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Graphs are an important subject in mathematics and can be found in various math-
ematical branches, e.g., combinatorics, probability, topology, etc. Graphs, as a way to
model networks or interactions between entities, play also an important role in many
other areas of science. They form one of the central objects of this book, and each chap-
ter relies in a way or the other to them. The main purpose of the book is to illustrate
how geometry can be used to explore their combinatorial properties, and how, in return,
graphs can provide useful concepts to address geometric questions. It has been written by
a major contributor of this fascinating topic, and is thus a unique opportunity to discover
this latter.

The present review aims at conveying some of the ideas and results of this book. As
we will see in Section 1, one idea is that traditional notions of matchings and vertex
covers in graphs can be extended to vector-labeled graphs in a very fruitful way. This
section, which actually presents only results from one chapter (among twenty), somehow
illustrates the general spirit of the book: nice mathematical results, which are beneficial
to other areas (here, to pure graph theory and to physics). A more central message of
the book is that combinatorial properties of graphs can be found or studied via “graph
representations,” which are well-chosen labelings of the vertices with vectors. Section 2
gathers a few results and methods around this theme. Another interesting aspect of the
book is the place of physics, and this will be already clear from the first two sections.
Two extra applications to this discipline are described in Section 3. A few complementary
comments are given in Section 4.

1. A first glimpse of the book: matchings and covers in frameworks

A (simple) graph G is a pair (V,E) of finite sets where the elements of E are pairs of
elements of V . The elements of V are the vertices and the elements of E are the edges.
The common way to visualize a graph is to identify each vertex with a distinct point of
the plane and each edge with a line connecting its two vertices. In the sequel, n will
always be the number of vertices of G.

Matchings and vertex covers are fundamental notions related to graphs. A matching is
a set of pairwise disjoint edges. The maximum cardinality of a matching, the matching
number of G, is denoted by ν(G). A vertex cover is a set of vertices meeting all edges.
The minimum cardinality of a vertex cover, the vertex cover number of G, is denoted by
τ(G). It is immediate that the inequality ν(G) ⩽ τ(G) always holds. It is also clear
that this inequality can be strict. Yet, there is an important family of graphs for which
this inequality is actually an equality: bipartite graphs. A graph is bipartite when it is

1This version of the article has been accepted for publication but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record will soon be
available online. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms
of use.

1

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


2

possible to partition the vertices into two parts such that every edge has a vertex in each
part. The equality ν(G) = τ(G) when G is bipartite is a theorem of Kőnig from the early
20th century and is a fundamental result in combinatorial optimization.

One of the main objects studied in the book is that of a framework. A framework is
a pair (G,u), where G is a graph and u is a collection (uv)v∈V of vectors of Rd labeling
the vertices of G. A matching of a framework is a set of pairwise disjoint edges whose
vertices are labeled by linearly independent vectors. We denote by ν(G,u) the maximum
cardinality of a matching and by τ(G,u) the minimum rank of a vertex cover (the rank
of a set S ⊆ V being the rank of {uv : v ∈ S}). Note that when we label G with the
standard unit vectors of Rn, these quantities coincide with the usual matching and vertex
cover numbers. The inequality between these latter extends to frameworks. The following
extension of Kőnig’s theorem is maybe more surprising.

Theorem 1 (Chapter 18, Theorem 18.14). If G is a bipartite graph, then ν(G,u) =
τ(G,u).

Further results about matchings and vertex covers in frameworks when the graph is not
bipartite, generalizing classical results for non-labeled graphs, can also be established. A
striking application is the following theorem found by Milić [9] about electrical networks.
(A gyrator is a two-port electrical device that relates in an opposite way the current and
the voltage of the two ports.)

Theorem 2 (Chapter 18, Theorem 18.19). Let G be an electrical network of voltage and
current sources, resistances, and gyrators. Suppose that the resistances and the parameters
of the gyrators are algebraically independent over the rationals. Then there is a unique
assignment of current and voltage differences to the edges if and only if G has a spanning
tree which contains all voltage sources, no current source, and either both or none of the
edges of each gyrator.

Basic computations of multilinear algebra establish a formula leading to an efficient
randomized algorithm for computing ν(G,u), which in turns can be used for deciding the
existence of the spanning tree of Theorem 2.

Vertex covers in frameworks is a key tool for understanding a fundamental property
of usual (non-labeled) graphs, namely the property of being cover-critical. A graph is
cover-critical if removing any edge from it decreases the vertex cover number. A cover-
critical graph is basic if every vertex has degree at least three. (The degree of a vertex v,
denoted by deg(v), is the number of edges containing that vertex.) It is not too difficult
to see that all cover-critical graphs can be described from the basic ones. The covering
defect of a cover-critical graph is the quantity 2τ(G) − n. The following theorem is due
to Lovász [6].

