
Disrete Splitting of the NeklaeFrédéri Meunier∗Deember 1, 2007AbstratThis paper deals with diret proofs and ombinatorial proofs of the famous Neklaetheorem of Alon, Goldberg and West. The new results are a diret proof for the ase oftwo thieves and three types of beads, and an e�ient onstrutive proof for the generalase with two thieves. This last proof uses a theorem of Ky Fan whih is a version ofTuker's lemma onerning ubial omplexes instead of simpliial omplexes.Key Words: onstrutive proof; ubial omplex; splitting neklaes.1 IntrodutionA lassial appliation of the Borsuk-Ulam theorem is the Splitting Neklae theorem (seethe book of Matou²ek [10℄). Proved �rst by Goldberg and West in 1985 [9℄, this theoremgot a simpler proof in 1986, found by Alon and West and using the Borsuk-Ulam theorem[4℄. Two thieves have stolen a preious neklae, whih has n beads. These beads belong to
t di�erent types. Assume that there is an even number of beads of eah type, say 2ai beadsof type i, for eah i ∈ {1, 2, . . . , t}, where ai is a nonzero integer. Remark that we have
2

∑t

i=1 ai = n.The beads are �xed on an open hain made of gold. An example is given in Figure 1.The di�erent types are enoded by the numbers 1,2,3.As we do not know the exat value of eah type of beads, a fair division of the neklaeonsists of giving the same number of beads of eah type to eah thief. The number of beadsof eah type is even, hene suh a division is always possible: ut the hain at the n − 1possible positions. But the hain is made of gold! It is a shame that we damage it. Isn'tit possible to do the division with less uts? The answer is yes, as shown by the followingtheorem proved by Goldberg and West:Theorem 1 A fair division of the neklae with t types of beads between two thieves an bedone with no more than t uts.In 1987, Alon proved the following generalization, for a neklae having qai beads foreah type i, ai integer, using a generalization of the Borsuk-Ulam theorem [1℄:Theorem 2 A fair division of the neklae with t types of beads between q thieves an bedone with no more than t(q − 1) uts.
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2 21 1 3 1 3 1 3 2 3 2Figure 1: An open neklae, with 12 beads, of 3 di�erent types, to be divided between Alieand Bob.
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Figure 2: A fair division between Alie and Bob.For q = 2, this last theorem oinides with Theorem 1. Furthermore, this bound is tight,even when a1 = a2 = . . . = at = 1: onsider the neklae for whih all the beads of the �rsttype ome �rst, then all beads of the seond type, then all beads of the third type, and soon. Exept for partiular ases, all known proofs of this theorem are topologial and useontinuous tools. Setion 2 is devoted to diret and non-topologial proofs for partiularases of these theorems: one on them is the �rst proof of this type for the ase q = 2 and

t = 3.In Setion 3, we give a purely ombinatorial1 and onstrutive proof for the ompletease q = 2 (although the topologial inspiration remains notable).It uses a ubial version of Tuker's lemma found by Ky Fan (Theorem 3), involvingubial omplexes instead of simpliial omplexes. We give a onstrutive proof of thistheorem (suh a proof was not known before the present paper; nevertheless, our proof isinspired by the onstrutive proof given by Presott and Su for a ombinatorial generalizationof Tuker's lemma found by Ky Fan, [13℄) and show that it suits to the neklae problem.It gives an e�ient algorithm for the division of the neklae between two thieves: ontraryto the known algorithm, our result needs no approximation or rounding method and noarbitrarily �ne triangulation of the ross-polytope. Furthermore, the d-ubes of our ubialomplex have a simple interpretation: eah d-ube orresponds to the hoie of d beads. Wewill also see that our method gives also an �almost-fair� division of the neklae betweentwo thieves when the number of beads in any type is not neessarily even (2-splittings inthe terminology of Alon, Moshkovitz and Safra [3℄).2 Diret proofs2.1 A diret proof for t ≤ 2 and any qThis proof was �rst given in the paper by Epping, Hohstättler and Oertel [7℄. This paperdeals with di�erent aspets of a paint shop problem: one of the ases orresponds to theNeklae theorem presented as a onjeture (Conjeture 10) by the authors who did not1Aording to Ziegler [15℄, a ombinatorial proof in a topologial ontext is a proof using no simpliialapproximation, no homology, no ontinuous map. 2



