−h− ≤ ρ, the
solution of program (Sh+) is feasible for Pmax

no return and its value h+ is at most at ρ from the
optimal value.

Proof of Theorem 3

For any fixed h, Pmax
no return has a feasible solution with a value of the objective function at

most h if and only if the following system has a feasible solution.

d j −τ(y j−1) ≤ h j ∈ {1, . . . ,S} (Qi)

y j − y j−1 ≤C j ∈ {1, . . . ,S} (Qii)

y j−1 ≤ y j j ∈ {1, . . . ,S} (Qiii)

d j−1 ≤ d j j ∈ {2, . . . ,S} (Qiv)

yS = D(T ) (Qv)

τ̄(y j )+ν(y j − y j−1) ≤ d j j ∈ {1, . . . ,S} (Qvi)

y0 = 0.

(Qh)

We claim that (Qh) has a feasible solution if and only if (Sh) has one. Once this equivalence
is established, the correctness of the binary search described above is almost immediate
using Lemma 4.

Let (d , y) be a feasible solution of (Sh). We use without further mention that S h
j is closed.

It satisfies the constraints (Qi), (Qii), and (Qv). We have y j−1 ≤C + y j−1 and y j−1 ≤ D(T ).
Since τ̄(y) ≤ τ(y) for all y , we also have τ̄(y j−1)+ν(y j−1−y j−1)−τ(y j−1) ≤ h. It means that
y j−1 belongs to S h

j , and thus y j−1 ≤ y j . Hence, (d , y) satisfies also constraint (Qiii). Since
τ̄(y j )+ν(y j − y j−1)−τ(y j−1) ≤ h, the solution also satisfies constraint (Qvi) and since τ(·)
is nondecreasing, it satisfies constraint (Qiv). Therefore, it is a feasible solution of (Qh)
and the existence of a feasible solution of (Sh) implies the existence of a feasible solution
of (Qh).
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For the converse implication, suppose that (Qh) admits a feasible solution, and consider
the optimization problem consisting in maximizing

∑S
j=1 y j over its feasible solutions.

These feasible solutions form a compact set of RS+ since it is obviously bounded and
since the semicontinuities of τ(·) and τ̄(·) imply that it is closed. There is thus an optimal
solution (d∗, y∗) to that optimization problem. Suppose for a contradiction that there is
a j such that y∗

j < supS h
j . Denote j0 the largest such index. Let us slightly increase y∗

j0
,

while letting the other y∗
j untouched. Redefine d∗

j to be h +τ(y∗
j−1) for all j ≥ j0. The pair

(d∗, y∗) remains feasible for (Qh) (we use here the fact that supS h
j is nondecreasing with

j ), while increasing the quantity
∑S

j=1 y∗
j , which is a contradiction with the optimality

assumption. Thus, we have y∗
j = supS h

j for all j and d∗
j := h +τ(y∗

j−1) for all j provides a
feasible solution for (Sh).

7.5.2 Minimizing the average waiting time

The algorithm

The following map will be useful in the description of the algorithm.

f ave : (d , y, y ′) 7−→
∫ y ′

y
(d − τ̄(u))du.

Define the directed graph G = (V ,A ) by

V = {
(0,0)

}∪{
η,2η, . . . , Mη}× {η,2η, . . . ,Rη

}
A =

{(
(z,r ), (z ′,r ′)

) ∈ V 2 : r + z ′ = r ′, z ′ > 0, τ̄(r ′)− τ̄(r )+ν(z ′− z)+ 1

2
γη≥ 0

}
,

where we use the following notations:

α= inft∈[0,T ) D ′
+(t ), R =

⌊
D(T )M

C

⌋
,

η= C

M
, and γ= 2

(
1

α
+2ν

)
.

Set for each arc a = (
(z,r ), (z ′,r ′)

)
a weight w(a) = f ave

(
τ̄(r ′)+ν(z ′−η),r +η,r ′).

If C S < D(T ), there is no feasible solution. We can thus assume that C S ≥ D(T ). The
algorithm consists first in computing a path p̃ minimizing

∑
a∈A (p) w(a), among all paths

p with at most S arcs starting at (0,0) ∈ V and ending at a vertex (z,r ) with r = Rη. Such
paths exist, see Lemma 10 below. The computation of p̃ can be done in O(S|A |) via
dynamic programming. Let the vertex sequence of p̃ be

(
(z0,r0), (z1,r1), . . . , (zn ,rn)

)
. The
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Figure 7.1 – A feasible path in the algorithm proposed for solving Pave
no return.

algorithm consists then in defining recursively

ỹ j =


0 for j = 0

min
(
r j +η, ỹ j−1 +C ,D(T )

)
for j ∈ {1, . . . ,n}

D(T ) for j ∈ {n +1, . . . ,S}

and

d̃ j =
{
τ̄(ỹ j )+ν(ỹ j − ỹ j−1)+ jγη for j ∈ {1, . . . ,n}

max
(
d̃n ,T +ν(ỹn+1 − ỹn)

)
for j ∈ {n +1, . . . ,S}

and outputting the pair (d̃ , ỹ). The construction of the graph is sketched on Figure 7.1.

As it will be shown below, this (d̃ , ỹ) is a feasible solution of Pave
no return providing a value to

the objective function within a O
(

S2

M

)
gap to the optimal value.

Proof of Theorem 4

We first give 2 technical Lemmas.

Lemma 8. We have r j ≤ ỹ j ≤ r j +η for j ∈ {0, . . . ,n}.

Proof. We have ỹ j ≤ r j +η by definition. Using r j − r j−1 ≤ Mη in a feasible path, a direct
induction shows that ỹ j ≥ r j for j ∈ {0, . . . ,n}.

Lemma 9. Suppose that α > 0. Then for all y ∈ [0,D(T )] and δ ∈ [0,D(T )− y], we have
τ̄(y +δ) ≤ τ̄(y)+δ/α and τ(y +δ) ≤ τ(y)+δ/α.

Proof. Diewert [22] extended the Mean Value Theorem to semicontinuous functions.
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According to his result, for any 0 ≤ a ≤ b ≤ T , there exists c ∈ [a,b) such that

limsup
t→0+

D(c + t )−D(c)

t
≤ D(b)−D(a)

b −a
.

Since
α= inft∈[0,T ) D ′

+(t ) ≤ D ′
+(c)

and thus

α≤ limsup
t→0+

D(c + t )−D(c)

t
,

we have D(a)+α(b −a) ≤ D(b) for any 0 ≤ a ≤ b ≤ T . With a = τ̄(y) and b = τ̄(y)+δ/α,
we get y +δ≤ D(τ̄(y))+δ≤ D(τ̄(y)+δ/α) (the first inequality is given by Lemma 1). By
definition of τ̄, we have τ̄(y +δ) ≤ τ̄(y)+δ/α. The second inequality is proved along the
same lines.

We provide now three lemmas and Theorem 4 results immediately from their combination.

In the proofs of the lemmas, we assume that M is large enough so that η< D(T ). Since
in Theorem 4, M appears in ‘big O’ formulas, it is a valid assumption. Anyway it is what
is sought in practice: the larger M , the larger the accuracy of the solution. An η of same
order of magnitude of D(T ) would be useless.

Lemma 10. There exists a path p with at most S arcs starting at (0,0) ∈ V and ending at a
vertex (z,r ) with r = Rη and such that

1

D(T )

∑
a∈A(p)

w(a) ≤OPT.

