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Abstract. Carathéodory’s, Helly’s and Radon’s theorems are three basic results in discrete geometry. Their
max-plus or tropical analogues have been proved by various authors. We show that more advanced results

in discrete geometry also have max-plus analogues, namely, the colorful Carathéodory theorem and the

Tverberg theorem. A conjecture connected to the Tverberg theorem – Sierksma’s conjecture –, although
still open for the usual convexity, is shown to be true in the max-plus settings.

1. Introduction

Three basic theorems are at the origin of this new topic that is the discrete geometry of convex sets,
namely, Carathéodory’s theorem, Helly’s theorem and Radon’s theorem. We state them here for the sake of
completeness.

Theorem 1 (Carathéodory’s theorem). Suppose given n ≥ d + 1 points x1,x2, . . . ,xn in Rd and a point
p in conv{x1,x2, . . . ,xn}. Then there is a subset I ⊆ {1, . . . , n} of cardinality d + 1 such that p is in the
convex hull of

⋃
i∈I{xi}.

Theorem 2 (Radon’s theorem). Let X be a set of d+ 2 points in Rd. Then there are two pairwise disjoint
subsets X1 and X2 of X whose convex hulls have a common point.

Theorem 3 (Helly’s theorem). Let F be a finite collection of convex sets in Rd. If every d+ 1 members of
F have a nonempty intersection, then the whole collection has a nonempty intersection.

Max-plus or tropical convexity arises when interpreting the notions of positive linear combination or of
barycenter in the max-plus sense, meaning that the addition of scalars is replaced by the maximum and that
the product of scalars is replaced by the addition.

This unusual convexity has been studied by several authors, with various motivations, including op-
timization (K. Zimmermann [Zim77]), calculus of variations and asymptotic analysis (Litvinov, Maslov,
Shpiz [LMS01]), discrete event systems and optimal control (Cohen, Gaubert, Quadrat [CGQ01, CGQ04]),
tropical geometry (Develin and Sturmfels [DS04]), and abstract convexity (Briec and Horvath [BH04], Nitica
and Singer [NS07]).

Max-plus convexity is of special interest, because max-plus objects arise as limits of a deformation in which
classical algebraic objects are looked at with logarithmic glasses [Vir01]. This deformation, which has been
called “dequantization” by Maslov, by analogy with quasi-classics asymptotics, is at the origin of the current
flourishing of tropical methods in algebraic geometry after the work of Viro [Vir01] and Mikhalkin [Mik05].

Several authors have obtained max-plus analogues of the previously mentioned discrete convexity theo-
rems. The analogue of the Carathéodory theorem is mentioned by Helbig [Hel88] and Develin and Sturm-
fels [DS04]. The analogue of Radon’s theorem can be derived from results on max-plus linear independence
by Gondran and Minoux [GM78, GM84] and M. Plus [Plu90] (see also [BCOQ92, § 3.4]), such a derivation
was given by Butkovič [But03] in the special case of vectors with finite entries, and in [ABG06] in the general
case.The max-plus Radon theorem can also be obtained from the classical Radon theorem by a deformation
argument, as in the work of Briec and Horvath [BH04] who also established the max-plus analogue of Helly’s
theorem using the same deformation idea. Gaubert and Sergeev [GS07] derived the max-plus Helly from a
max-plus analogue of the theory of cyclic projections, leading to a direct combinatorial proof.

Other theorems have followed the ones of Carathéodory, Helly and Radon. In this paper, we show that
these theorems also have max-plus versions.

The first author has been partially supported by the joint CNRS-RFBR grant number 05-01-02807.
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Section 2 is devoted to the max-plus version of the beautiful colorful Carathéodory theorem proved by
Bárány [B8́2].

Theorem 4 (Colorful Carathéodory’s theorem [B8́2]). Suppose given d+1 finite point sets X1, X2, . . . , Xd+1

and a point p in Rd such that the convex hull of each Xi contains p, then there are d+1 points x1,x2, . . . ,xd+1

such that xi ∈ Xi for each i and such that the point p is the convex hull of the points x1,x2, . . . ,xd+1.

In Section 3, we briefly survey the existing approaches to the max-plus Radon theorem, and we point out
that the max-plus Helly theorem can be derived from it, as in the case of classical convexity.

Radon’s theorem has a beautiful generalization, Tverberg’s theorem. The max-plus version is proved in
Section 4.

