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Abstract. The colourful simplicial depth conjecture states that any point

in the convex hull of each of d + 1 sets, or colours, of d + 1 points in general
position in Rd is contained in at least d2+1 simplices with one vertex from each

set. We verify the conjecture in dimension 4 and strengthen the known lower

bounds in higher dimensions. These results are obtained using a combinatorial
generalization of colourful point configurations called octahedral systems. We

present properties of octahedral systems generalizing earlier results on colourful

point configurations and exhibit an octahedral system which cannot arise from
a colourful point configuration. The number of octahedral systems is also

given.

1. Introduction

1.1. Preliminaries. An n-uniform hypergraph is said to be n-partite if its vertex
set is the disjoint union of n sets V1, . . . , Vn and each edge intersects each Vi at
exactly one vertex. Such a hypergraph is an (n+1)-tuple (V1, . . . , Vn, E) where E is
the set of edges. An octahedral system Ω is a simple n-uniform n-partite hypergraph
(V1, . . . , Vn, E) with |Vi| ≥ 2 for i = 1, . . . , n and satisfying the following parity
condition: the number of edges of Ω induced by X ⊆

⋃n
i=1 Vi is even if |X ∩Vi| = 2

for i = 1, . . . , n. Simple means that there are no two edges with same vertex set.
A colourful point configuration in Rd is a collection of d + 1 sets, or colours,

S1, . . . ,Sd+1. A colourful simplex is defined as the convex hull of a subset S of⋃d+1
i=1 Si with |S ∩ Si| = 1 for i = 1, . . . , d + 1. The Octahedron Lemma [3, 6]

states that, given a subset X ⊆
⋃d+1

i=1 Si of points such that |X ∩ Si| = 2 for
i = 1, . . . , d+ 1, there is an even number of colourful simplices generated by X and
containing the origin 0. Therefore, the hypergraph Ω = (V1, . . . , Vd+1, E), with
Vi = Si for i = 1, . . . , d + 1 and where the edges in E correspond to the colourful
simplices containing 0 forms an octahedral system. This property motivated Bárány
to suggest octahedral systems as a combinatorial generalization of colourful point
configurations, see [8].

Let µ(d) denote the minimum number of colourful simplices containing 0 over

all colourful point configurations satisfying 0 ∈
⋂d+1

i=1 conv(Si) and |Si| = d+ 1 for
i = 1, . . . , d+ 1. Bárány’s colourful Carathéodory theorem [2] states that µ(d) ≥ 1.
The quantity µ(d) was investigated in [6] where it is shown that 2d ≤ µ(d) ≤ d2 +1,
that µ(d) is even for odd d, and that µ(2) = 5. This paper also conjectures that
µ(d) = d2 + 1 for all d ≥ 1. Subsequently, Bárány and Matoušek [3] verified the

conjecture for d = 3 and provided a lower bound of µ(d) ≥ max(3d,
⌈
d(d+1)

5

⌉
) for
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d ≥ 3, while Stephen and Thomas [16] independently proved that µ(d) ≥
⌊

(d+2)2

4

⌋
,

before Deza, Stephen, and Xie [8] showed that µ(d) ≥
⌈

(d+1)2

2

⌉
. The lower bound

was slightly improved in dimension 4 to µ(4) ≥ 14 via a computational approach
presented in [9].

An octahedral system arising from a colourful point configuration S1, . . . ,Sd+1,

such that 0 ∈
⋂d+1

i=1 conv(Si) and |Si| = d+ 1 for all i, is without isolated vertices;
that is, each vertex belongs to at least one edge. Indeed, according to a strength-
ening of the colourful Carathéodory theorem [2], any point of such a colourful
configuration is the vertex of at least one colourful simplex containing 0. Theo-
rem 1, whose proof is given in §4, provides a lower bound for the number of edges
of an octahedral system without isolated vertices.

Theorem 1. An octahedral system without isolated vertices and with |V1| = |V2| =
. . . = |Vn| = m has at least 1

2m
2 + 5

2m− 11 edges for 4 ≤ m ≤ n .

Setting m = n = d + 1 in Theorem 1 yields a lower bound for µ(d) given in
Corollary 1.

Corollary 1. µ(d) ≥ 1
2d

2 + 7
2d− 8 for d ≥ 3.

Corollary 1 improves the known lower bounds for µ(d) for all d ≥ 5. Refining
the combinatorial approach for small instances in §5, we show that µ(4) = 17, i.e.
the conjectured equality µ(d) = d2 + 1 holds in dimension 4, see Proposition 12.
Properties of octahedral systems generalizing earlier results on colourful point con-
figurations are presented in §2. We answer open questions raised in [5] in §3 by
determining in Theorem 2 the number of distinct octahedral systems with given
|Vi|’s, and by showing that the octahedral system given in Figure 3 cannot arise
from a colourful point configuration.

Bárány’s sufficient condition for the existence of a colourful simplex containing
0 has been recently generalized in [1, 11, 14]. The related algorithmic question of
finding a colourful simplex containing 0 is presented and studied in [4, 7]. We refer
to [10, 13] for a recent breakthrough for a monocolour version.

1.2. Definitions. Let E[X] denote the set of edges induced by a subset X of the
vertex set

⋃n
i=1 Vi of an octahedral system Ω = (V1, . . . , Vn, E). The degree of

X, denoted by deg Ω(X), is the number of edges containing X. An octahedral
system Ω = (V1, . . . , Vn, E) with |Vi| = mi for i = 1, . . . , n is called a (m1, . . . ,mn)-
octahedral system. Given an octahedral system Ω = (V1, . . . , Vn, E), a subset
T ⊆

⋃n
j=1 Vj is a transversal of Ω if |T | = n − 1 and |T ∩ Vj | ≤ 1 for j = 1, . . . , n.

The set T is called an ı̂-transversal if i is the unique index such that |T ∩ Vi| = 0.
Let ν(m1, . . . ,mn) denote the minimum number of edges over all (m1, . . . ,mn)-
octahedral systems without isolated vertices. The minimum number of edges over
all (d+1, . . . , d+1)-octahedral systems has been considered by Deza et al. [5] where
this quantity is denoted by ν(d). By a slight abuse of notation, we identify ν(d)
with ν(d+ 1, . . . , d+ 1︸ ︷︷ ︸

d+1 times

). We have µ(d) ≥ ν(d), and the inequality is conjectured to

hold with equality.
Throughout the paper, given an octahedral system Ω = (V1, . . . , Vn, E), the

parity property refers to the evenness of |E[X]| if |X ∩ Vi| = 2 for i = 1, . . . , n. In a
slightly weaker form, the parity property refers to the following observation: If e is
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an edge, T an ı̂-transversal disjoint from e, and x a vertex in Vi \ e, then there is an
edge distinct from e in e∪T ∪{x}. Indeed, |(e∪T ∪{x})∩Vj | = 2 for j = 1, . . . , n
implies that the number of edges in E[e ∪ T ∪ {x}] is even. An octahedral system
being a simple hypergraph, there in an edge distinct from e in e ∪ T ∪ {x}.

Let D(Ω) be the directed graph (V,A) associated to Ω = (V1, . . . , Vn, E) with
vertex set V :=

⋃n
i=1 Vi and where (u, v) is an arc in A if, whenever v ∈ e ∈ E,

we have u ∈ e. In other words, (u, v) is an arc of D(Ω) if any edge containing v
contains u as well.

