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2Université Paris Est, CERMICS (ENPC)

In a directed graph, a kernel is a subset of the vertices that is both independent
and absorbing. Not all directed graphs have a kernel, and finding classes of graphs
having always a kernel or for which deciding the existence of a kernel is polynomial
has been the topic of many works in graph theory. We formalize some techniques
to build a kernel in a graph with a clique-cutset, knowing kernels in the pieces
with respect to the clique-cutset. As a consequence, we obtain for instance that
computing a kernel in a clique-acyclic orientation of a chordal graph can be done in
polynomial time. We enlighten some consequences in the theory of hedonic games.

1 Introduction

A subset S of the vertices of a directed graph is independent if no two vertices in S are adjacent,
and absorbing if for any vertex u not in S, there is a vertex v ∈ S such that the arc (u, v)
exists in the graph. A kernel is a subset of vertices that is both independent and absorbing.
Kernels have been introduced in 1944 by Von Neumann and Morgenstern [15] as a tool for
studying positional or Nim-type games. Since then, other applications in game theory have
been found [3, Sections 7 and 8]. They also play a role in graph theory: they are for instance
at the heart of Galvin’s proof of Dinitz’s conjecture on list coloring [8].

A directed graph such that every induced subgraph has a kernel is kernel-perfect. Identifying
classes of kernel-perfect graphs has been the motivation of many works, see the bibliography
in [3]. A clique-cutset of a directed graph D = (V,A) is a subset C ⊆ V such that C induces
a clique in D and D[V \ C] is disconnected. For each connected component B of D[V \ C],
the directed graph induced by B ∪ C is a piece of D with respect to C. Jacob [11] proved
that if every piece with respect to some clique-cutset C is kernel-perfect, so is D. Jacob’s
theorem has been one of the main tools used by Maffray for proving his result about kernels in
i-triangulated graphs [12]. We prove the following lemma, which strengthens Jacob’s theorem
and adds to it an algorithmic flavor.

Lemma 1. Let C be a clique-cutset of a digraph D = (V,A) and B,B′ a bipartition of V \ C
such that B ∪ C is a piece of D with respect to C. Suppose that there exist subsets of vertices

K(i) such that K(i) is a kernel of D
[
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for every i ∈ {1, . . . , |C|+ 1} and

such that D
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has a kernel K. Then there exists i ∈ {1, . . . , |C| + 1}
such that K ∪K(i) is a kernel of D.



This lemma implies in particular that, if B ∪ C and B′ ∪ C induce kernel-perfect graphs,
then D is kernel-perfect as well. We can then see that Lemma 1 implies Jacob’s theorem by
applying it recursively on the directed graph induced by B′ ∪ C. It is worth noting that the
proof of our lemma is much shorter than the proof Jacob gave for his theorem. We provide
the full proof at the end of this extended abstract.

In a graph class closed under taking induced subgraphs, the atoms are the graphs that have
no clique-cutset. According to Jacob’s theorem, if the atoms of such a class are kernel-perfect,
so are all graphs in the class. The following theorem, proved almost directly from Lemma 1,
ensures that if kernels are polynomially computable in the atoms of this class and in their in-
duced subgraphs, then they are polynomially computable on the whole class. Deciding whether
a directed graph has a kernel or is kernel-perfect are NP-complete problems [1, 4]. Moreover,
not so many classes of kernel-perfect graphs with polynomial algorithms for computing kernels
are known.

Theorem 2. Consider a class of directed graphs closed under taking induced subgraphs. Sup-
pose that there is a polynomial algorithm that, for any induced subgraph of an atom, computes
a kernel when it exists. Then there is a polynomial algorithm that, given any digraph D of the
class, returns either a kernel of D, or an induced subgraph of D with no kernel.

If every directed graph in the class is kernel-perfect, then the algorithm computes in polyno-
mial time a kernel. However, if there are directed graphs in the class that are not kernel-perfect,
the algorithm may fail to find a kernel, even if one exists, but it outputs then a certificate of
non kernel-perfectness.

Orientations of chordal graphs form a graph class satisfying the condition of the theorem
(see Section 2). It does not seem to have been known that a kernel can be found in polynomial
time in kernel-perfect orientations of chordal graphs. We emphasize that, while the proof given
by Jacob for his theorem is constructive and combines kernels of the pieces, we have not been
able to adapt it to get a polynomial algorithm for chordal graphs or any graph class satisfying
Theorem 2. Yet, there are families of interval graphs on which the straightforward application
of the implicit algorithm in the latter proof is exponential.

