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Abstract
In 2002, De Loera, Peterson and Su proved the following conjecture of Atanassov:

let T be a triangulation of a d-dimensional polytope P with n vertices v1, v2, . . . , vn;
label the vertices of T by 1, 2, ..., n in such a way that a vertex of T belonging to the
interior of a face F of P can only be labelled by j if vj is on F ; then there are at least
n − d simplices labelled with d + 1 di�erent labels. We prove a generalization of this
theorem which re�nes this lower bound and which is valid for a larger class of objects.

Key Words: chain map; fully-labelled simplex; labelling; polytopal body; polytope;
Sperner's lemma; triangulation.

1 Introduction
1.1 Topic and goal
Sperner's lemma is a well-known combinatorial reformulation of Brouwer's �xed-point the-
orem. In 1996, Atanassov [1] conjectured a generalization of Sperner's lemma for a triangu-
lation of a convex polytope P . By triangulation, we mean a geometric simplicial complex
homeomorphic to P (the vertex set is not necessarily restricted to the vertex set of P ).
The conjecture is the following: if each vertex of a d-dimensional convex polytope P gets
an unique label of {1, . . . , n}, where n is the number of vertices of P , and if each other
vertex of the triangulation gets a label of one of the vertices of the minimal face of P it
belongs to (providing a Sperner labelling of the triangulation), then there are at least n− d
fully-labelled d-simplices. By fully-labelled simplex, we mean a simplex whose labels are all
distinct. Sperner's lemma is a special case of Atanassov's conjecture with n = d + 1.

In 2002, De Loera, Peterson and Su [2] gave two proofs of this conjecture: one with
a geometric approach giving a lower bound of the smallest cover of a polytope; the other
constructive using a path-following argument.

The purpose of our paper is to give a purely combinatorial proof of Atanassov's conjec-
ture, which re�nes the lower bound, and which is valid for a larger class of objects. We call
the elements of this class polytopal bodies. Polytopal bodies do not seem to have been de�ned
before the present paper. Roughly speaking, a d-dimensional polytopal body is a pure d-
dimensional polytopal complex P embedded in Rd such that (i) the boundary complex B(P)
of P (see the de�nition later) is strongly connected and (ii) each polytope of B(P) having
dimension d − 2 belongs to exactly two (d − 1)-polytopes of B(P). No assumption about
convexity or simple connectivity of the boundary is needed. According to this de�nition, if
P is a polytope, the set of all its faces L(P ) (including P ) is a polytopal body.

Let P be a polytopal body such that B(P) has n vertices. Let T be a triangulation of
the underlying space ||P|| inducing triangulations of the polytopes of B(P). Notice that we
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have in particular that the vertex set of B(P) is contained in the vertex set of T. If we label
the vertices of T in such a way that each vertex of B(P) gets a unique label in {1, 2, . . . , n},
each vertex of T in the interior of ||P|| gets any label in {1, 2, . . . , n} and each other vertex
of T gets a label of one of the minimal polytope (ordered by inclusion) of B(P) it belongs
to, then we get a Sperner labelling of T. When the polytopal body is the set of all faces of
a polytope, the de�nition coincides with the one given above.

We state here the main theorem of the present paper:

Theorem 1 Let P be a d-dimensional polytopal body whose boundary complex B(P) has n
vertices v1, . . . , vn. Let T be a triangulation of the underlying space ||P|| of P, inducing a
triangulation of each of the polytopes of B(P). Any Sperner labelling of T contains at least
n+

⌈
mini degB(P)(vi)

d

⌉
−d−1 fully-labelled d-simplices such that any pair of these fully-labelled

simplices receives two di�erent labellings,

where the degree of a vertex v of a polytopal complex C, denoted by degC(v), is the number
of edges of C which v belongs to.

As mini degB(P)(vi) ≥ d, we �nd the lower bound found in [2] for polytopes. Our bound
is a real improvement: for the cyclic polytope C(n) with n vertices in dimension 4 (see for
instance p.15 of the book [5]), which is such that G = (V (C(n)), E(C(n))) = Kn (complete
graph of n vertices), the lower bound given by Theorem 1 is n+

⌈
n−1

4

⌉−4−1 ∼ 5
4n (n →∞).

A lower bound that is asymptotic to ∼ n is obtained with the polytopal generalization of
Sperner's lemma of [2].

1.2 Plan
The paper is divided into four parts:

In the �rst one (Section 2), we �x the basic notations and tools we use in the rest of the
paper. We de�ne in particular the notions of simplices, simplicial complexes, chains, chain
maps. As we use GF(2) coe�cients, a k-chain is seen as a formal sum (or, simply, a set) of
k-simplices of a simplicial complex. We de�ne also the notion of strong connectivity for a
chain, and prove a lower bound for the number of simplices in a strongly connected chain:
Proposition 1.

