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Abstract. Suppose given a network endowed with a multiflow. We want to estimate some quanti-
ties connected with this multiflow, for instance the value of an s–t flow for one of the sources–sinks
pairs s–t, but only measures on some arcs are available, at least on one s–t cocycle (set of arcs
having exactly one endpoint in a subset X of vertices with s ∈ X and t /∈ X). These measures,
supposed to be unbiased, are random variables whose variances are known. How can we combine
them optimally in order to get the best estimator of the value of the s–t flow ?

This question arises in practical situations when the OD matrix of a transportation network must
be estimated. We will give a complete answer for the case when we deal with linear combinations,
not only for the value of an s–t flow but also for any quantity depending linearly from the multiflow.
Interestingly, we will see that the Laplacian matrix of the network plays a central role.

Introduction

Consider the simple network given in Figure 1 and suppose that you wish to find the total number
of cars (the o-d traffic) going from the origin o to the destination d. Suppose now that you have
an estimate Xa1 of this number of cars on arc a1 with variance w1, as well as an estimate Xa2 on
arc a2 with variance w2. How can you combine them to get the best estimate of the o–d traffic?

Assuming that the estimates Xa1 and Xa2 are unbiased, they are both estimators of the whole
o–d traffic, since all cars going from the origin o to the destination d have to use arcs a1 and a2.
Moreover, one can assume that the measures are independent. Hence, if you restrict yourself to
linear combination, it is well-known and easy to prove that the best estimator is

w2

w1 + w2
Xa1 +

w1

w1 + w2
Xa2 .

If the network is different, say as in Figure 2, it is also possible to find the best linear estimator.
We assume that all estimates are unbiased, independent and have the same precision. It is simply

1
2

(Xa1 +Xa2) +
1
2

(Xa3 +Xa4).

Now, the central question of this paper is the following one: take any directed graph D = (V,A)
endowed with an s–t flow; suppose that we have estimates of the flow on some arcs; find the linear
combination of these estimates that provides the estimator of the value of s–t flow of minimal
variance. We will always assume that the estimates are independent random variables. This
assumption is very natural, a fact that is not necessarily obvious at first glance. It means that
the measures of the flow on the different arcs are led independently. For instance, if the procedure
consists in randomly stopping cars (with a given probability p for instance) and then asking the
driver what is his OD pair, it may happen that the same car is stopped several times during its
travel across the network without violating the independence assumption. The point that matters
is that the probability of stopping a given car on an arc a is independent of the probability of
stopping it on another arc a′.

Key words and phrases. Laplacian of graph, linear estimator, minimal variance, multiflow, OD matrix.
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Figure 2. Another simple case.

The case with several s–t pairs (multiflow) is also investigated, as well as the estimation of other
quantities depending on the flows (for instance, the question of improving the accuracy of the
estimate of the s–t flow on a given arc using the other estimates).

We will see that with elementary graph theory and tools from quadratic optimization it is possible
to solve this problem in polynomial time. Moreover, we will see that the Laplacian matrix of the
network plays a central role in the case of one s–t pair, and also in the case with multiple s–t pairs
when estimates are available for all arcs.

The problem modelled and solved in this paper was encountered by engineers of the French
Ministry in charge of transportation who had to estimate OD matrices for road traffic. They
noticed that they had redundant information and wanted to use it optimally. The problem was
exposed in the report [4].

The present work has to be connected with works dealing with similar questions, such as works in
[8] or in [6] in a computer network context, of those in [2], [1], or in [7] in a transportation context,
among many others. The big difference is that these latters deal with the case when there are not
enough data to derive directly an estimator (the quantities are underconstrained) and additional
ingredients such as entropy maximization or behavioral assumption are necessary. In the present
case, we have in a sense more than enough data and we want to combine them optimally. Some of
these results have been presented at the Transport Research Bord Conference 2009 [5].

Outline of the paper. The plan is the following. Section 2 deals with the case detailed above.
Only one s–t pair is considered and estimates (more or less precise) of this flow are available for
some arcs. We wish to find the best linear estimator of the value of the s–t flow. Theorem 1
summarizes the method for building such an estimator. In Section 3, a somewhat different purpose
is considered with the same kind of data, allowing this time that other flows with different origins
and destinations take place on the network. We do not wish anymore to estimate the value of an
s–t flow, but we aim to estimate any linear combination of the flows. Some potential applications
will be briefly described.