know the results of Goldberg, West and Alon. For more about the paint shop problem andthe neklae, see [11℄.If t = 1, i.e., if the beads are only of one type, the solution is straightforward: split theneklae in q parts of the same size, whih needs q − 1 uts (and has omplexity O(q)).If t = 2: the proof works by indution on q. For q = 1, there is nothing to prove. Letus now suppose that q ≥ 2. We (virtually) split the neklae into q disjoint sub-neklaes of
a1 + a2 onseutive beads; the neklae is open and horizontal; the beads get the numbers1 to n, from left to right.If one of these q sub-neklaes ontains a1 beads of type 1 and a2 beads of type 2, weremove this sub-neklae, and give it to one of the thieves, and by indution, we know thatthere is a fair splitting of the remaining in 2(q−2) uts; all together, this gives 2+2(q−2) =
2(q − 1) uts.Hene, we an assume that there is no suh sub-neklae among the q sub-neklaes.Thus, there is at least one sub-neklae whih ontains stritly more than a1 beads of type1, and another whih has stritly less than a1 beads of type 1. Let's all the �rst sub-neklae
M+ and the seond one M−.If we slide a window of size a1 +a2 over the neklae, starting at M− until we reah M+using moves of exatly one bead, the window will ontain a1 beads of type 1 at least one.The a1 + a2 beads of the window an be given to one of the thieves, and then by indution,as before, 2 + 2(q − 2) = 2(q − 1) uts are su�ient.The time omplexity an be omputed as follows: eah bead reeives the number ofbeads of eah of the two types preeding it on the neklae (the bead itself inluded), whihan be done in O(n) operations: so, when we onsider a sub-neklae, we know immediatelyhow many beads of eah type are in this sub-neklae; a dihotomy allows us to �nd a sub-neklae having a1 beads of type 1 and a2 beads of type 2 in O(log n). The total omplexityis thus: O(n + q log n).2.2 A diret proof for the ase a1 = a2 = . . . = at = 1, any t and any

qWe onsider the beads one after the other; from left to right. We always have a �urrentthief�. When onsidering the kth bead, we hek if the urrent thief has a bead of this typeor not.If he does: we hange the urrent thief and take a thief not having a bead of this type,we give the bead to this new urrent thief and go to the next bead.If he does not: we give the bead to the urrent thief and go to the next bead.This proedure ensures a division in at most t(q − 1) uts: indeed, we never hange theurrent thief when we meet the �rst bead of a given type. A hange of the urrent thiefis preisely a ut of the neklae. The number of uts is thus less than or equal to n, thenumber of all beads, minus t, the number of �rst meetings of a type of beads: in total:
n − t = qt − t = t(q − 1).Moreover, this algorithm is greedy and has omplexity O(n).2.3 A diret proof for t = 3 and q = 22.3.1 Main stepsThe neklae is identi�ed with the interval ]0, n[⊂ R. The beads are numbered with theintegers 1, 2, . . . , n, from left to right. The kth bead oupies uniformly the interval ]k−1, k[.For S ⊆]0, n[, we denote by φi(S) the quantity of beads of type i in positions inludedin S. More preisely, we denote by 1i(u) the mapping whih indiates if there is a bead of3



type i at point u of ]0, n[:
1i(u) =

{
1 if the ⌈u⌉th bead is of type i
0 if not.We have then
φi(S) :=

∫

S

1i(u)du.If there is a window of n/2 beads induing a fair division, there is nothing to prove.Thus, we an assume that there is no x suh that φi(]x, x + n/2[) = ai for all i = 1, 2, 3.Moreover, we an also assume that φ1(]0, n/2[) > a1. These two assumptions are alled thestarting assumptions.First, we unite the types 2 and 3 in a single type, alled type 2'. Hene, we de�ne
φ2′ := φ2 + φ3.Then, we build a graph G, whose verties are triples (c1, c2, c3), suh that

• c1, c2 and c3 are integers,
• 0 ≤ c1 ≤ c2 ≤ c3 ≤ n,
• φ1(]0, c1[∪]c2, c3[) = a1 and φ2′ (]0, c1[∪]c2, c3[) = a2 + a3.Distint triples (c1, c2, c3) and (d1, d2, d3) are neighbors in G if |ci − di| ≤ 1 for all

i = 1, 2, 3.Verties of G orrespond thus to uts of the neklae giving the same number of beadsto eah thief, and dividing fairly the beads of type 1. Without loss of generality, we deidethat Alie gets the part ]0, c1[∪]c2, c3[ and Bob the remaining.Remark that the starting assumption implies that there is no vertex of the form (0, c2, n).In the next paragraph, the following lemma is proved:Lemma 2.1 The following holds under the starting assumptions:(i) The verties (c1, c2, c3) of odd degree have either c1 = 0 or c3 = n.(ii) The number of verties of odd degree suh that c1 = 0 id odd and equals the number ofverties of odd degree suh that c3 = n.The end of the proof is then straightforward. We split the set of verties of odd degreesof G into two disjoint subsets A and B: A is the set of verties of odd degrees suh that
φ3(]0, c1[∪]c2, c3[) < a3 and B the set of verties of odd degrees suh that φ3(]0, c1[∪]c2, c3[) >
a3 (aording to the starting assumptions, there is no vertex (c1, c2, c3) of odd degree suhthat φ3(]0, c1[∪]c2, c3[) = a3). Hene |A| = |B| and this number is odd. This implies thatthere is a path in G that links a vertex in A to a vertex in B. φ1 and φ2′ = φ2 + φ3 areonstant on G. Moreover, the value of φ3 for two adjaent verties di�ers by at most one.Hene, we neessarily have a vertex on this path suh that φ1 = a1, φ2 = a2 and φ3 = a3.2.3.2 Proof of Lemma 2.1 (t = 3 and q = 2)In the proof, we distinguish the verties (c1, c2, c3) aording to the type of beads adjaentto the point where the neklae is ut. Below, the �rst | represents c1, the seond one c2and the third one c3. The numbers on both sides of the jth line | show the type of the beadwhih is on the left side of point cj and the type on the right side of point cj . For instane:

