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Abstract. We consider congestion games on networks with nonatomic users and user-
specific costs. We are interested in the uniqueness property defined by Milchtaich [Milch-
taich, I. 2005. Topological conditions for uniqueness of equilibrium in networks. Math.
Oper. Res. 30, 225–244] as the uniqueness of equilibrium flows for all assignments of
strictly increasing cost functions. He settled the case with two-terminal networks. As a
corollary of his result, it is possible to prove that some other networks have the uniqueness
property as well by adding common fictitious origin and destination. In the present work,
we find a necessary condition for networks with several origin-destination pairs to have the
uniqueness property in terms of excluded minors or subgraphs. As a key result, we char-
acterize completely bidirectional rings for which the uniqueness property holds: it holds
precisely for nine networks and those obtained from them by elementary operations. For
other bidirectional rings, we exhibit affine cost functions yielding to two distinct equilibrium
flows. Related results are also proven. For instance, we characterize networks having the
uniqueness property for any choice of origin-destination pairs.

1. Introduction

In many areas, different users share a common network to travel or to exchange informa-
tion or goods. Each user wishes to select a path connecting a certain origin to a certain
destination. However, the selection of paths in the network by the users induces congestion
on the arcs, leading to an increase of the costs. Taking into account the choices of the other
users, each user looks for a path of minimum cost. We expect therefore to reach a Nash
equilibrium: each user makes the best reply to the actions chosen by the other users.

This kind of games is studied since the 50’s, with the seminal works by Wardrop (1952)
and Beckmann et al. (1956). Their practical interest is high since the phenomena implied
by the strategic interactions of users on a network are often nonintuitive and may lead to an
important loss in effiency. The Braess paradox (Braess, 1968) – adding an arc may deteriorate
all travel times – is the classical example illustrating such a nonintuitive loss and it has been
observed in concrete situations, for example in New York Kolata (1990). Koutsoupias and
Papadimitriou (1999) initiated a precise quantitative study of this loss, which lead soon
after to the notion of “Price of Anarchy” that is the cost of the worst equilibrium divided by
the optimal cost, see (Roughgarden and Tardos, 2002) among many other references. Some
recent researches proposed also ways to control this loss, see (Bauso et al., 2009; Knight and
Harper, 2013) for instance.

When the users are assumed to be nonatomic – the effect of a single user is negligible
– equilibrium is known to exist (Milchtaich, 2000). Moreover, when the users are affected
equally by the congestion on the arcs, the costs supported by the users are the same in all
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equilibria (Aashtiani and Magnanti, 1981). In the present paper, we are interested in the
case when the users may be affected differently by the congestion. In such a case, examples
are known for which these costs are not unique. Various conditions have been found that
ensure nevertheless uniqueness. For instance, if the user’s cost functions attached to the
arcs are continuous, strictly increasing, and identical up to additive constants, then we have
uniqueness of the equilibrium flows, and thus of the equilibrium costs (Altman and Kameda,
2001). In 2005, continuing a work initiated by Milchtaich (2000) and Konishi (2004) for
networks with parallel routes, Milchtaich (2005) found a topological characterization of two-
terminal networks for which, given any assignment of strictly increasing and continuous cost
functions, the flows are the same in all equilibria. Such networks are said to enjoy the
uniqueness property. Similar results with atomic users have been obtained by Orda et al.
(1993) and Richman and Shimkin (2007).

The purpose of this paper is to find similar characterizations for networks with more
than two terminals. We are able to characterize completely the ring networks having the
uniqueness property, whatever the number of terminals is. Studying equilibria on rings can
be seen as the decentralized counterpart of works on the optimization of multiflows on rings,
like the one proposed by Myung et al. (1997). Our main result for ring networks is that
the uniqueness property holds precisely for nine networks and those obtained from them
by elementary operations. For other rings, we exhibit affine cost functions yielding to two
distinct equilibrium flows. It allows to describe infinite families of graphs for which the
uniqueness property does not hold. For instance, there is a family of ring networks such that
every network with a minor in this family does not have the uniqueness property.

2. Preliminaries on graphs

An undirected graph is a pair G = (V,E) where V is a finite set of vertices and E is a
family of unordered pairs of vertices called edges. A directed graph, or digraph for short, is
a pair D = (V,A) where V is a finite set of vertices and A is a family of ordered pairs of
vertices called arcs. A mixed graph is a graph having edges and arcs. More formally, it is a
triple M = (V,E,A) where V is a finite set of vertices, E is a family of unordered pairs of
vertices (edges) and A is a family of ordered pairs of vertices (arcs). Given an undirected
graph G = (V,E), we define the directed version of G as the digraph D = (V,A) obtained
by replacing each (undirected) edge in E by two (directed) arcs, one in each direction. An
arc of G is understood as an arc of its directed version. In these graphs, loops – edges or
arcs having identical endpoints – are not allowed, but pairs of vertices occurring more than
once – parallel edges or parallel arcs – are allowed.

A walk in a directed graph D is a sequence

P = (v0, a1, v1, . . . , ak, vk)

where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, and ai = (vi−1, vi) for i = 1, . . . , k. If all vi
are distinct, the walk is called a path. If no confusion may arise, we identify sometimes a
path P with the set of its vertices or with the set of its arcs, allowing to use the notation
v ∈ P (resp. a ∈ P ) if a vertex v (resp. an arc a) occurs in P .

An undirected graph G′ = (V ′, E ′) is a subgraph of an undirected graph G = (V,E) if
V ′ ⊆ V and E ′ ⊆ E. An undirected graph G′ is a minor of an undirected graph G if G′

is obtained by contracting edges (possibly none) of a subgraph of G. Contracting an edge
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uv means deleting it and identifying both endpoints u and v. Two undirected graphs are
homeomorphic if they arise from the same undirected graph by subdivision of edges, where
a subdivision of an edge uv consists in introducing a new vertex w and in replacing the edge
uv by two new edges uw and wv.

The same notions hold for directed graphs and for mixed graphs.
Finally, let G = (V,E) be an undirected graph, and H = (T, L) be a directed graph with

T ⊆ V , then G+H denotes the mixed graph (V,E, L).

3. Model

Similarly as in the multiflow theory (see for instance Schrijver (2003) or Korte and Vygen
(2000)), we are given a supply graph G = (V,E) and a demand digraph H = (T, L) with
T ⊆ V . The graph G models the (transportation) network. The arcs of H model the origin-
destination pairs, also called in the sequel the OD-pairs. H is therefore assumed to be simple,
i.e. contains no loops and no multiple edges. A route is an (o, d)-path of the directed version
of G with (o, d) ∈ L and is called an (o, d)-route. The set of all routes (resp. (o, d)-routes)
is denoted by R (resp. R(o,d)).