In the second one (Section 3), we de�ne precisely what are a polytopal body P, a trian-
gulation of a polytopal body and the Sperner labelling of such a triangulation.

In the third one (Section 4), we de�ne spread chains and quasi-triangulations. A spread
chain is a family of d-dimensional simplices whose vertices are vertices of the boundary
complex of the d-dimensional polytopal body. A quasi-triangulation is a spread chain for
which the parity of the number of simplices containing any generic point is odd if and only
if the point is in the underlying space ||P||. Thus, a quasi-triangulation is a kind of binary
cover in the sense de�ned in a paper of R. T. Firla and G. M. Ziegler ([3]). Conversely, a
binary cover is not necessarily a quasi-triangulation, as shown in Section 4. We prove then
properties of quasi-triangulations.

In the last part (Section 5), we prove Theorem 1 for the triangulations of d-dimensional
polytopal body using properties of quasi-triangulations proved in Section 4 and using Propo-
sition 1.

1.3 Outline of the proof
Let P be a d-dimensional polytopal body and let T be a triangulation of its underlying space
||P|| inducing triangulations of the polytopes of the boundary B(P). A Sperner labelling of
T induces a simplicial map going from T (which is a simplicial complex) to the (abstract)
simplicial complex whose simplices are k-subsets of the vertex set of B(P), k ≤ d + 1. This
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map induces itself a chain map. Here is the link with the fully-labelled simplices: a k-simplex
in the image of this chain map corresponds to a fully-labelled simplex in T.

By induction, we prove that the image of the formal sum of all d-simplices of T by the
chain map is a quasi-triangulation of P. We apply then Proposition 1 to one of the strongly
connected components of the quasi-triangulation and obtain a lower bound for the number of
simplices in the component, and thus for the number of simplices of the quasi-triangulation,
and �nally for the number of fully-labelled simplices of T.

2 Tools and Notation
We denote by |A| the cardinality of A. dxe is the smallest integer bigger than or equal to
a real x. For a �nite set Λ,

(
Λ
k

)
is the set of k-subsets of Λ and

(
Λ
≤k

)
the set of subsets of

Λ whose cardinality is less or equal to k. Given a sequence a0, . . . , ai, . . . , ak, the sequence
a0, . . . , âj , . . . , ak is the same sequence with the aj missing.

The set of proper faces (∅ is included) of a polytope P is denoted by F(P ). The set of
all faces of P is denoted by L(P ). We have then L(P ) = {P} ∪ F(P ).

For a set of points U , we denote by conv(U) the convex hull of the points of U .
For a compact set C of a topological space X, ∂C denotes the boundary of C, which is

the intersection of the closure of C and the closure of the complement of C in X.

2.1 Simplices, complexes and chains
We give here a short introduction to the notions of simplices, complexes and chains. For
a more complete study of this subject, see the book of Munkres [4]. We work with chains
with coe�cients in GF(2), thus we will not introduce the notion of an oriented simplex.

2.1.1 Simplices and simplicial complexes
An (abstract) simplicial complex is a collection K of subsets of a �nite ground set with
the property that σ′ ⊆ σ ∈ K implies σ′ ∈ K. We de�ne the dimension of K: dim(K) =
max{|σ| − 1 : σ ∈ K}. The sets in K are called (abstract) simplices and the dimension of a
simplex σ is dim(σ) = |σ| − 1. If dim(σ) = d, we say that σ is a d-simplex. ∅ has dimension
−1.

The elements of K (resp. the subsets of a simplex σ) are called faces. A p-face of K is
a face of K of dimension p. 0-faces are called vertices, and 1-faces edges. The set of the
formers is denoted by V (K), and the set of the latters by E(K). ∅ is the only −1-face of K.
For a p-simplex σ, the facets are the simplices σ′ ⊆ σ of dimension p− 1.

For a �nite set Λ,
(

Λ
≤k+1

)
is an example of k-dimensional simplicial complex.

Let K and L be two abstract simplicial complexes. A simplicial map of K into L is
a mapping f : V (K) → V (L) that maps simplices to simplices, i.e., such that f(σ) ∈ L
whenever σ ∈ K.

2.1.2 Geometric simplicial complexes, polytopal complexes and triangulations
A polytopal complex C is a collection of polytopes such that (i) ∅ is in C, (ii) for any P ∈ C,
all faces of P are in C, (iii) the intersection of any two polytopes in C is a face of both.

For instance, if P is a polytope, L(P ) is a polytopal complex.
The polytopes in C are also called the faces of C. The maximal faces are called the facets.

The vertices (resp. the edges) of C, denoted by V (C) (resp. E(C)), are the 0-dimensional
(resp. 1-dimensional) faces of C. The degree of a vertex v of C, denoted by degC(v), is the
number of edges of C it belongs to.
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The dimension of C, denoted by dim C, is the largest dimension of a polytope in C. By
||C||, we mean the union of all polytopes of C, which we call the underlying space of C.