1. Notations and basic tools

We denote vectors by bold letters: for instance, if B is a finite set, an element of RB is for
instance denoted by x, while the coordinate corresponding to element b is denoted by xb. Hence
x = (xb)b∈B. Note – as often in mathematics – that we identify the concept of a function B → R
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with that of a vector in RB. We will do the same kind of identification for matrices: if B and B′

are two finite sets, a B × B′ matrix is a matrix whose rows are indexed by the elements of B and
whose columns are indexed by the elements of B′.

We denote by ST the set of sources–sinks pairs of our multiflow.
Pst denotes the set of all elementary s–t paths and C denotes the set of all elementary cycles.

Sets of arcs of type δ+(X) ∪ δ−(X) with X ⊆ V (which can also be seen as cuts in the underlying
undirected graph) are called cocycle. An s–t cocycle is a cocycle obtained as above with a subset
X ⊆ V such that s ∈ X and t /∈ X.

For a subset B of arcs, we denote by χB the indicator vector:

χBa =
{

1 if a ∈ B,
0 if not.

The sets of arcs leaving (resp. entering) a subset X of vertices is denoted δ+(X) (resp. δ−(X)).
The incident matrix M of a directed graph D = (V,A) is a V ×A matrix defined as follows:

(1) M = ((mv,a))v,a∈V×A where mv,a =

 0 if a is not incident to v
−1 if a leaves v
1 if a enters v

We define F := Ker M . The subspace F is the space of circulations, which are flows satisfying
the Kirchoff law everywhere. F⊥ is the space of co-circulation, and it is such that F⊥ = Im MT ,
by basic linear algebra. In this context, an element π ∈ RV is called a potential.

The (weighted) Laplacian Lw of an undirected weighted graph G = (V,E) with weights w ∈ RE
+

is a V × V matrix defined as follows:
(2)

Lw = ((wu,v))u,v∈V×V where wu,v =


∑

e∈δ(u)we if u = v

0 if u 6= v and u and v are non adjacent
−
∑

e=uv we if uv ∈ E.

We recall that δ(u) denotes the set of edges incident to u. The sum
∑

e=uv in the equation above
means that if there are parallel edges, between vertices u and v, we have to sum their weights.

We can also define the (weighted) Laplacian of a directed weighted graph by simply forgetting
the orientations of the arcs. In this case we have

(3) MTDiag(w)M = Lw,

where Diag(w) is the diagonal A×A matrix with each (a, a) entry equals to wa.

2. Optimal estimator for the s–t flow

2.1. Finding a best linear estimator. The simplest case is when there is only one s–t pair. This
is the case detailed in the Introduction. For some arcs a of the network an estimate Xa of the s–t
flow going through a is available. Their variances wa are supposed to be known. We wish to find
the linear estimator E of the whole s–t traffic of minimal variance; E has the following form

(4) E :=
∑
a∈A

λaXa.

Our purpose is to find the best estimator of this form, which can be summarized as follows:
among all possible values for the λa, find those making E an unbiased estimator of the s–t flow
and among them, those minimizing the variance of E. Lemma 1 below gives a simple necessary
and sufficient condition on the λa for E to be an unbiased estimator. Among the λa satisfying this
condition, we will find those minimizing the variance through a quadratic program (Theorem 1).
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Lemma 1. E is an unbiased estimator of the s–t flow if and only if one has
∑

a∈P λa = 1 for each
elementary s–t path P and

∑
a∈C λa = 0 for each elementary cycle C.

Proof. Let x ∈ RA be the s–t flow on D. By assumption, one has E(Xa) = xa.
Write x as a conic combination of elementary s–t paths and elementary cycles (assuming the

existence of a linear order, there is no ambiguity in the combination):

x =
∑
P∈Pst

xPχ
P +

∑
C∈C

xCχ
C .

Hence, xa =
∑

P∈Pst:P3a xP +
∑

C∈C:C3a xC . The random variable E is an unbiased estimator if
and only if E(E) =

∑
P∈Pst

xP . Replacing these expression in Equation (4) leads to∑
P∈Pst

xP =
∑
a∈A

λa

( ∑
P∈Pst:P3a

xP +
∑

C∈C:C3a
xC

)
,

which can be rewritten ∑
P∈Pst

xP =
∑
P∈Pst

(
xP
∑
a∈P

λa

)
+
∑
C∈C

(
xC
∑
a∈C

λa

)
.