The population of users is modelled as a bounded real interval I endowed with the
Lebesgue measure λ, the population measure. The set I is partitioned into measurable
subsets I(o,d) with (o, d) ∈ L, modelling the users wishing to select an (o, d)-route.

For a given pair of supply graph and demand digraph, and a given partition of users, we
define a strategy profile as a measurable mapping σ : I → R such that σ(i) ∈ R(o,d) for all
(o, d) ∈ L and i ∈ I(o,d). For each arc a ∈ A of the directed version of G, the measure of the
set of all users i such that a is in σ(i) is the flow on a in σ and is denoted fa:

fa = λ{i ∈ I : a ∈ σ(i)}.
The cost of each arc a ∈ A for each user i ∈ I is given by a nonnegative, continuous, and

strictly increasing cost function cia : R+ → R+, such that i 7→ cia(x) is measurable for all
a ∈ A and x ∈ R+. When the flow on a is fa, the cost for user i of traversing a is cia(fa). For
user i, the cost of a route r is defined as the sum of the costs of the arcs contained in r. A
class is a set of users having the same cost functions on all arcs, but not necessarily sharing
the same OD-pair.

The game we are interested in is defined by the supply graph G, the demand digraph H,
the population user set I with its partition, and the cost functions cia for a ∈ A and i ∈ I.
If we forget the graph structure, we get a game for which we use the terminology nonatomic
congestion game with user-specific cost functions, as in Milchtaich (1996).

A strategy profile is a (pure) Nash equilibrium if each route is only chosen by users for
whom it is a minimal-cost route. In other words, a strategy profile σ is a Nash equilibrium
if for each pair (o, d) ∈ L and each user i ∈ I(o,d) we have∑

a∈σ(i)

cia(fa) = min
r∈R(o,d)

∑
a∈r

cia(fa).

Under the conditions stated above on the cost functions, a Nash equilibrium is always
known to exist. It can be proven similarly as Theorem 3.1 in Milchtaich (2000), or as noted
by Milchtaich (2005), it can be deduced from more general results (Theorem 1 of Schmeidler
(1970) or Theorems 1 and 2 of Rath (1970)). However, such an equilibrium is not necessarily
unique, and even the equilibrium flows are not necessarily unique.
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4. Results

Milchtaich (2005) raised the question whether it is possible to characterize networks having
the uniqueness property, i.e. networks for which flows at equilibrium are unique. A pair
(G,H) defined as in Section 3 is said to have the uniqueness property if, for any partition of
I into measurable subsets I(o,d) with (o, d) ∈ L, and for any assignment of (strictly increasing)
cost functions, the flow on each arc is the same in all equilibria.

Milchtaich found a positive answer for the two-terminal networks, i.e. when |L| = 1. More
precisely, he gave a (polynomial) characterization of a family of two-terminal undirected
graphs such that, for the directed versions of this family and for any assignment of (strictly
increasing) cost functions, the flow on each arc is the same in all equilibria. For two-terminal
undirected graphs outside this family, he gave explicit cost functions for which equilibria
with different flows on some arcs exist.

The objective of this paper is to address the uniqueness property for networks having more
than two terminals. We settle the case of ring networks and find a necessary condition for
general networks to have the uniqueness property in terms of excluded minors or subgraphs.

In a ring network, each user has exactly two possible strategies. See Figure 1 for an
illustration of this kind of supply graph G, demand digraph H, and mixed graph G+H. We
prove the following theorem in Section 5.

Theorem 1. Assume that the supply graph G is a cycle. Then, for any demand digraph H,
the pair (G,H) has the uniqueness property if and only if each arc of G is contained in at
most two routes.

Whether such a pair (G,H) of supply graph and demand digraph is such that each arc in
contained in at most two routes is obviously polynomially checkable, since we can test each
arc one after the other. We will show that it can actually be tested by making only one round
trip, in any direction, see Section 6.2. More generally, Section 6 contains a further discussion
on the combinatorial structure of such a pair (G,H). Especially, we prove in Section 6.3
that such a pair (G,H) has the uniqueness property if and only if G + H is homeomorphic
to a minor of one of nine mixed graphs, see Figures 2–5. Except for the smallest one, none
of the uniqueness properties of these graphs can be derived from the results by Milchtaich,
even by adding fictitious vertices as suggested p.235 of his article (Milchtaich, 2005).

Furthermore, we find on our track a sufficient condition for congestion games with nonatomic
users to have the uniqueness property when each user has exactly two available strategies
(Proposition 2).

Section 7.1 proves a necessary condition for general graphs to have the uniqueness prop-
erty in terms of excluded minors (Corollary 2). With the help of Theorem 1, it allows to
describe infinite families of networks not having the uniqueness property. The remaining of
Section 7 contains complementary results. For instance, Section 7.4 defines and studies a
strong uniqueness property that may hold for general graphs independently of the demand
digraph, i.e. of the OD-pairs.

5. Proof of the characterization in case of a ring

5.1. Proof strategy and some preliminary results. In this section, we prove Theorem 1.
The proof works in two steps. The first step, Section 5.2, consists in proving Proposition 1
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Figure 1. Example of a supply graph G, a demand digraph H, and the mixed
graph G+H. According to Theorem 1, (G,H) has the uniqueness property

below stating that, when each arc is contained in at most two routes, then the uniqueness
property holds. The second step, Section 5.3, consists in exhibiting cost functions for which
flows at equilibrium are non-unique for any pair (G,H) with an arc in at least three routes.

From now on, we assume that the cycle G is embedded in the plane. It allows to use an
orientation for G. Each route is now either positive or negative. The same holds for arcs of
G: we have positive arcs and negative arcs.

Claim 1. For any (o, d) ∈ L, if a+ and a− are the two arcs stemming from an edge e ∈ E,
then exactly one of a+ and a− is in an (o, d)-route.

Proof. Indeed, given an (o, d) ∈ L and an edge e ∈ E, exactly one of the positive and
negative (o, d)-routes contains e. �

For any subset J ⊆ L, we define A+
J (resp. A−J ) as the set of positive (resp. negative) arcs

that are exclusively used by OD-pairs in J . For each OD-pair ` ∈ L, define r+` (resp. r−` )
to be the unique positive (resp. negative) route connecting the origin of ` to its destination.
Then a ∈ A+

J if a ∈ r+` for all ` ∈ J and a /∈ r+` for all ` ∈ L \ J . We proceed similarly for
A−J . We define moreover AJ = A+

J ∪A
−
J . In particular, A∅ is the set of arcs contained in no

route. The sets AJ form a partition of the set A of arcs of G.
Defining the positive direction as the counterclockwise one on Figure 1, we have

A+
{(o1,d1),(o2,d2)} = {(o2, v), (v, d1)}

A−{(o2,d2)} = {(o2, o1)}
A∅ = {(d1, v), (v, o2), (d2, w), (w, u), (u, o1)}.
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The sets AεJ enjoy three useful properties.