For instance, if P is a polytope, ||L(P )|| = P .
If all the maximal polytopes (by inclusion) of C have the same dimension, C is said to

be pure.
If each (d−1)-dimensional polytope of a d-dimensional polytopal complex C is contained

in one or two d-dimensional polytopes of C, we de�ne the (d − 1)-dimensional polytopal
complex B(C), called the boundary complex, or simply the boundary, of C as follows: P ∈
B(C) if and only if P is a face of a (d − 1)-dimensional polytope contained in exactly one
d-dimensional polytope of C (P can be the (d− 1)-dimensional polytope itself).

Clearly, a boundary complex is always pure.
We have also the following useful observation:

Observation 1 If P is a polytope, we have B(L(P )) = F(P ) (the boundary complex of the
set of faces of a polytope P is the set of its proper faces).

Finally, denoting by V (P ) the set of vertices of a polytope P , we make the following
observation:

Observation 2 Let F and G be two polytopes of a polytopal complex C.
We have then V (F ∩G) = V (F ) ∩ V (G).

If all polytopes of a polytopal complex are geometric simplices (a geometric simplex is the
convex hull of d + 1 a�nely independent points), we call the polytopal complex a geometric
simplicial complex. If C is a geometric simplicial complex, the collection of the vertex sets
of the simplices {V (σ) : σ ∈ C} forms an abstract simplicial complex. Thus, in the sequel,
a geometric simplicial complex will simultaneously be understood as an abstract simplicial
complex.

A triangulation of a topological space X is a geometric simplicial complex T such that
||T|| is homeomorphic to X.

A d-dimensional polytopal complex is said to be strongly connected if for every pair
P, P ′ ∈ C, each of them of dimension d, there is a sequence of d-dimensional polytopes of C,
P = P0, P1, . . . , Pr = P ′, such that either r = 0, or r ≥ 1 and Pi ∩ Pi+1 is a (d− 1)-face of
both for all i = 0, . . . , r − 1.

2.1.3 Chains
Let K be an abstract simplicial complex. The chain complex C(K) is :

. . . → C3(K) ∂−→ C2(K) ∂−→ C1(K) ∂−→ C0(K) → . . . ,

where Cp(K) is the free abelian group of all formal linear combinations of p-faces of K with
coe�cients in GF(2). Any element c of Cp(K) is called a p-chain.

For c ∈ Cp(K), µc(σ) is the coe�cient of σ in c, and the support of c, denoted by supp c,
is the set {σ ∈ K : µc(σ) = 1}. We say that a c′ is a subchain of c, where c, c′ ∈ Cp(K), if and
only if µc(σ) = 0 ⇒ µc′(σ) = 0. This inclusion will be denoted by c′ ⊆ c. Let c ∈ Cp(K): by
σ ∈ c, we mean σ ∈ K such that µc(σ) = 1 (this is an abuse of notation: we should write
σ ∈ supp c).

By V (c), we mean the set of vertices of all simplices σ ∈ c: V (c) = ∪σ∈cV (σ). By E(c),
we mean the set of edges of all simplices σ ∈ c: E(c) = ∪σ∈cE(σ).

For v ∈ V (c), we de�ne degc(v) := |{e ∈ E(c) : v ∈ e}|.
We de�ne the boundary operator ∂ for a simplicial complex K as follows: ∂ is a homo-

morphism of free groups: Cp(K) → Cp−1(K) and if σ is a p-simplex {v0, . . . , vp}, p ≥ 1,
∂σ :=

∑p
i=0{v0, . . . , v̂i, . . . , vp}.
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The boundary operator satis�es:

∂∂ = ∂2 = 0 (1)

because it is obviously true for simplices ([. . . , v̂i, . . . , v̂j , . . .] arises twice).
A chain map ν is a collection of homomorphisms νp : Cp(K) → Cp(L) such that

∂νp = νp−1∂ (2)

for all p. If f is a simplicial map of K to L, we de�ne a collection f# of homomorphisms
f#p : Cp(K) → Cp(L) by de�ning it on simplices as follows: for σ a p-simplex, we have

f#p(σ) =
{

f(σ) if dim f(σ) = p
0 otherwise.

f# is then a chain map (it can be easily checked, again, �rst for simplices).
A d-chain is said to be strongly connected is for every pair σ, σ′ ∈ c, there is a sequence

of d-simplices of c, σ = σ0, σ1, . . . , σr = σ′, such that either r = 0, or r ≥ 1 and σi ∩ σi+1 is
a (d− 1)-face of both for all i = 0, . . . , r − 1.