By a straightforward identification – this expression shall be correct for all possible values of the
variables xP and xC – we get the required equality. �

Now, the best estimator is obtained when we minimize the variance.

Theorem 1. Contract each arc of D = (V,A) with no measure available. Denote by D′ = (V ′, A′)
the graph obtained by this process, and by Lw its Laplacian. If s = t in D′, then there is no
unbiased linear estimator. If s 6= t in D′, E :=

∑
a∈A λaXa is the unbiased linear estimator of

minimal variance if and only if λa = 0 for A \ A′ and λ(u,v) = πv − πu for each arc (u, v) ∈ A′,
where π ∈ RV ′ is solution of the system

(5)
(Lwπ)u = 0 for u ∈ V ′ \ {s, t}

πs = 0
πt = 1.

The system (5) has |V ′| constraints and |V ′| unknowns. Hence, it is easy to compute a linear
estimator of best variance. Note that s = t in D′ if and only if no s–t cocycle of D has been
integrally measured.

Proof. Let us first assume that there is an available measure for each arc. The λa are solutions of
the following quadratic program

(6)

Min
λ∈RA

∑
a∈A

waλ
2
a

s.t.
∑
a∈P

λa = 1 for each elementary s–t path P

∑
a∈C

λa = 0 for each elementary cycle C.

In the present form, the set of constraints has an exponential description. Add a fictitious arc (t, s)
and put λ(t,s) = −1. The constraints mean precisely that λ is a co-circulation, which comes from
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a potential π ∈ RV such that πs = 0 and πt = 1. Equation (6) can be rewritten

(7) Min
π∈RV

∑
(u,v)∈A

w(u,v)(πv − πu)2; πs = 0, πt = 1.

Note that
∑

(u,v)∈Aw(u,v)(πv − πu)2 = πTMTDiag (w)Mπ.
Hence, by a straightforward derivation, we get that

(
MTDiag (w)Mπ

)
u

= 0 for all u 6= s, t, as
required.

It remains to see why we have to contract edges where there are no measure. In this case, we have
to add in Equation (6) constraints of the type λ(u,v) = 0 where (u, v) is an arc with no measure.
Everything remains the same in the proof above, except that then we have πv = πu for such arcs
(u, v). This is exactly what we obtain when contracting such edges. �

Remarks : Put a resistance 0 on each arc with no available measure, and 1/wa otherwise. Then λa
is the tension of the electrical current when a potential 0 is applied in s and a potential 1 is applied
in t. Indeed, Equation (6) describes then the fact that we are seeking a minimum energy level for
our electrical model. Hence, we could build an analogical machine computing the estimator (the
existence of such machines had high interest before the appearance of computers...).

Back to the examples : For the first example in the introduction, the matrix Lw is w1 −w1 0
−w1 w1 + w2 −w2

0 −w2 w2

 .

System (5) is here

πs = 0; −w1πs + (w1 + w2)πv − w2πt = 0; πt = 1,

i.e.

πs = 0; πv =
w2

w1 + w2
; πt = 1.

We get as expected

λa1 = πv − πs =
w2

w1 + w2
and λa2 = πt − πv =

w1

w1 + w2
.

For the second exemple, the matrix Lw is
2 −1 −1 0
−1 2 0 −1
0 −1 2 −1
0 −1 −1 2

 .

System (5) is here

πs = 0; −πs + 2πu − πt = 0; −πs + 2πv − πt = 0; πt = 1,

i.e.

πs = 0; πu = πv = 1/2; πt = 1.

We get as expected

λa1 = πu − πs = 1/2; λa2 = πt − πu = 1/2; λa3 = πv − πs = 1/2; λa4 = πt − πv = 1/2.
5



2.2. Uniqueness of the best linear estimator. A natural question is whether there is a unique
solution for Equation (5). We can give a complete answer.

Proposition 1. Delete from D′ all arcs with a zero variance. We get an new graph D′′. There is
a unique solution for Equation (5) if and only if we are in one of the following situations:

• D′′ has exactly one (weakly) connected component.
• D′′ has exactly two (weakly) connected components, one of them containing s and the other
t, in which case E has a zero variance.