2 Clique-acyclic orientations of perfect graphs

An arc (u, v) in a directed graph is reversible if the arc (v, u) exists, and irreversible otherwise.
An orientation of an undirected graph G is a directed graph obtained by orienting each edge
either in one direction or both ways. A suborientation is an orientation in which every edge in
oriented in only one direction (there are no reversible arcs in a suborientation). An orientation
is clique-acyclic if in every clique the subgraph of irreversible arcs is acyclic, or, equivalently,
if every clique has a vertex absorbing all other vertices in the clique.

One of the main results on kernel-perfect graphs is a theorem by Boros and Gurvich [2],
originally conjectured by Berge and Duchet in 1980, stating that every clique-acyclic orientation
of a perfect graph has a kernel. An intriguing feature of their proof and of the subsequent
proofs is that none of them provides an efficient method to compute a kernel. The complexity
of this problem is an open question [9]. There are only few subclasses of perfect graphs for
which the problem is known to be polynomial, e.g., bipartite graphs or line-graphs of bipartite
graphs (via the Gale-Shapley algorithm for stable marriages [7, 13]). Theorem 2 allows to add
to this list chordal and DE graphs. DE graphs, or “directed edge path graphs”, introduced



by Monma and Wei [14], are defined as the intersection graphs of families of directed paths in
directed trees (where two paths intersect if they share an arc). The atoms of chordal graphs
(resp. DE graphs) are cliques (resp. line-graphs of bipartite graphs) and they satisfy thus the
condition of Theorem 2.

Corollary 3. The problem of computing a kernel in a clique-acyclic orientation of a chordal
graph is polynomial.

Corollary 4. The problem of computing a kernel in a clique-acyclic orientation of a DE graph
is polynomial.

The complexity of kernel computation seems to be simpler when limited to suborientations.
For instance, the polynomiality of finding a kernel is an easy exercise in the case of clique-acyclic
suborientations of chordal graphs and was already known for clique-acyclic suborientations of
DE graphs [5]. The following result also goes in that direction. A circular-arc graph is the
intersection graph of intervals on a circle.

Proposition 5. There is a polynomial algorithm that decides if a clique-acyclic suborientation
of a circular-arc graph has a kernel and computes such a kernel when it exists.

3 An application to hedonic games

A hedonic game with graph structure [10] is a triple (N, (�i)i∈N , L) where N is a finite set of
players, each �i is a complete and transitive preference relation over the subsets including i,
and L is a set of pairs of players. A subset of players is a feasible coalition if they induce a
connected subgraph of (N,L), seen as a graph. A partition π of N into feasible coalitions is
core stable if, for every feasible coalition S, there exists a player i ∈ S who weakly prefers his
current coalition π(i) to S, i.e., π(i) �i S.

One can associate core stable partitions with kernels as follows. Let FL be the set of all
feasible coalitions. Consider the directed graph (FL, A) where (S, T ) ∈ A if there exists a
player i ∈ S ∩ T with T �i S. The core stable partitions of a hedonic game are precisely the
kernels of (FL, A). Demange [6, Theorem 2, p.767] proved that finding a core stable partition
when (N,L) is a tree can be done in polynomial time in the number of feasible coalitions. Since
the intersection graphs of subtrees of a tree (where intersecting here means sharing a common
vertex) are exactly the chordal graphs, Corollary 3 strengthens Demange’s result to the more
general hedonic game where FL is restricted to some predetermined subfamily F of subsets of
players.

4 Proof of Lemma 1

To ease the notation, let us define X(i) := C∩
⋃i−1

j=1K
(j). The sequence (X(i))i=1,2,... of subsets

of C is nondecreasing (for inclusion). There is thus an index k ∈ {1, . . . , |C| + 1} such that
X(k) = X(k+1). Since K(k) is a kernel of D[B ∪ (C \X(k))], we have K(k) ∩C ⊆ C \X(k). The
equality X(k) = X(k+1) implies that K(k) ∩ C ⊆ X(k). Hence, K(k) ∩ C = ∅.

Assume that D[B′ ∪X(|C|+1)] has a kernel K. Suppose first that K and C have an empty
intersection. Since C is a clique-cutset, the set K ∪ K(k) is independent. The vertices in
B ∪ (C \X(k)) being absorbed by K(k) and those of B′ ∪X(k) being absorbed by K, we get
that K ∪K(k) is a kernel of D.



Suppose then that K and C have a nonempty intersection. Denote by v a vertex in K ∩
X(|C|+1). By definition of X(|C|+1), there is an index ` ∈ {1, . . . , |C| + 1} such that v ∈ K(`).
Since C is a clique-cutset, the set K ∪K(`) is independent in D. The vertices in B ∪ (C \X(`))
being absorbed by K(`) and those of B′∪X(`) by K, we get that K ∪K(`) is a kernel of D.
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