Claim 2. For any ε ∈ {−,+} and any ` ∈ L, there is at least one J ⊆ L containing ` such
that AεJ is nonempty.

Proof. Indeed, there is at least one arc of G on the route rε` . �

Claim 3. For any J ⊆ L, we have A+
J 6= ∅ if and only if A−L\J 6= ∅.

Proof. It is a consequence of Claim 1: if a+ ∈ A+
J , then a− ∈ A−L\J . �

Claim 4. For any distinct ` and `′ in L, there is at least one J such that |{`, `′} ∩ J | = 1
and AJ 6= ∅.

Proof. Indeed, let ` = (o, d) and `′ = (o′, d′) be two distinct OD-pairs of H. Since H is
simple, it contains no multiple edges and o 6= o′ or d 6= d′. It means that there is at least
one arc of G which is in exactly one of the four (o, d)- and (o′, d′)-routes. �

5.2. If each arc of G is contained in at most two routes, the uniqueness property
holds. For each user i, we define r+i (resp. r−i ) to be the unique positive (resp. negative)
route connecting the origin of i to its destination. For a strategy profile σ and a subset
J ⊆ L, we define f+

J and f−J to be:

f+
J =

∫
i∈

⋃
`∈J I`

1{σ(i)=r+i }dλ and f−J =

∫
i∈

⋃
`∈J I`

1{σ(i)=r−i }dλ.

The quantity f+
J (resp. f−J ) is thus the number of users i in a I` with ` ∈ J choosing a

positive (resp. negative) route. Note that the quantity f+
J + f−J =

∑
`∈J λ(I`) does not

depend on the strategy σ.
Assume that we have two distinct equilibria σ and σ̂. The flows induced by σ̂ are denoted

with a hat: f̂ . We define for any subset J ⊆ L:

(1) ∆J = f+
J − f̂

+
J = f̂−J − f

−
J .

By a slight abuse of notation, we let ∆` := ∆{`} for ` ∈ L.
For each user i, we define δ(i) = 1{σ(i)=r+i } − 1{σ̂(i)=r+i } = 1{σ̂(i)=r−i } − 1{σ(i)=r−i }. Then, the

following lemma holds.

Lemma 1. Let ` ∈ L and i ∈ I` be such that δ(i) 6= 0. Then exactly one of the following
alternatives holds.

• There is a J ⊆ L with ` ∈ J , AJ 6= ∅, and δ(i)∆J < 0.
• For all J ⊆ L with ` ∈ J and AJ 6= ∅, we have ∆J = 0.

We briefly explain the intuition behind this lemma. Assume that we move from σ to σ̂.
If a user i changes his chosen route, we are in one of the following two situations.

The first situation is when the cost of the new route decreases or the cost of the old route
increases. If the cost of a route decreases (resp. increases), there is at least one arc of this
route whose flow decreases (resp. increases). Since an arc belongs to some set AεJ , we get
the first point of Lemma 1.

The second situation is when the costs remain the same for both routes and both routes
have same costs, which implies the second point of Lemma 1.
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Proof of Lemma 1. As σ is an equilibrium, we have for each user i:

(2)
∑
a∈A

cia(fa)
(
1{a∈σ(i)} − 1{a∈σ̂(i)}

)
≤ 0.

For a ∈ A+
J , we have fa = f+

J and 1{a∈σ(i)} = 1{σ(i)=r+i }1{a∈r
+
i }

, and the same holds for

a ∈ A−J . By decomposing the sum (2), we obtain that

∑
J⊆L

 ∑
a∈A+

J ∩r
+
i

cia(f
+
J )δ(i)−

∑
a∈A−J ∩r

−
i

cia(f
−
J )δ(i)

 ≤ 0.

We can write a similar equation for the equilibrium σ̂. By summing them, we obtain

(3)

δ(i)
∑
J⊆L

 ∑
a∈A+

J ∩r
+
i

(cia(f
+
J )− cia(f̂+

J ))

−
∑

a∈A−J ∩r
−
i

(cia(f
−
J )− cia(f̂−J ))

 ≤ 0.

According to Equation (1) and using the fact that the maps cia are strictly increasing,

both
∑

a∈A+
J ∩r

+
i

(cia(f
+
J ) − cia(f̂

+
J )) and −

∑
a∈A−J ∩r

−
i

(cia(f
−
J ) − cia(f̂

−
J )) have the sign of ∆J .

Therefore, if all terms of the sum in Equation (3) are equal to 0, the second point of the
lemma holds. If at least one term of the sum is < 0, we get the first point. �

With the help of this lemma, we get one direction of Theorem 1.

Proposition 1. If each arc of G is contained in at most two routes, the uniqueness property
holds.

Proof. Note that the assumption of the proposition ensures that AJ = ∅ if |J | ≥ 3. We want
to prove that ∆J = 0 for all J ⊆ L such that AJ 6= ∅.

Assume for a contradiction that there is a J0 such that ∆J0 6= 0 and AJ0 6= ∅. Then there
is a `0 ∈ J0 such that ∆`0 6= 0. At least one user i0 ∈ I`0 is such that δ(i0)∆`0 > 0.

Suppose that the first case of Lemma 1 occurs. There exists `1 ∈ L, `1 6= `0 with
A{`0,`1} 6= ∅ and δ(i0)∆{`0,`1} < 0. Then, δ(i0)∆{`0,`1} = δ(i0)(∆`0 + ∆`1) < 0, which implies
that |∆`0| < |∆`1 |. It follows that ∆`1 6= 0, and taking i1 ∈ I`1 with δ(i1)∆`1 > 0, only
the first case of Lemma 1 can occur for i = i1 and ` = `1. Indeed, the second case would
imply that ∆{`0,`1} = 0 since A{`0,`1} 6= ∅. Repeating the same argument, we build an
infinite sequence (`0, `1, . . .) of elements of L such that, for each k ≥ 0, A{`k,`k+1} 6= ∅ and
|∆`k | < |∆`k+1

|. This last condition implies that the `k are distinct, which is impossible since
|L| is finite.

Thus, the second case of Lemma 1 occurs for `0, and hence ∆J0 = 0, which is in contradic-
tion with the starting assumption. On any arc, we have a total flow that remains the same
when changing from σ to σ̂. �

The only fact we use from the ring structure is that there are two sets A+ (positive arcs)
and A− (negative arcs) and that each user has exactly two possible strategies, each of them
being included in one of these two sets. We can state a result holding for more general
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nonatomic congestion game with user-specific cost functions. We omit the proof since the
one of Proposition 1 holds without any change.

Proposition 2. Consider a nonatomic congestion game with user-specific (strictly increas-
ing) cost functions. Let A+ and A− be two disjoint finite sets. Assume that every user i has
exactly two available strategies r+i and r−i with r+i ⊆ A+ and r−i ⊆ A−. Then, if all triples
of pairwise distinct strategies have an empty intersection, the uniqueness property holds.