Proof. Let (d∗, y∗) be an optimal solution of Pave
no return such that d∗

j = τ̄(y∗
j )+ν(y∗

j − y∗
j−1)

for all j ∈ {1, . . . ,S} (Lemma 5). Consider the sequence by∗
1 /ηcη, . . . ,by∗

S /ηcη and remove
the repetitions. Since the sequence is nondecreasing, we obtain an increasing sequence
r = r1, . . . ,rn . We introduce σ : {1, . . . ,n} → {1, . . . ,S} with σ( j ) being the smallest index
such that r j = by∗

σ( j )/ηcη. We then define z j = r j − r j−1 for j ∈ {1, . . . ,n}, with r0 = 0. We
prove that the sequence (z j ,r j ) j∈{1,...,n} provides a feasible path from the vertex (0,0) to
(zn ,rn) in G . First note that rn = Rη since y∗

S = D(T ) and that z j > 0. For all j ∈ {1, . . . ,n},
we have

z j = r j − r j−1

=
(⌊

y∗
σ( j )

η

⌋
−

⌊
y∗
σ( j )−1

η

⌋
+

⌊
y∗
σ( j )−1

η

⌋
−

⌊
y∗
σ( j−1)

η

⌋)
η

< Mη+η,

since by∗
σ( j )−1/ηc = by∗

σ( j−1)/ηc and y∗
σ( j ) − y∗

σ( j )−1 ≤C . Thus z j ≤ Mη. Moreover by defini-
tion, r j ≤ Rη. Therefore (z j ,r j ) ∈ V for all j ∈ {1, . . . ,n}. Let us now prove that(
(z j−1,r j−1), (z j ,r j )

) ∈ A for all j ∈ {2, . . . ,n}. By definition, z j + r j−1 = r j . Note that
because of the definition of r j , we have r j ≤ y∗

σ( j ) ≤ y∗
σ( j+1)−1 < r j +η. Combining these
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inequalities for all j with Lemma 9 leads to

τ̄(r j )− τ̄(r j−1)+ν(z j − z j−1) ≥ τ̄
(

y∗
σ( j )

)
− η

α
− τ̄

(
y∗
σ( j−1)

)
+ν

(
y∗
σ( j ) − y∗

σ( j )−1 − y∗
σ( j−1) + y∗

σ( j−1)−1 −2η
)

= d∗
σ( j ) −d∗

σ( j−1) −
(

1

α
+2ν

)
η

≥ −
(

1

α
+2ν

)
η.

The sequence (z j ,r j ) j∈{1,...,n} is then a feasible path p from the vertex (0,0) to (zn ,rn) in
G , with at most S arcs. The only thing that remains to be checked in that the claimed
inequality holds.

We have f ave
(
d∗
σ( j ), y∗

σ( j )−1, y∗
σ( j )

)
≥ f ave

(
τ̄(r j )+ν(z j −η),r j−1 +η,r j

)
for all j ∈ {1, . . . ,n}

since f ave(·) is nonincreasing in the second term and nondecreasing in the first and third
terms. Thus, ∑

a∈A(p)
w(a) ≤

n∑
j=1

f ave
(
d∗
σ( j ), y∗

σ( j )−1, y∗
σ( j )

)
≤ D(T )g ave(d∗, y∗).

Lemma 11. The pair (d̃ , ỹ) is a feasible solution of Pave
no return.

Proof. We are going to check that (d̃ , ỹ) is feasible for Pave
no return.

For j ∈ {1, . . . ,n}, we have ỹ j − ỹ j−1 ≤ C by definition of ỹ . For j = n +2, . . . ,S, we have
ỹ j − ỹ j−1 = 0. Finally, we have ỹn+1 − ỹn ≤ D(T )− rn < η≤C (where we use Lemma 8 to
bound ỹn). Thus, ỹ satisfies constraint (i).

For j ∈ {1, . . . ,n}, we have r j > r j−1 and thus ỹ j−1 ≤ r j−1 +η≤ r j ≤ ỹ j (the last inequality
being Lemma 8). Thus, ỹ satisfies constraint (ii).

Consider j ∈ {2, . . . ,n}. We have

d̃ j − d̃ j−1 = τ̄(ỹ j )+ν(ỹ j − ỹ j−1)−τ(ỹ j−1)−ν(ỹ j−1 − ỹ j−2)+γη
≥ τ̄(r j )− τ̄(r j−1 +η)+ν(r j −2r j−1 + r j−2 −2η)+γη
≥ τ̄(r j )− τ̄(r j−1)− η

α
+ν(z j − z j−1 −2η)+γη

≥ 0.

The first inequality is obtained with the help of Lemma 8. For the second one, we use
Lemma 9 and also that z j = r j − r j−1 and z j−1 = r j−1 − r j−2 which hold because

p̃ = (
(z0,r0), (z1,r1), . . . , (zn ,rn)

)
is a path in G . For the last inequality, we use τ̄(r j )− τ̄(r j−1)+ν(z j − z j−1)+ 1

2γη≥ 0, which
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holds again because p̃ is a path, and the definition of γ. For j ≥ n +1, we have d̃ j ≥ d̃ j−1

by definition. Constraint (iii) is thus satisfied for all j .

If n < S, then ỹS = D(T ) by definition. From now on, we suppose thus that n = S. We also
suppose that S ≥ 2. The case S = 1 being easy to check (and anyway, for a complexity point
of view, this case does not matter). If ỹS−1 = rS−1+η, then ỹS−1+C = rS−1+η+C ≥ rS +η>
D(T ) (here we use that zS ≤ C and that rS = Rη) and thus ỹS = D(T ). If ỹS−1 = D(T ),
then ỹS = D(T ) since ỹS−1 ≤ ỹS ≤ D(T ). Hence, in all these cases, ỹ satisfies constraint
(iv). The only remaining case is when ỹS−1 = ỹS−2 +C . If j is an index in {1, . . . ,S −2}
such that ỹ j = r j +η, then we have r j+1 +η ≤ r j +C +η = ỹ j +C and r j+1 +η ≤ D(T ),
and thus ỹ j+1 = r j+1 +η. It implies that as soon as some j0 ∈ {1, . . . ,S −1} is such that
ỹ j0 = r j0 +η, we have ỹS−1 = rS−1 +η, which is a case we have already dealt with. Since
r j +η≤ rS ≤ D(T ) for j ∈ {1, . . . ,S−1}, we are left with the case where ỹ j = ỹ j−1+C for every
j ∈ {1, . . . ,S −1}. In this situation, we have ỹS−1 = (S−1)C and hence ỹS−1+C =C S ≥ D(T ).
Since rS +η> D(T ), we get that ỹS = D(T ), and ỹ satisfies constraint (iv) in every case.

For j ∈ {1, . . . ,n}, we have d̃ j ≥ τ̄(ỹ j )+ν(ỹ j − ỹ j−1) by definition, and for j ≥ n +1, we have
d̃ j ≥ T +ν(ỹn+1 − ỹn) ≥ τ̄(ỹ j )+ν(ỹ j − ỹ j−1). Thus d̃ satisfies constraint (v) and (d̃ , ỹ) is
feasible for Pave

no return.

Lemma 12. The following inequality holds:

g ave(d̃ , ỹ) ≤ 1

D(T )

∑
a∈A(p̃)

w(a)+O

(
S2

M

)
.

Proof. Our goal is to bound from above the following quantity

g ave(d̃ , ỹ) = 1

D(T )

S∑
j=1

f ave(d̃ j , ỹ j−1, ỹ j ) (7.4)

We proceed by splitting the expression into two parts: the sum from j = 1 to j = n, and
the sum from j = n +1 to j = S.