Theorem 5 (Tverberg’s theorem [Tve66]). Let X be a set of (d + 1)(q − 1) + 1 points in Rd. Then there
are q pairwise disjoint subsets X1, X2, . . . , Xq of X whose convex hulls have a common point.

The case q = 2 reduces to the usual Radon theorem.
A natural question is about the number of these partitions into q subsets (each of these partition is called

a Tverberg partition). A famous conjecture is the following one, also called the Dutch cheese conjecture,
since Sierksma has offered a Dutch cheese for a solution of this problem.

Conjecture. (Sierksma’s conjecture) Let q ≥ 2, d ≥ 1 and put N = (d+ 1)(q − 1). For every N + 1 points
in Rd the number of unordered Tverberg partitions is at least ((q − 1)!)d.

This conjecture is still open. One can naturally ask whether this conjecture holds in the max-plus setting.
Surprisingly, it is possible to prove it in this case, with a quite simple proof. This is done in the last section
of the paper.

Notation: Before starting, we introduce some notation. We denote by Rmax the max-plus semiring, which
consists of the elements of R∪{−∞}. Capital letters will represent sets or collections, bold symbols (like x)
will represent vectors or points of an affine space, whereas scalars will be denoted with the usual typography.

If λ is in Rmax and x =

 x1

...
xd

, then λ+ x will denote

 λ+ x1

...
λ+ xd

.

The usual convex hull of the points x1, . . . ,xn in Rd is denoted by conv{x1, . . . ,xn} and the max-plus
convex hull of the points x1, . . . ,xn in Rdmax by mpconv{x1, . . . ,xn}. The latter set consists of the max-plus
convex combinations of the points x1, . . . ,xn, which are the points of the form maxi=1,...,n(λi+xi), for some
scalars λ1, . . . , λn in Rmax such that maxi=1,...,n λi = 0. Note that the former maximum which applies to
the vectors λi + xi is understood entrywise (for each of the d components, one takes the maximum of the n
possible distinct values).

2. The colorful Carathéodory theorems

Before considering the max-plus analogues of the colorful Carathéodory theorem, we restate the classical
result in a slightly generalized form, straightforwardly derived from the classical one.

Theorem 6. Suppose given d+ 1 finite point sets X1, X2, . . . , Xd+1 and a convex set C in Rd such that the
convex hull of each Xi intersects C. Then there are d+ 1 points x1,x2, . . . ,xd+1 such that xi ∈ Xi for each
i and such that conv{x1,x2, . . . ,xd+1} intersects the convex C.

Proof. For i ∈ [d + 1], one has ci ∈ C such that ci ∈ conv(Xi). Hence one has 0 ∈ conv (X ′i) where X ′i :=
{x−ci : x ∈ Xi}. Applying Theorem 4 to the sets X ′1, . . . , X

′
d+1 and the point p := 0 leads to the existence

of d+1 points x1,x2, . . . ,xd+1 such that xi ∈ Xi for each i and such that 0 ∈ conv{x1−c1, . . . ,xd+1−cd+1}.
Hence, conv{c1, . . . , cd+1} ∩ conv{x1, . . . ,xd+1} 6= ∅, and so conv{x1,x2, . . . ,xd+1} intersects the convex
C. �

Although the max-plus analogue of the classical form of the colorful Carathéodory theorem has a very
simple proof, the generalized version with the convex set C instead of the point p will need in the max-plus
setting more advanced tools. Indeed, the reduction in the latter proof does not carry over to the max-plus
case, because the difference of vectors is no longer meaningful.
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Figure 1. Illustration of the max-plus generalized colorful Carathéodory theorem, in di-
mension 2. There are three point sets: Xr – whose points are labelled with r –, Xg – whose
points are labelled with g – and Xb – whose points are labelled with b.

We first consider the max-plus analogue of Theorem 4.

Theorem 7 (Max-plus colorful Carathéodory’s theorem, weak form). Suppose given d+ 1 finite point sets
X1, X2, . . . , Xd+1 and a point p in Rdmax such that the max-plus convex hull of each Xi contains p. Then
there are d+ 1 points x1,x2, . . . ,xd+1 such that xi ∈ Xi for each i and such that mpconv{x1,x2, . . . ,xd+1}
contains the point p.

