
Dis
rete Splitting of the Ne
kla
eFrédéri
 Meunier∗De
ember 1, 2007Abstra
tThis paper deals with dire
t proofs and 
ombinatorial proofs of the famous Ne
kla
etheorem of Alon, Goldberg and West. The new results are a dire
t proof for the 
ase oftwo thieves and three types of beads, and an e�
ient 
onstru
tive proof for the general
ase with two thieves. This last proof uses a theorem of Ky Fan whi
h is a version ofTu
ker's lemma 
on
erning 
ubi
al 
omplexes instead of simpli
ial 
omplexes.Key Words: 
onstru
tive proof; 
ubi
al 
omplex; splitting ne
kla
es.1 Introdu
tionA 
lassi
al appli
ation of the Borsuk-Ulam theorem is the Splitting Ne
kla
e theorem (seethe book of Matou²ek [10℄). Proved �rst by Goldberg and West in 1985 [9℄, this theoremgot a simpler proof in 1986, found by Alon and West and using the Borsuk-Ulam theorem[4℄. Two thieves have stolen a pre
ious ne
kla
e, whi
h has n beads. These beads belong to
t di�erent types. Assume that there is an even number of beads of ea
h type, say 2ai beadsof type i, for ea
h i ∈ {1, 2, . . . , t}, where ai is a nonzero integer. Remark that we have
2

∑t

i=1 ai = n.The beads are �xed on an open 
hain made of gold. An example is given in Figure 1.The di�erent types are en
oded by the numbers 1,2,3.As we do not know the exa
t value of ea
h type of beads, a fair division of the ne
kla
e
onsists of giving the same number of beads of ea
h type to ea
h thief. The number of beadsof ea
h type is even, hen
e su
h a division is always possible: 
ut the 
hain at the n − 1possible positions. But the 
hain is made of gold! It is a shame that we damage it. Isn'tit possible to do the division with less 
uts? The answer is yes, as shown by the followingtheorem proved by Goldberg and West:Theorem 1 A fair division of the ne
kla
e with t types of beads between two thieves 
an bedone with no more than t 
uts.In 1987, Alon proved the following generalization, for a ne
kla
e having qai beads forea
h type i, ai integer, using a generalization of the Borsuk-Ulam theorem [1℄:Theorem 2 A fair division of the ne
kla
e with t types of beads between q thieves 
an bedone with no more than t(q − 1) 
uts.
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2 21 1 3 1 3 1 3 2 3 2Figure 1: An open ne
kla
e, with 12 beads, of 3 di�erent types, to be divided between Ali
eand Bob.
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Figure 2: A fair division between Ali
e and Bob.For q = 2, this last theorem 
oin
ides with Theorem 1. Furthermore, this bound is tight,even when a1 = a2 = . . . = at = 1: 
onsider the ne
kla
e for whi
h all the beads of the �rsttype 
ome �rst, then all beads of the se
ond type, then all beads of the third type, and soon. Ex
ept for parti
ular 
ases, all known proofs of this theorem are topologi
al and use
ontinuous tools. Se
tion 2 is devoted to dire
t and non-topologi
al proofs for parti
ular
ases of these theorems: one on them is the �rst proof of this type for the 
ase q = 2 and

t = 3.In Se
tion 3, we give a purely 
ombinatorial1 and 
onstru
tive proof for the 
omplete
ase q = 2 (although the topologi
al inspiration remains notable).It uses a 
ubi
al version of Tu
ker's lemma found by Ky Fan (Theorem 3), involving
ubi
al 
omplexes instead of simpli
ial 
omplexes. We give a 
onstru
tive proof of thistheorem (su
h a proof was not known before the present paper; nevertheless, our proof isinspired by the 
onstru
tive proof given by Pres
ott and Su for a 
ombinatorial generalizationof Tu
ker's lemma found by Ky Fan, [13℄) and show that it suits to the ne
kla
e problem.It gives an e�
ient algorithm for the division of the ne
kla
e between two thieves: 
ontraryto the known algorithm, our result needs no approximation or rounding method and noarbitrarily �ne triangulation of the 
ross-polytope. Furthermore, the d-
ubes of our 
ubi
al
omplex have a simple interpretation: ea
h d-
ube 
orresponds to the 
hoi
e of d beads. Wewill also see that our method gives also an �almost-fair� division of the ne
kla
e betweentwo thieves when the number of beads in any type is not ne
essarily even (2-splittings inthe terminology of Alon, Moshkovitz and Safra [3℄).2 Dire
t proofs2.1 A dire
t proof for t ≤ 2 and any qThis proof was �rst given in the paper by Epping, Ho
hstättler and Oertel [7℄. This paperdeals with di�erent aspe
ts of a paint shop problem: one of the 
ases 
orresponds to theNe
kla
e theorem presented as a 
onje
ture (Conje
ture 10) by the authors who did not1A

ording to Ziegler [15℄, a 
ombinatorial proof in a topologi
al 
ontext is a proof using no simpli
ialapproximation, no homology, no 
ontinuous map. 2