For an arc (u, v) ∈ A, v is an outneighbour of u, and u is an inneighbour of
v. The set of all outneighbours of u is denoted by N+

D(Ω)(u). Let N+
D(Ω)(X) =(⋃

u∈X N+
D(Ω)(u)

)
\ X; that is, the subset of vertices, not in X, being heads of

arcs in A having tail in X. The outneighbours of a set X are the elements of
N+

D(Ω)(X). Note that D(Ω) is a transitive directed graph: if (u, v) and (v, w) with

w 6= u are arcs of D(Ω), then (u,w) is an arc of D(Ω). In particular, it implies that
there is always a nonempty subset X of vertices without outneighbours inducing a
complete subgraph in D(Ω). Moreover, a vertex of D(Ω) cannot have two distinct
inneighbours in the same Vi.

2. Combinatorial properties of octahedral systems

This section presents properties of octahedral systems generalizing earlier results
holding for n = |V1| = . . . = |Vn| = d + 1. While Proposition 1 and Proposition 2
deal with octahedral systems possibly with isolated vertices, Propositions 3, 4, 5,
and 6 deal with octahedral systems without isolated vertices.

Proposition 1. An octahedral system Ω = (V1, . . . , Vn, E) with even |Vi| for i =
1, . . . , n has an even number of edges.

This proposition provides an alternate definition for octahedral systems where
the condition “|X ∩ Vi| = 2” is replaced by “|X ∩ Vi| is even” for i = 1, . . . , n.

Proof. Let Ξ be the set {X ⊆
⋃n

i=1 Vi : |X ∩ Vi| = 2}. Since Ω satisfies the parity
property, |E[X]| is even for any X ∈ Ξ, and

∑
X∈Ξ |E[X]| is even. Each edge

of Ω being counted (|V1| − 1)(|V2| − 1) . . . (|Vn| − 1) times in the sum, we have∑
X∈Ξ |E[X]| = (|V1| − 1) . . . (|Vn| − 1)|E|. As (|V1| − 1) . . . (|Vn| − 1) is odd, the

number |E| of edges in Ω is even. �

Proposition 2. Besides the trivial octahedral system without edges, an octahedral
system has at least mini |Vi| edges.

Proof. Assume without loss of generality that V1 has the smallest cardinality. If no
vertex of V1 is isolated, the octahedral system has at least |V1| edges. Otherwise,
at least one vertex x of V1 is isolated and the parity property applied to an edge,
(|V1|−1) disjoint 1̂-transversals, and x gives at least |V1| edges. The bound is tight

as a 1̂-transversal forming an edge with each vertex of V1 is an octahedral system
with |V1| edges. �

Setting n = |V1| = . . . = |Vn| = d + 1 in Proposition 1 and Proposition 2 yields
results given in [5].

Proposition 3. An octahedral system without isolated vertices has at least maxi 6=j(|Vi|+
|Vj |)− 2 edges.
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The special case for octahedral systems arising from colourful point configura-
tions, i.e. µ(d) ≥ 2d, has been proven in [6].

Proof. Assume without loss of generality that 2 ≤ |V1| ≤ . . . ≤ |Vn−1| ≤ |Vn|. Let
v∗ be the vertex minimizing the degree in Ω over Vn. If deg(v∗) ≥ 2, then there are
at least 2|Vn| ≥ |Vn|+ |Vn−1| − 2 edges. Otherwise, deg(v∗) = 1 and we note e(v∗)
the unique edge containing v∗. Pick wi in Vi \ e(v∗) for all i < n. Applying the
octahedral property to the transversal {w1, . . . , wn−1}, e(v∗), and any w ∈ Vn\{v∗}
yields at least |Vn| edges not intersecting with Vn−1\(e(v∗) ∪ {wn−1}). In addition,
|Vn−1| − 2 edges are needed to cover the vertices in Vn−1 \ (e(v∗) ∪ {wn−1}). In
total we have at least |Vn|+ |Vn−1| − 2 edges. �

The remaining of the section deals with upper bounds for ν(m1, . . . ,mn).

Proposition 4. ν(m1, . . . ,mn) ≤ 2 +
∑n

i=1(mi − 2).

Proof. For all (m1, . . . ,mn), we construct an octahedral system Ω(m1,...,mn) =
(V1, . . . , Vn, E

(m1,...,mn)) without isolated vertices and with |Vi| = mi, such that

|E(m1,...,mn)| = 2 +

n∑
i=1

(mi − 2).

Starting from Ω(m1), we inductively build Ω(m1,...,mn+1) from Ω(m1,...,mn).
The unique octahedral system without isolated vertices with n = 1 and |V1| = m1

is Ω(m1) = (V1, E
(m1)) where E(m1) = {{v} : v ∈ V1}. Assuming that Ω(m1,...,mn) =

(V1, . . . , Vn, E
(m1,...,mn)) with |E(m1,...,mn)| = 2 +

∑n
i=1(mi − 2) has been built, we

build the octahedral system Ω(m1,...,mn+1) = (V1, . . . , Vn, Vn+1, E
(m1,...,mn+1)) by

picking an edge e1 in E(m1,...,mn) and setting

E(m1,...,mn+1) = {e1∪{ui} : i = 1, . . . ,mn+1−1}∪{e∪{umn+1
} : e ∈ E(m1,...,mn)\{e1}}

where u1, . . . , umn+1
are the vertices of Vn+1. Clearly, |E(m1,...,mn+1)| = mn+1 −

1 + |E(m1,...,mn)| − 1; that is, |E(m1,...,mn+1)| = 2 +
∑n+1

i=1 (mi − 2). Each vertex of

Ω(m1,...,mn+1) belongs to at least one edge by construction and we need to check
the parity condition. Let X ⊆

⋃n
i=1 Vi such that |X ∩ Vi| = 2 for i = 1, . . . , n + 1

and consider the following four cases:

Case (a): X ∩ Vn+1 = {uj , uk} with j 6= mn+1 and k 6= mn+1, and e1 ⊆ X. Then,

e1 ∪ {uj} and e1 ∪ {uk} are the only two edges induced by X in Ω(m1,...,mn+1).

Case (b): X ∩ Vn+1 = {uj , uk} with j 6= mn+1 and k 6= mn+1, and e1 6⊆ X. Then,

no edges are induced by X in Ω(m1,...,mn+1).

Case (c): X ∩ Vn+1 = {uj , umn+1
} and e1 ⊆ X. Then, the number of edges

in E(m1,...,mn) \ {e1} induced by X in Ω(m1,...,mn) is odd by the parity property.
Hence, the number of edges in {e ∪ {umn+1} : e ∈ E(m1,...,mn)) \ {e1}} induced by

X in Ω(m1,...,mn+1) is odd as well. These edges, along with the edge e1 ∪ {uj}, are

the only edges induced by X in Ω(m1,...,mn+1), i.e. the parity condition holds.

Case (d): X ∩ Vn+1 = {uj , umn+1
} and e1 6⊆ X. Then, the number of edges

in E(m1,...,mn) \ {e1} induced by X in Ω(m1,...,mn) is even by the parity property.
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e1

Figure 1. Ω(3,3): a (3, 3, 3)-octahedral system matching the upper
bound given in Proposition 4

u1

u2

u3

Figure 2. Ω(3,4): a (3, 3, 3, 3)-octahedral system matching the up-
per bound given in Proposition 4

Hence, the number of edges in {e ∪ {umn+1} : e ∈ E(m1,...,mn) \ {e1}} induced by

X in Ω(m1,...,mn+1) is even as well. These edges are the only edges induced by X in
Ω(m1,...,mn+1), i.e. the parity condition holds. �

Figures 1 and 2 illustrate the construction in the proof of Proposition 4 for
n = m1 = m2 = m3 = 3, and for n− 1 = m1 = m2 = m3 = m4 = 3.