5.3. If an arc of G is contained in at least three routes, a counterexample exists.
We give an explicit construction of multiple equilibrium flows when an arc is contained in at
least three routes.

5.3.1. If |L| = 3. In order to ease the notation, we use 1, 2, and 3 to denote the three
OD-pairs of H. We denote accordingly by I1, I2, and I3 the three sets of users associated to
each of these OD-pairs.

We can assume without loss of generality that A+
{1,2,3} 6= ∅, A{1,2} 6= ∅, and A{1,3} 6= ∅.

The first assumption can be done since there is an arc in three routes. For the other ones:
with the help of Claim 4, and if necessary of Claim 3, we get that there is at least a J of
cardinality two such that AJ 6= ∅. Again, using Claim 4, this time with the two elements of
J , and if necessary Claim 3, we get another J ′ of cardinality two such that AJ ′ 6= ∅.
Definition of the cost functions. We define three classes of users. Each of these classes is
attached to one of the OD-pairs. For a class k ∈ {1, 2, 3}, we define the cost functions ck,εJ ,
for all J ⊆ {1, 2, 3} and ε ∈ {−,+}. The cost function for a class k user i on an arc a of AεJ
is set to cia := ck,εJ . If the set AεJ is empty, the definition of ck,εJ is simply discarded.

Class 1:: We define this class to be the users of the set I1. We set λ(I1) = 1.5 and
choose J1 ⊆ {1, 2, 3} with 1 ∈ J1 such that A−J1 6= ∅ (with the help of Claim 2).



c1,+{1,2,3}(x) =
24x+ 7

|A+
{1,2,3}|

c1,+J (x) =
x

|A+
J |

for any J 6= {1, 2, 3} with 1 ∈ J

c1,−J1 (x) =
x+ 48

|A−J1 |
c1,−J (x) =

x

|A−J |
for any J 6= J1 with 1 ∈ J .

Class 2:: We define this class to be the users of the set I2. We set λ(I2) = 1. We have
assumed that A{1,2} 6= ∅. We distinguish hereafter the cases A+

{1,2} 6= ∅ and A−{1,2} 6= ∅
(which may hold simultaneously, in which case we make an arbitrary choice).
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If A+
{1,2} 6= ∅:: We choose J2 ⊆ {1, 2, 3} with 2 ∈ J2 such that A−J2 6= ∅ (with the

help of Claim 2).

c2,+{1,2}(x) =
25x

|A+
{1,2}|

c2,+J (x) =
x

|A+
J |

for any J 6= {1, 2} with 2 ∈ J

c2,−J2 (x) =
x+ 31

|A−J2|
c2,−J (x) =

x

|A−J |
for any J 6= J2 with 2 ∈ J .

If A−{1,2} 6= ∅::

c2,+{1,2,3}(x) =
x+ 26

|A+
{1,2,3}|

c2,+J (x) =
x

|A+
J |

for any J 6= {1, 2, 3} with 2 ∈ J

c2,−{1,2}(x) =
22x

|A−{1,2}|
c2,−J (x) =

x

|A−J |
for any J 6= {1, 2} with 2 ∈ J .

Class 3:: We define this class to be the users of the set I3. We set λ(I3) = 1. We have
assumed that A{1,3} 6= ∅. We distinguish hereafter the cases A+

{1,3} 6= ∅ and A−{1,3} 6= ∅
(which may hold simultaneously, in which case we make an arbitrary choice).

If A+
{1,3} 6= ∅:: We choose J3 ⊆ {1, 2, 3} with 3 ∈ J3 such that A−J3 6= ∅ (with the

help of Claim 2).

c3,+{1,3}(x) =
25x

|A+
{1,3}|

c3,+J (x) =
x

|A+
J |

for any J 6= {1, 3} with 3 ∈ J

c3,−J3 (x) =
x+ 31

|A−J3|
c3,−J (x) =

x

|A−J |
for any J 6= J3 with 3 ∈ J .

If A−{1,3} 6= ∅::

c3,+{1,2,3}(x) =
x+ 26

|A+
{1,2,3}|

c3,+J (x) =
x

|A+
J |

for any J 6= {1, 2, 3} with 3 ∈ J

c3,−{1,3}(x) =
22x

|A−{1,3}|
c3,−J (x) =

x

|A−J |
for any J 6= {1, 3} with 3 ∈ J .
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Definition of two strategy profiles. We define now two strategy profiles σ and σ̂, inducing
distinct flows on some arcs. We check in the next paragraph that each of them is an equi-
librium.

Strategy profile σ:: For all i ∈ I1, we set σ(i) = r+i and for all i ∈ I2 ∪ I3, we set
σ(i) = r−i . Then, the flows are the following:

J {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
f+
J 1.5 0 0 1.5 1.5 0 1.5
f−J 0 1 1 1 1 2 2

Strategy profile σ̂:: For all i ∈ I1, we set σ̂(i) = r−i and for all i ∈ I2 ∪ I3, we set
σ̂(i) = r+i . Then, the flows are the following:

J {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

f̂+
J 0 1 1 1 1 2 2

f̂−J 1.5 0 0 1.5 1.5 0 1.5

The strategy profiles are equilibria. We check now that σ and σ̂ are equilibria, by computing
the cost of each of the two possible routes for each class.

For a class k ∈ {1, 2, 3}, we denote with a slight abuse of notation the common positive
(resp. negative) route of the class k users by r+k (resp. r−k ).

Class 1:: We put in the following tables, the costs experienced by the class 1 users
on the various arcs of G for each of σ and σ̂. For a given J ⊆ {1, 2, 3} with 1 ∈ J
and ε ∈ {−,+}, we indicate the cost experienced by any class 1 user on the whole
collection of arcs in AεJ . For instance in σ, if J = {1, 2, 3}, then f+

J = 1.5, and the

cost of all arcs together in A+
J is |A+

J |c
1,+
J (1.5) = 43.

For the strategy profile σ, we get the following flows and costs on the arcs of G for
a class 1 user.

ε = + ε = −
J with 1 ∈ J {1,2,3} other J1 other

f εJ 1.5 1.5 0, 1, or 2 0, 1, or 2
Cost on AεJ 43 1.5 48, 49, or 50 0, 1, or 2

Using the fact that A+
{1,2,3} 6= ∅, the total cost of r+1 in σ for a class 1 user is equal to

43 + 1.5×
∣∣{J 6= {1, 2, 3} such that A+

J 6= ∅ and 1 ∈ J}
∣∣ .