Using Lemmas 8 and 9, we have τ̄(ỹ j )+ν(ỹ j − ỹ j−1) ≤ q j +η/α+νη, where q j = τ̄(r j )+
ν(r j − r j−1). Thus we have for all j ≤ n,

n∑
j=1

f ave(d̃ j , ỹ j−1, ỹ j ) ≤
n∑

j=1
f ave

(
q j + η

α
+νη+ jγη,r j−1,r j +η

)
, (7.5)

since f ave(·) is nonincreasing in the second term and nondecreasing in the first and third
terms and where we extend the definition of τ̄(·) by letting τ̄(y) = T for all y > D(T ).

For the second part, we proceed as follows. Since rn +η = (R + 1)η > D(T ), Lemma 8
immediately implies D(T )− ỹn ≤ η. With Lemma 9, we get thus T ≤ τ̄(ỹn)+η/α, where
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we used T = τ̄(D(T )− ỹn + ỹn
)
. This provides

d̃n+1 ≤ τ̄(ỹn)+ η

α
+ν(rn − rn−1)+νη+nγη

= qn +
(

1

α
+ν+nγ

)
η.

Using again the fact that f ave(·) is nonincreasing in the second term and nondecreasing
in the first and third terms and with the help of Lemma 8, we get

S∑
j=n+1

f ave(d̃ j , ỹ j−1, ỹ j ) ≤ f ave
(
qn + η

α
+νη+nγη,rn ,rn +η

)
, (7.6)

since the terms indexed by j = n +2, . . . ,S are all zero and since D(T ) < rn +η.

We aim at comparing the upper bounds in Equations (7.5) and (7.6) with

∑
a∈A(p̃)

w(a) =
n∑

j=1
f ave(q j −νη,r j−1 +η,r j ). (7.7)

We first compare the j th term of the bound in (7.5) with the j th term of the sum in (7.7).

f ave
(
q j + η

α
+νη+ jγη,r j−1,r j +η

)
− f ave(q j −νη,r j−1 +η,r j ) = I 1

j + I 2
j + I 3

j

with

I 1
j =

∫ r j−1+η

r j−1

(
q j + η

α
+νη+ jγη− τ̄(u)

)
du

I 2
j =

∫ r j

r j−1+η

(
jγη+ η

α
+2νη

)
du

I 3
j =

∫ r j+η

r j

(
q j + η

α
+νη+ jγη− τ̄(u)

)
du.

Since τ̄(·) in nondecreasing, we get

I 1
j ≤ (

τ̄(r j )− τ̄(r j−1)+ν(r j − r j−1)
)
η+

(
1

α
+ν+ jγ

)
η2

I 2
j ≤ (r j − r j−1)

(
jγ+ 1

α
+2ν

)
η−

(
jγ+ 1

α
+2ν

)
η2

I 3
j ≤ ν(r j − r j−1)η+

(
1

α
+νη+ jγ

)
η2.

Using jγ≤ nγ and γ= 2(1/α+2ν), we obtain

I 1
j + I 2

j + I 3
j ≤ (

τ̄(r j )− τ̄(r j−1)+2ν(r j − r j−1)
)
η+

(
n + 1

2

)
γη2 + (r j − r j−1)

(
n + 1

2

)
γη.

We now bound the term in Equation (7.6). Let I = f ave(qn +η/α+νη+nγη,rn ,rn +η). We
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have

I =
∫ rn+η

rn

(
qn + η

α
+νη+nγη− τ̄(u)

)
du.

≤ ν(rn − rn−1)η+
(

1

α
+ν+nγ

)
η2.

We have thus

g ave(d̃ , ỹ)− 1

D(T )

∑
a∈A(p̃)

w(a)

≤ 1

D(T )

(
n∑

j=1

(
I 1

j + I 2
j + I 3

j

)+ I

)

≤ 1

D(T )

(
τ̄(rn)+2νrn + rn(n +1)γ+νC + (n +1)2γη

)
η.

Using rn ≤ D(T ) and τ̄(rn) ≤ T leads to

g ave(d̃ , ỹ) ≤ 1

D(T )

∑
a∈A(p̃)

w(a)

+
(

T +νC

D(T )
+γ(S +1)

)
η+ γ(S +1)2

D(T )
η2.

7.5.3 When the demand function is a step function

Better complexity results can be obtained when the demand is a step function. A step
function is a function that can be written as a finite linear combination of indicator
functions of intervals. The assumption of D(·) being a step function means that the users
arrive only on a finite number of instants. As it has already been noted, the assumption
ν= 0 is equivalent to the assumption that every user boards a shuttle as soon as he arrives
in the terminal.

Proposition 6. Assume that D(·) is a step function defined with K discontinuities, supposed
to be part of the input. Suppose moreover that ν = 0. Then for each of Pmax

no return and of
Pave

no return, there is an algorithm computing an optimal solution in O(K 2S).

It turns out that when C and the values taken by D(·) are integer, the loads of the shuttles
in the optimal solution returned by the algorithm are also integer. We cover thus the case
where the users are atoms.
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Figure 7.2 – A feasible path in the algorithm proposed for solving Pmax
no return when the the

demand function is a step function

The algorithm

We provide only the algorithm for Pmax
no return, the other case can be dealt with similarly. Let

t1 < ·· · < tK be the K discontinuities. Define the directed graph G = (V ,A ) by

V = {
C q : q ∈ {0,1, . . . ,Q}

}∪{
D(tk )+C q : k ∈ {1, . . . ,K } , q ∈ {0,1, . . . ,Q}

}
A = {

(y, y ′) ∈ V 2 : 0 ≤ y ′− y ≤C
}
,

where Q = bD(T )/Cc. Note that the vertex set is a finite subset of R+. Set for each arc
a = (y, y ′) a weight w(a) = τ̄(y ′)−τ(y). Note that this weight may be negative when y = y ′

(a loop in G ) but this will not cause any issue. We consider the two vertices 0 and D(T )
(obtained with k = K and q = 0).

If C S < D(T ), there is no feasible solution. We can thus assume that C S ≥ D(T ). The algo-
rithm consists first in computing a 0-D(T ) path p̃ with S arcs minimizing maxa∈A (p̃) w(a).
Within the proof of Proposition 6 below, we show that from any feasible solution we can
build a 0-D(T ) path with S arcs in G . Thus, when the problem is feasible, such paths
exist in G . The computation of p̃ can be done in O(S|A |) via dynamic programming. Let
the vertex sequence of p̃ be (ỹ0, ỹ1, . . . , ỹS). The end of the algorithm consists in defining
d̃ j = τ̄(ỹ j ) for all j ∈ {1, . . . ,S} and outputting the pair (d̃ , ỹ). The construction of the graph
is sketched on Figure 7.2.

As it will be shown below, this (d̃ , ỹ) is an optimal solution of Pmax
no return.

Proof of Proposition 6

According to Lemma 4, we replace the objective function of Pmax
no return by max j∈{1,...,S}(d j −

τ(y j−1)). It can easily be checked that (d̃ , ỹ) is feasible for Pmax
no return. It provides a value
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max j∈{1,...,S}(τ̄(ỹ j )−τ(ỹ j−1)) for Pmax
no return (with the alternative objective function), which

coincides with maxa∈A (p̃) w(a). The path p̃ describes therefore a solution of Pmax
no return with

a value equal to maxa∈A (p̃) w(a).