Proposition 4 combined with Proposition 3 directly implies Proposition 5.

Proposition 5. ν(2, . . . , 2,mn−1,mn) = mn−1 +mn − 2 for mn−1,mn ≥ 2.

When all mi are equal, the bound given in Proposition 4 can be improved as
follows.

Proposition 6. ν(

n times︷ ︸︸ ︷
m, . . . ,m) ≤ min(m2, n(m− 2) + 2) for all m,n ≥ 1.

Proof. We construct an (m, . . . ,m)-octahedral system without isolated vertices and
with m2 edges. Consider m disjoint n̂-transversals, and form m edges from each
of these n̂-transversals by adding a distinct vertex of Vn. We obtain an octahedral
system without isolated vertices with m2 edges. The other inequality is a corollary
of Proposition 4. �
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Propositions 4 and 6 can be seen as combinatorial counterparts and generaliza-
tions of µ(d) ≤ d2 + 1 proven in [6].

An approach similar to the one developed in Section 5 shows that

ν(

z times︷ ︸︸ ︷
2, . . . , 2,

4−z times︷ ︸︸ ︷
3, . . . , 3 , 4) = 8− z and ν(

z times︷ ︸︸ ︷
3, . . . , 3,

5−z times︷ ︸︸ ︷
4, . . . , 4 ) = 12− z for z = 0, . . . , 4.

In other words, the inequality given in Proposition 4 holds with equality for small
mi’s and n at most 5. While this inequality also holds with equality for any n
when m1 = . . . = mn−2 = 2 by Proposition 5, the inequality can be strict as, for
example, ν(3, . . . , 3) < 2 + n for n ≥ 8 by Proposition 6.

3. Additional results

This section provides answers to open questions raised in [5] by determining
the number of distinct octahedral systems and by showing that some octahedral
systems cannot arise from a colourful point configuration. We first remark that the
symmetric difference of two octahedral systems forms an octahedral system.

Proposition 7. Let Ω1 = (V1, . . . , Vn, E1) and Ω2 = (V1, . . . , Vn, E2) be two oc-
tahedral systems on the same sets of vertices, the symmetric difference Ω14Ω2 =
(V1, . . . , Vn, E14E2) is an octahedral system.

Proof. Consider X ⊆
⋃n

i=1 Vi such that |X ∩ Vi| = 2 for i = 1, . . . , n. We have
|(E14E2)[X]| = |E1[X]| + |E2[X]| − 2|(E1 ∩ E2)[X]|, and therefore the parity
condition holds for Ω14Ω2. �

Proposition 7 can be used to build octahedral systems or to prove the non-
existence of others. For instance, Proposition 7 implies that there is a (3, 3, 3)-
octahedral system without isolated vertices with exactly 22 edges by setting Ω1

to be the complete (3, 3, 3)-octahedral system with 27 edges, and Ω2 to be the
(3, 3, 3)-octahedral system with exactly 5 edges given in Figure 1. The octahedral
system Ω14Ω2 is without isolated vertices since each vertex in Ω1 is of degree 9.
Similarly, Proposition 7 shows that no (3, 3, 3)-octahedral system with exactly 25
or 26 edges exists. Otherwise a (3, 3, 3)-octahedral system with exactly 1 or 2 edges
would exist, contradicting Proposition 2.

Proposition 7 shows that the set of all octahedral systems defined on the same
Vi’s equipped with the symmetric difference as addition is an F2 vector space. We
further specify the structure of this F2 vector space by giving a generating set. Let
Fi denote the binary vector space FVi

2 andH denote the tensor product F1⊗. . .⊗Fn.
There is a one to one mapping between the elements of H and the simple n-uniform
n-partite hypergraphs on vertex sets V1, . . . , Vn. Each edge {v1, . . . , vn} of such a
hypergraph H with vi ∈ Vi for all i is identified with the vector x1⊗ . . .⊗xn where
xi is the unit vector of Fi having a 1 at position vi and 0 elsewhere.

Proposition 8. The subspace of H generated by the vectors of the form x1⊗ . . .⊗
xj−1 ⊗ e ⊗ xj+1 ⊗ . . . ⊗ xn, with j ∈ {1, . . . , n} and e = (1, . . . , 1) ∈ FVj

2 , forms
precisely the set of all octahedral systems.

Proof. Each of these vectors is an octahedral system, and so are the linear combi-
nations of these vectors. Conversely, any octahedral system is a linear sum of such
vectors. Indeed, given an octahedral system and one of its vertices v of nonzero
degree, we can add vectors of the above form in order to make v isolated. Repeating
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this argument for each Vi, we get an octahedral system with an isolated vertex in
each Vi. Such an octahedral system is empty; that is, is the zero vector of the space
of octahedral systems. �

Karasev [12] noted that the set of all colourful simplices in a colourful point
configuration forms a d-dimensional coboundary of the join S1 ∗ . . . ∗ Sd+1 with
mod 2 coefficients, see [15] for precise definitions of joins and coboundaries. With
the help of Proposition 8, we further note that the octahedral systems form precisely
the (n − 1)-coboundaries of the join V1 ∗ . . . ∗ Vn with mod 2 coefficients. Indeed,
the vectors of the form x1 ⊗ . . .⊗ xj−1 ⊗ x̂j ⊗ xj+1 ⊗ . . .⊗ xn, with j ∈ {1, . . . , n},
generate the (n − 2)-cochains of V1 ∗ . . . ∗ Vn, and the coboundary of a vector
x1 ⊗ . . .⊗ xj−1 ⊗ x̂j ⊗ xj+1 ⊗ . . .⊗ xn is x1 ⊗ . . .⊗ xj−1 ⊗ e⊗ xj+1 ⊗ . . .⊗ xn with

e = (1, . . . , 1) ∈ FVj

2 .

Theorem 2. Given n disjoint finite vertex sets V1, . . . , Vn, the number of octahedral
systems on V1, . . . , Vn is 2Πn

i=1|Vi|−Πn
i=1(|Vi|−1).

Proof. We denote by Gi the subspace of Fi whose vectors have an even number of
1’s. Let X be the tensor product G1 ⊗ . . .⊗Gn. Define now ψ as follows.

ψ : H → X ∗
H 7→ 〈H, ·〉

By the above identification between H and the hypergraphs and according to the
alternate definition of an octahedral system given by Proposition 1, the subspace
kerψ of H is the set of all octahedral systems on vertex sets V1, . . . , Vn. Note
that by definition ψ is surjective. Therefore, we have dim kerψ + dimX ∗ = dimH
which implies dim kerψ = dimH− dimX using the isomorphism between a vector
space and its dual. The dimension of H is Πn

i=1|Vi| and the dimension of X is
Πn

i=1(|Vi| − 1). This leads to the desired conclusion. �

Two isomorphic octahedral systems, that is, identical up to a permutation of
the Vi’s, or of the vertices in one of the Vi’s, are considered distinct in Theorem 2,
which means that we are counting labelled octahedral systems. A natural question
is whether there is a non-labelled version of Theorem 2, that is whether it is pos-
sible to compute, or to bound, the number of non-isomorphic octahedral systems.
Answering this question would fully answer Question 7 of [5].