Proof. The point p = (p1, . . . , pd) can be written as

p = max
j∈[d+1]

(
λj + y(j)

)
,(1)

where λ1, . . . , λd+1 ∈ Rmax, maxj∈[d+1] λj = 0, and y(1), . . . ,y(d+1) ∈ X1. Reading the former equality only
for the first component, we find an index j such that the first component of λj + y(j) is equal to p1. Define
x1 to be this y(j) and µ1 to be the corresponding λj . Note that one has µ1 +x1 ≤ p (componentwise), with
equality for the first component.

The same argument allows us to find, for every i ≥ 2 up to i = d, a scalar µi and a vector xi ∈ Xi in
such a way then µi + xi ≤ p, with equality for the ith component. Finally, we write again a decomposition
of the form (1) in which every vector y(j) belongs to Xd+1, but this time, we choose xd+1 ∈ Xd+1 to be the
vector y(j) such that λj = 0 and we set µd+1 := 0. We still have µd+1 + xd+1 ≤ p.

Thus, we constructed d+ 1 points xi ∈ Xi for i ∈ [d+ 1] such that maxi∈[d+1] µi = 0 and

p = max
i∈[d+1]

(µi + xi) .

�

Theorem 8 (Max-plus colorful Carathéodory’s theorem, strong form). Suppose given d + 1 finite point
sets X1, X2, . . . , Xd+1 and a max-plus convex set C in Rdmax such that the max-plus convex hull of each
Xi intersects C. Then there are d + 1 points x1,x2, . . . ,xd+1 such that xi ∈ Xi for each i and such that
mpconv{x1,x2, . . . ,xd+1} intersects the max-plus convex set C.

Figure 2 is an illustration of this theorem.
To prove this theorem, we shall make use of the following lemma:

Lemma 1. Consider an n ×m matrix A = (ai,j) with entries in Rmax. If m ≥ n, then, for each column i
of A, it is possible to choose λj ∈ Rmax and add it to each entry of this column so that the n row maxima
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of the new matrix are attained in n positions which can be chosen in different columns. Moreover one can
satisfy the additional requirement maxj=1,...,d+1 λj = 0.

Proof. The proof works by induction on n. If n = 1, there is nothing to prove. Hence suppose that n > 1.
Consider the bipartite graph G whose color classes are W := [n] (the rows of the matrix A) and U := [m]
(the columns of the matrix A) and whose edges are those couples (i, j) such that ai,j 6= −∞. Define the
weight of the corresponding edge to be the real number ai,j . Let us first assume that G has at least one
matching of cardinality n, which we may assume to match W with the set [n] of the first n vertices of U .
Let us consider the problem of finding a maximal weight perfect matching between these two sets of vertices.
The dual linear programming problem reads

min
∑

1≤i≤n

ui +
∑

1≤j≤n

vj , u = (ui),v = (vj) ∈ Rn, ui + vj ≥ aij , 1 ≤ i, j ≤ n .

The duality theorem in linear programming shows that this problem has an optimal solution, u,v, which,
by complementary slackness, is such that ui + vj = aij for every edge (i, j) belonging to a perfect matching
of maximal weight. Moreover, since adding the same constant to the entries of u and subtracting it to the
entries of v does not affect the optimality of u,v, we may assume that min1≤j≤n vj = 0. Then, the weights
λj := −vj for j ∈ [n] and λj := −∞ for j > n have the desired properties.

Let us finally assume that there is no matching of cardinality n. By Hall’s marriage theorem, there is a
subset X of U such that |N(X)| < |X| ≤ n (where N(X) denotes the neighborhood of X in G). Applying
the induction hypothesis to the matrix A restricted to the columns X and rows N(X), we obtain the values
of λj for j ∈ X. Define λj to be −∞ on the other columns of A. We easily check the required properties. �

Proof of Theorem 8. For each i, we choose a point b(i) =


b
(i)
1
...
b
(i)
d

 in C ∩ mpconv(Xi). Define b̄(i) to be

(
b(i)

0

)
and A to be the (d+ 1)× (d+ 1) matrix

(
b̄(1) . . . b̄(d+1)

)
.

Applying Lemma 1 to this matrix A, we get that there is a point p of C such that

p̄ :=
(
p
0

)
= max
i=1,...,d+1

(
λi + b̄(i)

)
,

and such that each component is attained for a different i.
Now, for each i, as b(i) is a max-plus convex combination of points in Xi, one has

b̄(i) = max
h=1,...,d+1

(
µ

(i)
h + ā(i)

h

)
, with a

(i)
h ∈ Xi and ā

(i)
h :=

(
a

(i)
h

0

)
for all i, h.