Conversely, let (d , y) be any feasible solution of Pmax
no return. Let ȳ be the sequence defined

by ȳ j = min{y ∈ V : y ≥ y j }. On the one hand, we have ȳ j−1 ≤ ȳ j because y j−1 ≤ y j . On
the other hand, we have ȳ j−1 +C ≥ y j−1 +C ≥ y j . If ȳ j−1 +C ∈ V , we have ȳ j−1 +C ≥ ȳ j

by definition of ȳ j . If ȳ j−1 +C ∉ V , then ȳ j−1 +C > D(T ) ≥ ȳ j since D(T ) ∈ V . Thus,
(ȳ j−1, ȳ j ) ∈A for all j ∈ {1, . . . ,S}. We have ȳ0 = 0 and ȳS = D(T ) and the sequence ȳ is a
0-D(T ) path p with S arcs.

Second, we prove that τ̄(ȳ j )−τ(ȳ j−1) ≤ d j −τ(y j−1) as follows. There exists a unique
k such that D(tk ) < y j ≤ D(tk+1). By definition of D(·), we have D(t) = D(tk ) for all
t ∈ [tk , tk+1), and thus τ̄(y j ) = tk+1. Since D(tk+1) ∈ V , we have ȳ j ≤ D(tk+1) by definition
of ȳ j , and hence τ̄(ȳ j ) ≤ tk+1 (directly by definition of τ̄(·)). Therefore, τ̄(ȳ j )−τ(ȳ j−1) ≤
τ̄(y j )−τ(y j−1) ≤ d j −τ(y j−1) (where we use the fact that τ(·) is nondecreasing).

Finally, we have
max

a∈A (p)
w(a) ≤ max

j∈{1,...,S}

(
d j −τ(y j−1)

)
.

As the path p̃ is optimal, maxa∈A (p̃) w(a) is a lower bound on the value taken by the
(alternative) objective function on (d , y).

7.6 When return is allowed

The algorithm

The following map will be useful:

f max : (`, y, y ′) 7→
{

max(`, τ̄(y ′))+ν(y ′− y)−τ(y) if y ′ ≥ y

0 if y ′ < y .

We introduce the following two sets

Q = {
0,η, . . . , (

⌊
T +/η

⌋+1)η
}S

R = {
r ∈ {0,η, . . . ,Rη}S : 0 ≤ rk − rk−1 ≤ Mη for k ∈ {2, . . . ,S}

}
,

where

η= C

M
, R =

⌊
D(T )M

C

⌋
, and

T + = T + νD(T )

S
+

(⌈
D(T )

C S

⌉
−1

)
π.

Define the directed graph G = (V ,A ) by

V = {
(z, q ,r ) ∈ {0,η, . . . , Mη}×Q×R satisfying (?)

}
A = {(

(z, q ,r ), (z ′, q ′,r ′)
) ∈ V 2 satisfying (??)

}
,
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where

(?)

{
rk ≤ D(qk ) for k ∈ {1, . . . ,S}

qk −qk−1 +ν(rk −2rk−1 + rk−2)+ (1+2ν)η≥ 0 for k ∈ {2, . . . ,S}.

and

(??)


rS + z ′ = r ′

1

q ′
1 −qS +ν(z ′− rS + rS−1)+ (1+2ν)η≥ 0

q ′
k −qk −ν(rk − rk−1)−π+ (1+ν)η≥ 0 for k ∈ {1, . . . ,S}.

We adopt the convention D(t ) = D(T ) when t ≥ T and we define r0 = r1 − z. Set for each
arc a = (

(z, q ,r ), (z ′, q ′,r ′)
)

a weight

w(a) = max
k∈{1,...,S}

f max(q ′
k −η,r ′

k−1 +η,r ′
k )

where r ′
0 = r ′

1 − z ′.

The algorithm consists first in computing a path p̃ minimizing maxa∈A(p) w(a) among all
paths p starting at (0,0,0) ∈ V (the ‘all zero’ vector) and ending at a vertex (z, q ,r ) with
rS = Rη. Such paths exist, see Lemma 14 below. It can be done in O(|V ||A |) via dynamic
programming. Let the vertex sequence of p̃ be(

(0,0,0), (z0, q 0,r 0), . . . , (zn , q n ,r n)
)
.

The vector r i models the cumulative loads of the S shuttles when they perform their i th de-
parture. The vector q i models the times at which the loading of the S shuttles starts when
they perform their i th departure. These quantities are computed only approximatively
(with an accuracy η).

We set ỹ0 = 0, r i
0 = r i−1

S , r 0
0 = 0, and γ̃= (1+4ν+1/α). The algorithm consists in defining

recursively for all j = i S +k with i ∈ {0, . . . ,n} and k ∈ {1, . . . ,S}

ỹ j =
{

min
(
r i

k +η, ỹ j−1 +C ,D(T )
)

if r i
k > r i

k−1

ỹ j−1 otherwise

d̃ j = max(q i
k , τ̄(ỹ j ))+ j γ̃η+ν(ỹ j − ỹ j−1)

and for j = (n +1)S +1 if ỹ(n+1)S < D(T )

ỹ j = D(T )

d̃ j = max
(
d̃ j−S +π, d̃(n+1)S ,T

)+ν(ỹ j − ỹ j−1).

We then output the pair (d̃ , ỹ).The construction of the graph is sketched on Figure 7.3.

As it will be stated below, this (d̃ , ỹ) is a feasible solution of Pmax
return providing a value to the
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Figure 7.3 – A feasible path in the algorithm proposed for solving Pmax
return.

objective function g max(·) within a O
(

S2

M

)
gap to the optimal value.

Proof of Theorem 5

We provide four lemmas. The proof of Lemma 15 is almost the one of Proposition 5 and
is thus omitted. The proofs of the three others follow the same scheme as the ones of
Lemmas 10, 11, and 12. Theorem 5 results immediately from the combination of these
three latter lemmas. Lemma 15 is only used for proving Lemma 14.

Lemma 13. We have r i
k ≤ ỹi S+k ≤ r i

k +η for i ∈ {0, . . . ,n} and k ∈ {1, . . . ,S}.

Proof. We have ỹi S+k ≤ r i
k +η by definition. Using r i

k − r i
k−1 ≤ Mη in a feasible path, a

direct induction shows that r i
k ≤ ỹi S+k .

Lemma 14. There exists a path p starting at (0,0,0) ∈ V and ending at a vertex (z, q ,r )
with rS = Rη and such that

max
a∈A(p)

w(a) ≤OPT.