Theorem 3 (Chapter 18, Theorem 18.3). The number of basic cover-critical graphs with
fixed covering defect is finite.

The only known proof of this deep result relies on vertex cover numbers of frameworks.
Roughly speaking, intermediary lemmas stating properties on vertex cover numbers of
frameworks are established via inductive arguments that fail to work when restricted to
usual vertex cover numbers.
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2. Representations of graphs

Frameworks—defined as graphs whose vertices are labeled with vectors—form the main
object discussed in the previous section. They can arise quite naturally from applications
from physics. Theorem 2 is obtained this way. They can also come as an attempt of
generalizing standard notions. Generalizations are sometimes fruitful, and Theorem 3 is
a typical example. But there is another way to get frameworks, and this is via graph
representations. A representation of a graph is a labeling of its vertices with vectors that
captures some of its combinatorial properties. We present hereafter three examples from
the book.

2.1. Orthogonal representations. An orthogonal repre-
sentation of a graph is a labeling of its vertices with vectors
of Rd such that non-adjacent vertices (i.e., pair of vertices not
forming an edge) are labeled with orthogonal vectors. The
adjacent figure show two orthogonal representations of the
5-cycle C5 (graph that can be visualized as a pentagon).
The graph C5 is 2-connected, which means that removing a

single vertex does not “disconnect” the graph; see the precise
definition of k-connectivity below. The first representation in
the figure is in general position (no three vectors are linearly
dependent). This is an illustration of a more general phe-
nomenon: quite surprisingly, there exists a relation found by
Lovász, Saks, and Schrijver [8] between the dimension of such
a representation (in general position) and the connectivity of
the graph.
A graph is connected if for every pair of vertices v, v′, there
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Two orthogonal repre-
sentations of C5.

exists a sequence of edges such that consecutive edges share a vertex, the first edge
contains the vertex v, and the last edge contains the vertex v′. A graph is k-connected if
the removal of at most k − 1 vertices cannot disconnect the graph.

Theorem 4 (Chapter 10, Theorem 10.9). A graph has an orthogonal representation in
Rd in general position if and only if it is (n− d)-connected.

The difficult part of the proof is the construction of an orthogonal representation in
general position for (n − d)-connected graphs. The description of the construction itself
is actually easy and provides an efficient randomized algorithm to compute such a repre-
sentation. What is difficult is the fact that the representation is in general position. The
proof uses clever arguments combining graphs, linear algebra, and probabilities.

Orthogonal representations are also useful for defining the following important graph
parameter. The Lovász number of a graph is the quantity

ϑ(G) = min
u,c

max
v∈V

1

(c · uv)2
,
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where the minimum is taken over all orthonormal representations u of G (orthogonal
representations with unit vectors) and all unit vectors c. From duality theory in semi-
definite optimization, we can get the following equivalent definition:

ϑ(G) = max
u′,c′

∑
v∈V

(c′ · u′
v)

2 , (1)

where the maximum is taken over all orthonormal representations u′ of the complementary
graph G (graph in which non-adjacent vertices become adjacent, and vice versa), and all
unit vectors c′.

The Lovász number is sandwiched between two important graph parameters: the sta-
bility number, denoted by α(G), and the clique cover number, denoted by χ(G). The first
is the maximum number of pairwise non-adjacent vertices; the second is the minimum
number of cliques (complete subgraphs) needed to cover all vertices of G. They are NP-
hard, which means that the existence of a polynomial time algorithm (i.e., an efficient
algorithm) to compute any of them is very unlikely.

Theorem 5 (Chapter 11, Theorem 11.1). The inequalities α(G) ⩽ ϑ(G) ⩽ χ(G) hold for
every graph G.

The proof of these two inequalities is rather simple. The value of ϑ(G) is polynomial
time computable—a non-trivial fact found by Grötschel, Lovász, and Schrijver [3]—which
makes this parameter a useful tool for bounding the values of the stability number and
the clique cover number.

The Lovász number is relevant in many other contexts. Its most celebrated application
is maybe the determination of the Shannon capacity of C5 by Lovász [7]. The Shannon ca-
pacity is a quantity that has been introduced by Shannon and is related to the asymptotic
number of non-confusable messages of a noisy channel. Formally, it is the value

Θ(G) = lim
k→+∞

α(G⊠ · · ·⊠G︸ ︷︷ ︸
k times

)1/k ,

where the operation ⊠ is defined as follows. Given two graphs G and H, we denote by
G⊠H the graph whose vertices are the pairs (v, w) with v a vertex of G and w a vertex
of H. Two vertices (v, w) and (v′, w′) form an edge if either vv′ and ww′ are edges of
respectively G and H, or vv′ is an edge of G and w = w′, or v = v′ and ww′ is an edge of
H.