know the results of Goldberg, West and Alon. For more about the paint shop problem andthe ne
kla
e, see [11℄.If t = 1, i.e., if the beads are only of one type, the solution is straightforward: split thene
kla
e in q parts of the same size, whi
h needs q − 1 
uts (and has 
omplexity O(q)).If t = 2: the proof works by indu
tion on q. For q = 1, there is nothing to prove. Letus now suppose that q ≥ 2. We (virtually) split the ne
kla
e into q disjoint sub-ne
kla
es of
a1 + a2 
onse
utive beads; the ne
kla
e is open and horizontal; the beads get the numbers1 to n, from left to right.If one of these q sub-ne
kla
es 
ontains a1 beads of type 1 and a2 beads of type 2, weremove this sub-ne
kla
e, and give it to one of the thieves, and by indu
tion, we know thatthere is a fair splitting of the remaining in 2(q−2) 
uts; all together, this gives 2+2(q−2) =
2(q − 1) 
uts.Hen
e, we 
an assume that there is no su
h sub-ne
kla
e among the q sub-ne
kla
es.Thus, there is at least one sub-ne
kla
e whi
h 
ontains stri
tly more than a1 beads of type1, and another whi
h has stri
tly less than a1 beads of type 1. Let's 
all the �rst sub-ne
kla
e
M+ and the se
ond one M−.If we slide a window of size a1 +a2 over the ne
kla
e, starting at M− until we rea
h M+using moves of exa
tly one bead, the window will 
ontain a1 beads of type 1 at least on
e.The a1 + a2 beads of the window 
an be given to one of the thieves, and then by indu
tion,as before, 2 + 2(q − 2) = 2(q − 1) 
uts are su�
ient.The time 
omplexity 
an be 
omputed as follows: ea
h bead re
eives the number ofbeads of ea
h of the two types pre
eding it on the ne
kla
e (the bead itself in
luded), whi
h
an be done in O(n) operations: so, when we 
onsider a sub-ne
kla
e, we know immediatelyhow many beads of ea
h type are in this sub-ne
kla
e; a di
hotomy allows us to �nd a sub-ne
kla
e having a1 beads of type 1 and a2 beads of type 2 in O(log n). The total 
omplexityis thus: O(n + q log n).2.2 A dire
t proof for the 
ase a1 = a2 = . . . = at = 1, any t and any

qWe 
onsider the beads one after the other; from left to right. We always have a �
urrentthief�. When 
onsidering the kth bead, we 
he
k if the 
urrent thief has a bead of this typeor not.If he does: we 
hange the 
urrent thief and take a thief not having a bead of this type,we give the bead to this new 
urrent thief and go to the next bead.If he does not: we give the bead to the 
urrent thief and go to the next bead.This pro
edure ensures a division in at most t(q − 1) 
uts: indeed, we never 
hange the
urrent thief when we meet the �rst bead of a given type. A 
hange of the 
urrent thiefis pre
isely a 
ut of the ne
kla
e. The number of 
uts is thus less than or equal to n, thenumber of all beads, minus t, the number of �rst meetings of a type of beads: in total:
n − t = qt − t = t(q − 1).Moreover, this algorithm is greedy and has 
omplexity O(n).2.3 A dire
t proof for t = 3 and q = 22.3.1 Main stepsThe ne
kla
e is identi�ed with the interval ]0, n[⊂ R. The beads are numbered with theintegers 1, 2, . . . , n, from left to right. The kth bead o

upies uniformly the interval ]k−1, k[.For S ⊆]0, n[, we denote by φi(S) the quantity of beads of type i in positions in
ludedin S. More pre
isely, we denote by 1i(u) the mapping whi
h indi
ates if there is a bead of3



type i at point u of ]0, n[:
1i(u) =

{
1 if the ⌈u⌉th bead is of type i
0 if not.We have then
φi(S) :=

∫

S

1i(u)du.If there is a window of n/2 beads indu
ing a fair division, there is nothing to prove.Thus, we 
an assume that there is no x su
h that φi(]x, x + n/2[) = ai for all i = 1, 2, 3.Moreover, we 
an also assume that φ1(]0, n/2[) > a1. These two assumptions are 
alled thestarting assumptions.First, we unite the types 2 and 3 in a single type, 
alled type 2'. Hen
e, we de�ne
φ2′ := φ2 + φ3.Then, we build a graph G, whose verti
es are triples (c1, c2, c3), su
h that

• c1, c2 and c3 are integers,
• 0 ≤ c1 ≤ c2 ≤ c3 ≤ n,
• φ1(]0, c1[∪]c2, c3[) = a1 and φ2′ (]0, c1[∪]c2, c3[) = a2 + a3.Distin
t triples (c1, c2, c3) and (d1, d2, d3) are neighbors in G if |ci − di| ≤ 1 for all

i = 1, 2, 3.Verti
es of G 
orrespond thus to 
uts of the ne
kla
e giving the same number of beadsto ea
h thief, and dividing fairly the beads of type 1. Without loss of generality, we de
idethat Ali
e gets the part ]0, c1[∪]c2, c3[ and Bob the remaining.Remark that the starting assumption implies that there is no vertex of the form (0, c2, n).In the next paragraph, the following lemma is proved:Lemma 2.1 The following holds under the starting assumptions:(i) The verti
es (c1, c2, c3) of odd degree have either c1 = 0 or c3 = n.(ii) The number of verti
es of odd degree su
h that c1 = 0 id odd and equals the number ofverti
es of odd degree su
h that c3 = n.The end of the proof is then straightforward. We split the set of verti
es of odd degreesof G into two disjoint subsets A and B: A is the set of verti
es of odd degrees su
h that
φ3(]0, c1[∪]c2, c3[) < a3 and B the set of verti
es of odd degrees su
h that φ3(]0, c1[∪]c2, c3[) >
a3 (a