2.2 A bound for the number of simplices in the support of a strongly
connected chain

We give now a proposition which will allow us to give a lower bound of the number of
simplices in the image of the labellings seen as a chain map:

Proposition 1 Let K be a simplicial complex of dimension d. Let c a strongly connected
chain of Cd(K). Then

|supp c| ≥ |V (c)|+
⌈

minv∈V (c) degc(v)
d

⌉
− d− 1.

Proof: We proceed by induction on k := |supp c|. If k = 1, the proposition is trivial.
Let us suppose that k > 1. It is well known that in a connected graph with at least 2
vertices, there is always a vertex whose removal does not disconnect the graph. Considering
the graph whose vertices are the d-simplices, and such that two simplices are connected by
an edge if they have a facet in common, we see that there is a σ ∈ c such that c′ := c− σ is
still a strongly connected chain. For v ∈ V (c′), degc′(v) ≥ degc(v)− d.

As σ has a (d−1)-face in common with another d-simplex of K, at least d vertices among
the d+1 of σ remains in V (c′), thus either |V (c′)| = |V (c)| or |V (c′)| = |V (c)|−1. Moreover, if
V (c′) = V (c)− 1, minv∈V (c) degc(v) = d, and then minv∈V (c′) degc′(v) ≥ minv∈V (c) degc(v).
Thus:

|supp c| − 1 = |supp c′| ≥ |V (c′)|+
⌈

minv∈V (c′) degc′(v)
d

⌉
− d− 1

≥ |V (c)|+
⌈

minv∈V (c) degc(v)
d

⌉
− 1− d− 1,

which implies
|supp c| ≥ |V (c)|+

⌈
minv∈V (c) degc(v)

d

⌉
− d− 1.
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3 Bodies and Sperner labellings
3.1 Bodies: the de�nition
De�nition 1 A d-dimensional polytopal body P is a d-dimensional polytopal complex em-
bedded in Rd such that

1. if d = 0, P = {v, ∅}, where v is a point.
2. if d = 1, P = {[v, w], v, w, ∅}, where v, w, are two di�erent points in R, and [v, w] is

the segment linking these two points.
3. if d > 1,

(a) B(P), the boundary of P, is strongly connected,
(b) each (d− 2)-dimensional face of B(P) belongs to exactly two (d− 1)-dimensional

faces of B(P).
Note that this implies that P is strongly connected as well.
If P is a polytope, L(P ) is a polytopal body. The converse is not true: the Figure

1 shows a 3-dimensional polytopal body (whose boundary has 16 vertices and 16 facets),
whose underlying space is not a polytope.

3.2 Some properties of polytopal bodies
We state now some properties of polytopal bodies.
Observation 3 Let P be a polytopal body, and τ ⊆ V

(
B(P)

)
. Either there is no element G

of B(P) such that τ ⊆ V (G), or there is a unique minimal (by inclusion) element F of B(P)
such that τ ⊆ V (F ).

Indeed, if there is at least one G in B(P) such that τ ⊆ V (G), take all the faces Fi such
that τ ⊆ V (Fi). Observation 2 allows us to write V (∩iFi) = ∩iV (Fi). Thus ∩iFi is then
the minimal element of B(P) whose vertex set contains τ .

For a polytope P (whose faces are ordered by inclusion) and a chain c (of abstract
simplices):

c|P :=
∑

τ∈c:P is the minimal face of L(P ) s.t. τ⊆V (P )

τ .

According to this de�nition, if V (P ) ∩ V (c) = ∅, then c|P = 0.
For instance, let P be a 4-dimensional hypercube. L(P ) is a 4-dimensional polytopal

body. Let F be a 3-dimensional face of P , let G be a face (a square) of F with V (G) =
{1, 2, 3, 4}, and let c be the 3-simplex [1, 2, 3, 4]. Then c|F = 0 (because F is not minimal)
and c|G = [1, 2, 3, 4]. As another example, take the 3-dimensional polytopal body of Figure
1 and F the face whose vertices are v1, v12, v11, v4. Let c := [v1, v12, v11, v4] + [v1, v12, v7, v8].
Then c|F = [v1, v12, v11, v4]. For c′ := [v1, v11] + [v11, v12], we have c′|F = [v1, v11].

Observation 4 For two chains c and c′, (c + c′)|F = c|F + c′|F .
Observation 5 Let P be a polytope and c be a chain such that V (c) ⊆ V (P ). We have the
following equality:

c =
∑

F∈L(P )

c|F .

This last observation can be seen as a consequence of Observation 3 for the polytopal
body L(P ).
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Figure 1: A 3-dimensional polytopal body whose boundary has 16 facets

3.3 Triangulations of polytopal bodies
We de�ne a triangulation of a polytopal body as follows:

De�nition 2 A triangulation of a polytopal body is a triangulation of its underlying space
inducing triangulations of the faces of its boundary.

If the boundary B(P) of a polytopal body P has two neighboring facets having the
same supporting hyperplane, we could have triangulations of ||P|| which do not induce
triangulations of the facets of B(P). A triangulation of a polytope P is a triangulation of
L(P ). Thus we cover the case studied in [2].