. . . 1
︸︷︷︸Alie | 2′ . . . 2′︸ ︷︷ ︸Bob | 1 . . . 1

︸ ︷︷ ︸Alie | 2′ . . .
︸ ︷︷ ︸Bob .4



This vertex is of degree 0, beause no move of a | an be ompensated by another move inorder to maintain the number of beads of types 1 and 2' reeived by eah thief. Anotherexample is the following (where c1 = 0):
|1 . . . 1|1 . . .1|2′ . . . .The degree of suh a vertex equals 3. Indeed, there are 3 neighbors:
|1 . . . |11 . . . |12′ . . . ,

1| . . . 11| . . . 1|2′ . . .and
1| . . . 1|1 . . . |12′ . . .In any of these three ases, the move of a ut is ompensated by another move.Let us ompute the degree of a vertex (c1, c2, c3) in general. Three ases have to bedistinguished1. c1 = 0: the vertex is of the form: |a . . . b|c . . . d|e . . . with a, b, c, d, e ∈ {1, 2′}. Foursubases have to be distinguished, the heking being easy:

• If b 6= e and c = d, the degree is 1 if a 6= c and 3 if not.
• If b 6= e and c 6= d, the degree is 1 if b = c and 3 if not.
• If b = e and c = d, the degree is 4 if a = b = c, 2 if a 6= b, and 0 if a = b and

b 6= c.
• If b = e and c 6= d, the degree is 2.2. c3 = n: this ase an be treated exatly as the ase before.3. c1 > 0 and c3 < n: we enumerate subases while avoiding subases whih an bededued from the others by symmetries or the exhange of 1 and 2': we give only afew subases, for the heking is always straightforward:
• Subase . . . 1|1 . . . 1|1 . . . 1|1 . . .: the degree equals 6.
• Subase . . . 1|1 . . . 1|1 . . . 1|2′ . . .: the degree equals 4.
• Subase . . . 1|1 . . . 1|1 . . . 2′|1 . . .: the degree equals 4.
• Subase . . . 1|1 . . . 1|1 . . . 2′|2′ . . .: the degree equals 2. Indeed, there are exatlytwo neighbors: . . . 11| . . . 11| . . . 2′|2′ . . . and . . . |11 . . . |11 . . . 2′|2′ . . ..
• Subase . . . 1|1 . . . 1|2′ . . . 2′|1 . . .: the degree equals 2.
• Subase . . . 1|1 . . . 2′|1 . . . 1|2′ . . .: the degree equals 2.
• Subase . . . 1|1 . . .1|2′ . . . 2′|2′ . . .: the degree equals 2. Indeed, there are exatlytwo neighbors: . . . 1|1 . . . 12′| . . . 2′2′| . . . et . . . |11 . . . |12′ . . . 2′|2′ . . ..
• Subase . . . 1|1 . . . 2′|1 . . . 2′|2′ . . .: the degree equals 2.
• Subase . . . 1|2′ . . . 2′|1 . . . 1|2′ . . .: the degree equals 0.
• Subase . . . 1|2′ . . . 1|2′ . . . 2′|1 . . .: the degree equals 4.All degrees are even.
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It follows that a vertex of odd degree is neessarily suh that c1 = 0 or c3 = n. Thisproves point (i) of Lemma 2.1. Note that a vertex has an odd degree if and only if b 6= e(with the notations de�ned in the �rst ase above).We prove now that: There is an odd number of verties of odd degree suh that c1 = 0.Let ǫ > 0 be a very small real. We �rst show that a vertex has an odd degree if thefollowing holds: one of the intervals ]c2 − 1, c3 − 1 + ǫ[ and ]c2, c3 + ǫ[ has a proportion ofbeads of type 1 stritly smaller than a1

a1+a2+a3

and the other has a proportion of beads oftype 1 stritly greater than a1

a1+a2+a3

. Formally, we are going to show that the odd verties
(0, c2, c3) are suh that

φ1(]c2 − 1, c3 − 1 + ǫ[)

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3and
φ1(]c2, c3 + ǫ[)

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3have opposite signs.This two quantities are respetively equal to
a1 + 1{b=1} − (1 − ǫ)1{d=1}