Interestingly, this is a direct consequence of the (all-minors) matrix tree theorem – a beautiful
and well-known theorem in graph theory. There is probably a direct proof, but it will be more
lengthy.

Proof. The (all-minors) matrix tree theorem [3] states in particular that the determinant of the
submatrix (V \ {s, t})× (V \ {s, t}) of the Laplacian matrix Lw is

∑
F

∏
a∈F wa where the sum is

over all spanning forests F such that
(1) F is the union of 2 disjoint trees
(2) Each tree of F contains either s or t.

(Note that in the reference [3], an oriented version of the Laplacian is used, although here our
Laplacian is not oriented). The conclusion is now straightforward. �

2.3. Sensibility. In practical situations, to require more precise measures can increase the cost
significantly. Hence, to make an optimal choice, it is necessary to know how much the precision
of the estimator is improved when the quality of the estimation of the flow is improved on a given
arc. In our framework, this can be very precisely evaluated, as shown by the following proposition.

Proposition 2. Write W (w) the optimal variance of the linear estimator, and let λ and π be
solutions of system (5). Fix an arc a. Then

∂W (w)
∂wa

= λ2
a.

Proof. Assume first that system (5) has a unique solution. We see π as a function of w. Denote
δu := ∂πu

∂wa
. We have

∂W (w)
∂wa

= λ2
a + 2δMTDiag(w)Mπ.

Since
(
MTDiag(w)Mπ

)
u

= 0 if u 6= s, t and δs = δt = 0, the conclusion is straightforward.
To extend the result for w such that system (5) is singular, it is enough to note that such w

are at the boundary of the set of w making system (5) non-singular. We get the conclusion by a
simple limit argument. �

3. Estimation of any linear combination of flows

3.1. Starting example. Let us start with a simple example. Consider the network of Figure 3.
The s1–t1 flow is to be estimated. There is also a flow going from s2 to t2. The following data are
available.

Xs1t1
a1

:= estimate of the s1–t1 flow on arc a1, variance = 1

Xs1t1
a3

:= estimate of the s1–t1 flow on arc a3, variance = 1

Xs2t2
a2

:= estimate of the s2–t2 flow on arc a2, variance = 1

Xs2t2
a3

:= estimate of the s2–t2 flow on arc a3, variance = 1

S := estimate of the total flow on arc a3, variance = 1
2
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Figure 3. A simple case when there are several OD pairs.

Let Es1t1 be a linear combination of these variables that provides an unbiased estimate of the value
of the s1–t1 flow. Write

Es1t1 = λs1t1a1
Xs1t1
a1

+ λs1t1a3
Xs1t1
a3

+ λs2t2a2
Xs2t2
a2

+ λs2t2a3
Xs2t2
a3

+ λSS.

Denote by xs1t1 (resp. xs2t2) the real value of the s1–t1 flow (resp. s2–t2 flow). With this notation,
we get

E(Es1t1) = (λs1t1a1
+ λs1t1a3

+ λS)xs1t1 + (λs2t2a2
+ λs2t2a3

+ λS)xs2t2 .
Hence, Es1t1 is an unbiased estimator of the s1-t1 flow if and only if

λs1t1a1
+ λs1t1a3

+ λS = 1 and λs2t2a2
+ λs2t2a3

+ λS = 0.

In order to find the best linear estimator, one solves the following program

(8)
Minλs1t1 ,λs2t2 ,λS

(
λs1t1a1

)2 +
(
λs1t1a3

)2 +
(
λs2t2a2

)2 +
(
λs2t2a3

)2 + 1
2(λS)2

s.t. λs1t1a1
+ λs1t1a3

+ λS = 1
λs2t2a2

+ λs2t2a3
+ λS = 0.

A direct computation leads to λs1t1a1
= λs1t1a3

= λS = 1
3 and λs2t2a2

= λs2t2a3
= −1

6 and hence a
variance of the estimator for the s1–t1 flow equal to 1/3. If we used only the measures of the s1–t1
flow on the arcs, we would get an estimator with a variance equal to 1/2 (indeed, λs2t2a2

= λs2t2a3
=

λS = 0 in Equation (8)).
We see that it is possible to use the information provided by the estimates of the s2–t2 flow to

improve the precision of the estimate of the s1–t1 flow (in the example, the improvement is 33%).