We state an easy property about such triangulations of polytopal bodies, which will be
useful for the induction in the proof of Theorem 2. Let T be a triangulation of a polytopal
body P (we consider T as an abstract simplicial complex) satisfying the assumption above.
By (∂T)|F , we mean the triangulation of the face F ∈ B(P) induced by the triangulation T:

Observation 6 Let F be one of the facets of B(P). Let T be the formal sum of all d-
simplices of T. Then (∂T )|F is the formal sum of all (d− 1)-simplices of (∂T)|F .

Indeed, let τ be a simplex of (∂T )|F . Then τ is a facet of a unique d-simplex σ of T , and
τ ⊆ V (F ). As F is a polytope, this implies that τ is a simplex of (∂T)|F .

Conversely, let τ be a (abstract) (d− 1)-dimensional simplex of (∂T)|F . Then τ ⊆ V (F )
and, as the vertices of τ are a�nely independent, they are not in a proper face of F .
Moreover, τ is a simplex of ∂T . Hence, τ ∈ (∂T )|F .

3.4 Sperner labellings
Given a simplicial complex K, a labelling is a surjective function λ mapping the vertex set
to a set, called the set of labels. If we denote by Λ this set of labels, λ induces a simplicial
map from K into the abstract simplicial complex

(
Λ

≤dim(K)+1

)
, which induces itself a chain

map. This last chain map will be denoted λ#.
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A labelling λ of a triangulation T of a d-dimensional polytopal body P is a Sperner
labelling if
(i) the set of labels is the vertex set of B(P),
(ii) each vertex of B(P) gets itself as a label and
(iii) each vertex of T belonging to a face of B(P) gets a label of one of the vertices of the
minimal face of B(P) it belongs to (minimal with respect to inclusion).

Formally written λ is a Sperner labelling if: for v ∈ V (T), λ(v) ∈ V
(
B(P)

)
and for

F ∈ B(P), v ∈ F ⇒ λ(v) ∈ V (F ).
There is no condition for the vertices in the interior of ||P||: they can get any vertex of

B(P) as a label. This de�nition is equivalent to the one given at the beginning of the present
paper for polytopes (and thus equivalent to the one given in the paper [2]).

For instance, for the polytopal body of the Figure 1, vertices of T inside the face F
de�ned by the vertices v1, v12, v11, v4 can only get v1, v4, v11 or v12. Vertices of T inside the
edge [v1, v4] can get v1 or v4. Nevertheless, λ(v1) = v1, λ(v4) = v4, . . .

4 Spread chains and quasi-triangulations
We de�ne now the main tool of our result: the spread chain with respect to a polytopal
body P. A spread chain has, for the moment, nothing to do with labellings. This notion
concerns only chains whose vertex set is a subset of the vertex set of the boundary of the
polytopal body. The motivation for introducing the notion of spread chains is that the
Sperner labelling of a triangulation of a polytopal body induces a chain map whose image
is a spread chain.

We consider the abstract simplicial complex
(
V (B(P))
≤d+1

)
whose simplices are the subsets of

V
(
B(P)

)
of at most d + 1 elements.

De�nition 3 Let P be a d-dimensional polytopal body. A d-chain c ∈ Cd(
(
V (B(P))
≤d+1

)
) is

spread on P, if for every simplex σ ∈ ∂c, there exists a face F of B(P) such that σ ⊆ V (F ).

According to this de�nition 0 is always a spread chain. If we replace in the de�nition
above the existence of a face F by the existence of a facet F such that σ ⊆ V (F ), we get an
equivalent de�nition.

For instance, if P is a square with four vertices 1,2,3 and 4, in this order. The chain [1, 2, 3]
is not spread with respect to L(P ) because [1, 3] is not in a facet of P . But [1, 2, 3] + [1, 3, 4]
is spread.
The following consequence of Observation 3 is useful:

Observation 7 c is spread if and only if ∂c =
∑

F∈B(P)(∂c)|F .
We will make an intensive use of the following lemma:

Lemma 1 If c is spread on P and F is a facet of B(P), then (∂c)|F is spread on L(F ).