Proof. Let (d∗, y∗) be an optimal solution of Pmax
return such that y∗

N > y∗
N−1, where N is

its number of departures. Such a solution always exists. Consider the nondecreas-
ing sequences r̃ = by∗

1 /ηcη, . . . ,by∗
N /ηcη and q̃ = d(d∗

1 −ν(y∗
1 − y∗

0 ))/ηeη, . . . ,d(d∗
N −ν(y∗

N −
y∗

N−1))/ηeη. Repeat the last terms by∗
N /ηcη and d(d∗

N −ν(y∗
N − y∗

N−1))/ηeη until the se-
quences have a multiple of S terms. Denote by n = dN /Se−1, we define the sequence
r = r 0, . . . ,r n and q = q0, . . . , qn as follows: for all i ∈ {0, . . . ,n},

r i = (
r̃i S+1, . . . , r̃(i+1)S

)
q i = (

q̃i S+1, . . . , q̃(i+1)S
)

.
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We denote by r i
k (resp. q i

k ) the kth term in r i (resp. q i ) and we define zi = r i
1−r i−1

S for all i ∈
{0, . . . ,n}, where r−1

S = 0. We prove that the sequence
(
(0,0,0), (z0,r 0, q0), . . . , (zn ,r n , qn)

)
provides a feasible path to a vertex (zn , q n ,r n) with r n

S = Rη. First note that r n
S = Rη since

y∗
N = D(T ) and that zi ≤ 0. For all i ∈ {0, . . . ,n}, we have

zi = r i
1 − r i−1

S

=
(⌊ y∗

i S+1

η

⌋
−

⌊ y∗
i S

η

⌋)
η

< Mη+η,

where for all j > N , we set y j to yN . Thus zi ≤ Mη. We show the same way that r i ∈R. The
loading time of the j th departure is d∗

j −ν(y∗
j − y∗

j−1). Since the d j th are nondecreasing,

for all k and i , we have q i
k ≤ qn

S = d(d∗
N −ν(y∗

N − y∗
N−1))/ηeη≤ T ++η using Lemma 15 for

the last inequality. For all k and i , we have D(q i
k ) ≥ D(τ(y∗

i S+k )) ≥ y∗
i S+k ≥ r i

k , where we
use the feasibility of (d∗, y∗) for the first inequality and Lemma 1 for the second. We have
for k ∈ {2, . . . ,S}

q i
k −q i

k−1 = ν(r i
k −2r i

k−1 + r i
k−2) ≥ d∗

i S+k −d∗
i S+k−1 −η−2νη

≥ −(1+2ν)η.

Thus, (zi ,r i , q i ) ∈ V for all i ∈ {0, . . . ,n}. Let us prove now that ((zi−1,r i−1, q i−1), (zi ,r i , q i )) ∈
A for all i ∈ {1, . . . ,n}. By definition, zi = r i

1 − r i−1
S . The second inequality is satisfied for

the same reasons as above. Note that because of the definitions of r i
k and q i

k , we have
r i

k ≤ y∗
i S+k < r i

k + η and q i
k − η < d∗

i S+k − ν(y∗
i S+k − y∗

i S+k−1) ≤ q i
k , where for all j > N ,

d∗
j = d∗

N and y∗
j = y∗

N . Combining these inequalities with the feasibility of (d∗, y∗) for all
i ∈ {1, . . . ,n −1} leads to

q i
k −q i−1

k −ν(r i−1
k − r i−1

k−1) ≥ d∗
i S+k −ν(y∗

i S+k − y∗
i S+k−1)−η−d∗

(i−1)S+k −νη
≥ π− (1+ν)η,

where r i
0 = r i−1

S . The sequence
(
(0,0,0), (z0,r 0, q0), . . . , (zn ,r n , qn)

)
is then a feasible path

p in G from the vertex (0,0,0) to a vertex (zn , q n ,r n) with r n
S = Rη. The only thing that

remains to be checked in that the claimed inequality holds.

We have f max(d∗
i S+k , y∗

i S+k1
, y∗

i S+k ) ≥ f max(q i
k −η,r i

k−1 +η,r i
k ) for all i ∈ {0, . . . ,n} and j ∈

{1, . . . ,S} since f max(·) is nonincreasing in the second term and nondecreasing in the first
and third terms. Thus, since f max(`, y, y) = 0 for all ` and y , we have

max
a∈A(p)

w(a) ≤ max
i∈{0,...,n},k∈{1,...,S}

f max (
d∗

i S+k , y∗
i S+k−1, y∗

i S+k

)
≤ g max(d∗, y∗).

Lemma 15. For every optimal solution, T + is an upper bound on the loading time of the
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last nonempty departure.

Lemma 16. The pair (d̃ , ỹ) is a feasible solution of Pmax
return.

Proof. We are going to check that (d̃ , ỹ) is feasible for Pmax
return.

For j ∈ {1, . . . , (n +1)S}, we have ỹ j − ỹ j−1 ≤ C by definition. If ỹ(n+1)S < D(T ), we have
ỹ(n+1)S+1 − ỹ(n+1)S ≤ D(T )− r n

S < η≤C (where we use Lemma 13 to bound ỹ(n+1)S). Thus,
ỹ satisfies constraint (i).

For i ∈ {0, . . . ,n} and k ∈ {1, . . . ,S}, if r i
k > r i

k−1, we have ỹi S+k−1 ≤ r i
k−1 +η ≤ r i

k ≤ ỹi S+k

(with Lemma 13). If r i
k−1 = r i

k , we have by defintion ỹi S+k ≥ ỹi S+k−1. If ỹ(n+1)S < D(T ), the
constraint is also satisfied and constraint (ii) is satisfied.

For i ∈ {0, . . . ,n} and k ∈ {1, . . . ,S}, we have τ(ỹi S+k ≤ τ(r i
k )+η/α with Lemmas 13 and 9.

Thus, max
(
q i

k ,τ(yi S+k )
)≤ q i

k +η/α and d̃i S+k −di S+k−1 ≥ q i
k −q i

k−1−η/α+ν(r i
k −2r i

k−1+
r i

k−2−2η)+ γ̃η≥ 0. If ỹ(n+1)S < D(T ), the constraint is satisfied by defintion and d̃ satisfies
constraint (iii).

If ỹ(n+1)S < D(T ), the ỹ(n+1)S+1 = D(T ) by definition and constraint (iv) is satisfied.

For j ∈ {1, . . . , (n +1)S}, d̃ j ≥ τ(ỹ j )+ν(ỹ j − ỹ j−1) bu definition. If ỹ(n+1)S < D(T ), we have
τ(ỹ(n+1)S) = T and constraint is also satisfied. Thus, d̃ satisfied constraint (v).

For j ∈ {1, . . . , (n +1)S}, we have with Lemmas 13 and 9

d̃i S+k − d̃(i−1)S+k −ν(ỹi S+k − ỹi S+k−1) ≥ q i
k −q i−1

k − 1

α
−ν(r i−1

k − r i−1
k−1 −η)

+
(
1+2ν+ 1

α

)
η

≥ π.

If ỹ(n+1)S < D(T ), the constraint is satisfied by definition and constraint (vi) is satisfied.
Thus (d̃ , ỹ) is feasible for Pmax

return.

Lemma 17. The following inequality holds:

g max(d̃ , ỹ) ≤ max
a∈A(p̃)

w(a)+O

(
S2

M

)
.

Proof. Out goal is to bound from above the following quantity

g max(d̃ , ỹ) = max
ỹ j−1<ỹ j

(d̃ j −τ(ỹ j−1))

= max
ỹ j−1<ỹ j

f max(d̃ j −ν(y j − y j−1), y j−1, y j ).
(7.8)

For j = i S +k such that ỹ j−1 < ỹ j , we have r i
k−1 < r i

k (where r i
0 is set to r i−1

S ). We have
d̃ j −ν(ỹ j−1− ỹ j ) = max(q i

k , τ̄(ỹ j ))+ j γ̃η≤ q i
k +η/α+ j γ̃η using Lemma 9. With Lemma 13,
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ỹ j−1 ≥ r i
k−1, ỹ j ≤ r i

k +η, and thus

f max(d̃ j −ν(y j − y j−1), y j−1, y j ) ≤ f max
(
q i

k +
η

α
+ j γ̃η,r i

k−1,r i
k +η

)
(7.9)

since f max(·) is nonincreasing in the second term and nondecreasing in the first and third
terms. We have with Equations (7.8) and (7.9):

g max(d̃ , ỹ) ≤ max
i ,k : r i

k−1<r i
k

f max
(
q i

k +
η

α
+ (i S +k)γ̃η,r i

k−1,r i
k +η

)
. (7.10)

The only remaining term is if ỹ(n+1)S < D(T ), then ỹ(n+1)S+1 − ỹ(n+1)S > 0. This case only
happens when ỹ(n+1)S = Rη is a multiplier of C . Increasing the value of M can avoid this
case, since M appears in ‘big O’ formulas, it is a valid assumption.