ording to the starting assumptions, there is no vertex (c1, c2, c3) of odd degree su
hthat φ3(]0, c1[∪]c2, c3[) = a3). Hen
e |A| = |B| and this number is odd. This implies thatthere is a path in G that links a vertex in A to a vertex in B. φ1 and φ2′ = φ2 + φ3 are
onstant on G. Moreover, the value of φ3 for two adja
ent verti
es di�ers by at most one.Hen
e, we ne
essarily have a vertex on this path su
h that φ1 = a1, φ2 = a2 and φ3 = a3.2.3.2 Proof of Lemma 2.1 (t = 3 and q = 2)In the proof, we distinguish the verti
es (c1, c2, c3) a

ording to the type of beads adja
entto the point where the ne
kla
e is 
ut. Below, the �rst | represents c1, the se
ond one c2and the third one c3. The numbers on both sides of the jth line | show the type of the beadwhi
h is on the left side of point cj and the type on the right side of point cj . For instan
e:

. . . 1
︸︷︷︸Ali
e | 2′ . . . 2′︸ ︷︷ ︸Bob | 1 . . . 1

︸ ︷︷ ︸Ali
e | 2′ . . .
︸ ︷︷ ︸Bob .4



This vertex is of degree 0, be
ause no move of a | 
an be 
ompensated by another move inorder to maintain the number of beads of types 1 and 2' re
eived by ea
h thief. Anotherexample is the following (where c1 = 0):
|1 . . . 1|1 . . .1|2′ . . . .The degree of su
h a vertex equals 3. Indeed, there are 3 neighbors:
|1 . . . |11 . . . |12′ . . . ,

1| . . . 11| . . . 1|2′ . . .and
1| . . . 1|1 . . . |12′ . . .In any of these three 
ases, the move of a 
ut is 
ompensated by another move.Let us 
ompute the degree of a vertex (c1, c2, c3) in general. Three 
ases have to bedistinguished1. c1 = 0: the vertex is of the form: |a . . . b|c . . . d|e . . . with a, b, c, d, e ∈ {1, 2′}. Foursub
ases have to be distinguished, the 
he
king being easy:

• If b 6= e and c = d, the degree is 1 if a 6= c and 3 if not.
• If b 6= e and c 6= d, the degree is 1 if b = c and 3 if not.
• If b = e and c = d, the degree is 4 if a = b = c, 2 if a 6= b, and 0 if a = b and

b 6= c.
• If b = e and c 6= d, the degree is 2.2. c3 = n: this 
ase 
an be treated exa
tly as the 
ase before.3. c1 > 0 and c3 < n: we enumerate sub
ases while avoiding sub
ases whi
h 
an bededu
ed from the others by symmetries or the ex
hange of 1 and 2': we give only afew sub
ases, for the 
he
king is always straightforward:
• Sub
ase . . . 1|1 . . . 1|1 . . . 1|1 . . .: the degree equals 6.
• Sub
ase . . . 1|1 . . . 1|1 . . . 1|2′ . . .: the degree equals 4.
• Sub
ase . . . 1|1 . . . 1|1 . . . 2′|1 . . .: the degree equals 4.
• Sub
ase . . . 1|1 . . . 1|1 . . . 2′|2′ . . .: the degree equals 2. Indeed, there are exa
tlytwo neighbors: . . . 11| . . . 11| . . . 2′|2′ . . . and . . . |11 . . . |11 . . . 2′|2′ . . ..
• Sub
ase . . . 1|1 . . . 1|2′ . . . 2′|1 . . .: the degree equals 2.
• Sub
ase . . . 1|1 . . . 2′|1 . . . 1|2′ . . .: the degree equals 2.
• Sub
ase . . . 1|1 . . .1|2′ . . . 2′|2′ . . .: the degree equals 2. Indeed, there are exa
tlytwo neighbors: . . . 1|1 . . . 12′| . . . 2′2′| . . . et . . . |11 . . . |12′ . . . 2′|2′ . . ..
• Sub
ase . . . 1|1 . . . 2′|1 . . . 2′|2′ . . .: the degree equals 2.
• Sub
ase . . . 1|2′ . . . 2′|1 . . . 1|2′ . . .: the degree equals 0.
• Sub
ase . . . 1|2′ . . . 1|2′ . . . 2′|1 . . .: the degree equals 4.All degrees are even.
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It follows that a vertex of odd degree is ne
essarily su
h that c1 = 0 or c3 = n. Thisproves point (i) of Lemma 2.1. Note that a vertex has an odd degree if and only if b 6= e(with the notations de�ned in the �rst 
ase above).We prove now that: There is an odd number of verti
es of odd degree su
h that c1 = 0.Let ǫ > 0 be a very small real. We �rst show that a vertex has an odd degree if thefollowing holds: one of the intervals ]c2 − 1, c3 − 1 + ǫ[ and ]c2, c3 + ǫ[ has a proportion ofbeads of type 1 stri
tly smaller than a1

a1+a2+a3

and the other has a proportion of beads oftype 1 stri
tly greater than a1

a1+a2+a3

. Formally, we are going to show that the odd verti
es
(0, c2, c3) are su
h that

φ1(]c2 − 1, c3 − 1 + ǫ[)