Finally, Question 6 of [5] asks whether any octahedral system Ω = (V1, . . . , Vn, E)
with n = |V1| = . . . = |Vn| = d + 1 can arise from a colourful point configuration
S1, . . . ,Sd+1 in Rd? That is, are all octahedral systems realisable? We give a
negative answer to this question in Proposition 9.

Proposition 9. Not all octahedral systems are realisable.

Proposition 9 also holds for octahedral systems without isolated vertices.

Proof. We provide an example of a non-realisable octahedral system without iso-
lated vertices in Figure 3. Indeed, suppose by contradiction that this octahedral
system can be realized as a colourful point configuration S1,S2,S3. Without loss
of generality, we can assume that all the points lie on a circle centred at 0. Take
x3 ∈ S3, and consider the line ` going through x3 and 0. There are at least two
points x1 and x′1 of S1 on the same side of `. There is a point x2 ∈ S2, respectively
x′2 ∈ S2, on the other side of the line ` such that 0 ∈ conv(x1, x2, x3), respectively
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0 ∈ conv(x′1, x
′
2, x3). Assume without loss of generality that x′2 is further away from

x3 than x2. Then, conv(x1, x
′
2, x3) contains 0 as well, contradicting the definition

of the octahedral system given in Figure 3. �

Figure 3. A non realisable (3, 3, 3)-octahedral system with 9 edges

We conclude the section with a question to which the intuitive answer is yes but
we are unable to settle.

Question 1. Is ν(m1, . . . ,mn) non-decreasing with each of the mi?

4. Proof of the main result

4.1. Technical lemmas. While Lemma 1 allows induction within octahedral sys-
tems, Lemmas 2, 3, and 4 are used in the subsequent sections to bound the number
of edges of an octahedral system without isolated vertices.

If a subset X of the vertex set
⋃n

i=1 Vi of an octahedral system satisfies |Vi\X| ≥
2 for all i = 1, . . . , n, then the subhypergraph induced by (

⋃n
i=1 Vi) \ X is an

octahedral system as well. Indeed, the parity property is clearly satisfied for this
subhypergraph.

Lemma 1. Consider an octahedral system Ω without isolated vertices. Let X be
a subset of

⋃n
i=1 Vi inducing a complete subgraph in D(Ω), such that |Vi \X| ≥ 2

for all i = 1, . . . , n. Let Ω′ be the octahedral system induced by (
⋃n

i=1 Vi) \ X. If

N+
D(Ω)(X) = ∅, then Ω′ is without isolated vertices.

Proof. Each vertex v of Ω′ is contained in at least one edge. Since X induces a
complete subgraph, any edge of Ω intersecting X contains the whole subset X.
Thus, since v /∈ N+

D(Ω)(X), the vertex v is in an edge of Ω disjoint from X. �

Lemma 2. For n ≥ 4, consider a (

z times︷ ︸︸ ︷
k − 1, . . . , k − 1,

k−z times︷ ︸︸ ︷
k, . . . , k ,mk+1, . . . ,mn)-octahedral

system Ω = (V1, . . . , Vn, E) without isolated vertices, with 3 ≤ k ≤ mk+1 ≤ . . . ≤
mn and 0 ≤ z < k ≤ n. If there is a subset X ⊆

⋃n
i=z+1 Vi of cardinality at

least 2 inducing in D(Ω) a complete subgraph, then Ω has at least (k − 1)2 + 2
edges, unless Ω is a (2, 2, 3, 3)-octahedral system. Under the same condition on X,
a (2, 2, 3, 3)-octahedral system has at least 5 edges.
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Proof. Any edge intersecting X contains X since X induces a complete subgraph
in D(Ω), implying degΩ(X) ≥ 1. Moreover, we have |X ∩ Vi| ≤ 1 for i = 1, . . . , n.

Case (a): degΩ(X) ≥ 2. Choose i∗ such that |X ∩ Vi∗ | 6= 0. We first note that the
degree of each w in Vi∗ \X is at least k − 1.

Indeed, take an edge e containing w and a î∗-transversal T disjoint from e and
X. Note that e does not contain any vertex of X as underlined in the first sentence
of the proof. Apply the weak form of the parity property to e, T , and the unique
vertex x in X ∩ Vi∗ . There is an edge distinct from e in e∪ T ∪ {x}. Note that this
edge contains w, otherwise it would contain x and any other vertex in X. It also
contains at least one vertex in T . For a fixed e, we can actually choose k−2 disjoint
î∗-transversals T of that kind and apply the weak form of the parity property to
each of them. Thus, there are k − 2 distinct edges containing w in addition to e.

Therefore, we have in total at least (k − 1)2 edges, in addition to degΩ(X) ≥ 2
edges.

Case (b): degΩ(X) = 1. Let e(X) denote the unique edge containing X. For each
i such that |X ∩ Vi| = 0, pick a vertex wi in Vi \ e(X). Applying the weak form
of the parity property to e(X), the wi’s, and any colourful selection of ui ∈ Vi \X
when i is such that |X ∩ Vi| 6= 0 shows that there is at least one additional edge
containing all ui’s. We can actually choose (k − 1)|X| distinct colourful selections
of ui’s. With e(X), there are in total (k − 1)|X| + 1 edges.

If |X| ≥ 3, then (k−1)|X|+1 ≥ (k−1)2+2. If |X| = 2, there exists j ≥ n−2 such
that |X∩Vj | = 0. If |Vj | ≥ 3, then at least |Vj |−2 ≥ 1 edges are needed to cover the

vertices of Vj not belonging to these (k − 1)|X| + 1 edges. Otherwise, |Vj | = 2 and
we have j ≤ z and k = 3. In this case, we have thus k − 1 ≥ z ≥ n− 2, i.e. n = 4
and z = 2. Ω is then a (2, 2, 3, 3)-octahedral system and (k − 1)|X| + 1 = 5. �

While Lemma 3 is similar to Lemma 2, we were not able to find a common gener-
alization.

Lemma 3. Consider a (

z times︷ ︸︸ ︷
k − 1, . . . , k − 1,

k−z times︷ ︸︸ ︷
k, . . . , k ,mk+1, . . . ,mn)-octahedral sys-

tem Ω = (V1, . . . , Vn, E) without isolated vertices, with 3 ≤ k ≤ mk+1 ≤ . . . ≤ mn

and 0 ≤ z < k ≤ n. If there is a subset X ⊆
⋃n

i=z+1 Vi of cardinality at least 2
inducing in D(Ω) a complete subgraph without outneighbours, then Ω has at least
(k − 1)2 + |Vn−1|+ |Vn| − 2k + 1 edges.

Proof. Choose i∗ such that X ∩Vi∗ 6= ∅. Choose Wi∗ ⊆ Vi∗ \X of cardinality k−1.
For each vertex w ∈ Wi∗ , choose an edge e(w) containing w. Let v∗ be the vertex
v∗ minimizing the degree in Ω over Vn \X. Since X induces a complete subgraph
without outneighbours, there is at least one edge disjoint from X containing v∗.
We can therefore assume that there is a vertex w∗ ∈Wi∗ such that e(w∗) contains
v∗. Choose Wi ⊆ Vi for i 6= i∗ such that |Wi| = k − 1 and⋃

w∈Wi∗

e(w) ⊆W =

n⋃
i=1

Wi.
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Case (a): the degree of v∗ in Ω is at most k − 2. For all w ∈ Wi∗ , applying

the parity property to e(w), the unique vertex of X ∩ Vi∗ , and k − 2 disjoint î∗-
transversals in W yields (k − 1)2 distinct edges, in a similar way as in Case (a) of
the proof of Lemma 2. Applying the weak form of the parity property to e(w∗),
any n̂-transversal in W not intersecting the neighbourhood of v∗ in Ω, and each
vertex in Vn \Wn gives |Vn| − k+ 1 additional edges not intersecting Vn−1 \Wn−1.
In addition, |Vn−1| − k + 1 edges are needed to cover the vertices of Vn−1 \Wn−1.
In total we have at least (k − 1)2 + |Vn|+ |Vn−1| − 2(k − 1) edges.