We have maxa∈A(p̃) w(a) = maxi∈{0,...,n} maxk∈{1,...,S} f max(q i
k −η,r i

k−1 +η,r i
k ). We compare

this equation with the bound in Equation (7.10), for i ,k such that r i
k−1 < r i

k :

f max
(
q i

k +
η

α
+ (i S +k)γ̃η,r i

k−1,r i
k +η

)
− f max(q i

k −η,r i
k−1 +η,r i

k )

≤ q i
k +

η

α
+ (i S +k)γ̃η+ν(r i

k +η− r i
k−1)−τ(r i

k−1)−q i
k +η

−ν(r i
k − r i

k−1 −η)+τ(r i
k−1 +η)

≤ (i S +k +2)γ̃η.

We have thus with Equation (7.10):

g max(d̃ , ỹ) ≤ max
i ,k : r i

k−1<r i
k

(
f max(q i

k −η,r i
k−1 +η,r i

k )+ η

α
+ (i S +k +1)γ̃η

)
≤ max

i ,k

(
f max(q i

k −η,r i
k−1 +η,r i

k )+ (i S +k +2)γ̃η
)

≤ max
a∈A(p̃)

w(a)+ (n +1)S((n +1)S +2)γ̃η.

With Proposition 5, we have the conclusion.

7.7 Experimental results

In this section, we test the performance of the algorithms described in previous sections
for problems Pmax

no return, Pave
no return, and Pmax

return. As explained in Section 7.3, we do not have
such an algorithm for problem Pave

return.

7.7.1 Data

Our experiments are based on real data provided by our partner Eurotunnel. They are
related to the transportation of freight trucks between France and Great Britain. Some
parameters are fixed as constants of the problems and do not vary from an instance
to another. For the constants C ,T,ν,π of our problem, we take the real values used in
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practice by the company:

C = 32, T = 1440min (one day),

ν= 0.625min, π= 34min.

(The value taken for π is actually the duration of a trip going from France to Great-Britain,
and not of the round trip, which lasts approximatively twice this quantity.)

Two functions D(·) are used. The first one (“1P”) is a piecewise affine map obtained by
averaging the real demand over several days. It turns out that this function has a peak
period in the morning. The second function (“2P”), also piecewise affine, is obtained
from the first by artificially adding a second peak period in the evening. In both cases,
D(·) is increasing and D(T ) = 2016. For problems Pmax

no return and Pave
no return, we consider

S ∈ [100,250] since the number of shuttle trips in every direction is within this range for a
typical day.

The numerical experiments have been performed on a Macbook Pro of 2014 with four 2.2
Ghz processors and 16 Gb of ram.

7.7.2 Results

The problems Pmax
no return, Pave

no return, and Pmax
return are solved with algorithms described in this

chapter. The results are summarized in the following tables.

Table 7.1 gives the numerical results for problem Pmax
no return. The first column provides the

name of the instance. The next column is the number of shuttles S in the fleet. The third
column provides the parameter ε of the algorithm, which is an a priori upper bound on
the optimality gap (Corollary 1). The next two columns give respectively the lower bound
and the upper bound (value of the feasible solution returned by the algorithm), both
expressed in minutes. The next column is the optimality gap. The last column provides
the CPU time spent solving the problem.

D S ε LB UB gap CPU
(%) (s)

1P 100 10−4 27.2 27.2 0.0 0
1P 150 10−4 18.1 18.1 0.0 0
1P 200 10−4 13.6 13.6 0.0 0
1P 250 10−4 11.0 11.0 0.0 0
2P 100 10−4 27.0 27.0 0.0 0
2P 150 10−4 18.0 18.0 0.0 0
2P 200 10−4 13.5 13.5 0.0 0
2P 250 10−4 10.8 10.8 0.0 0

Table 7.1 – Numerical results for problem Pmax
no return
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Table 7.2 gives the numerical results for problem Pave
no return. The columns are the same as

for Table 7.1 except the third one which provides here the parameter M of the algorithm.
We know from Theorem 4 that the gap between the upper bound and the lower bound
converges asymptotically to 0 when M goes to infinity. We tried M = 32 and M = 128.

D S M LB UB gap CPU
(%) (s)

1P 100 32 17.3 19.2 10.0 34
1P 100 128 18.7 19.2 2.5 1930
1P 200 32 7.7 9.6 19.4 70
1P 200 128 9.1 9.6 5.0 4035
2P 100 32 17.5 19.4 9.9 38
2P 100 128 18.9 19.4 2.5 2387
2P 200 32 7.9 9.7 19.2 76
2P 200 128 9.2 9.7 5.0 4463

Table 7.2 – Numerical results for problem Pave
no return

Table 7.3 gives the numerical results for problem Pmax
return. The columns are the same as for

Table 7.2. Since the computation time was prohibitively long as soon as S ≥ 2, we made
experiments for S = 1 only. To get realistic waiting times for the users, we divided the
demand functions by 3.5 leading to (“1P∗”) and (“2P∗”). Again, we know from Theorem 5
that for large M , we will be close to the optimal solution and we tried M = 16 and M = 32.

D S M LB UB gap CPU
(%) (s)

1P∗ 1 16 168.6 214.2 21.3 104
1P∗ 1 32 184.5 210.8 12.5 1654
2P∗ 1 16 101.0 131.0 22.9 106
2P∗ 1 32 106.9 126.3 15.4 1848

Table 7.3 – Numerical results for problem Pmax
return

7.7.3 Comments

In Table 7.1, the results for problem Pmax
no return are extremely convincing, the optimal solu-

tions were found almost immediately. In Table 7.2, the algorithm for problem Pave
no return

was able to find provable good solutions within reasonable computation times. We may
note that increasing M after some threshold does not seem to improve the quality of the
return solution. This was confirmed by other experiments not shown here. It may indicate
that the algorithm could be used efficiently in practice. In Table 7.3, the same holds for
Pmax

return once we have accepted to work with one shuttle. Finding an efficient algorithm
with at least two shuttles seems to remain a challenging task.
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Literature review. In railway transportation, a traditional point of view considers
that the demand can be smoothed by offering sufficiently enough departures over
a day. Timetabling is then guided by other considerations, such as robustness,
maintainability, or rolling stock. For instance, Swiss, Dutch, and German companies
usually design periodic timetables, which present many advantages (see Cordone
and Redaelli [19] and Kroon et al. [40]. The way to optimize this kind of timetables
has been the topic of many researches, initiated by Serafini and Ukovich [62] and
by Voorhoeve [69] explicitly in the railway context; see Kroon and Peeters [42],
Liebchen [46], Liebchen and Möhring [48], and Nachtigall and Voget [53] for further
works. In the context of periodic timetables, a way to adapt the schedules to a
demand with strong variations consists in inserting new departures at peak hours
and deleting departures when the demand is low, or in changing the size of the
trains.