3.2. General case. We have seen in the previous subsection that it is possible to improve the
estimation of the value of an s–t flow with the estimates of other flows on the network. We describe
now the general method to get the best linear estimator in that case, not only for the value of an
s–t flow, but also for any quantity depending linearly from the multiflow.

We suppose that our network is endowed with a multiflow
(
xst
)
st∈ST : for each st ∈ ST , the

vector xst is an s–t flow.
7



For each pair s–t, we define Ast to be the subset of arcs a for which an estimation Xst
a of the

flow is available. Define similarly AS to be the subset of arcs a for which an estimation Sa of the
total flow on this arc a is available. For these random variables, we denote by wsta the variance of
Xst
a and wSa the variance of Sa.
This time, we want to find the best linear estimator of any quantity of the type

∑
a∈A,st∈ST c

st
a x

st
a ,

where
(
cst
)
st∈ST is a collection of elements in RA. For instance, putting

csta =

 0 if st 6= s̃t̃ or a /∈ δ+(s̃) ∪ δ−(s̃)
1 if a ∈ δ+(s̃) and st = s̃t̃
−1 if a ∈ δ−(s̃) and st = s̃t̃

for a given s̃t̃ ∈ ST means that we want to find the best linear estimator of the value of the s̃–t̃
flow, for a given s̃–t̃ pair, using all other measures on the network (as in the previous example).

We can have many other applications. We give two other examples:

csta′ =
{

0 if a′ 6= a or st 6= s̃t̃
1 if not,

for a given a ∈ A and s̃t̃ ∈ ST means that we want to find the best linear estimator of the s̃–t̃ flow
on arc a, using all other measures on the network.

If csta is equal to the length of the arc a, independently of s and t, we will estimate the total
distance covered by the users of the network.

Again, let us write down this estimator E in its most general form, assuming that it is a linear
estimator. It has necessarily the following form:

(9) E =
∑
a∈AS

λSaSa +
∑
st∈ST

∑
a∈Ast

λsta X
st
a .

As before, it is possible to find a sufficient and necessary condition for E to be an unbiased
estimator.

Lemma 2. E is an unbiased estimator of
∑

a∈A,st∈ST c
st
a x

st
a if and only if we have for every st ∈ ST∑

a∈P∩AS

λSa +
∑

a∈P∩Ast

λsta =
∑
a∈P

csta

for all P ∈ Pst, and ∑
a∈C∩AS

λSa +
∑

a∈C∩Ast

λsta =
∑
a∈C

csta

for each elementary cycle C.

Proof. Let us write each xst as a conic combination of elementary s–t paths and elementary cycles.
As before, by fixing a linear order, there is no ambiguity:

xst =
∑
P∈Pst

xstP χ
P +

∑
C∈C

xstCχ
C .

When P /∈ Pst, we define xstP := 0. With this notation, we have

E(Xst
a ) = xsta =

∑
P∈P: a∈P

xstP +
∑

C∈C: a∈C
xstC

and
E(Sa) =

∑
P∈P: a∈P

∑
st∈ST

xstP +
∑

C∈C: a∈C

∑
st∈ST

xstC .
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Thus:

E is an unbiased estimator ⇐⇒ E(E) =
∑
a∈A

∑
st∈ST

csta

( ∑
P∈P: a∈P

xstP +
∑

C∈C: a∈C
xstC

)
.

Hence, replacing these expressions in Equation (9), we get∑
st∈ST

∑
a∈A

csta

( ∑
P∈P: a∈P

xstP +
∑

C∈C: a∈C
xstC

)
=∑

st∈ST

∑
a∈AS

λSa

( ∑
P∈P: a∈P

xstP +
∑

C∈C: a∈C

∑
st∈ST

xstC

)
+
∑
a∈Ast

λsta

( ∑
P∈P: a∈P

xstP +
∑

C∈C: a∈C
xstC

)
Making an identification of the left and right terms – this expression shall be correct for all

possible values of the variables xstP and xstC – we get the required equality. �

We can then write down the way for finding the best estimator. With the same notations:

Theorem 2. Let
(
λst
)
st∈ST be a collection of elements in RA and λS an element in RA.