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3and
φ1(]c2, c3 + ǫ[)

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3have opposite signs.This two quantities are respe
tively equal to
a1 + 1{b=1} − (1 − ǫ)1{d=1}

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3and
a1 + ǫ1{e=1}

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3
,where b, d, and e are beads in positions spe
i�ed in the �rst 
ase above, and 1P takes thevalue 1 (resp. 0) if P is true (resp. false). It is easy to see that these two quantities haveopposite signs if and only if b 6= e. Hen
e they have opposite signs if and only if the vertexhas odd degree.We show now that there is an odd number of su
h verti
es. With the same kind ofarguments as in Subse
tion 2.1, i.e., with the interval ]c2, c3 + ǫ[ moving from left to right,we see that there is an odd number of su
h situations, for the sign of

φ1(]u, u + a1 + a2 + a3 + ǫ[)

a1 + a2 + a3 + ǫ
−

a1

a1 + a2 + a3
hanges stri
tly when the interval ]u, u + a1 + a2 + a3 + ǫ[ moves from ]0, a1 + a2 + a3 + ǫ[to ]a1 + a2 + a3, n + ǫ[ (this is a true for ǫ = 0, a

ording to the starting assumptions, andthus for all ǫ > 0 small enough). Hen
e, there is an odd number of verti
es of odd degreesu
h that c1 = 0.By symmetry, there is also an odd number of verti
es of odd degree having c3 = n.Furthermore, we have the following equivalen
e, sin
e the 
ondition b 6= e is the same forthe verti
es (0, c2, c3) and (c2, c3, n):
deg(0, c2, c3) odd ⇔ deg(c2, c3, n) odd.The lemma is proved.2.3.3 Final 
ommentsLet's give an illustration of this proof for the example of Figure 1.The 
orresponding graph G is illustrated in Figure 3. There is a path (a
tually, many)linking vertex (0, 4, 10), whi
h gives more beads of type 3 to Ali
e, to vertex (4, 10, 12),6



(1, 4, 9) (0, 4, 10) (0, 5, 11) (1, 5, 10)(2, 6, 10) (3, 7, 10) (4, 8, 10) (5, 9, 10) (4, 9, 11)(4, 10, 12)

(5, 10, 11)

(5, 11, 12)
(5, 8, 9)

(3, 6, 9)

(2, 7, 11)(1, 2, 7)
(5, 6, 7)

(3, 4, 7)

Figure 3: Graph G 
orresponding to the example (with t = 3 and q = 2) of Figure 1.whi
h gives more beads of type 3 to Bob. The verti
es (1, 5, 10) and (2, 6, 10) lie on thispath and provide fair divisions.On the other hand, it is not 
lear whether it is possible to derive from this proof ane�
ient algorithm that would have a better 
omplexity than O(n3) (G might be not expli
itly
omputed).Furthermore, the method is tedious. Is it possible to �nd some simpli�
ation?3 Ky Fan's 
ubi
al theorem and 
onstru
tive proof fortwo thieves3.1 PreliminariesWe give now a 
onstru
tive and 
ombinatorial proof of Theorem 1. We 
ould think thatsu
h a proof 
ould be easily dedu
ed from Tu
ker's lemma. Indeed, Theorem 1 is a dire
tappli
ation of Borsuk-Ulam's theorem, whi
h has a 
onstru
tive proof through Tu
ker'slemma. This is done for instan
e by Simmons and Su in [14℄, but the result is not 
ompletelysatisfa
tory be
ause this method requires a triangulation T of the (t + 1)-dimensional 
ross-polytope su
h that the diameter of any simplex in T is a O(1/(nt)), and then it requires arounding method.Our method does not present those di�
ulties. It bases itself on a theorem (Theorem 3)found by Ky Fan in 1960 whi
h is a 
ubi
al version of Tu
ker's lemma [8℄. We give below a
onstru
tive proof of this theorem. The 
ubi
al 
omplex we need is 
ompletely natural.3.2 Notation and de�nitionsLet C be a 
ube, ∂C the boundary of C, and V (C) the set of verti
es of C.Two fa
ets of a
d-
ube are said to be adja
ent if their interse
tion is a (d − 2)-
ube. For a given fa
et σ of
C, there is only one non-adja
ent fa
et. Two non-adja
ent fa
ets are opposite.A 
ubi
al 
omplex is a 
olle
tion C of 
ubes embedded in an eu
lidian spa
e su
h that

• if τ ∈ C and if σ is a fa
e of τ then σ ∈ C and
• if σ and σ′ are in C, then σ ∩ σ′ is a fa
e of both σ and σ′.A 
ubi
al 
omplex is said to be pure if all maximal 
ubes with respe
t to in
lusion havesame dimension. 7