There is an index i such that the first component of λi + b̄(i) is equal to the first one of p̄. Moreover,
λi + b̄(i) ≤ p̄ (componentwise). Next, for this i, there is a h(i) ∈ [d + 1] such that µ(i)

h(i) + ā(i)
h(i) ≤ b̄

(i) with

equality on the first component. Hence, one has λi + µ
(i)
h(i) + ā(i)

h(i) ≤ p̄ with equality on the first component.
We choose in the same way the index h(i) for the different values of the column index i arising by

considering indices attaining the row maxima in A. These indices i have been chosen to be all distinct a few
lines above, and so

max
i=1,...,d+1

(
λi + µ

(i)
h(i) + ā(i)

h(i)

)
= p̄.

This can be rewritten as

max
i=1,...,d+1

(
λi + µ

(i)
h(i) + a(i)

h(i)

)
= p

where a(i)
h(i) is a point of Xi for each i ∈ [d+ 1] and maxi=1,...,d+1

(
λi + µ

(i)
h(i)

)
= 0. Define then xi := a

(i)
h(i).

The point p belongs to C and is a max-plus convex combination of the points xi ∈ Xi, as required. �
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Figure 2. Illustration of the max-plus Radon theorem in dimension 2.

3. Radon’s and Helly’s theorems

The max-plus Radon theorem is :

Theorem 9 (Max-plus Radon’s theorem [But03], [BH04], [ABG06, p. 13]). Let X be a set of d + 2 points
in Rdmax. Then there are two pairwise disjoint subsets X1 and X2 of X whose max-plus convex hulls have a
common point.

An illustration is given in Figure 3.
We next briefly discuss different approaches to this result which have appeared in the literature or which

can be derived from it. The first one, relying on a deformation argument, will give more insight on the proof
of the max-plus Tverberg theorem that we give in the next section.

Consider the map Eβ sending a vector x = (xi) ∈ Rdmax to the vector of Rd with coordinates exp(βxi),
where β > 0 is a scaling parameter. We introduce, following Maslov [Mas87], the addition x +β y :=
E−1
β (Eβ(x) + Eβ(y)), for x,y ∈ Rdmax, which is such that x +β y converges to max(x,y) uniformly in x

and y as β → ∞. This suggests to define a β-convex combination of a set of vectors X = {x1, . . . ,xn}
to be an element of the form (µ1 + x1) +β · · · +β (µn + xn) where µ1, . . . , µn ∈ R ∪ {−∞} are such that
µ1 +β · · · +β µn = 0. The β-convex hull coβ(X) is defined as the set of all such combinations, it coincides
with the image by the map E−1

β (the “logarithmic glasses”) of the classical convex hull of the set Eβ(X).
The same deformation is of fundamental importance in tropical geometry [Vir01, Mik05, RGST05]. Briec
and Horvath considered in [BH04] and equivalent deformation. Their result shows that the upper limit in
the Painlevé-Kuratovski sense of coβ(X) as β →∞ is precisely the max-plus convex hull of the finite set X.
Then, the max-plus Radon theorem follows readily from the classical one.

An alternative approach, originating from the work of Gondran and Minoux [GM78, GM84] and by M.
Plus [Plu90], gives a combinatorial information on the Radon’s partitions. We shall consider the equivalent
conic version of the result. Define the positive (max-plus) determinant of a n × n matrix B = (bij) as the
maximum of the sums

∑
1≤i≤n biσ(i) over all even permutations σ. The negative determinant is defined by

taking the odd permutations instead of the even ones.
Every combinatorial identity in rings is known to have a semiring analogue when written “without minus

sign”, see [RS84, Plu90, ABG06]. In particular, for every family x1, . . . ,xd+1 of vectors of dimension d with
entries in a commutative ring, the homogeneous form of the Cramer formula shows that D1x1−D2x2+· · · = 0
where the alternated sum has d + 1 terms, and for all 1 ≤ i ≤ d + 1, Di denotes the determinant of the
matrix Xi with columns x1, . . . ,xi−1,xi+1, . . . ,xd+1.