Case (b): the degree of v∗ in Ω is at least k−1. We have then at least (k−1)(|Vn|−
1) + 1 = (k − 1)2 + (k − 1)(|Vn| − k) + 1 ≥ (k − 1)2 + |Vn−1|+ |Vn| − 2k + 1 edges.

�

Lemma 4. Consider a (

z times︷ ︸︸ ︷
k − 1, . . . , k − 1,

k−z times︷ ︸︸ ︷
k, . . . , k ,mk+1, . . . ,mn)-octahedral sys-

tem Ω = (V1, . . . , Vn, E) without isolated vertices, with 3 ≤ k ≤ mk+1 ≤ . . . ≤ mn

and 0 ≤ z < k ≤ n. If there are at least two vertices of Vn having outneigh-
bours in D(Ω) in the same Vi∗ with i∗ < k, then the octahedral system has at least
|Vi∗ |(k − 1) + |Vn−1|+ |Vn| − 2k edges.

Proof. Let v and v′ be the two vertices of Vn having outneighbours in Vi∗ . Let
u and u′ be the two vertices in Vi∗ with (v, u) and (v′, u′) forming arcs in D(Ω).
Note that according to the basic properties of D(Ω), we have u 6= u′. For each
vertex w ∈ Vi∗ , choose an edge e(w) containing w. We can assume that there is
a vertex w∗ ∈ Vi∗ such that e(w∗) contains a vertex v∗ in Vn of minimal degree in Ω.

Case (a): |Vi∗ | = k. Choose Wi ⊆ Vi such that |Wi| = k − 1 for i = 1, . . . , z,
|Wi| = k for i = z + 1, . . . , n, and⋃

w∈Vi∗

e(w) ⊆W =

n⋃
i=1

Wi.

We first show that the degree of any vertex in Vi∗ is at least k−1 in the hypergraph
induced by W . Pick w ∈ Vi∗ and consider e(w). If v ∈ e(w), take k − 2 disjoint

î∗-transversals in W not containing v′ and not intersecting with e(w). In this case,
we necessarily have w 6= u′ since v′ /∈ e(w). Applying the weak form of the parity

property to e(w), u′, and each of those î∗-transversals yields, in addition to e(w),

at least k − 2 edges containing w. Otherwise, take k − 2 disjoint î∗-transversals in
W not containing v and not intersecting with e(w), and apply the weak form of

the the parity property to e(w), u, and each of those î∗-transversals. Therefore, in
both cases, the degree of w in the hypergraph induced by W is at least k − 1.

Then, we add edges not contained in W . If the degree of v∗ in Ω is at least 2, there
are at least 2(|Vn|−k) distinct edges intersecting Vn\Wn. Otherwise, the weak form
of the parity property applied to e(w∗), any n̂-transversal in W , and each vertex in
Vn \Wn provides |Vn|−k additional edges not intersecting Vn−1 \Wn−1. Therefore,
|Vn−1| − k additional edges are needed to cover these vertices of Vn−1 \Wn−1.

In total, we have at least k(k − 1) + |Vn−1|+ |Vn| − 2k edges.
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Case (b): |Vi∗ | = k− 1. Choose Wi ⊆ Vi such that |Wi| = k− 1 for i = 1, . . . , n− 1,
|Wn| = k, and ⋃

w∈Vi∗

e(w) ⊆W =

n⋃
i=1

Wi.

Similarly, we show that the degree of any vertex in Vi∗ is at least k − 1 in the
hypergraph induced by W . Pick w ∈ Vi∗ and consider e(w). If v ∈ e(w), take

k−2 disjoint î∗-transversals in W not containing v′ and not intersecting with e(w).

Applying the weak form of the parity property to e(w), u′, and each of those î∗-
transversals yields, in addition to e(w), at least k−2 edges containing w. Otherwise,

take k − 2 disjoint î∗-transversals in W not containing v and not intersecting with
e(w), and apply the weak form of the the parity property to e(w), u, and each of

those î∗-transversals. Therefore, in both cases, the degree of w in the hypergraph
induced by W is at least k − 1.

Then, we add edges not contained in W . If the degree of v∗ in Ω is at least 2, there
are at least 2(|Vn|−k) distinct edges intersecting Vn\Wn. Otherwise, the weak form
of the parity property applied to e(w∗), any n̂-transversal in W , and each vertex in
Vn \Wn provides |Vn| − k additional edges not intersecting Vn−1 \Wn−1. There-
fore, |Vn−1|−k+1 additional edges are needed to cover these vertices of Vn−1\Wn−1.

In total, we have at least (k − 1)2 + |Vn−1|+ |Vn| − 2k edges. �

4.2. Proof of the main result. Theorem 1 is obtained by setting (k, z) = (m, 0)
in Proposition 10. This proposition is proven by induction on the cardinality of
octahedral systems of the form illustrated in Figure 4. Either the deletion of a
vertex results in an octahedral system satisfying the condition of Proposition 10
and we can apply induction, or we apply Lemma 3 or Lemma 4 to bound the number
of edges of the system. Lemma 1 is a key tool to determine if the deletion of a vertex
results in an octahedral system satisfying the condition of Proposition 10.

Proposition 10. A (

z times︷ ︸︸ ︷
k − 1, . . . , k − 1,

k−z times︷ ︸︸ ︷
k, . . . , k ,mk+1, . . . ,mn)-octahedral system

Ω = (V1, . . . , Vn, E) without isolated vertices, with 2 ≤ k ≤ mk+1 ≤ . . . ≤ mn and
0 ≤ z < k ≤ n, has at least

1
2k

2 + 1
2k − 8 + |Vn−1|+ |Vn| − z edges if k ≤ n− 2,

1
2n

2 + 1
2n− 10 + |Vn| − z edges if k = n− 1,
1
2n

2 + 5
2n− 11− z edges if k = n.

Proof. The proof works by induction on
∑n

i=1 |Vi|. The base case is
∑n

i=1 |Vi| = 2n,
which implies z = 0 and k = |Vn−1| = |Vn| = 2. The three inequalities trivially
hold in this case.

Suppose that
∑n

i=1 |Vi| > 2n. We choose a pair (k, z) compatible with Ω. Note that
(k, z) is not necessarily unique. If k = 2, Proposition 3 proves the inequality. We
can thus assume that k ≥ 3. We consider the two possible cases for the associated
D(Ω).



12 ANTOINE DEZA, FRÉDÉRIC MEUNIER, AND PAULINE SARRABEZOLLES.

Figure 4. The vertex set of the (k − 1, . . . , k −
1, k, . . . , k,mk+1, . . . ,mn)-octahedral system Ω = (V1, . . . , Vn, E)
used for the proof of Proposition 10

If there are at least two vertices of Vn having an outneighbour in the same Vi∗ ,
with i∗ < k, we can apply Lemma 4. If k ≤ n − 2, the inequality follows by a
straightforward computation, using that z ≥ 1 when |Vi∗ | = k− 1; if k = n− 1, we
use the fact that |Vn−1| = n− 1; and if k = n, we use the fact that |Vn−1| ≥ n− 1
and |Vn| = n.