There are timetabling problems with similar features as the ones discussed in this
chapter, see Berrena et al. [3], Cacchiani et al. [12, 13], Caprara et al. [16], Cai et
al. [15], and Ingolotti et al. [35] for instance. These articles are at a more macroscopic
level than what we require in our case.
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Conclusion

This thesis gives operational algorithms, prospective heuristics and theoretical methods
to deal with some problems of rail transportation. Our work was applied to the case of
Eurotunnel, which was our partner during the thesis.

The first part is the most operational one. It deals with the problem of computing op-
timized schedules with different natural objectives for Eurotunnel. The first objective
is the maximization of the number of HGV shuttles in the schedule while satisfying the
operational constraints and the commercial agreements. Scheduling HGV shuttles is
very crucial for Eurotunnel because of the future important increase of freight demand.
The second objective is the minimization of the average delay of each train, taking into
account stochastic disturbances. Minimizing the delays in the schedules is also a very
important issue, in order to limit the propagation of the delays from train to train during
the day. We used here the historical data of Eurotunnel to create scenarios of delays as
close as possible to what Eurotunnel daily faces. A heuristic for the problem dealing
simultaneously with both objectives is also given. These algorithms would be useful for
real operational needs of Eurotunnel: they would help engineers to design the everyday
schedules. They were enthusiastic about this tool when we presented it. These algorithms
would also be useful at a strategic level. By comparing the objective values with different
sets of constraints, it could help to give the « price » of every operational and commercial
constraint. These metrics are very important for Eurotunnel towards their future invest-
ments and commercial negotiations.
Regarding possible improvements upon our work, the number of variables (especially
binary ones) and constraints rapidly become very large as the instances grow and the
resolution with a solver gets very long. Moreover, the use of commercial solvers is very
limiting for big companies since they can be very expensive. Finding efficient algorithms
for such problems would be a natural evolution of our work.

The second part is the most prospective one. It deals with a simultaneous scheduling
and pricing problem for a transportation company. Each customer wants to purchase
a ticket for a fixed trip and has a preferred departure time. He purchases the ticket for
the departure that satisfies him the most, if there is one, or does not buy any if no one
suits him. The company wants to schedule jointly the departure times and the prices to
maximize its revenue. We give algorithms to fix the departure times and the prices, and to
give upper bounds on the optimal value of the problem.
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This part is very prospective for Eurotunnel. Indeed, their booking system is slightly
different than the one considered in this part: the HGVs buy their ticket just before their
trip and not in advance. Moreover, the problem is here much simpler than the real one
since we only consider one type of trains, without any other traffic. However, Eurotunnel
was receptive to the problem we considered and to the methods we gave to compute
solutions. In the long run, this method could be interesting for the company to increase
jointly its revenue and the customers’ satisfaction. As detailed in the chapter, the upper
bounds computed by the Lagrangian method are not very convincing and an interesting
future work would be to tighten the gap between the upper and lower bounds. A natural
evolution to our work would also be to extend the results to more complex networks,
several types of trains and to allow evolutive prices over time.

The third part is the most theoretical one. It deals with problems consisting in transporting
people or goods from an initial station to another one. We use only a fixed number of
shuttles, allowed to perform several rotations in some variants of the problem. The loading
process is inspired from Eurotunnel: when the users arrive in the terminal, they enter
a queue. This queue closes when all the users who will leave with the next shuttle have
arrived and users can enter a new queue only if the previous one is closed. When a queue is
closed, the users in that queue can start boarding the shuttle. The objective is to minimize
the average waiting time or the maximal waiting time of the passengers. We give efficient
algorithms to solve these problems or to compute good approximated solutions. As for
the second part, the problem does not exactly correspond to the one faced by Eurotunnel
and therefore, the algorithms cannot be directly applied by the company. However, they
give results for interesting transportation problems in various domains (rail, chemistry,
logistics, ...). Moreover, our algorithms use original methods for such problems, and these
methods could be used to adapt the problems to more complex ones in the future.
As already mentioned, an important question remains open: we do not know if there
always exists an optimal solution for the problem where the shuttles are allowed to
perform several rotations and where the average waiting time is considered (a counterpart
to Proposition 5 for problem Pave

return). If such a result were true, then similar algorithms
than the ones for the maximum waiting time would exist. Moreover, the results for
this problem dealing with the maximum waiting time are not convincing as long as we
use more than one shuttle. Finding an efficient algorithm with at least two shuttles
seems to remain a challenging task. Dealing with stochastic demands would also be a
natural evolution of the algorithms, though we do not know if all our algorithms would be
adaptable. We have started to investigate the question and we got already stuck: as it is
often the case, even evaluating E[max(X )] where X is a random value is already difficult.
Our problem considering the maximum waiting time can be expressed this way and is
thus difficult to optimize. Finally, considering other more complex objective functions on
the waiting time such as a CVar-type function would also be very interesting to investigate.
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A Security headways computation

This section provides an algorithm to compute the security headway between two trains
for Eurotunnel, in order to satisfy some security rules.

A.1 Rules to be satisfied

In order to guarantee the security in the tunnel, some rules have been imposed.

A.1.1 Minimum 500 m-gap

This rule is applicable to every pair of trains of any type. It specifies that in case of an
emergency stop of the leading train, the following train has to stop and to leave a gap of at
least 500 m with the tail of the leading train.

A.1.2 Gap in case of fire

This rule is only related to HGV shuttles followed or following a train with some passengers.
These trains are Eurostars, PAX shuttles, and HGV shuttles (which convey the drivers of
all the trucks loaded on the shuttle). Freight trains MA100 and ME120 only convey the
driver of the train who can escape easily and these trains are thus not subject to the rule.
The rule specifies that in case of a fire on the HGV shuttle, the previous and the following
train (if it transports passengers) has to stop and to leave a gap of at least 4 km with that
train. This gap corresponds to the distance travelled by the smoke during the time the
passengers are evacuated.

For safety reasons, in case of a fire, a shuttle does not have to perform an emergency stop:
the shuttle goes to the next fire station (see Section 2.2) if it is reachable, or out of the
Tunnel if not.

A.1.3 Buffer blocks

The block safety system (see Section 2.2.5) is used to indicate to the drivers the speed in
each block. An operational rule imposes two entire buffer blocks are permanently empty
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between two trains.

Figure A.1 – Buffer blocks

This rule is illustrated in Figure A.1. Two entire buffer blocks follow dynamically the tail of
the train and no train can enter in the red zone.

A.2 Model

This section describes the mathematical model for computing the security headway for
each pair of trains according to the previous rules.

For each type of train A, the figures of a typical trip in the Tunnel are known, for both
directions. These figures include for 576 distinct positions in the Tunnel:

• The exact position xA
i for all i ∈ {1, . . . ,576}

• The slope in the Tunnel pA
i at this position xA

i
• The speed v A

i at this position xA
i

• The cumulative time since the entrance in the Tunnel t A
i .

We denote by `A the length of the train, t A

b the time before the train starts braking once
the order in given (a few seconds), td the time needed for an incident to be detected and
an emergency stop to be activated (all together around 15 s), and γA the deceleration of
the train in case of an emergency brake. We define T A

out the travel time in the Tunnel. The
length of the Tunnel is denoted by L and the acceleration due to gravity by g . The first fire
station is at the first crossover (more or less at one third of the Tunnel) and we denote by
s1 its position. The second one is at the second crossover more or less at two thirds of the
Tunnel and we denote by s2 its position.

The position of the blocks in the Tunnel are known and we define B = {b1, . . . ,bNb } where
bk is the position of the kth block in the Tunnel and Nb −1 is the number of blocks (b1

corresponds to the entrance gate and bNb corresponds to the exit gate).