The general method of [RS84] (see also [GM84, Plu90, ABG06]) can be used to show that the following
max-plus version of the latter combinatorial identity is valid:

max(D+
1 + x1, D

−
2 + x2, · · · ) = max(D−1 + x1, D

+
2 + x2, · · · )(2)

where D+
i (resp. D−i ) denotes the positive (resp. negative) max-plus determinant of the matrix Xi, and

each maximum comprises d+ 1 terms. For generic values of the entries of the vectors x1, . . . ,xd+1, we have
D+
i 6= D−i for all i. Then, define I+ to be set consisting of the odd indices from which D+

i > D−i and of the
even indices for which D−i > D+

i , define I− in the symmetric way, and set Di = max(D+
i , D

−
i ). Then, for

5



every entry of the vector maximum at the left hand-side of (2), the maximum must necessarily be attained
by some ith term with i ∈ I+. The same is true for the right-hand side, with I−, and so

max
i∈I+

(Di + xi) = max
i∈I−

(Di + xi) .(3)

Thus (I+, I−) is a conic Radon partition for the family x1, . . . ,xd+1. The general case can be obtained from
the generic one by an immediate density argument.

The identity (3) is intimately related to the two distinct max-plus or tropical analogues of the Cramer for-
mula given by M. Plus [Plu90] (see also [BCOQ92, § 3.4]) and Richter-Gebert, Sturmfels, and Theobald [RGST05].
It may also be derived from a result of Gondran and Minoux [GM78, GM84] on max-plus linear indepen-
dence, as shown by Butkovič [But03] (under the minor restriction that the vectors xi have finite entries) and
by Akian, Bapat, and Gaubert [ABG06, p. 13].

We note that computing the max-plus “Cramer permanent” Di is equivalent to solving an optimal assign-
ment problem. Richter-Gebert, Sturmfels, and Theobald [RGST05], following an earlier idea of Sturmfels
and Zelevinsky [SZ93], showed that all the max-plus Cramer permanents D1, . . . , Dd+1 can be computed
simultaneously up to an additive constant, by solving a single transportation problem, under some non-
degeneracy condition. We also note that checking whether D+

i = D−i reduces to finding an elementary even
cycle in a digraph, as shown by Butkovič [But95].

We next point out that Helly’s theorem can be straightforwardly derived from Radon theorem, as in
the case of classical convexity. The max-plus version was first proved by Briec and Horvath in [BH04], by
exploiting the deformation method above, and by Gaubert and Sergeev, as a consequence of their work on
cyclic projections [GS07].

Theorem 10 (Max-plus Helly’s theorem [BH04, GS07]). Let F be a finite collection of max-plus convex
sets in Rdmax. If every d + 1 members of F have a nonempty intersection, then the whole collection have a
nonempty intersection.

Proof. Let C1, . . . , Cn be n max-plus convex sets in Rdmax and suppose that whenever d+ 1 sets among them
are selected, they have a nonempty intersection. The proof works by induction on n. We first assume that
n = d + 2. Define xi to be a point in ∩d+2

j=1, j 6=iCj . We have then d + 2 points x1, . . . ,xd+2. If two of them
are equal, then this point is in the whole intersection. Hence, we can assume that all the xi are different.
By the max-plus Radon theorem, we have two disjoint subsets S and T partitioning [d+ 2] such that there
is a point x in mpconv (∪i∈Sxi) ∩mpconv (∪i∈Txi). This point x belongs to every Ci.

Indeed, take j ∈ [d + 2], which is either in S or in T . Suppose without loss of generality that j is in S.
Then, mpconv (∪i∈Txi) is included in Cj , and so x ∈ Cj . The case n = d+ 2 is proved.

Suppose now that n > d+2 and that the theorem is proved up to n−1. Define C ′n−1 := Cn−1∩Cn. When
d + 2 max-plus convex sets Ci are selected, they have a nonempty intersection, according to what we have
just proved. Hence, every d+ 1 members of the collection C1, . . . , Cn−2, C

′
n−1 have a nonempty intersection.

By induction, the whole collection has a nonempty intersection. �

4. Tverberg’s theorem

We have a Tverberg theorem in the max-plus framework:

Theorem 11 (Max-plus Tverberg’s theorem). Let X be a set of (d + 1)(q − 1) + 1 points in Rdmax. Then
there are q pairwise disjoint subsets X1, X2, . . . , Xq of X whose max-plus convex hulls have a common point.