Otherwise, for each i < k, there is at most one vertex of Vn having an outneighbour
in Vi. Since k − 1 < |Vn|, there is a vertex x of Vn having no outneighbours in⋃k−1

i=1 Vi. Starting from x in D(Ω), we follow outneighbours until we reach a set
X inducing a complete subgraph of D(Ω) without outneighbours. Since D(Ω) is
transitive, we have X ⊆

⋃n
i=k Vi. If |X| ≥ 2, we apply Lemma 3. Thus, we can

assume that |X| = 1.

The subhypergraph Ω′ of Ω induced by (
⋃n

i=1 Vi)\X is an octahedral system with-
out isolated vertices since X is a single vertex without outneighbours in D(Ω), see
Lemma 1. Recall that the vertex in X belongs to

⋃n
i=k Vi. Let (k′, z′) be possible

parameters associated to Ω′ determined hereafter. Let i0 be such that X ⊆ Vi0 .
The induction argument is applied to the different values of |Vi0 |. It provides a
lower bound on the number of edges in Ω′; adding 1 to this lower bound, we get a
lower bound on the number of edges in Ω since there is at least one edge containing
X.

If |Vi0 | ≥ k+ 1, we have (k′, z′) = (k, z) and we can apply the induction hypothesis
with |Vn−1| + |Vn| decreasing by at most one (in case i0 = n − 1 or n) which is
compensated by the edge containing X.

If |Vi0 | = k, z ≤ k − 2, and k ≤ n − 1, we have (k′, z′) = (k, z + 1) and we can
apply the induction hypothesis with same |Vn−1| and |Vn| since z ≤ n− 3, while z′
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replacing z takes away 1 which is compensated by the edge containing X.

If |Vi0 | = k, z = k − 1, and k ≤ n − 2, we have (k′, z′) = (k − 1, 0) and we can
apply the induction hypothesis with same |Vn−1| + |Vn| since z ≤ n − 3. We get
therefore 1

2 (k− 1)2 + 1
2 (k− 1)− 8 + |Vn−1|+ |Vn| edges in Ω′, plus at least one con-

taining X. In total, we have 1
2k

2+ 1
2k−8+|Vn−1|+|Vn|−k+1 edges in Ω, as required.

If |Vi0 | = k, z = k − 1, and k = n − 1, we have (k′, z′) = (n − 2, 0) and we can
apply the induction hypothesis with |Vn−1| + |Vn| decreasing by at most one. We
get therefore 1

2 (n−2)2 + 1
2 (n−2)−8+ |Vn−1|+ |Vn|−1 edges in Ω′, plus at least one

containing X. Since |Vn−1| = n− 1, we have in total 1
2n

2 + 1
2n− 10 + |Vn|− (n− 2)

edges in Ω, as required.

If |Vi0 | = k, z = k − 1, and k = n, we have i0 = n and (k′, z′) = (n− 1, 0). We can
apply the induction hypothesis and get therefore 1

2n
2 + 1

2n− 10 + (n− 1) edges in

Ω′, plus at least one containing X. In total, we have 1
2n

2 + 5
2n− 11− (n− 1) edges

in Ω, as required.

If |Vi0 | = k, z ≤ k−2, and k = n, we have i0 = n. For Ω′, the pair (k′, z′) = (n, z+1)
provides possible parameters. Note that in this case, the colors must be renumbered
to keep them with non-decreasing sizes from 1 to n for Ω′. We can then apply the
induction hypothesis and get therefore 1

2n
2 + 5

2n− 11− z − 1 edges in Ω′, plus at

least one containing X. In total, we have 1
2n

2 + 5
2n−11−z edges in Ω, as required.

�

Remark 1. A similar analysis, with |Vi| = n for all i as a base case, shows that an
octahedral system without isolated vertices and with |V1| = |V2| = . . . = |Vn| = m
has at least nm− 1

2n
2 + 5

2n− 11 edges for 4 ≤ n ≤ m.

5. Small instances and µ(4) = 17

This section focuses on octahedral systems with mi’s and n at most 5.

Proposition 11. ν(3, 3, 3, 3) = 6.

Proof. We first prove that ν(2, 3, 3, 3) = 5. Let Ω = (V1, V2, V3, V4, E) be a
(2, 3, 3, 3)-octahedral system. In D(Ω) there is at most one vertex of V4 having
an outneighbour in V1, otherwise one vertex of V4 would be isolated. Thus, there
is a subset X ⊆ V2 ∪ V3 ∪ V4 inducing in D(Ω) a complete subgraph without out-
neighbours. If |X| ≥ 2, applying Lemma 2 with (k, z) = (3, 1) gives at least 5 edges
in that case. If |X| = 1, deleting X yields a (2, 2, 3, 3)-octahedral system without
isolated vertices since X has no outneighbours in D(Ω). As ν(2, 2, 3, 3) = 4 by
Proposition 5, we have at least 4 + 1 = 5 edges. Thus, the equality holds since
ν(2, 3, 3, 3) ≤ 5 by Proposition 4.

We then prove that ν(3, 3, 3, 3) = 6. Let Ω = (V1, V2, V3, V4, E) be a (3, 3, 3, 3)-
octahedral system. There is a subset X inducing in D(Ω) a complete subgraph
without outneighbours. If |X| ≥ 2, apply Lemma 2 with (k, z) = (3, 0) gives at least
6 edges in that case. If |X| = 1, deleting X yields a (2, 3, 3, 3)-octahedral system
without isolated vertices since X has no outneighbours in D(Ω). As ν(2, 3, 3, 3) = 5,
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we have at least 5 + 1 = 6 edges. Thus, the equality holds since ν(3, 3, 3, 3) ≤ 6 by
Proposition 4. �

The main result this section, namely ν(5, 5, 5, 5, 5) = 17, is proven via a series of
claims dealing with octahedral systems of increasing sizes. We first determine the
values of ν(2, 2, 3, 3, 3), ν(2, 3, 3, 3, 3), and ν(3, 3, 3, 3, 3) in Claims 1, 2, and 3. To
complete the proof of ν(5, 5, 5, 5, 5) = 17, we sequentially show ν(3, 3, 3, 3, 4) ≥ 7,
ν(4, 4, 4, 4, 4) = 12, and finally ν(5, 5, 5, 5, 5) = 17. A key step consists in proving
ν(4, 4, 4, 4, 4) ≥ 11 by induction using ν(3, 3, 3, 3, 4) ≥ 7 as a base case. We obtain
then ν(4, 4, 4, 4, 4) = 12 by Propositions 1 and 4. The equality ν(5, 5, 5, 5, 5) = 17
is obtained by induction using ν(4, 4, 4, 4, 4) = 12 as a base case.

Claim 1. ν(2, 2, 3, 3, 3) = 5.

Proof. For i = 1 and 2, there is at most one vertex of V5 having an outneighbour in
Vi as otherwise one vertex of V5 would be isolated. Since |V5| = 3, there is a vertex
of V5 having no outneighbours in V1∪V2. Thus, there is a subset X ⊆ V3∪V4∪V5 of
cardinality 1, 2, or 3 inducing a complete subgraph in D(Ω) without outneighbours.
If |X| ≥ 2, applying Lemma 2 with (k, z) = (3, 2) gives at least 5 edges. If |X| = 1,
deleting X yields a (2, 2, 2, 3, 3)-octahedral system without isolated vertices since
X has no outneighbours in D(Ω). As ν(2, 2, 2, 3, 3) = 4 by Proposition 5, we have
at least 4 + 1 = 5 edges. Thus, the equality holds since ν(2, 2, 3, 3, 3) ≤ 5 by
Proposition 4. �

Claim 2. ν(2, 3, 3, 3, 3) = 6.