Since there are at most three sets J 6= {1, 2, 3} such that A+
J 6= ∅ and 1 ∈ J , we get

that the total cost of r+1 lies in [43; 47.5]. Similarly, using the fact that A−J1 6= ∅, we

get that the total cost of r−1 for a class 1 user lies in [48; 54]. Therefore the users of
class 1 are not incitated to change their choice in σ.

For the strategy profile σ̂, we get the following flows and costs.

10



ε = + ε = −
J with 1 ∈ J {1,2,3} other J1 other

f̂ εJ 2 0 or 1 1.5 1.5
Cost on AεJ 55 0 or 1 49.5 1.5

The total cost of r+1 for a class 1 user lies in [55; 58] and the total cost of r−1 for a
class 1 user lies in [49.5; 54]. Therefore the users of class 1 are not incitated to change
their choice in σ̂.

Class 2:: If A+
{1,2} 6= ∅:: We put in the following tables, the costs experienced by the

class 2 users on the various arcs of G for each of σ and σ̂.

For the strategy profile σ:

ε = + ε = −
J with 2 ∈ J {1,2} other J2 other

f εJ 1.5 0 or 1.5 1 or 2 1 or 2
Cost on AεJ 37.5 1.5 32 or 33 1 or 2

The total cost of r+2 for a class 2 user is precisely 39 (we use the fact that
A+
{1,2,3} 6= ∅) and the total cost of r−2 lies in [32; 38]. The users of class 2 are not

incited to change their choice in σ.

For the strategy profile σ̂:

ε = + ε = −
J with 2 ∈ J {1,2} other J2 other

f̂ εJ 1 1 or 2 0 or 1.5 0 or 1.5
Cost on AεJ 25 1 or 2 31 or 32.5 0 or 1.5

The total cost of r+2 for a class 2 user lies in [27; 30] and the total cost of r−2 lies
in [31; 34]. The users of class 2 are not incited to change their choice in σ̂.

If A−{1,2} 6= ∅:: We put in the following tables, the costs experienced by the class 2

users on the various arcs of G for each of σ and σ̂.

For the strategy profile σ:

ε = + ε = −
J with 2 ∈ J {1,2,3} other {1, 2} other

f εJ 1.5 0 or 1.5 1 1 or 2
Cost on AεJ 27.5 0 or 1.5 22 1 or 2

The total cost of r+2 for a class 2 user lies in [27.5; 29] and the total cost of r−2
lies in [22; 27]. The users of class 2 are not incited to change their choice in σ.

For the strategy profile σ̂:

11



ε = + ε = −
J with 2 ∈ J {1,2,3} other {1, 2} other

f̂ εJ 2 1 or 2 1.5 0 or 1.5
Cost on AεJ 28 1 or 2 33 0 or 1.5

The total cost of r+2 for a class 2 user lies in [28; 32] and the total cost of r−2 lies
in [33; 34.5]. The users of class 2 are not incited to change their choice in σ̂.

Class 3:: The symmetry of the cost functions for classes 2 and 3 gives the same tables
for class 3 as for class 2, by substituting {1, 3} to {1, 2}. Therefore, we get the same
conclusions: neither in σ, nor in σ̂, the class 3 users are incited to change their choice.

Therefore, σ and σ̂ are equilibria and induce distinct flows. It proves that the uniqueness
property does not hold. It remains to check the case when |L| > 3.

Remark 1. A classical question when there are several equilibria is whether one of them
dominates the others. An equilibrium is said to dominate another one if it is preferable for
all users. In this construction, no equilibrium dominates the other, except when A+

{1,2,3} 6= ∅,
A−{1,2} 6= ∅, and A−{1,3} 6= ∅ where σ dominates σ̂.

5.3.2. If |L| > 3. Denote 1, 2, and 3 three OD-pairs of H = (T, L) giving three routes
containing the same arc of G. For these three arcs of H, we make the same construction as
above, in the case |L| = 3. For the other ` ∈ L, we set I` = ∅ to get the desired conclusion.

However, note that we can also get multiple equilibrium flows, while requiring I` 6= ∅ for
all ` ∈ L. For ` /∈ {1, 2, 3}, we use a fourth class, whose costs are very small on all positive
arcs of G and very large on all negative arcs of G, and whose measure is a small positive
quantity δ. Each user of this class chooses always a positive route, whatever the other users
do. For δ small enough, the users of this class have no impact on the choices of the users of
the classes 1, 2, and 3, as the difference of cost between the routes is always bounded below
by 0.5.

6. When the supply graph is a ring having each arc in at most two routes

In this section, we provide a further combinatorial analysis of the characterization of the
uniqueness property for ring graphs stated in Theorem 1.

6.1. A corollary. We first state a corollary of Theorem 1.

Corollary 1. Suppose that the supply graph is a cycle.

• If there are at most two OD-pairs, i.e. |L| ≤ 2, then the uniqueness property holds.
• If the uniqueness property holds, then the number of OD-pairs is at most 4, i.e.
|L| ≤ 4.

The first point of Corollary 1 is straightforward. The second point is a direct consequence
of Claim 1: if |L| ≥ 5, then there is necessarily an arc of G in three routes.
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6.2. How to compute in one round trip the maximal number of routes containing
an arc of G. In an arc (u, v), vertex u is called the tail and vertex v is called the head.
The algorithm starts at an arbitrary vertex of H and makes a round trip in an arbitrary
direction, while maintaining a triple (list, min, max). In this triple, list is a set of arcs
of H whose tail has already been encountered but whose head has not yet been encountered.
At the beginning, list is empty and min and max are both zero. When the algorithm en-
counters a vertex v, it proceeds to three operations.

First operation. It computes the number of arcs in δ−H(v) (arcs of H having v as head)
not in list. The corresponding routes were “forgotten”, since the tail is “before” the starting
vertex of the algorithm. To take them into account, this number is added to the values min
and max.

Second operation. All arcs of list being also in δ−H(v) are removed from list.
Third operation. All arcs in δ+H(v) (arcs of H having v as tail) are added to list. The

value of min is updated to the minimum between the previous value of min and the size of
list, and similarly max is updated to the maximum between the previous value of max and
the size of list.

The algorithm stops after one round trip. At the end, the values min and max are respec-
tively the minimal and maximal number of routes containing an arc in the direction chosen.
According to Claim 1, max(|L| − min, max) is the maximal number of routes containing an
arc of G.

Note that with a second round trip, this algorithm can specify the routes containing a
given arc, by scanning the content of list.

6.3. Explicit description of the networks having the uniqueness property when
the supply graph is a cycle.

Proposition 3. Let the supply graph G be a cycle. Then, for any demand digraph H, the
pair (G,H) is such that each arc of G is in at most two routes if and only if the mixed graph
G+H is homeomorphic to a minor of one of the nine mixed graphs of Figures 2–5.

Combined with Theorem 1, this proposition allows to describe explicitly all pairs (G,H)
having the uniqueness property, when G is a cycle.