V (C) is the set of verti
es of the 
ubi
al 
omplex C.A d-dimensional 
ubi
al pseudo-manifold M is a pure d-dimensional 
ubi
al 
omplex inwhi
h ea
h (d − 1)-dimensional 
ube is 
ontained in at most two d-dimensional 
ubes. Theboundary of M, denoted by ∂M, is the set of all (d−1)-
ubes σ su
h that σ belongs to exa
tlyone d-dimensional 
ube of M.Let us denote by C
d the 
ubi
al 
omplex whi
h is the union of the 
ube �

d := [−1, 1]dand all its fa
es (see Figure 6).Let k ≥ 0 be an integer. Given k distin
t integers i1, i2, . . . , ik, ea
h of them in
{1, 2, . . . , d}, and k numbers ǫ1, ǫ2, . . . , ǫk, ea
h of them belonging to {−1, +1}, we denote

F

(
i1 i2 . . . ik
ǫ1 ǫ2 . . . ǫk

)

:= {(x1, x2, . . . , xd) ∈ �
d : xij

= ǫj for j = 1, 2, . . . , k},whi
h is a (d − k)-fa
e of �
d. For k = 0, this fa
e is �

d itself.We endow ∂�
d with hemispheres. These hemispheres are denoted +H0, −H0, +H1,

−H1, . . ., +Hd−1, −Hd−1. +Hi (resp. −Hi) is the set of points (x1, x2, . . . , xd) of ∂�
d su
hthat xi+1 ≥ 0 (resp. xi+1 ≤ 0), and su
h that, if i ≤ d − 2, then xj = 0 for j > i + 1 (inFigure 4, the hemispheres of ∂�

3 are highlighted).The 
arrier hemisphere of a 
ube is the hemisphere of smallest possible dimension 
on-taining it.Observation 2.1 For i ∈ {0, 1, . . . , d − 1}, Hi is homeomorphi
 to the ball Bi, (+Hi) ∪
(−Hi) is homeomorphi
 to the i-dimensional sphere Si, if i ≥ 1, ∂(+Hi) = ∂(−Hi) =
(+Hi−1) ∪ (−Hi−1) and Hd−1 ∪ −Hd−1 = ∂�

d.Let C and D be 
ubi
al 
omplexes, and let λ : V (C) → V (D) be a map. λ is 
alled a
ubi
al map if λ satis�es the following 
onditions:1. for every σ ∈ C, there is a τ ∈ D su
h that λ(V (σ)) ⊆ V (τ)2. λ takes adja
ent verti
es to adja
ent verti
es or both to the same vertex.By a slight abuse of notation, we write λ : C → D. We emphasize the fa
t that λ(V (σ)) inthe de�nition above is not ne
essarily the vertex set of a 
ube.A

ording to Lemma 18 of the paper of Ehrenborg and Hetyei [6℄, if λ : V (�n) → V (�n)is a non-inje
tive 
ubi
al map and if ρ is a fa
et of �
n, then there are 0, 2 or 4 fa
ets σ of

�
n su
h that λ(V (σ)) = V (ρ). It implies the following lemma:Lemma 2.2 Let λ : V (�d) → V (�m) be a 
ubi
al map (from Cd into Cm), with m ≥ d,and let ρ be a (d − 1)-fa
e of �

m. If λ is not inje
tive, there are 0, 2 or 4 fa
ets σ of �
dsu
h that λ(V (σ)) = V (ρ). Moreover, if there are 4 su
h fa
ets and if σ is one of them, thenthe fa
et opposite to σ is also one of these 4 fa
ets.Proof: Let λ : V (�d) → V (�m) be a non-inje
tive 
ubi
al map and let ρ be a (d−1)-fa
eof �

m. If there is no fa
et σ su
h that λ(V (σ)) = V (ρ), there is nothing to prove. So letus assume that there is a fa
et σ of �
d su
h that λ(V (σ)) = V (ρ). We want to apply theresult of Lemma 18 of [6℄, whi
h is valid if λ : V (�d) → V (�d). Let us prove that we 
anmake this assumption, that is, that there is a d-fa
e of �

m whi
h 
ontains the image of λ.
• If λ(V (�d)) = V (ρ), any d-fa
e 
ontaining ρ 
ontains the image of λ.
• If not, there is v ∈ V (�d) \ V (σ) su
h that λ(v) /∈ V (ρ). Let w be the vertex of σwhi
h is adja
ent to v, and let w′ be the single vertex of σ su
h that d(w, w′) = d− 1,where d(·, ·) is the distan
e in the 1-skeleton of a 
ube, 
ounted in number of edges. It8



is straightforward to 
he
k that d(λ(w′), λ(v)) = d (take the minimal fa
e 
ontainingboth ρ and λ(v)). Let v′ be any vertex of �d, we have the following 
hain of inequalities:
d = d(v, w′) = d(v′, v)+d(v′, w′) ≥ d(λ(v′), λ(v))+d(λ(v′), λ(w′)) ≥ d(λ(v), λ(w′)) = d.Hen
e, d(v′, v) = d(λ(v′), λ(v)) and d(v′, w′) = d(λ(v′), λ(w′)). It implies that λ(v′),for any v′ in �

d, is in the d-
ube of �
m 
ontaining ρ and λ(v).We 
an thus assume that λ : V (�d) → V (�d).If there are 4 fa
ets su
h that λ(V (σ)) = V (ρ) (in this 
ase one has ne
essarily d ≥ 2),at least two of them, say σ and σ′, are adja
ent. Let σ′′ be another fa
et adja
ent to σand σ′. Let x ∈ V (σ′ ∩ σ′′) \ V (σ), and let y be the vertex adja
ent to x in σ. We have

y ∈ σ ∩ σ′ ∩ σ′′, and λ(x) adja
ent to λ(y). Moreover, let z be the vertex of σ su
h that
λ(z) = λ(x) (whi
h exists by inje
tivity). z is adja
ent to y in σ and 
annot be in σ′. Hen
e
z is the only vertex of σ whi
h is at distan
e 1 of y and not in σ′. It implies that z is in σ′′.As λ(z) = λ(x) and as z and x are two di�erent verti
es of σ′′, λ(V (σ′′)) 6= V (ρ). A fa
et
σ′′ adja
ent to σ and to σ′ 
annot satisfy λ(V (σ′′)) = V (ρ).3.3 Ky Fan's 
ubi
al formulaSuppose that we have a 
ubi
al map λ of M, a t-dimensional 
ubi
al pseudo-manifold, into
Cm, the 
ubi
al 
omplex made by �

m and its fa
es.We denote by αλ

(
i1 i2 . . . im−t

ǫ1 ǫ2 . . . ǫm−t

) the number of those t-
ubes σ of M su
h thatthe verti
es of σ are mapped under λ in a one-to-one way onto the verti
es of the t-fa
e
F

(
i1 i2 . . . im−t

ǫ1 ǫ2 . . . ǫm−t

) (if m = t, this fa
e is �
m itself).We will later make use of the following theorem (for the 
ase m = t), whose 
onstru
tiveproof is given below.Theorem 3 Let M be the 
ubi
al pseudo-manifold without boundary obtained by subdividing

∂Ct+1 by means of the hyperplanes xi = j
n
where i ∈ {1, 2, . . . , t+1} and j ∈ {−n+1,−n+

2, . . . ,−1, 0, 1, . . . , n − 2, n − 1}. Let λ be a 
ubi
al map from M into Cm, with m ≥ t. If λis antipodal (i.e. if λ(−x) = −λ(x)), then we have
• if m > t,

∑

ǫ2,...,ǫm−t=−1,+1

αλ

(
t + 1 t + 2 . . . m
+1 ǫ2 . . . ǫm−t

)

= 1 mod 2.

• if m = t, there is a t-
ube σ of M su
h that λ(V (σ)) = V (Cm).For t = 2 and n = 2, M is illustrated in Figure 4.3.4 Constru
tive proof of Theorem 3We follow roughly the method found by Pres
ott and Su [13℄ for proving a similar result
on
erning simpli
ial 
omplexes.
• A d-
ube of M (with 0 ≤ d ≤ t) is said to be full if its image under λ is of the form

F

(
d + 1 d + 2 . . . m

ǫ1 ǫ2 . . . ǫm−d

)

.9
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• A d-
ube of M is said to be almost-full if it is not full but one of its fa
ets is full.Ex
ept in the 
ase when d = m = t, one 
an de�ne the sign of a full d-
ube as the valueof ǫ1 in the expressions above.Lemma 3.1 For an almost-full d-
ube τ , there are only three possibilities:1. either its verti
es are mapped under λ in a one-to-one way onto the verti
es of a d-fa
e(with the entries j and ǫj−d+1 deleted)
F

(

d . . . ĵ . . . m
ǫ1 . . . ǫ̂j−d+1 . . . ǫm−d+1

)

,2. or λ is not inje
tive on the vertex set of τ and τ has exa
tly two full fa
ets, ea
h ofthem having the same sign,3. or λ is not inje
tive on the vertex set of τ and τ has exa
tly four full fa
ets, ea
h ofthem having the same sign. Moreover, in this 
ase, if σ ⊆ τ is a full fa
et, then theopposite of σ is also a full fa
et.Proof: First remark that if λ is inje
tive, the image of τ is a d-fa
e (this easy assertion
an be proved by indu
tion). Sin
e τ is not full, this image has ne
essarily the form givenin point 1.Hen
e, one 
an assume that λ is not inje
tive. Take two full fa
ets of τ , say σ and σ′.Sin
e they are full, λ is inje
tive on ea
h of them. λ(V (σ)) and λ(V (σ′)) are the vertex setsof (d− 1)-fa
es. They have a non-empty interse
tion, otherwise λ would have been inje
tiveon τ . Moreover, a