Proof. We consider the two possible cases for the associated D(Ω).

Case (a): there are at least two vertices v and v′ of V5 having outneighbours
in the same Vi∗ in D(Ω) with i∗ = 1 or 2. Note that actually i∗ = 2 since otherwise
V5 \ {v, v′} would be isolated. Applying Lemma 4 with (k, z) = (3, 1) gives at least
3× 2 + |V4|+ |V5| − 6 = 6 edges.

Case (b): there is at most one vertex of V5 having an outneighbour in Vi for i = 1
and 2 in D(Ω). Since |V5| = 3, there is a vertex of V5 having no outneighbours in
V1∪V2. Thus, there is a subset X ⊆ V3∪V4∪V5 inducing in D(Ω) a complete sub-
graph without outneighbours. If |X| ≥ 2, applying Lemma 2 with (k, z) = (3, 1)
and j = 2 gives at least 6 edges. If |X| = 1, deleting X yields a (2, 2, 3, 3, 3)-
octahedral system without isolated vertices since X has no outneighbours in D(Ω).
As ν(2, 2, 3, 3, 3) = 5 by Claim 1, we have at least 5 + 1 = 6 edges.

Thus, the equality holds since ν(2, 3, 3, 3, 3) ≤ 6 by Proposition 4. �

Claim 3. ν(3, 3, 3, 3, 3) = 7.

Proof. There is a subset X inducing a complete subgraph in D(Ω) without out-
neighbours. Choose such an X of maximal cardinality. Without loss of generality,
we assume that the indices i such that |X∩Vi| 6= 0 are n−|X|+1, n−|X|+2, . . . , n.
Consider the different values for |X|.

• If |X| = 1, deleting X yields a (2, 3, 3, 3, 3)-octahedral system without iso-
lated vertices since X has no outneighbours in D(Ω). As ν(2, 3, 3, 3, 3) = 6
by Claim 2, we have at least 6 + 1 = 7 edges.
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• If |X| = 2 and degΩ(X) ≥ 2, deleting X yields a (2, 2, 3, 3, 3)-octahedral
system without isolated vertices. As ν(2, 2, 3, 3, 3) = 5 by Claim 1, we have
at least 5 + 2 = 7 edges.
• If |X| = 2 and degΩ(X) = 1, denote e(X) the unique edge containing X.

For i = 1, 2, and 3, pick a vertex wi in Vi \ e(X). Applying the parity
property to e(X), w1, w2, w3, and any u4 ∈ V4 \ e(X), u5 ∈ V5 \ e(X)
yields at least 5 edges in e(X)∪{w1, w2, w3}∪V4∪V5. At least 2 additional
edges are needed to cover the 3 remaining vertices of V1, V2, and V3 since a
unique edge containing them would contradict the maximality of X. Thus,
we have at least 7 edges.
• If |X| = 3 and degΩ(X) ≥ 3, deleting X yields a (2, 2, 2, 3, 3)-octahedral

system without isolated vertices. As ν(2, 2, 2, 3, 3) = 4 by Proposition 5,
we have at least 4 + 3 = 7 edges.
• If |X| = 3 and degΩ(X) ≤ 2, let e(X) be an edge containing X. Pick
w1 ∈ V1\NΩ(X) and w2 ∈ V2\NΩ(X) whereNΩ(X) denotes the vertices not
in X contained in the edges intersecting X. Applying the parity property
to e(X), w1, w2, and any ui ∈ Vi \ e(X) for i = 3, 4, and 5 yields at least 9
edges in e(X) ∪ {w1, w2} ∪ V3 ∪ V4 ∪ V5.
• If |X| = 4 and degΩ(X) ≥ 3, take any vertex v in V2 \ X. Applying the

parity property to an edge e(v) containing v, V2∩X, and any 2̂-transversal
disjoint from e(v) and X shows that v is of degree at least 2. Since there
are 2 vertices in V2 \X, we get, with 3 edges containing X, at least 7 edges.

• If |X| = 4 and degΩ(X) ≤ 2, let e(X) be an edge containing X. Pick
w1 ∈ V1 \ NΩ(X). Applying the parity property to e(X), w1, and any
ui ∈ Vi \ e(X) for i = 2, 3, 4, and 5 yields at least 17 edges in e(X)∪{w1}∪
V2 ∪ V3 ∪ V4 ∪ V5.

• If |X| = 5, the parity property applied to the edge e(X) containing X, and
any ui ∈ Vi \ e(X) for i = 1, 2, 3, 4, and 5 yields at least 33 edges.

Thus, the equality holds since ν(3, 3, 3, 3, 3) ≤ 7 by Proposition 4. �

Claim 4. ν(3, 3, 3, 3, 4) ≥ 7.

Proof. We first prove ν(2, 3, 3, 3, 4) ≥ 6 which in turn leads to ν(3, 3, 3, 3, 4) ≥ 7.
The proof of these two inequalities are quite similar with the main difference being
that, while the first inequality relies partially on Proposition 3, the second inequal-
ity relies on the first one.

Let Ω = (V1, . . . , V5, E) be a (2, 3, 3, 3, 4)- or a (3, 3, 3, 3, 4)-octahedral system. We
consider the three possible cases for the associated D(Ω).

Case (a): there is a vertex of V5 having no outneighbours. Deleting this vertex
yields a (2, 3, 3, 3, 3)- or a (3, 3, 3, 3, 3)-octahedral system without isolated vertices.
In both cases, we have at least 7 edges since ν(2, 3, . . . , 3) = 6 by Claim 2, and
ν(3, 3, 3, 3, 3) = 7 by Claim 3.

Case (b): each vertex of V5 has an outneighbour and there are at least two vertices v
and v′ of V5 having outneighbours in the same Vi∗ in D(Ω) with i∗ = 1, 2, or 3. Note
that |Vi∗ | = 3 since otherwise V5 \ {v, v′} would be isolated. Applying Lemma 4
with either (k, z) = (3, 1) or (k, z) = (3, 0) gives at least 3× 2 + |V4|+ |V5| − 6 = 7
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edges.

Case (c): each vertex of V5 has an outneighbour and there is at most one vertex
of V5 having an outneighbour in Vi for i = 1, 2, and 3. Since |V5| = 4, there is a
subset X ⊆ V4 ∪ V5 inducing in D(Ω) a complete subgraph of cardinality 1 or 2
without outneighbours.

• If |X| = 1, we have X ⊆ V4 since each vertex of V5 has an outneighbour.
Deleting X yields a (2, 2, 3, 3, 4)- or a (2, 3, 3, 3, 4)-octahedral system with-
out isolated vertices. We obtain ν(2, 3, 3, 3, 4) ≥ 6 since ν(2, 2, 3, 3, 4) ≥ 5
by Proposition 3, and then ν(3, 3, 3, 3, 4) ≥ 7 since ν(2, 3, 3, 3, 4) ≥ 6.
• If |X| = 2, deleting X yields a (2, 2, 3, 3, 3)- or a (2, 3, 3, 3, 3)-octahedral

system without isolated vertices. Since one additional edge is needed to
cover X, we obtain ν(2, 3, 3, 3, 4) ≥ 6 since ν(2, 2, 3, 3, 3) = 5 by Claim 1,
and ν(3, 3, 3, 3, 4) ≥ 7 since ν(2, 3, 3, 3, 3) = 6 by Claim 2.