Proof. One direction is straightforward. Let us prove the other direction, namely that, if
each arc of G is in at most two routes, then G + H is homeomorphic to a minor of one of
the nine mixed graphs. We can assume that V = T . Moreover, if each arc is in at most
two routes, Claim 1 implies that |L| ∈ {1, 2, 3, 4}, as already noted in the proof of Corollary 1.

If |L| ∈ {1, 2}, there is nothing to prove: all possible mixed graphs with |L| = 1 or |L| = 2
are homeomorphic to a minor of the graphs of Figures 2 and 3.

If |L| = 3, we can first assume that L contains two disjoint arcs that are crossing in the
plane embedding. By trying all possibilities for the third arc, we get that the only possible
configuration is the right one on Figure 4 and the ones obtained from it by edge contraction.
Second, we assume that there are no “crossing” arcs. The three heads of the arcs cannot
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Figure 2. All rings with |L| = 1 (i.e. one OD-pair) having the uniqueness
property are homeomorphic to this graph

Figure 3. All rings with |L| = 2 (i.e. two OD-pairs) having the uniqueness
property are homeomorphic to one or to minors of these graphs

be consecutive on the cycle otherwise we would have an arc of G in three routes. Again by
enumerating all possibilities, we get that the only possible configuration is the left one on
Figure 4 and the ones obtained from it by edge contraction.

If |L| = 4, Claim 3 shows that each arc of G belongs to exactly two routes. It implies that,
in H, the indegree of any ` ∈ L is equal to its outdegree. There are therefore circuits in H.
It is straightforward to check that it is impossible to have a length 3 circuit. It remains to
enumerate the possible cases for length 2 and length 4 circuits to get that the only possible
configurations are the ones of Figure 5 and the common one obtained from them by edge
contraction. �

We can also describe the rings having the uniqueness property by minor exclusion, similarly
as in Milchtaich (2005).

Proposition 4. Let the supply graph G be a cycle. Then, for any demand digraph H, the
pair (G,H) is such that there exists an arc of G belonging to at least three routes if and only
if G+H has one of the nine mixed graphs of Figure 10 as a minor.

Proof (sketched). Suppose that one of the nine mixed graphs of Figure 10 is a minor of the
mixed graph G+H. The construction of Section 5.3.1 shows that we can build two distinct
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Figure 4. All rings with |L| = 3 (i.e. three OD-pairs) having the uniqueness
property are homeomorphic to one or to minors of these graphs

Figure 5. All rings with |L| = 4 (i.e. four OD-pairs) having the uniqueness
property are homeomorphic to one or to minors of these graphs

equilibria for this minor where all users of a given class have the same strategy. Then, we
can extend this counterexample to the graph G+H, see Corollary 2 in Section 7.1 holding
for more general graphs.

To prove that if an arc of G belongs to at least three routes, then one of the nine mixed
graphs of Figure 10 is a minor of G+H, we proceed to an explicit, but tedious, enumeration.
We enumerate all possible mixed graphs with |V | = 6 and |L| = 3 such that each vertex
is the tail or the head of exactly one arc in L. Then, we try all possible sequences of edge
contractions leading to mixed graphs satisfying two properties: the demand graph is simple
and an arc is in three routes. We keep the mixed graphs such that any additional edge
contraction leads to a violation of these properties. The details are omitted. �

In particular, the construction in Section 5.3.1 cannot be simplified by exhibiting a coun-
terexample for each mixed graph of Figure 10, since the proof of Proposition 4 needs this
tedious enumeration.

7. Discussion
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7.1. Results for general graphs. For the sake of simplicity, given a supply graph G and
a demand digraph H, we say that the mixed graph G + H has the uniqueness property if
the pair (G,H) has it.

Using the results of Milchtaich (2005) and Theorem 1, we can derive results for more
general graphs. Milchtaich suggests to add a fictitious origin, linked to all origins, and
similarly for the destinations. If the new graph has the uniqueness property, the original one
has it as well. However, this approach cannot be used to prove that a graph does not have
the uniqueness property. For instance this method allows us to prove that the graph on the
left in Figure 6 has the uniqueness property, but fails to settle the status of the graph on
the right. Indeed, the new graph does not have the uniqueness property, using the result of
Milchtaich (2005), but the original one has it, using Theorem 1.

A way for proving that a pair (G,H) does not have the uniqueness property consists in
using subgraphs or minors as obstructions to uniqueness property. If G+H has a subgraph
without the uniqueness property, then it does not have the property either since we can set
prohibitive high costs on the arcs outside the subgraph. However, it is not clear whether
having a minor without uniqueness property is an obstruction for having the uniqueness
property. Indeed, the cost functions are strictly increasing and we do not see how in general
a counterexample to uniqueness at the level of a minor can be extended at the level of the
network itself. Yet, we can settle two specific cases.

The first case is when the contractions involve only bridges of G (a bridge is an edge whose
deletion disconnects the graph). In this case, if the minor does not have the uniqueness
property, the pair (G,H) does not have it either. Checking this property is easy.

A second case is formalized in the following proposition. An equilibrium is strict if each
user as a unique best reply.

Proposition 5. Let G′ and H ′ be respectively a supply and a demand graphs such that
G′ + H ′ is a minor of G + H. If there are counterexamples of uniqueness property for
(G′, H ′) involving strict equilibria, then (G,H) does not have the uniqueness property.

Proof. We start with a counterexample for (G′, H ′). We de-contract an edge. We assign to
this edge a small enough cost function so that the route followed by any user remains a strict
best reply for him, whether the route contains the edge or not. Therefore, we can de-contract
all edges and get counterexamples to uniqueness property for subgraphs of G+H. As noted
above, it allows to conclude that (G,H) does not have the uniqueness property. �

Remark 2. Note that Proposition 5 remains valid if we restrict the set of cost functions, as
soon as this set is a cone. Indeed, we need to choose both functions sufficiently small and
functions with prohibitive high costs.

Since the construction of Section 5.3.1 provides strict equilibria, we get the following
corollary.

Corollary 2. Any mixed graph containing one of the graphs of Figure 10 as a minor does
not have the uniqueness property.

Let us now give an example using some of these conditions. According to Corollary 2 or
to the “bridge-contraction” condition above, the mixed graph of the Figure 7 does not have
the uniqueness property. Indeed, a ring with an arc in three routes is a minor of it. We can
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Figure 6. Adding a fictitious origin and a fictitious destination settles the
case of the left graph but not the case of the right graph

Figure 7. Any graph having this one as a subgraph does not have the unique-
ness property

Figure 8. A graph for which neither Theorem 1 nor Milchtaich (2005) can
be used to prove or disprove the uniqueness property

conclude that any network having the mixed graph of the Figure 7 as a subgraph (or as a
minor) does not have the uniqueness property.

However, there are still graphs for which none of the considerations above allows to con-
clude, see for example the graph of Figure 8.