Proof: Indeed, let c′ := (∂c)|F and let τ ∈ ∂c′. To show that c′ is spread, we only have
to show that τ ⊆ V (H) for some face H of B(L(F )). Because of Observation 1, we have
to show that τ ⊆ V (H) for some proper face H of F . As ∂2c = 0, τ ∈ ∂(∂c − c′). Let
σ ∈ ∂c − c′ such that τ ∈ ∂σ. c is spread and, by de�nition of σ, the minimal face whose
vertex set contains σ is not F . Thus, there is a face F ′ of B(P) such that F ′ 6= F and
τ ⊆ V (F ′). Hence τ ⊆ V (F ) ∩ V (F ′), which means, because of Observation 2, τ ⊆ V (H),
where H := F ∩ F ′ is a face of F . It remains to show that H is actually a proper face of
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Figure 2: A binary cover is not necessarily a quasi-triangulation (v7, v1 and v4 are aligned)

F , but this is straightforward: if F = F ∩ F ′, we have simultaneously F ⊆ F ′, F 6= F ′, F
is facet of B(P), and F ′ a face of B(P). Contradiction.
We de�ne a quasi-triangulation of a polytopal body recursively:

De�nition 4 For a d-dimensional polytopal body P, c is a quasi-triangulation if and only
if

(i) c is a spread chain, and
(ii) either dim P = 0 and c 6= 0, or, for every facet F of B(P), (∂c)|F is a quasi-

triangulation of L(F ).

For instance, if ||P|| is a segment [v, w], the only quasi-triangulation of L(P ) is [v, w] (this
explains why the following theorems are easy to prove for d = 0 or d = 1).

Of course, the formal sum of all (abstract) d-simplices of a triangulation T of a d-
dimensional polytopal body P such that V (T) = V (B(P)) is a quasi-triangulation.

In order to have an intuitive idea of what a quasi-triangulation is, one can see it as a
family of (abstract) d-simplices which has the following property: every generic point g in
||P|| (resp. not in ||P||) is such that there is an odd (resp. even) number of d-simplices σ
of this family whose convex hull conv(σ) contains g. So it is a binary cover in the sense of
Firla and Ziegler ([3]).

We formalize this property with the following proposition (this property is not used for
proving the other results of the present paper):

Proposition 2 Let c be a quasi-triangulation of a d-dimensional polytopal body P. Then
∪σ∈cconv(σ) is a binary cover of ||P||.

Proof: We prove it by induction on d. For d = 0, it is straightforward.
Let c be a quasi-triangulation of P. Take g a generic point in Rd (this means that g and

any d vertices of B(P) are a�nely independent).
Consider any generic half-line l in Rd emanating from g. Generic means whenever we

take (d− 1) vertices of B(P), l does not intersect the convex hull of those vertices.
Let σ be a simplex of c. If conv(σ) contains g, since g is generic, g is in the interior

of conv(σ) and the vertices of σ are a�nely independent. Hence l intersects ∂conv(σ) =
∪τ∈∂σconv(τ) once. If conv(σ) does not contain g, l intersects ∪τ∈∂σconv(τ) 0 or 2 times.
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Figure 3: An illustration of Theorem 2

Thus, modulo 2, the number of simplices σ of c such that conv(σ) contains g is equal to the
number of simplices τ of

∑
σ∈c ∂σ such that l intersects conv(τ).

But this last sum is precisely ∂c. As c is spread, ∂c =
∑

F∈B(P)(∂c)|F . Let s be the
number of intersections of l and ||B(P)||. If s 6= 0, let p1, p2, . . . , ps be those intersections,
and F1, F2, . . . , Fs be the facets where the intersections take place. As (∂c)|Fi is a quasi-
triangulation of L(Fi), by induction, there is an odd number of simplices τ of (∂c)|Fi such
that conv(τ) contains pi. Hence, modulo 2, there are s simplices τ in ∂c such that l intersects
conv(τ). This means that there are s modulo 2 simplices σ of c such that conv(σ) contains
g. As ||P|| is bounded, s is odd if and only if g is in the interior of ||P||.

We use in this proof the fact the P is embedded in Rd: when l leaves or enters ||P||, it
intersects ||B(P)||. The same holds for any d-dimensional simplex of Rd.

There are binary covers which are not quasi-triangulations: for instance, take the 2-
dimensional polytopal body of Figure 2 (on left). We de�ne V1 := {v1, v4, v5, v6, v7} and
V2 := {v1, v2, v3, v4}. Let P1 be the convex hull of V1 and P2 the convex hull of V2. Let
T1 (resp. T2) be a triangulation of P1 (resp. P2) such that V (Ti) = Vi, i = 1, 2. The sum
T of those two triangulations is a binary cover, but may not be a quasi-triangulation: for
instance if the simplex [v6, v7, v4] is in T1, the formal sum of all 2-simplices of T cannot be
spread, because there is no facet containing the vertices v7 and v4 simultaneously.
To see the relevance of this notion, we state here the following theorem, announced in the
Introduction. It will be proved at the end of this section:

Theorem 2 If λ is a Sperner labelling of a triangulation T of a d-dimensional polytopal
body P, then λ#T is a quasi-triangulation of P, where T is the formal sum of all d-simplices
of T.

We illustrate this theorem with Figure 3. Almost every point of the right octagon is in
an odd number of triangles, which are image of fully-labelled simplices of the left octagon.
The point g is covered 5 times. The �ve corresponding fully-labelled simplices are marked
with a thick dot.