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3and
a1 + ǫ1{e=1}

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3
,where b, d, and e are beads in positions spei�ed in the �rst ase above, and 1P takes thevalue 1 (resp. 0) if P is true (resp. false). It is easy to see that these two quantities haveopposite signs if and only if b 6= e. Hene they have opposite signs if and only if the vertexhas odd degree.We show now that there is an odd number of suh verties. With the same kind ofarguments as in Subsetion 2.1, i.e., with the interval ]c2, c3 + ǫ[ moving from left to right,we see that there is an odd number of suh situations, for the sign of

φ1(]u, u + a1 + a2 + a3 + ǫ[)

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3hanges stritly when the interval ]u, u + a1 + a2 + a3 + ǫ[ moves from ]0, a1 + a2 + a3 + ǫ[to ]a1 + a2 + a3, n + ǫ[ (this is a true for ǫ = 0, aording to the starting assumptions, andthus for all ǫ > 0 small enough). Hene, there is an odd number of verties of odd degreesuh that c1 = 0.By symmetry, there is also an odd number of verties of odd degree having c3 = n.Furthermore, we have the following equivalene, sine the ondition b 6= e is the same forthe verties (0, c2, c3) and (c2, c3, n):
deg(0, c2, c3) odd ⇔ deg(c2, c3, n) odd.The lemma is proved.2.3.3 Final ommentsLet's give an illustration of this proof for the example of Figure 1.The orresponding graph G is illustrated in Figure 3. There is a path (atually, many)linking vertex (0, 4, 10), whih gives more beads of type 3 to Alie, to vertex (4, 10, 12),6



(1, 4, 9) (0, 4, 10) (0, 5, 11) (1, 5, 10)(2, 6, 10) (3, 7, 10) (4, 8, 10) (5, 9, 10) (4, 9, 11)(4, 10, 12)

(5, 10, 11)

(5, 11, 12)
(5, 8, 9)

(3, 6, 9)

(2, 7, 11)(1, 2, 7)
(5, 6, 7)

(3, 4, 7)

Figure 3: Graph G orresponding to the example (with t = 3 and q = 2) of Figure 1.whih gives more beads of type 3 to Bob. The verties (1, 5, 10) and (2, 6, 10) lie on thispath and provide fair divisions.On the other hand, it is not lear whether it is possible to derive from this proof ane�ient algorithm that would have a better omplexity than O(n3) (G might be not expliitlyomputed).Furthermore, the method is tedious. Is it possible to �nd some simpli�ation?3 Ky Fan's ubial theorem and onstrutive proof fortwo thieves3.1 PreliminariesWe give now a onstrutive and ombinatorial proof of Theorem 1. We ould think thatsuh a proof ould be easily dedued from Tuker's lemma. Indeed, Theorem 1 is a diretappliation of Borsuk-Ulam's theorem, whih has a onstrutive proof through Tuker'slemma. This is done for instane by Simmons and Su in [14℄, but the result is not ompletelysatisfatory beause this method requires a triangulation T of the (t + 1)-dimensional ross-polytope suh that the diameter of any simplex in T is a O(1/(nt)), and then it requires arounding method.Our method does not present those di�ulties. It bases itself on a theorem (Theorem 3)found by Ky Fan in 1960 whih is a ubial version of Tuker's lemma [8℄. We give below aonstrutive proof of this theorem. The ubial omplex we need is ompletely natural.3.2 Notation and de�nitionsLet C be a ube, ∂C the boundary of C, and V (C) the set of verties of C.Two faets of a
d-ube are said to be adjaent if their intersetion is a (d − 2)-ube. For a given faet σ of
C, there is only one non-adjaent faet. Two non-adjaent faets are opposite.A ubial omplex is a olletion C of ubes embedded in an eulidian spae suh that

• if τ ∈ C and if σ is a fae of τ then σ ∈ C and
• if σ and σ′ are in C, then σ ∩ σ′ is a fae of both σ and σ′.A ubial omplex is said to be pure if all maximal ubes with respet to inlusion havesame dimension. 7



V (C) is the set of verties of the ubial omplex C.A d-dimensional ubial pseudo-manifold M is a pure d-dimensional ubial omplex inwhih eah (d − 1)-dimensional ube is ontained in at most two d-dimensional ubes. Theboundary of M, denoted by ∂M, is the set of all (d−1)-ubes σ suh that σ belongs to exatlyone d-dimensional ube of M.Let us denote by C
d the ubial omplex whih is the union of the ube �

d := [−1, 1]dand all its faes (see Figure 6).Let k ≥ 0 be an integer. Given k distint integers i1, i2, . . . , ik, eah of them in
{1, 2, . . . , d}, and k numbers ǫ1, ǫ2, . . . , ǫk, eah of them belonging to {−1, +1}, we denote

F

(
i1 i2 . . . ik
ǫ1 ǫ2 . . . ǫk

)

:= {(x1, x2, . . . , xd) ∈ �
d : xij

= ǫj for j = 1, 2, . . . , k},whih is a (d − k)-fae of �
d. For k = 0, this fae is �

d itself.We endow ∂�
d with hemispheres. These hemispheres are denoted +H0, −H0, +H1,