�

Claim 5. ν(3, . . . , 3︸ ︷︷ ︸
z times

, 4, . . . , 4︸ ︷︷ ︸
5−z times

) ≥ 11− z for z = 1, 2, 3.

Proof. The proof works by a top-down induction on z using the inequality ν(3, 3, 3, 3, 4) ≥
7 which holds by Claim 4. We consider the two possible cases for the associated
D(Ω).

Case (a): there are at least two vertices v and v′ of V5 having outneighbours in the
same Vi∗ with i∗ ≤ z. Let u and u′ be the two vertices in Vi∗ with (v, u) and (v′, u′)
forming arcs in D(Ω). For each vertex w ∈ Vi∗ , choose an edge e(w) containing w.
Choose Wi ⊆ Vi such that |Wi| = 3 for i = 1, . . . , 4, |W5| = 4, and⋃

w∈Vi∗

e(w) ⊆W =

5⋃
i=1

Wi.

Pick w ∈ Vi∗ and consider e(w). If v ∈ e(w), take 2 disjoint î∗-transversals in W
not containing v′ and not intersecting with e(w). Applying the parity property

to e(w), u′, and each of those î∗-transversals yields, in addition to e(w), at least 2

edges containing w. Otherwise, take 2 disjoint î∗-transversals in W not containing
v and not intersecting with e(w), and apply the parity property to e(w), u, and each

of those î∗-transversals. In both cases, the degree of w in the hypergraph induced
by W is at least 3. Then, we add edges not contained in W . Since V4 \W 6= ∅,
there is at least one additional edge. In total, we have at least 10 ≥ 11− z edges.

Case (b): there is at most one vertex of V5 having an outneighbour in Vi for i ≤ z.
Since |V5| = 4, there is at least one vertex of V5 having no outneighbours in

⋃z
i=1 Vi.

Thus, there is a subset X ⊆
⋃5

i=z+1 Vi inducing in D(Ω) a complete subgraph with-
out outneighbours. If |X| = 1, deleting X yields a ( 3, . . . , 3︸ ︷︷ ︸

z+1 times

, 4, . . . , 4︸ ︷︷ ︸
4−z times

)-octahedral

system without isolated vertices. As ν( 3, . . . , 3︸ ︷︷ ︸
z+1 times

, 4, . . . , 4︸ ︷︷ ︸
4−z times

) ≥ 11− (z+ 1) we obtain

11 − z edges. If |X| ≥ 2, we have at least 9 + 2 = 11 edges by Lemma 2 with
(k, z) = (4, z). �
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Claim 6. ν(4, 4, 4, 4, 4) = 12.

Proof. There is a subset X inducing a complete subgraph in D(Ω) without out-
neighbours. If |X| = 1, deleting X yields a (3, 4, . . . , 4)-octahedral system without
isolated vertices. As ν(3, 4, . . . , 4) ≥ 10, we obtain 11 edges. If |X| ≥ 2, we have
at least 11 edges by Lemma 2 with (k, z) = (4, 0). Thus, ν(4, 4, 4, 4, 4) ≥ 12 by
Proposition 1, and then ν(4, 4, 4, 4, 4) = 12 by Proposition 4. �

Claim 7. ν(4, . . . , 4︸ ︷︷ ︸
z times

, 5, . . . , 5︸ ︷︷ ︸
5−z times

) = 17− z for z = 1, 2, 3, 4.

Proof. The proof works by a top-down induction on z using the inequality ν(4, 4, 4, 4, 4) ≥
12 which holds by Claim 6. We consider the two possible cases for the associated
D(Ω).

Case (a): there are at least two vertices v and v′ of V5 having outneighbours in the
same Vi∗ with i∗ ≤ z. We can apply Lemma 4 with (k, z) = (5, z), we have at least
4× 4 + |V4|+ |V5| − 10 ≥ 17− z edges.

Case (b): there is at most one vertex of V5 having an outneighbour in Vi for
1 ≤ i ≤ z. Since |V5| = 5, there is a vertex of V5 having no outneighbours in⋃z

i=1 Vi. Thus, there is a subset X ⊆
⋃5

i=z+1 Vi inducing in D(Ω) a complete sub-
graph without outneighbours. If |X| = 1, deleting X yields a ( 4, . . . , 4︸ ︷︷ ︸

z+1 times

, 5, . . . , 5︸ ︷︷ ︸
4−z times

)-

octahedral system. As ν( 4, . . . , 4︸ ︷︷ ︸
z+1 times

, 5, . . . , 5︸ ︷︷ ︸
4−z times

) ≥ 16 − z, we obtain at least 17 − z

edges. If |X| ≥ 2, we have at least 18 edges by Lemma 2.

Thus, the equality holds since ν(4, . . . , 4︸ ︷︷ ︸
z times

, 5, . . . , 5︸ ︷︷ ︸
5−z times

) ≤ 17− z by Proposition 4. �

Claim 8. ν(5, 5, 5, 5, 5) = 17.

Proof. There is a subset X inducing a complete subgraph in D(Ω) without out-
neighbours. If |X| = 1, deleting X yields a (4, 5, 5, 5, 5)-octahedral system without
isolated vertices. As ν(4, 5, 5, 5, 5) ≥ 16, we have at least 17 edges. If |X| ≥ 2, we
can apply Lemma 2, and we have at least 18 edges.

Thus, the equality holds since ν(5, 5, 5, 5, 5) ≤ 17 by Proposition 4. �

As ν(5, 5, 5, 5, 5) = ν(4), Claim 8 and the relation µ(4) ≥ ν(4) directly imply that
the conjectured equality µ(d) = d2 + 1 holds for d = 4.

Proposition 12. µ(4) = 17.

Acknowledgement. This work was supported by grants from Programme Gas-
pard Monge pour l’Optimisation et la Recherche Opérationnelle, NSERC, and
Canada Research Chairs programme. The first author gratefully acknowledges
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4. Imre Bárány and Shmuel Onn, Colourful linear programming and its relatives, Mathematics

of Operations Research, 22 (1997), pp. 550–567.

5. Grant Custard, Antoine Deza, Tamon Stephen, and Feng Xie, Small octahedral systems,
in Proceedings of the 23rd Canadian Conference on Computational Geometry (CCCG’11),

2011, pp. 267–271.

6. Antoine Deza, Sui Huang, Tamon Stephen, and Tamás Terlaky, Colourful simplicial
depth, Discrete and Computational Geometry, 35 (2006), pp. 597–604.

7. , The colourful feasibility problem, Discrete Applied Mathematics, 156 (2008), pp. 2166–

2177.
8. Antoine Deza, Tamon Stephen, and Feng Xie, More colourful simplices, Discrete and

Computational Geometry, 45 (2011), pp. 272–278.

9. , Computational lower bounds for colourful simplicial depth, Symmetry, 5 (2013),
pp. 47–53.

10. Mikhail Gromov, Singularities, expanders and topology of maps. Part 2: from combinatorics
to topology via algebraic isoperimetry, Geom. Funct. Anal., 20 (2010), pp. 416–526.

11. Andreas F. Holmsen, János Pach, and Helge Tverberg, Points surrounding the origin,

Combinatorica, 28 (2008), pp. 633–644.
12. Roman Karasev. Personal communication, 2012.

13. , A simpler proof of the Boros-Füredi-Bárány-Pach-Gromov theorem, Discrete Com-
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