Figure 4 illustrates this theorem for d = 2, q = 3. The partition emphasized is X1 = {x1,x5}, X2 =
{x2,x4,x7} and X3 = {x3,x6}.

To prove this theorem, we will combine the technique used in the proof of the max-plus Radon theorem
above — identification of maximum powers in finite series —, with the beautiful ideas introduced by Sarkaria
[Sar92] and streamlined by Bárány and Onn [BO97] and Matoušek [Mat02] to prove the (usual non-max-plus)
Tverberg theorem.

Proof. Put N := (d + 1)(q − 1). We prove the conic version. The convex version is then straightforwardly
derived by adding a d+1th component equal to 0 to each point. The conic version is: Let X = {a1, . . . ,aN+1}111111111
be a set of N + 1 points in Rd+1

max \ {(∞, . . . ,−∞)}. Then there are q pairwise disjoint subsets X1, X2, . . . , Xq222222222
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Figure 3. Max-plus Tverberg theorem for d = 2 and q = 3.

of X whose max-plus conic hulls have a common point 6= (−∞, . . . ,−∞).33333333333

Write ai =

 a1,i

...
ad+1,i

.

Define linear maps φj : Rd+1 → R(d+1)(q−1) for j ∈ [q] via

φj(y) = (0, . . . ,0,y,0, . . . ,0) ∈
(
Rd+1

)q−1
, for j < q, 0 ∈ Rd+1 and y ∈ Rd+1,

where y is in jth position. Moreover, set φq(y) = (−y,−y, . . . ,−y) for y ∈ Rd+1.
For any y ∈ Rd+1, we have 0 ∈ conv {φ1(y), . . . , φq(y)}, in particular for every i = 1, . . . , N + 1 we have

0 ∈ conv {φ1(αi(u)), . . . , φq(αi(u))} where αi(u) =

 ua1,i

...
uad+1,i

, for any real u (we set u−∞ := 0).

Suppose first u fixed. We can apply the colorful Carathéodory theorem to the sets of points X̃1, . . . , X̃N+1,
where X̃i := {φ1(αi(u)), . . . , φq(αi(u))}. Indeed, we have 0 ∈ conv

(
X̃i

)
for each i and we are in RN . We

get that there exists j1, j2, . . . , jN+1 in [q] and non-negative real numbers µ1, . . . , µN+1 summing up to 1
such that

0 =
N+1∑
i=1

µiφji(αi(u)).

The ji depend on u, of course, but since there are only a finite number of possible choices, we get that
there exists j1, j2, . . . , jN+1 in [q] and functions µ1(u), . . . , µN+1(u) summing up to 1 such that

(4) 0 =
N+1∑
i=1

µi(u)φji(αi(u)).

The µi(u) are solutions of a system of linear equations. Hence there can be chosen of the form∑
γku

βk

b(u)
,
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with the same denominator b(u), which is the determinant of the largest invertible subsystem. Define
Sl := {i ∈ [q] : ji = l and µi(u) is not constant = 0} (the set of indices i such that ji = l and µi 6= 0).

Using the definition of the φj , we can translate Equation (4):

∑
i∈S1

µi(u)

 ua1,i

...
uad+1,i

 = . . . =
∑
i∈Sq

µi(u)

 ua1,i

...
uad+1,i

 .

Define λi as the largest βk such that γk is non-zero in µi(u) (because they sum up to 1, all the Si are
non-empty). Reading this equality only for the maximum powers leads to the equality

max
i∈S1

(λi + ai) = . . . = max
i∈Sq

(λi + ai) , where the Sl, l = 1, . . . , q are disjoint subsets of [q].

The λi are not all equal to −∞, for the µi(u) sum up to 1 and by assumption, each ai has a component
6= −∞. The conclusion follows.4444444444

�

5. Dutch cheese conjecture

We finish the article with the max-plus version of Sierksma’s conjecture, which turns out to be a theorem.

Theorem 12. Let q ≥ 2, d ≥ 1 and put N = (d+ 1)(q − 1). For every N + 1 points in Rdmax the number of
unordered max-plus Tverberg partitions is at least ((q − 1)!)d.