−H1, . . ., +Hd−1, −Hd−1. +Hi (resp. −Hi) is the set of points (x1, x2, . . . , xd) of ∂�
d suhthat xi+1 ≥ 0 (resp. xi+1 ≤ 0), and suh that, if i ≤ d − 2, then xj = 0 for j > i + 1 (inFigure 4, the hemispheres of ∂�

3 are highlighted).The arrier hemisphere of a ube is the hemisphere of smallest possible dimension on-taining it.Observation 2.1 For i ∈ {0, 1, . . . , d − 1}, Hi is homeomorphi to the ball Bi, (+Hi) ∪
(−Hi) is homeomorphi to the i-dimensional sphere Si, if i ≥ 1, ∂(+Hi) = ∂(−Hi) =
(+Hi−1) ∪ (−Hi−1) and Hd−1 ∪ −Hd−1 = ∂�

d.Let C and D be ubial omplexes, and let λ : V (C) → V (D) be a map. λ is alled aubial map if λ satis�es the following onditions:1. for every σ ∈ C, there is a τ ∈ D suh that λ(V (σ)) ⊆ V (τ)2. λ takes adjaent verties to adjaent verties or both to the same vertex.By a slight abuse of notation, we write λ : C → D. We emphasize the fat that λ(V (σ)) inthe de�nition above is not neessarily the vertex set of a ube.Aording to Lemma 18 of the paper of Ehrenborg and Hetyei [6℄, if λ : V (�n) → V (�n)is a non-injetive ubial map and if ρ is a faet of �
n, then there are 0, 2 or 4 faets σ of

�
n suh that λ(V (σ)) = V (ρ). It implies the following lemma:Lemma 2.2 Let λ : V (�d) → V (�m) be a ubial map (from Cd into Cm), with m ≥ d,and let ρ be a (d − 1)-fae of �

m. If λ is not injetive, there are 0, 2 or 4 faets σ of �
dsuh that λ(V (σ)) = V (ρ). Moreover, if there are 4 suh faets and if σ is one of them, thenthe faet opposite to σ is also one of these 4 faets.Proof: Let λ : V (�d) → V (�m) be a non-injetive ubial map and let ρ be a (d−1)-faeof �

m. If there is no faet σ suh that λ(V (σ)) = V (ρ), there is nothing to prove. So letus assume that there is a faet σ of �
d suh that λ(V (σ)) = V (ρ). We want to apply theresult of Lemma 18 of [6℄, whih is valid if λ : V (�d) → V (�d). Let us prove that we anmake this assumption, that is, that there is a d-fae of �

m whih ontains the image of λ.
• If λ(V (�d)) = V (ρ), any d-fae ontaining ρ ontains the image of λ.
• If not, there is v ∈ V (�d) \ V (σ) suh that λ(v) /∈ V (ρ). Let w be the vertex of σwhih is adjaent to v, and let w′ be the single vertex of σ suh that d(w, w′) = d− 1,where d(·, ·) is the distane in the 1-skeleton of a ube, ounted in number of edges. It8



is straightforward to hek that d(λ(w′), λ(v)) = d (take the minimal fae ontainingboth ρ and λ(v)). Let v′ be any vertex of �d, we have the following hain of inequalities:
d = d(v, w′) = d(v′, v)+d(v′, w′) ≥ d(λ(v′), λ(v))+d(λ(v′), λ(w′)) ≥ d(λ(v), λ(w′)) = d.Hene, d(v′, v) = d(λ(v′), λ(v)) and d(v′, w′) = d(λ(v′), λ(w′)). It implies that λ(v′),for any v′ in �

d, is in the d-ube of �
m ontaining ρ and λ(v).We an thus assume that λ : V (�d) → V (�d).If there are 4 faets suh that λ(V (σ)) = V (ρ) (in this ase one has neessarily d ≥ 2),at least two of them, say σ and σ′, are adjaent. Let σ′′ be another faet adjaent to σand σ′. Let x ∈ V (σ′ ∩ σ′′) \ V (σ), and let y be the vertex adjaent to x in σ. We have

y ∈ σ ∩ σ′ ∩ σ′′, and λ(x) adjaent to λ(y). Moreover, let z be the vertex of σ suh that
λ(z) = λ(x) (whih exists by injetivity). z is adjaent to y in σ and annot be in σ′. Hene
z is the only vertex of σ whih is at distane 1 of y and not in σ′. It implies that z is in σ′′.As λ(z) = λ(x) and as z and x are two di�erent verties of σ′′, λ(V (σ′′)) 6= V (ρ). A faet
σ′′ adjaent to σ and to σ′ annot satisfy λ(V (σ′′)) = V (ρ).3.3 Ky Fan's ubial formulaSuppose that we have a ubial map λ of M, a t-dimensional ubial pseudo-manifold, into
Cm, the ubial omplex made by �

m and its faes.We denote by αλ

(
i1 i2 . . . im−t

ǫ1 ǫ2 . . . ǫm−t

) the number of those t-ubes σ of M suh thatthe verties of σ are mapped under λ in a one-to-one way onto the verties of the t-fae
F