Theorem 6 (Chapter 11, Corollary 11.32 (special case)). The following equality holds:
Θ(C5) =

√
5.

2.2. Rubber band representations. Theorem 4 relates orthogonal representations and
the connectivity of the graph. Another representation can be used to characterize the
connectivity of a graph. Identify the vertices with points in Rd. A subset S of the vertices
is fixed (they are “nailed”); the other vertices are free. Now, replace each edge with
a rubber band of unit stiffness and let the free vertices settle in equilibrium, which is
unique (here, we only consider the forces exerted by the rubber bands). The labeling of
the vertices with their equilibrium position is a rubber band representation of the graph.
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Theorem 7 (Chapter 3, Corollary 3.8). A graph has a rubber band representation in Rd

in general position with S nailed for every S ⊆ V with |S| = d + 1 if and only if it is
(d+ 1)-connected.

This theorem, found by Linial, Lovász, and Wigderson [5], is obviously relevant for
its applications in physics. Yet, we have again an unexpected application the other way
around since this theorem provides a very efficient randomized algorithm to compute the
connectivity of a graph. Roughly speaking, it boils down to assign once and for all random
weights to the edges, invert some n× n matrix built from the “Laplacian” of the graph,
multiply this matrix with a polylogarithmic number of different d × n matrices (which
all have a very simple description), and check the affine independence of the rows of all
matrices obtained this way.

2.3. Laplacian. The Laplacian of a graph is defined as the V × V matrix L such that

Luv =

 deg(u) if u = v,
−1 if uv is an edge,
0 otherwise.

The study of the Laplacian can reveal interesting properties of a graph. The next theorem
is established via a careful analysis of equations involving the Laplacian. The effective
resistance R(s, t) of a graph between vertices s and t is the resistance of the graph when
one sends current from s to t, where each edge has resistance 1. We denote by F (s, t) the
force pulling the nails when G is a rubber band structure as in Section 2.2 with s and t
nailed. The expected time of a random walk starting at s to hit t and then return to s
is the commute time between s and t and is denoted by comm(s, t) (each neighbor of a
vertex is selected uniformly at random between all neighbors). The relation between the
resistance and the commute time is due to Nash-Williams [10].

Theorem 8 (Chapter 4, Theorem 4.6). Let G be a connected graph and s, t ∈ V . The
effective resistance R(s, t), the force F (s, t), and the commute time comm(s, t) are related
by the equations

R(s, t) =
1

F (s, t)
=

comm(s, t)

2m
.

The notion of G-matrix generalizes the Laplacian and is used for a striking algebraic
characterization of planar graphs. A graph is planar if it can be drawn in the plane so
that the vertices are points and the edges are Jordan curves joining their vertices, without
intersecting each other except maybe at their endpoints. AG-matrix is a symmetric V ×V -
matrix such that Muv = 0 for every pair of non-adjacent vertices u, v. It is well-signed if
Muv < 0 for every edge uv. The Laplacian is an example of a well-signed G-matrix.
The Colin de Verdière number µ(G) of the graph G is the maximum corank of a well-

signed transversal G-matrix with exactly one negative eigenvalue. (We do not define
transversal here: it is a condition of non-degeneracy.) The following theorem is due to
Colin de Verdière [2].

Theorem 9 (Chapter 16, Theorem 16.15 (special case)). A connected graph G is planar
if and only if µ(G) ⩽ 3.
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The theorem admits generalizations and variations. Let us mention that µ(G) ⩽ 4 also
means something about possible embeddings of G, and the version of this theorem given
in the book treats this case as well.

3. Interplay between graphs, geometry, and physics

Graphs and geometry can be very useful to derive physical properties: Theorems 2 and 8
are illustrations. Sometimes, the physical motivation leads to interesting mathematical
properties, and Theorem 7 is an example.

We give here two other such interactions between graphs, geometry, and physics pre-
sented in the book.

3.1. Global rigidity. A linkage is a pair (G, ℓ) where G is a graph and ℓ : E → R+

is a “prescription” of a distance between the vertices of every edge. A linkage can be
interpreted as a graph in which each edge is a rigid bar of a given length. A realization
of a linkage is a framework (G,u) such that ℓ(vv′) = ∥uv −uv′∥2 for every edge vv′. The
vector uv can be thought as the position of the vertex v. A framework (G,u) in Rd is
globally rigid if every other labeling u′ with vectors in Rd such that the framework (G,u′)
realizes the same linkage can be obtained from u via an isometric transformation of Rd:
A concrete “physical” realization of a globally rigid framework cannot be deformed.