7.2. Possible extensions. We assume in this work that each edge in the graph can be
traversed in both directions. When the supply graph is a cycle, this condition is not re-
strictive, since allowing one-way edges is equivalent to consider a game with fewer OD-pairs
and modified cost functions. Indeed, if we delete for example an arc a, every user whose
OD-pair has a route going through a has no choice and has to take the route in the other
direction. Hence we can remove all such users and the associated OD-pairs, and modify the
cost functions by adding the (fixed) congestion due to them.

17



Another way to extend the model is to add restrictions on the cost functions. As already
noted in the Introduction, Altman and Kameda Altman and Kameda (2001) have shown that
if the cost functions are equal for each user up to an additive constant, then the uniqueness
property holds for every graph. We can try to extend this set of cost functions. The
construction of Section 5.3.1 is made with affine cost functions, and can be extended with
strictly convex cost functions, by adding εx2 at each cost functions, for ε small enough.
Using Proposition 5 or Remark 2, we can build two different equilibria with affine or strictly
convex cost functions for any mixed graph having one of the graphs of Figure 10 as a minor.
Then, to ensure the uniqueness property for a larger class of graphs, we have to exclude both
affine and strictly convex functions from the set of possible cost functions.

7.3. Equivalence of equilibria. Let us assume that we have a finite set K of classes. We
denote by Ik` the set of class k users in I` and we assume that all Ik` are measurable.

Let σ and σ̂ be two Nash equilibria. We define for an ` ∈ L, a class k, and an arc a the
quantity

fk`,a = λ{i ∈ Ik` : a ∈ σ(i)},
and

f̂k`,a = λ{i ∈ Ik` : a ∈ σ̂(i)}.
Following Milchtaich (2005), we say that the two equilibria are equivalent if not only the
flow on each arc is the same but the contribution of each pair and each class to the flow
on each arc is the same, i.e. fk`,a = f̂k`,a for any arc a, OD-pair `, and class k. Milchtaich
proved that a two-terminal network has the uniqueness property if and only if every two
Nash equilibria are equivalent for generically all cost functions (Theorem 5.1 in Milchtaich
(2005)). A property is considered generic if it holds on an open dense set. “Open” and
“dense” are understood according to the following metric on the cost functions.

Define the set G of assignments of continuous and strictly increasing cost functions (cia)a∈A,i∈I ,
with cia : R+ → R+ such that cia = ci

′
a whenever i and i′ belong to the same class.

Given a particular element of G, the function i 7→ cia(x) is measurable for all a ∈ A
and x ∈ R+. Every element of G has therefore a nonempty set of Nash equilibria. Note
that the set G depends on the partition of the population in classes. We can define the
distance between two elements (cia)a∈A,i∈I and (c̃ia)a∈A,i∈I of G by max |cia(x)− c̃ia(x)|, where
the maximum is taken over all a ∈ A, i ∈ I and x ∈ R+. This defines a metric for G.

Theorem 2. Assume that the supply graph G is a cycle. Then, for any demand digraph H,
the following assertions are equivalent:

(i) (G,H) has the uniqueness property.
(ii) For every partition of the population into classes, there is an open dense set in
G such that for any assignment of cost functions that belongs to this set, every two
equilibria are equivalent.

Proof (sketched). Up to slight adaptations, the proof is the same as the one of Theorem 5.1
in Milchtaich (2005).

If (i) does not hold, we can use the construction of Section 5.3 to build two distinct equi-
libria for an assignment in G. These equilibria are such that the gap between the costs of
the two routes available to any user is uniformly bounded from below by a strictly positive
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number. The equilibria are said to be strict. Thus, in a ball centered on this assignment
with radius ρ > 0 small enough, we still have two equilibria with distinct flows, which cannot
be equivalent. Therefore (ii) does not hold either.

If (i) holds, three claims (Claims 1, 2, and 4 of Milchtaich (2005)) lead to the desired
conclusion, namely that (ii) holds. These three claims are now sketched. Their original
proof does not need to be adapted, except for the second one, which is the only moment
where the topology of the network is used. In our case the second claim gets a simpler proof.

For an assignment in G, we denote φk` the number of minimal-cost routes for users in Ik` ,
which is in our case 1 or 2. Since the uniqueness property is assumed to hold, this number
is fully determined by the assignment in G. Define the mean number of minimal-cost routes
by

φ =
∑

k∈K,`∈L

λ(Ik` )φk` .

The first claim states that the map by φ : G → R is upper semicontinuous and has finite
range.

The second claim states that for every assignment of cost functions in G that is a point of
continuity of φ, all Nash equilibria are equivalent. To prove this second claim, we consider
two Nash equilibria assumed to be nonequivalent σ and σ̂. Using these two equilibria, a
new one is built, σ̄, such that for some ` ∈ L, some class k and some `-route r1 we have
fk`,r1 > 0 and f̂k`,r1 > 0, but f̄k`,r1 = 0. As the two `-routes do not share any arc (Claim 1 of

Section 5.1), we have fk`,a > 0, f̂k`,a > 0, and f̄k`,a = 0 for any a in r1.
The second claim is achieved by choosing any a1 in r1 and by adding a small value δ > 0

to the cost function cia1 for i ∈ Ik` , while keeping the others unchanged. It can be checked
that for δ small enough, the set of minimal-cost routes is the same as for δ = 0, minus the
route r1 for users in Ik` . The map φ has therefore a discontinuity of at least λ(Ik` ) at the
original assignment of cost functions.

Finally, the third claim allows to conclude: in every metric space, the set of all points
of continuity of a real-valued upper semicontinuous function with finite range is open and
dense. �

7.4. The strong uniqueness property. A supply graph is said to have the strong unique-
ness property if for any choice of the OD-pairs, the uniqueness property holds. In other
words, G = (V,E) has the strong uniqueness property if, for any digraph H = (T, L) with
T ⊆ V , the pair (G,H) has the uniqueness property.

Theorem 3. A graph has the strong uniqueness property if and only if no cycle is of length
3 or more.

Alternatively, this theorem states that a graph has the strong uniqueness property if and
only it is obtained by taking a forest (a graph without cycles) and by replacing some edges
by parallel edges.

Before proving this theorem, let us state a preliminary result allowing to extend the
strong uniqueness property whenever one “glues” together two supply graphs on a vertex.
This latter operation is called a 1-sum in the usual terminology of graphs.

Lemma 2. The 1-sum operation preserves the strong uniqueness property.
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Proof. Let G = (V,E) and G′ = (V ′, E ′) be two graphs, and let H = (T, L) and H ′ = (T ′, L′)
two directed graphs with T ⊆ V and T ′ ⊆ V ′, such that (G,H) and (G′, H ′) have the
uniqueness property. Assume that (G,H) and (G′, H ′) have a unique common vertex v, i.e.
V ∩ V ′ = T ∩ T ′ = {v}, and define (G′′, H ′′) as the 1-sum of them: G′′ = (V ∪ V ′, E ∪ E ′)
and H ′′ = (T ∪ T ′, L ∪ L′ ∪ L′′) with L′′ := {(u,w) : (u, v) ∈ L and (v, w) ∈ L′}.