(
i1 i2 . . . im−t

ǫ1 ǫ2 . . . ǫm−t

) (if m = t, this fae is �
m itself).We will later make use of the following theorem (for the ase m = t), whose onstrutiveproof is given below.Theorem 3 Let M be the ubial pseudo-manifold without boundary obtained by subdividing

∂Ct+1 by means of the hyperplanes xi = j
n
where i ∈ {1, 2, . . . , t+1} and j ∈ {−n+1,−n+

2, . . . ,−1, 0, 1, . . . , n − 2, n − 1}. Let λ be a ubial map from M into Cm, with m ≥ t. If λis antipodal (i.e. if λ(−x) = −λ(x)), then we have
• if m > t,

∑

ǫ2,...,ǫm−t=−1,+1

αλ

(
t + 1 t + 2 . . . m
+1 ǫ2 . . . ǫm−t

)

= 1 mod 2.

• if m = t, there is a t-ube σ of M suh that λ(V (σ)) = V (Cm).For t = 2 and n = 2, M is illustrated in Figure 4.3.4 Construtive proof of Theorem 3We follow roughly the method found by Presott and Su [13℄ for proving a similar resultonerning simpliial omplexes.
• A d-ube of M (with 0 ≤ d ≤ t) is said to be full if its image under λ is of the form

F

(
d + 1 d + 2 . . . m

ǫ1 ǫ2 . . . ǫm−d

)

.9
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• A d-ube of M is said to be almost-full if it is not full but one of its faets is full.Exept in the ase when d = m = t, one an de�ne the sign of a full d-ube as the valueof ǫ1 in the expressions above.Lemma 3.1 For an almost-full d-ube τ , there are only three possibilities:1. either its verties are mapped under λ in a one-to-one way onto the verties of a d-fae(with the entries j and ǫj−d+1 deleted)
F

(

d . . . ĵ . . . m
ǫ1 . . . ǫ̂j−d+1 . . . ǫm−d+1

)

,2. or λ is not injetive on the vertex set of τ and τ has exatly two full faets, eah ofthem having the same sign,3. or λ is not injetive on the vertex set of τ and τ has exatly four full faets, eah ofthem having the same sign. Moreover, in this ase, if σ ⊆ τ is a full faet, then theopposite of σ is also a full faet.Proof: First remark that if λ is injetive, the image of τ is a d-fae (this easy assertionan be proved by indution). Sine τ is not full, this image has neessarily the form givenin point 1.Hene, one an assume that λ is not injetive. Take two full faets of τ , say σ and σ′.Sine they are full, λ is injetive on eah of them. λ(V (σ)) and λ(V (σ′)) are the vertex setsof (d− 1)-faes. They have a non-empty intersetion, otherwise λ would have been injetiveon τ . Moreover, aording to the de�nition of a full ube, the image of two full ubes of thesame dimension are parallel. But, two parallel faes of a ube having same dimension anda nonempty intersetion are equal. Thus, λ(V (σ)) = λ(V (σ′)), and there is a (d − 1)-fae
ρ suh that for all full faets σ of τ , one has λ(V (σ)) = V (ρ). This settles the statementabout the sign. Lemma 2.2 allows to onlude.We an then extend the notion of sign to almost-full ubes: the sign of an almost-full
d-ube is the sign of any of its full faets.A ube is said to be agreeable if its sign mathes the sign of its arrier hemisphere.We de�ne the following graph G. A ube σ with arrier hemisphere ±Hd is a node of Gif it is one of the following:(1) an agreeable full (d − 1)-ube,(2) an agreeable almost-full d-ube, or(3) a full d-ube.Two nodes σ and τ are adjaent in G if all the following hold:(a) σ is a faet of τ ,(b) σ is full,() τ has the dimension of its arrier hemisphere, and(d) the sign of the arrier hemisphere of τ mathes the sign of σ.We laim that G is a graph in whih every vertex has degree 1, 2, or 4. Furthermore,a vertex has degree 1 if and only if its arrier hemisphere is ±H0, or if it is a full t-ube.Using antipodality, we will then show that the point H0 is neessarily linked by a path in
G to a full t-ube.To see why, let's onsider the three kinds of nodes in G:(1) An agreeable full (d− 1)-ube σ, with arrier hemisphere ±Hd, is a faet of exatly two
d-ubes, eah of whih must be a full or an agreeable almost-full ube in the same arrier.11