The following theorem by Alfakih [1], proved with the help of Theorem 4, provides a
characterization of globally rigid frameworks whose vector labeling is in affinely general
position. A graph is complete if every pair of distinct vertices form an edge.

Theorem 10 (Chapter 15, Theorem 15.35). A framework in Rd with a vector labeling in
affinely general position is globally rigid if and only if its graph is complete or (d + 1)-
connected.

Global rigidity is also a relevant notion in the theory of sensor networks, as seen in the
following example. Consider a number of sensors scattered in a room. Suppose that we
are able to measure the distance between some pairs and we would like to reconstruct
their geometric positions. A necessary condition is that the measured distances determine
the distance between all pairs, i.e., that the framework with sensors as vertices, measured
distances as edges, and positions in the room as the vectors in the labeling is globally
rigid. This condition becomes sufficient as soon as we know the position of four affinely
independent sensors.

The book explores other versions of rigidity—local, universal, or infinitesimal— and
various equilibrium properties of frameworks, which leads to several other unexpected
connections between mechanical properties of systems and graph theory.

3.2. Hidden variables in quantum physics. The applications to physics we have seen
so far rely on classical physics. Quantum physics is also addressed in the book (in Chapter
12).

A quantum system can be observed via a measurement. The output of this measurement
is somehow random and the measurement changes the state of the system; these are now
well-popularized facts from quantum physics. Consider such a quantum system on which
n possible measure settings can be chosen and denote by ei the event that may be observed
by this measurement (the event ei occurs or not).
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The theory of “hidden variables,” proposed by Einstein, Podolsky, and Rosen in 1935,
provides a classical interpretation of this system. In this theory, the state of the system
is determined before the measurement is performed. Consider the “exclusivity graph” G
whose vertices are the events ei and whose edges connect exclusive events, i.e., events that
cannot occur simultaneously (no state is such that both events occur). Proceed now with
the following experiment: select i uniformly at random, and then check with the suitable
measurement if ei occurs. Denote by p the probability that one sees the occurrence of the
randomly selected event. Whatever mechanism determines the state of the system, we
will have

p ⩽
α(G)

n
.

According to the quantum (non-classical) interpretation, though, the state of the system
is described as a unit vector x in a complex Hilbert space, and the probability that a
given event ei occurs is given by |ui · x|2, where ui is some unit vector determined by
the event ei. For two events ei and ej, being exclusive translate into ui and uj being
orthogonal. According to quantum theory, we have thus p = 1

n

∑n
i=1 |ui · x|2 for the

experiment described above. The book proposes as an exercise (Chapter 11, Exercise
11.9) to show that equation (1) remains correct when the complex Hilbert space is taken
instead of the real Euclidean space. Hence, we get

p ⩽
ϑ(G)

n
. (2)

Experimental settings have been designed to get W8 as exclusivity graph; see a visual-
ization of this graph on the figure below. We have α(W8) = 3 (easy), ϑ(W8) = 2+

√
2 (less

The graph W8, used in
the experiment testing
the theory of hidden
variables.

easy), and n = 8. According to the theory of hidden
variables, we should find p ⩽ 0.375. The experiment
performed by Hensen et al. [4] provides p ≈ 0.401 and
can be considered as a disproof of the theory of the
hidden variables (several older experiments, relying on
other constructions, have lead to the same conclusion).
The upper bound provided by the Lovász number is
(2 +

√
2)/8 ≈ 0.427, and is thus not in contradiction

with quantum theory. Whether concrete experiments
could lead to a probability p closer to the upper bound
in inequality (2) is an open question.

4. Complementary comments on the book

4.1. Other topics. There are many other topics that are addressed in the book and
that are not presented here, such as discrete harmonic functions, conformal invariance of
scaling limits, square tilings, semi-definite optimization, or metric representations.

4.2. Non-degeneracy and combinatorial properties. A common theme in many re-
sults given in the book is that non-degeneracy conditions are often needed to characterize
combinatorial properties with geometric or algebraic notions. In this review, this is illus-
trated by Theorems 2, 4, 7, 10, and the definition of the Colin de Verdière number. There
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is probably more to understand between non-degeneracy and combinatorics, and this is
one of the concluding thoughts of the book (Chapter 20).

4.3. Exercises. The book proposes at the end of each chapter a series of exercises that
not only help understand the main tools and concepts of the book, but also provides
complementary results that are often interesting for their own sake. (No solution is
proposed.)
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