Assume that we have an equilibrium on (G′′, H ′′) for some cost functions and some parti-
tion (I(o,d))(o,d)∈L∪L′∪L′′ of the population. The restriction of this equilibrium on (G,H) is an
equilibrium for (G,H) with the same cost functions and with a partition of the population
obtained as follows.

When o and d are both in H, we keep the same I(o,d). Moreover, we complete this collection

of subsets. For each vertex o of H, we define Ĩ(o,v) to be the union of all I(o,w) with w a

vertex of H ′. For each vertex d of H, we define Ĩ(v,d) to be the union of all I(w,d) with w a
vertex of H ′. We get the partition of the population I we are looking for. The restriction of
the equilibrium on (G,H) is an equilibrium since for each user, the restriction of a minimum
cost route of (G′′, H ′′) is a minimum cost route of (G,H).

The same property holds for (G′, H ′). Therefore, if we had two equilibria inducing two
distinct flows on some arc a of the directed version of G′′, we would get equilibria inducing two
distinct flows on the arc a, which is in the directed version of G or G′. It is in contradiction
with the assumption on G and G′. �

Proof of Theorem 3. Suppose that there is a cycle C of length 3 in G with vertices u, v, and
w. Define H as the digraph with arcs (u, v), (u,w), and (v, w). The mixed graph C + H
is then the top left one of Figure 10. Corollary 2 implies that (G,H) does not have the
uniqueness property, and thus that G does not have the strong uniqueness property.

Conversely, suppose that there is no cycle of length 3 or more. The graph G can then
be obtained by successive 1-sums of a graph made of two vertices and parallel edges. Since
a graph with two vertices and parallel edges has the uniqueness property for any demand
digraph (see Konishi (2004) or Milchtaich (2005)), we can conclude with Lemma 2 that G
has the strong uniqueness property. �

7.5. When there are only two classes. When exhibiting multiple equilibrium flows in
the proof of Theorem 1, we need to define three classes. The same remark holds for the
characterization of the two-terminal networks having the uniqueness property in the article
by Milchtaich (2005): all cases of non-uniqueness are built with three classes. We may
wonder whether there are also multiple equilibrium flows with only two classes of users. The
answer is yes as shown by the following examples. The first example is in the framework of
the ring network; according to Theorem 1, such an example requires at least three OD-pairs.
Since it will contain exactly three OD-pairs, it is in a sense a minimum example for ring
network. The second example involves a two-terminal network – K4, the complete graph on
four vertices – as in Bhaskar et al. (2009). They used it in order to answer a question by
Cominetti et al. (2009) about the uniqueness of equilibrium in atomic player routing games.
However, their cost functions do not suit our framework and we design specific ones.

7.5.1. Multiple equilibrium flows on the ring with only two classes. Consider the graph on
top on the left of Figure 10. Define the two classes 1 and 2, with the following population
measures.
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` ∈ L (u,w) (u, v) (w, v)

λ(I1` ) 0 1.5 0
λ(I2` ) 1 0 1

Cost functions are:

Arc (u,w) (w, v) (v, u) (w, u) (u, v) (v, w)

Class 1 x x+ 48 24x+ 7
Class 2 22x 22x x x+ 26 x

For a given class, arcs not used in any route lead to blanks in this table.
We define the strategy profile σ (resp. σ̂) such that all users of the class 1 select a negative

(resp. positive) route and all users of the class 2 select a positive (resp. negative) route. We
get the following (distinct) flows.

Arc a (u,w) (w, v) (v, u) (w, u) (u, v) (v, w)

fa 1 1 0 0 1.5 0

f̂a 1.5 1.5 0 1 2 1

We check that σ is an equilibrium.
For users in I1(u,v), the cost of the positive route is 50 and of the negative 43. For users in

I2(u,w) and in I2(w,v), the cost of the positive route is 22 and of the negative 27.5. No user is
incited to change its route choice.

We check that σ̂ is an equilibrium.
For users in I1(u,v), the cost of the positive route is 51 and of the negative 55. For users

in I2(u,w) and in I2(w,v), the cost of the positive route is 33 and of the negative 29. No user is
incited to change its route choice.

Remark 3. Actually, when we specialize the construction of Section 5.3 to the graph on top
on the left of Figure 10, we can merge classes 2 and 3 in a unique class 2 leading to the
example above. More generally, using the symmetry of the cost functions for class 2 and class
3 users, we can merge the two classes for any graph such that Aε{1,2} 6= ∅ and Aε{1,3} 6= ∅, with

ε ∈ {−,+} in order to get other ring examples with two classes and multiple equilibrium
flows.

7.5.2. Multiple equilibrium flows for a two-terminal network with only two classes. Consider
the two-terminal network K4 of Figure 9.

Suppose that we have two classes of users I1 and I2, with λ(I1) = 3 and λ(I2) = 4, with
the following cost functions on each arc, where “∞” means a prohibitively high cost function.

Arc (o, u) (o, v) (u, v) (v, u) (u, d) (v, d) (o, d)

Class 1 x “∞” x+ 18 “∞” “∞” x 7x
Class 2 5x x “∞” “∞” x 5x x+ 10

Users of class 1 have only the choice between the two routes ouvd and od, while users of
class 2 can choose between the three routes oud, ovd, and od.
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Figure 9. A two-terminal network for which multiple equilibrium flows exist
with only two classes

The strategy profile σ is defined such that all class 1 users select the route ouvd and all
class 2 users select the route od.

The strategy profile σ̂ is defined such that all class 1 users select the route od, half of class
2 users select the route oud, and the other half select the route ovd. We get the following
(distinct) flows.

Arc a (o, u) (o, v) (u, v) (v, u) (u, d) (v, d) (o, d)

fa 3 0 3 0 0 3 4

f̂a 2 2 0 0 2 2 3

We check that σ is an equilibrium.
For users of the class 1, the cost of ouvd is 27, and the cost of od is 28. For users of the

class 2, the cost of oud is 15, the cost of ovd is 15, and the cost of od is 14. No user is incited
to change its route choice.

We check that σ̂ is an equilibrium.
For users of the class 1, the cost of ouvd is 22, and the cost of od is 21. For users of the

class 2, the cost of oud is 12, the cost of ovd is 12, and the cost of od is 13. No user is incited
to change its route choice.
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Appendix: Minimal ring graphs without the uniqueness property

Figure 10. Any ring without the uniqueness property has one of these graphs
as a minor
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