This satis�es the adjaeny onditions (a)�(d) with σ, hene σ has degree 2 in G. The ube
σ annot be adjaent in G to any of its faets, otherwise it would ontradit ondition ().(2) An agreeable almost-full d-ube σ, whose arrier hemisphere is ±Hd, is adjaent in Gto its two or four faets that are full (d − 1)-ubes � see Lemma 3.1. A full faet of σ isautomatially a node of G, sine if it is not agreeable, then it is arried by ∓Hd−1 � the signof the arrier of this full faet is then the opposite of the sign of σ. (Adjaeny ondition (d)is satis�ed beause σ is agreeable and beause an agreeable almost-full d-ube has alwaysthe same sign as its full faets).(3) Exept if d = 0, a full d-ube σ with arrier ±Hd has exatly one faet τ that is full andwhose sign is the same as the arrier hemisphere of σ. Hene σ is adjaent to τ in G.On the other hand, σ is the faet of exatly two (d + 1)-ubes in +Hd+1 ∪ −Hd+1: onein +Hd+1 and one in −Hd+1, but σ is adjaent in G to exatly one of them: whih one isdetermined by the sign of σ, sine adjaeny ondition (d) must be satis�ed.Finally, σ is of degree 2 or 4 in G unless d = 0 or σ is a full t-ube: if d = 0, σ is thepoint ±H0 and it has no fae, hene σ has degree 1; and if σ is a full t-ube, then σ is notthe faet of any other ube, and is therefore of degree 1.Every node in G has degree 2 or 4, exept for the points ±H0 and for the full t-ubes.We transform G into a new graph G′: we replae eah node v of degree 4 in G by twonodes v′ and v′′, and we replae the four edges, by four new edges: two linking v′ and a pairof opposite full faets, and two linking v′′ and the other pair of opposite full faets.In G′, all verties are of degree 1 or 2, hene G′ is the union of disjoint paths and yles.Note that the antipode of a path in G′ is also a path in G′. No path an have antipodalendpoints, otherwise it should be its own antipode and have a node or an edge whih isantipodal to itself. Hene the number of endpoints is a multiple of four. Sine exatlytwo endpoints are H0 and −H0, there are twie an odd number of endpoints whih are full
t-ubes. If m > t, half of them have a positive sign (if m = t, a full t-ube has no sign).A path of G′ starting in H0 an not terminate in −H0, but in a full t-ube. Thus wehave an algorithm whih allows to �nd a full t-ube. It is illustrated in Figure 5.3.5 Splitting the neklae between Alie and BobWe an easily dedue Theorem 1 from Theorem 3. Indeed let m = t, and let x :=
(x1, x2, . . . , xt+1) be a vertex of M. We order the xi in the inreasing order of their ab-solute value. When |xi| = |xi′ |, we put xi before xi′ if i < i′. This gives a permutation πsuh that

|xπ(1)| ≤ |xπ(2)| ≤ . . . ≤ |xπ(t+1)| = 1.Then, we de�ne λ = (λ1, λ2, . . . , λt) : M → Ct as follows: we ut the neklae at points
n|xi| (at most t are di�erent from 1). By onvention, xπ(0) := 0; we de�ne:

λi(x) :=

{
+1 if ∑t

j=0 sign(xǫ(j))φi

(]
n|xπ(j)|, n|xπ(j+1)|

[)
> 0

−1 if not,for i = 1, 2, . . . , t, where ǫ(j) is the smallest integer k suh that |xk| ≥ |xπ(j+1)|, and withthe onvention sign(0) := 0.This formula an be understood as follows: λi equals +1 (resp. −1) if the �rst thiefgets stritly more (resp. stritly less) beads of type i than the seond one, when we ut atpoints n|xj | of the neklae, and when the sign of xk shows the thief who gets the (j + 1)thsub-neklae, where k is the smallest integer suh that n|xk| is greater than or equal to theoordinate of any point of the sub-neklae. 12
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The only problem with this de�nition is that λ may not be antipodal: if
t∑

j=0

sign(xǫ(j))φi

(]
n|xπ(j)|, n|xπ(j+1)|

[)
= 0,then λi(x) = λi(−x) = −1. This an be avoided by a slight generi perturbation of thevalue of all the beads: a division using uts between beads an then not be fair with respetto any type of bead2.

λ is a ubial map. Indeed, the �rst ondition de�ning ubial maps is trivially satis�edand the seond one follows from the fat the images by λ of two adjaent verties of M haveat most one oordinate that di�ers � even in the ase when there is j suh that ǫ(j) di�ers.Theorem 3 shows that there is a t-ube σ whose image by λ is �
t. One of the verties ofthis t-ube orresponds to a fair division. Indeed, for any vertex x of suh a σ, moving toeah of the t adjaent verties of x hanges the value of eah of the t omponents of λ(x).The onstrutive proof given above for Theorem 3 suits to the neklae problem. Theubial omplex is ompletely natural in this ontext: a k-ube (k ≤ t) orresponds preiselyto the hoie of k beads. Moreover, it is straightforward to hek if a k-ube is full in termsof beads. We have thus a onstrutive proof of Theorem 1.3.6 General disrete neklae splitting theoremIn [3℄, Alon, Moshkovitz and Safra prove the following extension of Theorem 2 (with �ows).Suppose that the neklae has n beads, eah of a ertain type i, where 1 ≤ i ≤ t. Supposethere are Ai beads of type i, 1 ≤ i ≤ t, ∑t