We can also check Theorem 1 on this �gure: we can �nd at least 6 fully-labelled simplices
such that any pair of them receives two di�erent labelling: [1, 5, 7], [2, 4, 6], [3, 5, 8], [2, 3, 4],
[4, 5, 6], [5, 7, 8].
Quasi-triangulations have important properties, as stated in the following theorem:
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Theorem 3 Let d ≥ 0. (A) If c1 and c2 are spread chains of a d-dimensional polytopal body
P, and c = c1 + c2 then c is also a spread chain. Moreover c is a quasi-triangulation if and
only if exactly one of c1 and c2 is a quasi-triangulation. (B) For Q a (d + 1)-dimensional
polytopal body, c′ is a quasi-triangulation of Q if and only if c′ is spread and there is a facet
F of B(Q) such that (∂c′)|F is a quasi-triangulation of L(F ).

From (A), we can deduce that a spread chain that is not a quasi-triangulation is a kind
of "even binary cover": every generic point is contained in an even number of d-simplices of
that spread chain. (B) shows that in fact for c to be a quasi-triangulation, it is su�cient to
check for an arbitrary facet F that (∂c)|F is a quasi-triangulation, and thus that (ii) of the
de�nition of a quasi-triangulation is too strong.

Proof: We proceed by induction on d.
For d = 0, the proof is easy. Let us suppose d ≥ 1.
Proof of (A): The fact that c is spread is straightforward. It remains to show that c is a

quasi-triangulation if and only if exactly one of c1 and c2 is a quasi-triangulation.
(∂c)|F = (∂c1)|F +(∂c2)|F for every facet F of B(P). By Lemma 1 and by (A) of Theorem

3 for d − 1 (which is already proved by induction), (∂c)|F is a quasi-triangulation of L(F )
if and only if exactly one of (∂c1)|F and (∂c2)|F is a quasi-triangulation of L(F ). We need
only that either (∂c1)|F is a quasi-triangulation of L(F ) for every facet F , or (∂c2)|F is so.
However, we have it by (B) of Theorem 3 for d− 1. (A) is proved.

Proof of (B): We call facets F1, F2 of B(Q) neighboring, if F1 ∩F2 is a facet of both. Let
c′ be spread on the (d+1)-dimensional polytopal body Q and let F1, F2 be two neighboring
facets of B(Q). If we show that (∂c′)|F1 is a quasi-triangulation of L(F1) if and only if
(∂c′)|F2 is a quasi-triangulation of L(F2), using the strong connectivity of B(Q) (Point 3a.
in De�nition 1), we obtain the complete statement (B).

So, let us show that (∂c′)|F1 is a quasi-triangulation of L(F1) if and only if (∂c′)|F2 is a
quasi-triangulation of L(F2). Let F12 := F1 ∩ F2 (a facet of both).

Since c′ is spread, we have, using Observation 7:

∂c′ =
∑

J∈B(Q)

(∂c′)|J .

Applying ∂ again:

0 =
∑

J∈B(Q)

∂[(∂c′)|J ].

In particular:
∑

J∈B(Q)

(
∂[(∂c′)|J ]

)∣∣
F12

= 0. (3)

A simplex σ of
(
∂[(∂c′)|J ]

)∣∣
F12

is such that σ ⊆ V (J) ∩ V (F12) = V (J ∩ F12) (Ob-
servation 2) and such that there is no proper face H of F12 such that σ ⊆ V (H). Thus(
∂[(∂c′)|J ]

)∣∣
F12

6= 0 implies that J ∩ F12 is not a proper face of F12. Using Point 3b. in
De�nition 1, we get that J ∈ {F1, F2, F12}.

Hence, the equality (3) reduces to:

(∂e1)|F12 + (∂e2)|F12 + (∂f)|F12 = 0, (4)
where e1 := (∂c′)|F1 , e2 := (∂c′)|F2 and f := (∂c′)|F12 .

f is spread on L(F1). Let G 6= F12 be another facet of F1 (which exists because d ≥ 1).
A simplex τ of (∂f)|G is such that τ ⊆ V (G) ∩ V (F12) = V (G ∩ F12) (Observation 2),
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that is there is a smaller face than G containing τ . Hence (∂f)|G = 0, and f is not a
quasi-triangulation of L(F1).

Using induction, we apply (B) for d− 1: (∂f)|F12 is not a quasi-triangulation of L(F12).
Still using induction, we can apply (A) for d − 1 on the equation (4) above and get that
(∂e1)|F12 is a quasi-triangulation of L(F12) if and only if (∂e2)|F12 is so. Thus, by (B) for
d − 1, e1 = (∂c′)|F1 is a quasi-triangulation of L(F1) if and only if e2 = (∂c′)|F2 is a quasi-
triangulation of L(F2).