For instance, if d = 2 and q = 3, this theorem says that we have at least 4 partitions. We can check this
assertion in the particular case given in Figure 4. One partition is emphasized. There must be three others.
Indeed,

X1 = {x1,x5}, X2 = {x2,x6}, X3 = {x3,x4,x7},

X1 = {x1,x4}, X2 = {x3,x6}, X3 = {x2,x5,x7},

X1 = {x1,x4}, X2 = {x2,x6}, X3 = {x3,x5,x7}

are three other Tverberg partitions.
To prove this theorem, we will use a purely combinatorial result – Corollary 1 below – concerning a

partition of a color class of a bipartite graph. It has in a sense a “Tverberg” nature. To prove this result, it
is useful to prove the following theorem.

For a graph G = (V,E), let us denote by N(X) the neighborhood of X, that is the set of vertices in V \X
having at least one neighbor in X.

Theorem 13. Let G be a bipartite graph with color classes U and W and no isolated vertices, and let q
be a positive integer. If |U | ≥ (q − 1)|W | + 1, then there are q disjoint subsets U1, . . . , Uq of U such that
N(U1) = N(U2) = . . . = N(Uq). Moreover, there are at least ((q − 1)!)|N(U1)|−1 distinct ways of choosing
these q subsets (one does not take the order into account).

The first part of this theorem, i.e. the existence of the q subsets, was already proved by Lindström [Lin70]
and by Tverberg with another proof [Tve71]. The bound on the number of ways of choosing these q subsets
is new.

Corollary 1. Let G = (V,E) be a bipartite graph whose color classes are U and W . Suppose that for all
Y ⊆W , Y 6= ∅, one has

|N(Y )| ≥ (q − 1)|Y |+ 1. (*)

Then U can be partitioned into q subsets U1, . . . , Uq such that for all i ∈ [q] one has N(Ui) = W . Moreover,
there are at least ((q − 1)!)|W |−1 distinct partitions satisfying this property (one does not take the order into
account).
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Proof of Theorem 13. The proof works by induction on |U |. If |U | = q, the theorem is clearly true. Hence,
let |U | ≥ q + 1. We can assume that for all X ( U , we have |X| ≤ (q − 1)|N(X)| (if not apply induction).
We will prove that there exists a partition U1, . . . , Uq ⊆ U such that N(Ui) = W for all i = 1, . . . , q, and
explains why in this case ((q − 1)!)|W |−1 is a lower bound of the distinct ways of choosing these q subsets,
when we do not take the order into account.

Choose a subset U ′ ⊆ U of cardinality (q − 1)|W |. We can apply Hall’s marriage theorem and get a
subset of edges F ⊆ E such that degF (w) = q − 1 for each w ∈ W and degF (u) = 1 for each u ∈ U ′

(make q − 1 copies of each vertex w of W to see it). Note that there is no subset A 6= ∅ of W such that
|N(A)| ≤ (q − 1)|A|, otherwise we would have a subset X := U \N(A) ⊆ U such that (q − 1)|N(X)| < |X|
since N(X) ⊆W \A. Hence, it is possible to find an order w1, . . . , w|W | of the vertices of W such that

N(wi) ∩ (Y1 ∪ . . . ∪ Yi−1 ∪ (U \ U ′)) 6= ∅ for all i = 1, . . . , |W |, (**)

where Yj denotes the neighbors of wj in F . In the case when i = 1, we require simply thatN(w1)∩(U\U ′) 6= ∅.
We define now the Ui in order to have N(Ui) = W for i = 1, . . . , q by adding vertices. Start with

U1 = . . . = Uq = ∅.
Add U \ U ′ to U1. Put the q − 1 vertices of Y1 respectively in U2, . . . , Uq. The vertex w1 is now in the

neighborhood of U1, . . . , Uq. Process w2, . . . , w|W | in this order. The processing of wi consists first in finding
the index j∗ such that wi is already in N(Uj∗). Such a j∗ exists because of property (**). Second, it consists
in adding to each of the Uj , except for j = j∗, one of the q − 1 vertices of Yi. This ensures that when the
processing of wi is finished, wi is in the neighborhood of U1, . . . , Uq. Since all vertices of W are eventually
processed, we get N(U1) = . . . = N(Uq) = W .