Then E :=
∑

a∈AS λSaSa +
∑

st∈ST
∑

a∈Ast λsta X
st
a is the unbiased linear estimator of minimal

variance if and only if there are
(
µst
)
st∈ST a collection of elements in RA and

(
πst
)
st∈ST a collec-

tion of elements in RV such that

λst(u,v) + λS(u,v) = πstv − πstu + cst(u,v) for all (u, v) ∈ A and all st ∈ ST (10a)

wSaλ
S
a +

∑
st∈ST

µsta = 0 for all a ∈ AS (10b)

wsta λ
st
a + µsta = 0 for all st ∈ ST and all a ∈ Ast (10c)∑

a∈δ+(u)

µsta −
∑

a∈δ−(u)

µsta = 0 for all st ∈ ST and for all u ∈ V \ {s, t} (10d)

πsts = 0 for all st ∈ ST (10e)
πstt = 0 for all st ∈ ST (10f)

λSa = 0 for all a /∈ AS (10g)
λsta = 0 for all st ∈ ST and for all a /∈ Ast. (10h)

The system (10) has

|A| × |ST |+ |A|+ |A| × |ST |+ |V | × |ST |
equations (the first term comes from (10a), the second from (10b) and (10g), the third from (10c)
and (10h) and the fourth from (10d), (10e) and (10f)). In total, we have (|V |+ 2|A|)× |ST |+ |A|
equations. A similar computation leads to (|V |+ 2|A|)×|ST |+ |A| unknowns. Hence, it is possible
to compute a linear estimator of minimal variance in polynomial time.

Proof of Theorem 2. To find the best linear estimator, we need to find the best choice for the λS

and the λst satisfying the set of constraints provided by Lemma 2. In the present form, the set
of constraints has an exponential description. Hence, we have to check if it is possible, as before,
to find another description that would be tractable. Lemma 2 means that for each pair st ∈ ST ,
there exists a potential πst such that

λS + λst − cst = Mπst and πsts = πstt = 0.
9



Our coefficients are therefore solutions of a problem of the form

(11)

Min
λst,λS∈RA,πst∈RV

∑
a∈AS

wSa
(
λSa
)2

+
∑
st∈ST

∑
a∈Ast

wsta
(
λsta
)2

s.t. λst + λS − cst = Mπst for each pair st ∈ ST
λsta = 0 for all a /∈ Ast and all st ∈ ST
λSa = 0 for all a /∈ AS
πsts = 0 for all st ∈ ST
πstt = 0 for all st ∈ ST .

Writing down the Lagrangian of this program, where 2µst ∈ RA are the Lagrangian multipliers
of the first constraint,

L =
∑
a∈AS

wSa
(
λSa
)2

+
∑
st∈ST

∑
a∈Ast

wsta
(
λsta
)2 + 2

∑
st∈ST

∑
(u,v)∈A

µst(u,v)(λ
st
(u,v) + λS(u,v) − π

st
v + πstu − cst(u,v)),

a direct differentation according to the different variables leads to the system (10). �

The question of the uniqueness of the optimal estimator is open. As for Theorem 1, there are
examples for which the optimal estimator is not unique. Nevertheless, we were neither able to find
a necessary and sufficient condition for the uniqueness of the best estimator, nor even to propose
a conjecture.

We have a corollary when the flows xst have all estimates on all arcs, in which the Laplacian
plays a role again.

Corollary 1. Assume that A = Ast for all st ∈ ST . Let
(
λst
)
st∈ST be a collection of elements in

RA, and λS an element in RA.
E :=

∑
a∈AS λSaSa +

∑
st∈ST

∑
a∈Ast λsta X

st
a is the linear estimator of minimal variance if and

only if there is
(
πst
)
st∈ST be a collection of elements in RV such that(

Lwstπst
)
u

=
(
MTDiag

(
wst
) (
λS − cst

))
u

for all st ∈ ST and u 6= s, t (12a)

wSaλ
S
a =

∑
st∈ST

wsta λ
st
a for all a ∈ AS (12b)

λst(u,v) + λS(u,v) = πstv − πstu + cst(u,v) for all (u, v) ∈ A and all st ∈ ST (12c)

πsts = 0 for all st ∈ ST (12d)
πstt = 0 for all st ∈ ST (12e)

λSa = 0 for all a /∈ AS (12f)

Proof. Indeed, according to Equation (10c), if A = Ast, then µsta = −wsta λsta for all a ∈ A. Substi-
tuting µsta in Equation (10b) leads to Equation (12b). It remains to show that (12a) is satsified.
Substituting µsta by −wsta λsta in Equation (10d) leads to(

MTDiag
(
wst
)
λst
)
u

= 0 for all st ∈ ST and all u ∈ V \ {s, t}.
Combined with Equation (10a), it leads to (12a).