ording to the de�nition of a full 
ube, the image of two full 
ubes of thesame dimension are parallel. But, two parallel fa
es of a 
ube having same dimension anda nonempty interse
tion are equal. Thus, λ(V (σ)) = λ(V (σ′)), and there is a (d − 1)-fa
e
ρ su
h that for all full fa
ets σ of τ , one has λ(V (σ)) = V (ρ). This settles the statementabout the sign. Lemma 2.2 allows to 
on
lude.We 
an then extend the notion of sign to almost-full 
ubes: the sign of an almost-full
d-
ube is the sign of any of its full fa
ets.A 
ube is said to be agreeable if its sign mat
hes the sign of its 
arrier hemisphere.We de�ne the following graph G. A 
ube σ with 
arrier hemisphere ±Hd is a node of Gif it is one of the following:(1) an agreeable full (d − 1)-
ube,(2) an agreeable almost-full d-
ube, or(3) a full d-
ube.Two nodes σ and τ are adja
ent in G if all the following hold:(a) σ is a fa
et of τ ,(b) σ is full,(
) τ has the dimension of its 
arrier hemisphere, and(d) the sign of the 
arrier hemisphere of τ mat
hes the sign of σ.We 
laim that G is a graph in whi
h every vertex has degree 1, 2, or 4. Furthermore,a vertex has degree 1 if and only if its 
arrier hemisphere is ±H0, or if it is a full t-
ube.Using antipodality, we will then show that the point H0 is ne
essarily linked by a path in
G to a full t-
ube.To see why, let's 
onsider the three kinds of nodes in G:(1) An agreeable full (d− 1)-
ube σ, with 
arrier hemisphere ±Hd, is a fa
et of exa
tly two
d-
ubes, ea
h of whi
h must be a full or an agreeable almost-full 
ube in the same 
arrier.11



This satis�es the adja
en
y 
onditions (a)�(d) with σ, hen
e σ has degree 2 in G. The 
ube
σ 
annot be adja
ent in G to any of its fa
ets, otherwise it would 
ontradi
t 
ondition (
).(2) An agreeable almost-full d-
ube σ, whose 
arrier hemisphere is ±Hd, is adja
ent in Gto its two or four fa
ets that are full (d − 1)-
ubes � see Lemma 3.1. A full fa
et of σ isautomati
ally a node of G, sin
e if it is not agreeable, then it is 
arried by ∓Hd−1 � the signof the 
arrier of this full fa
et is then the opposite of the sign of σ. (Adja
en
y 
ondition (d)is satis�ed be
ause σ is agreeable and be
ause an agreeable almost-full d-
ube has alwaysthe same sign as its full fa
ets).(3) Ex
ept if d = 0, a full d-
ube σ with 
arrier ±Hd has exa
tly one fa
et τ that is full andwhose sign is the same as the 
arrier hemisphere of σ. Hen
e σ is adja
ent to τ in G.On the other hand, σ is the fa
et of exa
tly two (d + 1)-
ubes in +Hd+1 ∪ −Hd+1: onein +Hd+1 and one in −Hd+1, but σ is adja
ent in G to exa
tly one of them: whi
h one isdetermined by the sign of σ, sin
e adja
en
y 
ondition (d) must be satis�ed.Finally, σ is of degree 2 or 4 in G unless d = 0 or σ is a full t-
ube: if d = 0, σ is thepoint ±H0 and it has no fa
e, hen
e σ has degree 1; and if σ is a full t-
ube, then σ is notthe fa
et of any other 
ube, and is therefore of degree 1.Every node in G has degree 2 or 4, ex
ept for the points ±H0 and for the full t-
ubes.We transform G into a new graph G′: we repla
e ea
h node v of degree 4 in G by twonodes v′ and v′′, and we repla
e the four edges, by four new edges: two linking v′ and a pairof opposite full fa
ets, and two linking v′′ and the other pair of opposite full fa
ets.In G′, all verti
es are of degree 1 or 2, hen
e G′ is the union of disjoint paths and 
y
les.Note that the antipode of a path in G′ is also a path in G′. No path 
an have antipodalendpoints, otherwise it should be its own antipode and have a node or an edge whi
h isantipodal to itself. Hen
e the number of endpoints is a multiple of four. Sin
e exa
tlytwo endpoints are H0 and −H0, there are twi
e an odd number of endpoints whi
h are full
t-
ubes. If m > t, half of them have a positive sign (if m = t, a full t-
ube has no sign).A path of G′ starting in H0 
an not terminate in −H0, but in a full t-
ube. Thus wehave an algorithm whi
h allows to �nd a full t-
ube. It is illustrated in Figure 5.3.5 Splitting the ne
kla
e between Ali
e and BobWe 
an easily dedu
e Theorem 1 from Theorem 3. Indeed let m = t, and let x :=
(x1, x2, . . . , xt+1) be a vertex of M. We order the xi in the in
reasing order of their ab-solute value. When |xi| = |xi′ |, we put xi before xi′ if i < i′. This gives a permutation πsu
h that

|xπ(1)| ≤ |xπ(2)| ≤ . . . ≤ |xπ(t+1)| = 1.Then, we de�ne λ = (λ1, λ2, . . . , λt) : M → Ct as follows: we 
ut the ne
kla
e at points
n|xi| (at most t are di�erent from 1). By 
onvention, xπ(0) := 0; we de�ne:

λi(x) :=

{
+1 if ∑t

j=0 sign(xǫ(j))φi

(]
n|xπ(j)|, n|xπ(j+1)|

[)
> 0

−1 if not,for i = 1, 2, . . . , t, where ǫ(j) is the smallest integer k su
h that |xk| ≥ |xπ(j+1)|, and withthe 
onvention sign(0) := 0.This formula 
an be understood as follows: λi equals +1 (resp. −1) if the �rst thiefgets stri
tly more (resp. stri
tly less) beads of type i than the se
ond one, when we 
ut atpoints n|xj | of the ne
kla
e, and when the sign of xk shows the thief who gets the (j + 1)thsub-ne
kla
e, where k is the smallest integer su
h that n|xk| is greater than or equal to the
oordinate of any point of the sub-ne
kla
e. 12
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(+1, +1,−1) (−1, +1,−1)Figure 5: Illustration of the 
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tive proof of Theorem 3. The triples indi
ate the
orresponding label on the 
ube image of the Figure 6.
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The only problem with this de�nition is that λ may not be antipodal: if
t∑

j=0

sign(xǫ(j))φi

(]
n|xπ(j)|, n|xπ(j+1)|

[)
= 0,then λi(x) = λi(−x) = −1. This 
an be avoided by a slight generi
 perturbation of thevalue of all the beads: a division using 
uts between beads 
an then not be fair with respe
tto any type of bead2.

λ is a 
ubi
al map. Indeed, the �rst 
ondition de�ning 
ubi
al maps is trivially satis�edand the se
ond one follows from the fa
t the images by λ of two adja
ent verti
es of M haveat most one 
oordinate that di�ers � even in the 
ase when there is j su
h that ǫ(j) di�ers.Theorem 3 shows that there is a t-
ube σ whose image by λ is �
t. One of the verti
es ofthis t-
ube 
orresponds to a fair division. Indeed, for any vertex x of su
h a σ, moving toea
h of the t adja
ent verti
es of x 
hanges the value of ea
h of the t 
omponents of λ(x).The 
onstru
tive proof given above for Theorem 3 suits to the ne
kla
e problem. The
ubi
al 
omplex is 
ompletely natural in this 
ontext: a k-
ube (k ≤ t) 
orresponds pre
iselyto the 
hoi
e of k beads. Moreover, it is straightforward to 
he
k if a k-
ube is full in termsof beads. We have thus a 
onstru
tive proof of Theorem 1.3.6 General dis
rete ne
kla
e splitting theoremIn [3℄, Alon, Moshkovitz and Safra prove the following extension of Theorem 2 (with �ows).Suppose that the ne
kla
e has n beads, ea
h of a 
ertain type i, where 1 ≤ i ≤ t. Supposethere are Ai beads of type i, 1 ≤ i ≤ t, ∑t

i=1 Ai = n, where Ai is not ne
essarily a multipleof q. A q-splitting of the ne
kla
e is a partition of it into q parts, ea
h 
onsisting of a �nitenumber of non-overlapping sub-ne
kla
es of beads whose union 
aptures either ⌊Ai/q⌋ or
⌈Ai/q⌉ beads of type i, for every 1 ≤ i ≤ t.Theorem 4 Every ne
kla
e with Ai beads of type i, 1 ≤ i ≤ t, has a q-splitting requiring atmost t(q − 1) 
uts.For q = 2, the proof of the pre
eding se
tion shows something more. The proof is stillvalid, even if the Ai's are not even. If Ai is odd, the (t− 1)-fa
et of �

t whose ith 
oordinateis equal to 1 (resp. −1). 
orrespond to division giving ⌈Ai/2⌉ beads of type i to Ali
e (resp.Bob) and ⌊Ai/2⌋ beads of type i to Bob (resp. Ali
e). We have thus the following theorem,also with a 
onstru
tive proof:Theorem 5 Every ne
kla
e with Ai beads of type i, 1 ≤ i ≤ t, has a 2-splitting requiringat most t 
uts. Moreover, for ea
h type i of beads su
h that Ai is odd, we 
an 
hoose whi
hthief gets ⌈Ai/2⌉ beads of type i.Note that this theorem 
an also be derived from the proof of Alon, Moshkovitz and Safra.4 Open questionsThere are a lot of questions that remain open.1. Is it possible to extend the dire
t proofs of Se
tion 2.1 to other 
ases?2If one does not want to use a perturbation, there is another way for avoiding 0: 
hoose a parti
ular beadof ea
h type and de�ne λi(x) := +1 (resp. −1) if the �rst thief gets stri
tly more (resp. stri
tly less) beadsof type i than the se
ond thief, or if the �rst thief and the se
ond one get the same number of beads of type
i and the �rst one gets (resp. does not get) the parti
ular bead of type i.14



2. Is there a 
ombinatorial or a 
onstru
tive proof of Theorem 2? This question appearsfor instan
e in the paper of Alon [2℄.3. What is the 
omplexity of the following problem?INPUT: A ne
kla
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h type (ai is an integer), and qthieves,TASK: Find a fair division of the ne
kla
e using no more than t(q − 1) 
uts,This question is still open (for more about problems of this type, see Papadimitriou[12℄). The 
orresponding optimization problem, namely �nding the minimum numberof 
uts providing a fair division, is NP-hard, even if q = 2 and a1 = a2 = . . . = at = 1(see [5℄, [11℄).4. Is there an analogue of Theorem 5 for any number q of thieves?Referen
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