It is easy to see why the lower bound on the number of ways of choosing these q subsets is true. Indeed,
there is q! ways of processing the vertex w1: the subset U \ U ′ can be added to either subset Uj and the
vertices of Y1 to the q − 1 other subsets Uj in any order. For each of the vertices wi, there are (q − 1)! ways
for adding the vertices of Yi to each of the remaining Uj . We get q! ((q − 1)!)|W |−1 different ways. Since we
do not take the order into account, we have the required lower bound. �

Proof of Corollary 1. Apply Theorem 13. We get q disjoint subsets U (1)
1 , . . . , U

(1)
q having the same neigh-

borhood in W . Define U ′ := U \
⋃q
i=1 U

(1)
i and W ′ := W \N(U (1)

1 ). For all Y ⊆ W ′, we have N(Y ) ⊆ U ′.
Hence we can apply Theorem 13 on the subgraph induced by U ′∪W ′, and get U (2)

1 , . . . , U
(2)
q disjoint subsets

of U ′ having the same neighborhood in W ′. And so on. At the end, just define Ui to be the union of all U (j)
i

defined through this process, for each i = 1, . . . , q.
The lower bound for the number of distinct partitions is easily derived. �

We will soon prove Theorem 12. In the proof, we will need to prove that we have a condition that
translates into condition (*) of Corollary 1. This is done by the following lemma:

Lemma 2. For a set X = {x1,x2, . . . ,xn} of generic points in Rd+1
max , if n ≤ (d+ 1)(q− 1), then there is no

max-plus conic Tverberg partition into q disjoint subsets.

Proof. The proof works by contradiction. Suppose that we have a max-plus conic Tverberg partition
X1, . . . , Xq. Define x to be a Tverberg point, that is a point in the common intersections of the conic
hulls of the Xi. Define moreover λi to be the coefficient of xi in the Tverberg partition.

Consider the graph H = (V,E) where V := X and there is an edge between xi and xj if the following
two conditions are satisfied: (i) xi and xj are in two consecutive subsets, that is there is an l ∈ {1, . . . , q}
such that xi ∈ Xl and xj ∈ Xl+1, and (ii) λi + xi and λj + xj coincide in at least one coordinate. Parallel
edges are allowed.

For each coordinate, H gets at least q−1 edges. Hence H has at least (d+1)(q−1) ≥ n edges, and thus has
at least one cycle C. Without loss of generality, let C := (x1, . . . ,xc), in this order, where c is the size of the
cycle. We write xi := (x1,i, . . . , xd+1,i), and define j(i) the coordinate such that λi+xi,j(i) = λi+1 +xi+1,j(i).
Summing the left and right-hand-side of the equality leads to the following equality:∑

i∈C
xi,j(i) =

∑
i∈C

xi+1,j(i).
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Since j(1), j(2), . . . , j(c) are not all equal, otherwise the edges provided by a coordinate would span a cycle
(which would contradict condition (i) defining H), one of the term on the left-hand-side of the equality does
not appear on the right-hand-side. But then the equality is in contradiction with the genericity assumption.

�

Proof of Theorem 12. We work with the conic version, for there is one-to-one correspondence between the
max-plus Tverberg partitions in the conic and the convex settings.

Let us start with a particular max-plus Tverberg partition, which exists because of Theorem 11. We
have X1, . . . , Xq that provide a partition of X = {x1, . . . ,xN+1}. We are in Rd+1

max . Define x to be a
Tverberg point, that is a point in the common intersections of the conic hulls of the Xi that is different from55555555
(−∞, . . . ,−∞). Define moreover λi to be the coefficient of xi in the Tverberg partition.66666666

Consider the following bipartite graph with color classes U := X and W := [d + 1]. We put an edge
between xi ∈ X and j ∈ [d + 1] if the jth components of λi + xi and x coincide. Our max-plus Tverberg
partition X1, . . . , Xq provides a partition of U into subsets U1, . . . , Uq such that for all i we have N(Ui) = W
by putting Ui := Xi. Moreover, by a slight perturbation, according to Lemma 2, we get that we need at
least (d′ + 1)(q − 1) + 1 points to have a conic Tverberg partition in dimension d′ + 1, for any 0 ≤ d′ ≤ d.
Hence, our bipartite graph satisfies all conditions of Corollary 1.

Now remark that each partition of U into subsets U1, . . . , Uq such that N(Ui) = W for each i = 1, . . . , q
provides a max-plus Tverberg partition by putting Xi := Ui. Corollary 1 implies thus the required lower
bound for the number of max-plus Tverberg partitions. �

Acknowledgment: We thank Helge Tverberg for having pointed out the references [Lin70, Tve71].
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