Conversely, defining µsta := −wsta λsta , system (12) leads similarly to system (10): Equation (10d)
is obtained by substituting λS−cst in Equation (12a) by Mπst−λst (according to Equation (12c))
and then by using the equality µst = −Diag

(
wst
)
λst. �

We have another corollary, which can save computations in some cases. It shows that the set of
optimal linear estimators of quantities depending linearly from the multiflow is a vector space (of
dimension |A| × |ST |). It can be useful for instance if we know that various quantities depending
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linearly from the flows have to be estimated. In that case, Corollary 2 below implies that we can
compute one and for all the best unbiased linear estimators Esta of each xsta , and then get the best
linear estimator of these quantities simply by linear combinations of the Esta .

Corollary 2. Let E and E′ be two unbiased linear estimators of respectively
∑

a∈A,st∈ST
csta x

st
a and∑

a∈A,st∈ST
c′sta x

st
a . Assume that they are both optimal.

Then for any γ, γ′ ∈ R, the linear combination γE + γ′E′ is an optimal linear estimator of∑
a∈A,st∈ST

(γcsta + γ′c′sta )xsta .

Proof. It is a straightforward consequence of the structure of system (10). �

3.3. The example once again. Let us know check that we can recover the result of the example
above. We want to find the best linear estimator of the value of the s1–t1 flow, using all other
measures. Using the remark and the notations at the beginning of Subsection 3.2, we have

cs1t1a1
= 1 and cs1t1a2

= cs1t1a3
= cs2t2a1

= cs2t2a2
= cs2t2a3

= 0.

We also have1

ws1t1a1
= 1; ws1t1a2

= 0; ws1t1a3
= 1; ws2t2a1

= 0; ws2t2a2
= 1; ws2t2a3

= 1; wSa3
=

1
2
.

Denote the central vertex by u and t1 and t2 by t.
Indexing the rows and the columns with s1, s2, u, t and a1, a2, a3 in this order, we get

Lws1t1 =


1 0 −1 0
0 0 0 0
−1 0 2 −1
0 0 −1 1

 , Lws2t2 =


0 0 0 0
0 1 −1 0
0 −1 2 −1
0 0 −1 1

 and M =

 −1 0 1 0
0 −1 1 0
0 0 −1 1

 .

Equation (12a) leads then to

(13) 2πs1tu = −λSa3
− 1

and

(14) 2πs2tu = −λSa3
.

Equation (12b) leads directly to 1
2λ

S
a3

= λs1ta3
+λs2ta3

, which can be rewritten with the help of Equation
(12c)

(15)
5
2
λSa3

= −πs1tu − πs2tu .

Finally, combining Equations (13,14,15), we get

πs1tu = −2
3

; πs2tu = −1
6

; λSa3
=

1
3

; πs1ts1 = πs2ts2 = πs1tt = πs2tt = 0.

That gives the correct values for λs1t, λs2t and λS .

1If we know for sure that an s–t flow does not use an arc a, we obviously have wst
a =0.
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4. Conclusion

On the practical hand, we have described a way to exploit optimally measures of traffic on a
network in order to get various informations on this traffic, especially the OD matrix, when the
measures are partially redundant. This method appears to be useful in practical cases.

On the theoretical hand, we have discovered a new nice property of the Laplacian of a graph.
This adds a new item in a long list of nice properties of this mathematical object. Moreover,
a theoretical question remains open, namely the necessary and sufficient condition ensuring the
uniqueness of the best estimator in the case when we take into account several origin-destination
pairs simultaneously. It would be nice to have something like Proposition 1, in the case when there
is a unique OD pair, which is a combinatorial characterization involving the arcs on which estimates
are available.
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Université Paris Est, LVMT, ENPC, 6-8 avenue Blaise Pascal, Cité Descartes Champs-sur-Marne,
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