i=1 Ai = n, where Ai is not neessarily a multipleof q. A q-splitting of the neklae is a partition of it into q parts, eah onsisting of a �nitenumber of non-overlapping sub-neklaes of beads whose union aptures either ⌊Ai/q⌋ or
⌈Ai/q⌉ beads of type i, for every 1 ≤ i ≤ t.Theorem 4 Every neklae with Ai beads of type i, 1 ≤ i ≤ t, has a q-splitting requiring atmost t(q − 1) uts.For q = 2, the proof of the preeding setion shows something more. The proof is stillvalid, even if the Ai's are not even. If Ai is odd, the (t− 1)-faet of �

t whose ith oordinateis equal to 1 (resp. −1). orrespond to division giving ⌈Ai/2⌉ beads of type i to Alie (resp.Bob) and ⌊Ai/2⌋ beads of type i to Bob (resp. Alie). We have thus the following theorem,also with a onstrutive proof:Theorem 5 Every neklae with Ai beads of type i, 1 ≤ i ≤ t, has a 2-splitting requiringat most t uts. Moreover, for eah type i of beads suh that Ai is odd, we an hoose whihthief gets ⌈Ai/2⌉ beads of type i.Note that this theorem an also be derived from the proof of Alon, Moshkovitz and Safra.4 Open questionsThere are a lot of questions that remain open.1. Is it possible to extend the diret proofs of Setion 2.1 to other ases?2If one does not want to use a perturbation, there is another way for avoiding 0: hoose a partiular beadof eah type and de�ne λi(x) := +1 (resp. −1) if the �rst thief gets stritly more (resp. stritly less) beadsof type i than the seond thief, or if the �rst thief and the seond one get the same number of beads of type
i and the �rst one gets (resp. does not get) the partiular bead of type i.14



2. Is there a ombinatorial or a onstrutive proof of Theorem 2? This question appearsfor instane in the paper of Alon [2℄.3. What is the omplexity of the following problem?INPUT: A neklae, with t beads, qai beads of eah type (ai is an integer), and qthieves,TASK: Find a fair division of the neklae using no more than t(q − 1) uts,This question is still open (for more about problems of this type, see Papadimitriou[12℄). The orresponding optimization problem, namely �nding the minimum numberof uts providing a fair division, is NP-hard, even if q = 2 and a1 = a2 = . . . = at = 1(see [5℄, [11℄).4. Is there an analogue of Theorem 5 for any number q of thieves?Referenes[1℄ N. Alon, Splitting neklaes, Advanes in Math., 63 (1987), 247-253.[2℄ N. Alon, Non-onstrutive proofs in ombinatoris, Pro. of the International Congressof Mathematiians, Kyoto 1990, Japan, Springer Verlag, Tokyo, pp. 1421-1429, 1991.[3℄ N. Alon, D. Moshkovitz and S. Safra, Algorithmi Constrution of Sets for k-Restritions, to appear in The ACM Transations on Algorithms.[4℄ N. Alon and D. West, The Borsuk-Ulam theorem and bisetion of neklaes, Pro.Amer. Math. So., 98 (1986), 623-628.[5℄ P. S. Bonsma, T. Epping and W. Hohstättler, Complexity results on restrited in-stanes of a paint shop problem for words, Disrete Applied Mathematis, to appear.[6℄ R. Ehrenborg and G. Hetyei, Generalizations of Baxter's theorem and ubial homology,J. Combinatorial Theory, Series A, 69 (1995), 233-287.[7℄ T. Epping, W. Hohstättler and P. Oertel, Complexity results on a paint shop problem,Disrete Applied Mathematis, 136 (2004), 217-226.[8℄ K. Fan, Combinatorial properties of ertain simpliial and ubial vertex maps, Arh.Math., 11 (1960), 368-377.[9℄ C. H. Goldberg and D. West, Bisetion of irle olorings, SIAM J. Algebrai DisreteMethods, 6 (1985), 93-106.[10℄ J. Matou²ek, Using the Borsuk-Ulam theorem, Springer-Verlag, Berlin-Heidelberg-NewYork, 2003.[11℄ F. Meunier and A. Sebö, Paint shop, odd yle and splitting neklae, submitted.[12℄ C. Papadimitriou, On the omplexity of the parity argument and other ine�ient proofsof existene, J. Computer and System Sienes, 48 (1994), 498-532.[13℄ T. Presott and F. E. Su, A onstrutive proof of Ky Fan's generalization of Tuker'slemma, J. Combin. Theory, Series A, 111 (2005), 257-265.[14℄ F. W. Simmons and F. E. Su, Consensus-halving via theorems of Borsuk-Ulam andTuker, Mathematial soial sienes, 45 (2003), 15-25.[15℄ G. M. Ziegler, Generalized Kneser oloring theorems with ombinatorial proofs, Inven-tiones Mathematiae, 147 (2002), 671-691.15