For each type of train A, we define the piecewise affine functions pA : [0,T A
out] → R, and

v A : [0,T A
out] →R+, respectively the slope and the speed. These functions of the time are

computed to fit the data. The function xA : (−∞,T A
out] → {−∞}∪ [0,L] is defined the same

way on [0,T A
out] and is equal to −∞ if t < 0. This models the fact that the train is not in the

Tunnel when t < 0.

We use for each type of train, the function provided by Eurotunnel f A :R→R+∪{−∞,+∞}
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modelling the stopping position in case of an emergency brake at t :

f A(t ) =


−∞ if t < 0

xA(t + t A

b + td )+ vA(t+t A
b +td )2

2(γ−g pA(t+tb+td )) if t + t A

b + td ≤ T A
out

+∞ otherwise.

If t < 0, the train is not in the Tunnel and can take another track in case of an emergency
brake. If t + t A

b + td > T A
out, the train is out of the Tunnel when it starts braking and thus the

stopping position is set to +∞.

The pseudo-inverse of f A(·) is defined by

f A,−1 : y ∈R 7−→
{

sup
{

t : f A(t ) ≤ y
}

if y ≤ f A(T A
out − t A

b − td )

+∞ otherwise.

We can check that for all t ∈ R, f A,−1( f A(t)) ≥ t , which will be useful in the remaining of
this section. We also define the pseudo-inverse of xA by

xA,−1 : y ∈R 7−→ sup
{

t ∈ (−∞,T A
out] : xA(t ) ≤ y

}
,

and as before, we can check that for all t ∈ (−∞,T A
out], xA,−1(xA(t )) ≥ t .

We explain now how to determine the security headway SA,A’ between a train of type A
followed by a train of type A’.

For any pair of trains, the security headway SA,A’ has to satisfy the 500 m-gap constraint:
for all t ∈ [0,T A

out],
f A(t )− f A’(t −SA,A’ + td ) ≥ 500+`A

which gives
SA,A’ ≥ t − f A’−1( f A(t )−`A −500)− td . (A.1)

If the leading train is of type A = HGV, then for all A’ ∈ {
PAX, HGV, Eur

}
, the security

headway SA,A’ has to satisfy the gap in case of fire. We define the function sA : [0,T A
out] →

R∪ {+∞} as follows:

sA(t ) =


s1 if f A(t ) ≤ s1

s2 if s1 < f A(t ) ≤ s2

+∞ otherwise.

This function models the stopping position of a shuttle for which a fire is detected at time
t . If f A(t ) ≤ s1 (the first safe station is reachable), then s1 will be the stopping position of
the shuttle. For the same reason, if s1 < f A(t) ≤ s2, the shuttle will stop at s2. If s2 is not
reachable ( f A(t ) > s2), the shuttle will drive out of the Tunnel and its stopping position is
set to +∞.
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The constraint can be modelled as the previous one: for all t ∈ [0,T A
out],

sA(t )− f A’(t −SA,A’ + td ) ≥ 4000+`A

which gives
SA,A’ ≥ t − f A’−1(sA(t )−`A −4000)− td . (A.2)

The buffer block constraint has to be satisfied for any pair of trains. We define for all
t ∈ [0,T A

out], j A(t) = max
{
i ∈ {1, . . . , Nb} : bi ≤ xA(t)− l A

}
. The constraint can be modelled

as follows: for all t ∈ [0,T A
out],

xA’(t −SA,A’) ≤ b j A(t )−2,

where b0 and b−1 are set to −∞. It gives

SA,A’ ≥ t −xA’−1(b j A(t )−2). (A.3)

Combining equations (A.1), (A.2), and (A.3) gives the minimal security value of SA,A’: we
compute all the possibles values of right-hand terms of Equations (A.1), (A.2), and (A.3)
and we set SA,A’ to be the minimal value found this way.

A.3 Results

We computed the security headways for all the couples of trains. We give here the values
of the parameters for all the trains before providing the numerical results.

A.3.1 Instances

As described in the previous section, some parameters depend on the type of train consid-
ered. The following Table A.1 provides the values given by Eurotunnel.

Eurostar PAX shuttle HGV shuttle MA100 ME120
` 400 m 800 m 800 m 750 m 750 m

tb 3.0 s 8.3 s 8.3 s 15.8 s 14.4 s
γ 0.70 ms−2 0.75 ms−2 0.75 ms−2 0.58 ms−2 0.69 ms−2

Tout 1154 s 1474 s 1474 s 1564 s 1844 s

Table A.1 – Parameters for all types of trains

Moreover, we use g = 9.81 ms−2. The length of the Tunnel L is 50,475 km, the first fire
station s1 is 17,160 km and the second one s2 is 44,575 km.

A.3.2 FOCA

We present in Table A.3 the security headways for direction FOCA (from Folkestone to
Calais) for all the pairs of trains. The leading train is indicated in the first column and the
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A.3. Results

following one in the first line.

Eurostar PAX shuttle HGV shuttle MA100 ME120
Eurostar 0’53” 0’31” 0’31” 0’32” 0’40”

PAX shuttle 6’07” 1’28” 1’28” 1’42” 1’50”
HGV shuttle 6’07” 2’35” 2’35” 1’42” 1’50”

MA100 13’2” 8’14” 8’14” 1’57” 6’43”
ME120 8’13” 3’26” 3’26” 1’06” 1’56”

Table A.2 – Security headways for direction FOCA

However, because of technical reasons, Eurotunnel cannot detect before the entrance
gate of the tunnel if a shuttle if of type PAX or HGV. Thus, the gap in case of a fire (see
Section A.1.2) also concerns pairs of trains where the leading train is a PAX shuttle. We use
then the following headways :

Eurostar PAX shuttle HGV shuttle MA100 ME120
Eurostar 0’53” 0’31” 0’31” 0’32” 0’40”

PAX shuttle 6’07” 2’35” 2’35” 1’42” 1’50”
HGV shuttle 6’07” 2’35” 2’35” 1’42” 1’50”

MA100 13’02” 8’14” 8’14” 1’57” 6’43”
ME120 8’13” 3’26” 3’26” 1’06” 1’56”

Table A.3 – Security headways for direction FOCA used by Eurotunnel

A.3.3 CAFO

We present in Table A.5 the security headways for direction CAFO (from Calais to Folke-
stone) for all the pairs of trains. The leading train is indicated in the first column and the
following one in the first line.

Eurostar PAX shuttle HGV shuttle MA100 ME120
Eurostar 0’53” 0’48” 0’48” 0’48” 0’48”

PAX shuttle 6’22” 1’23” 1’23” 1’21” 1’21”
HGV shuttle 6’22” 2’49” 2’49” 1’21” 1’21”

MA100 12’21” 7’34” 7’34” 1’30” 5’59”
ME120 7’48” 3’02” 3’02” 1’15 1’18

Table A.4 – Security headways for direction CAFO used

As for direction FOCA, technical reasons lead to the following headways used by Eurotun-
nel:
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Appendix A. Security headways computation

Eurostar PAX shuttle HGV shuttle MA100 ME120
Eurostar 0’53” 0’48” 0’48” 0’48” 0’48”

PAX shuttle 6’22” 2’49” 2’49” 1’21” 1’21”
HGV shuttle 6’22” 2’49” 2’49” 1’21” 1’21”

MA100 12’21” 7’34” 7’34” 1’30” 5’59”
ME120 7’48” 3’02” 3’02” 1’15” 1’18”

Table A.5 – Security headways for direction CAFO used by Eurotunnel
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