Proof of Theorem 2: For d = 0, this is trivial. We proceed by induction. Suppose that
d ≥ 1. We have to check point (i) and (ii) of the de�nition of a quasi-triangulation

Checking (i): if c is a strongly connected component of λ#T , then c is spread on P:
indeed, let τ ∈ ∂c. Suppose τ /∈ ∂(λ#T ). Then there exists another strongly connected
component c′ of λ#T such that τ ∈ ∂c′. But then c is not maximal. Hence τ ∈ ∂(λ#T ). As
λ#∂ = ∂λ#, there is ε ∈ ∂T such that λ#ε = τ . The labels of ε are vertices of a face F of
B(P). And thus τ ⊆ V (F ). As λ#T is the sum of its strongly connected components, λ#T
is spread.

Checking (ii): We have to prove that [∂(λ#T )]|F is a quasi-triangulation of L(F ) for any
facet F of B(P). Using ∂λ# = λ#∂, we have [∂(λ#T )]|F = [λ#(∂T )]|F . So, we have to
prove that [λ#(∂T )]|F is a quasi-triangulation of L(F ).

Let σ a (d− 1)-simplex of ∂T such that λ(σ) ⊆ V (F ) and such that there is no smaller
face whose vertex set contains λ(σ) (in other words, λ(σ) contributes to [λ#(∂T )]|F ). By
de�nition of a Sperner labelling, there is no face H 6= F , such that σ ⊆ V (H). Hence
[λ#(∂T )]|F = (λ#[(∂T )|F ]) |F . With the notation e := λ#[(∂T )|F ], our objective becomes
to prove that e|F is a quasi-triangulation of L(F ).

(∂T)|F is a triangulation of F , and λ is a Sperner labelling of its vertices. Observation
6 and induction imply that e is a quasi-triangulation of L(F ).

For a proper face G of F , there is a facet G′ of F such that G 6= G′ (such a facet exists
because d ≥ 1). [∂(e|G)]|G′ = 0 because a nonzero term would be a simplex whose vertices
are in V (G), and G′ would not be the minimal face containing those vertices. Hence, e|G
is not a quasi-triangulation of L(F ) for any proper face G of F , and thus, using Theorem
3 (A) and the equality e = e|F +

∑
G∈F(F ) e|G (Observation 5), we see that e|F is a quasi-

triangulation.

Theorem 4 If λ is a Sperner labelling of a triangulation T of d-dimensional polytopal body
P, then at least one (and actually an odd number) of the strongly connected components of
λ#T is a quasi-triangulation of P.

Proof: According to Theorem 2 c := λ#T is a quasi-triangulation. Let c1 be a strongly
connected component of c, and c2 := c − c1. Clearly, c1 and c2 are spread, since ∂c1,
∂c2 ⊆ ∂c.

We are now done by Theorem 3 by induction on the size of the support of c: indeed, either
c1 is quasi-triangulation, and then there is nothing to prove, or c2 is a quasi-triangulation
and then we are done by the induction hypothesis.

Corollary 1 If λ is a Sperner labelling of a triangulation T of P, then there exists a strongly
connected component c of λ#T which is a quasi-triangulation of P, and in particular every
simplicial face of B(P) has a vertex set which is the face of some simplex of c.

Proof: Indeed, the �rst part is just a restatement of Theorem 4, and the second part
also follows by de�nition of a quasi-triangulation since the only quasi-triangulation of L(σ),
where σ is a geometric simplex, is the abstract simplicial complex V (σ) seen as a chain (the
checking of this a�rmation is straightforward).
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5 Generalized Sperner lemma
We turn now to the proof of our main result.

Proof of Theorem 1: Let T be the formal sum of the d-simplices of T, and let c as in
Corollary 1. As vertices and edges of B(P) are simplices, we know that V

(
B(P)

)
= V (c)

(equality comes from the fact that the labels are the vertices of B(P)) and E
(
B(P)

) ⊆ E(c).
The theorem is then a direct consequence of Proposition 1:

|supp c| ≥ |V (c)|+
⌈

minv∈V (c) degc(v)
d

⌉
−d−1 ≥ |V (

B(P)
)|+

⌈minv∈V (B(P)) degB(P)(v)
d

⌉
−d−1.

Di�erent simplices in c correspond to simplices in T getting di�erent labellings.

6 Conclusion
The main point we wanted to communicate is that, contrary to previous work, convexity
plays no particular role in the existence of such lower bounds. The crucial points are the
strong connectivity of the boundary complex and the fact that any (d− 2)-dimensional face
of the boundary complex is contained in two facets, where d is the dimension of the polytopal
body. At the same time, we obtain an improved bound.

How to deal with triangulable compact sets whose boundary is not strongly connected is
an open question. It seems that the bound of Theorem 1 has to be decreased as a function
of the number of strongly connected components of the boundary.
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