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Abstract. Let V (n, k, s) be the set of k-subsets S of [n] such that for all i, j ∈ S, we have |i−j| ≥ s

We define almost s-stable Kneser hypergraph KGr
(
[n]
k

)∼
s-stab

to be the r-uniform hypergraph whose

vertex set is V (n, k, s) and whose edges are the r-uples of disjoint elements of V (n, k, s).
With the help of a Zp-Tucker lemma, we prove that, for p prime and for any n ≥ kp, the

chromatic number of almost 2-stable Kneser hypergraphs KGp
(
[n]
k

)∼
2-stab

is equal to the chromatic

number of the usual Kneser hypergraphs KGp
(
[n]
k

)
, namely that it is equal to

⌈
n−(k−1)p

p−1

⌉
.

Related results are also proved, in particular, a short combinatorial proof of Schrijver’s theorem
(about the chromatic number of stable Kneser graphs) and some evidences are given for a new
conjecture concerning the chromatic number of usual s-stable r-uniform Kneser hypergraphs.

1. Introduction and main results

1.1. Introduction. Let [a] denote the set {1, . . . , a}. The Kneser graph KG2
([n]
k

)
for integers

n ≥ 2k is defined as follows: its vertex set is the set of k-subsets of [n] and two vertices are
connected by an edge if they have an empty intersection.

Kneser conjectured [Kne55] in 1955 that its chromatic number χ
(
KG2

([n]
k

))
is equal to n−2k+2.

It was proved to be true by Lovász in 1978 in a famous paper [Lov78], which is the first and one of
the most spectacular applications of algebraic topology in combinatorics.

Soon after this result, Schrijver [Sch78] proved that the chromatic number remains the same

when we consider the subgraph KG2
([n]
k

)
2-stab

of KG2
([n]
k

)
obtained by restricting the vertex set to

the k-subsets that are 2-stable, that is, that do not contain two consecutive elements of [n] (where
1 and n are considered to be also consecutive).

Let us recall that a hypergraph H is a set family H ⊆ 2V , with vertex set V . An hypergraph is
said to be r-uniform if all its edges S ∈ H have the same cardinality r. A proper coloring with t
colors of H is a map c : V → [t] such that there is no monochromatic edge, that is, such that in
each edge there are two vertices i and j with c(i) 6= c(j). The smallest number t such that there
exists such a proper coloring is called the chromatic number of H and denoted by χ(H).

In 1986, solving a conjecture of Erdős [Erd76], Alon, Frankl and Lovász [AFL86] found the

chromatic number of Kneser hypergraphs. The Kneser hypergraph KGr
([n]
k

)
is an r-uniform hy-

pergraph which has the k-subsets of [n] as vertex set and whose edges are formed by the r-tuple
of disjoint k-subsets of [n]. If n, k, r, t are positive integers such that n ≥ (t− 1)(r − 1) + rk, then

χ
(
KGr

([n]
k

))
> t. Combined with a lemma by Erdős giving an explicit proper coloring, it implies

that χ
(
KGr

([n]
k

))
=
⌈
n−(k−1)r

r−1

⌉
. The proof found by Alon, Frankl and Lovász used tools from

algebraic topology.
In 2001, Ziegler gave a combinatorial proof of this theorem [Zie02], which makes no use of topo-

logical tools. He was inspired by a combinatorial proof of the Lovász theorem found by Matoušek
[Mat04]. A subset S ⊆ [n] is s-stable if any two of its elements are at least “at distance s apart”

Key words and phrases. chromatic number; combinatorial topology; stable Kneser hypergraphs; Zp-Tucker lemma.

1



on the n-cycle, that is, if s ≤ |i − j| ≤ n − s for distinct i, j ∈ S. Define then KGr
([n]
k

)
s–stab

as

the hypergraph obtained by restricting the vertex set of KGr
([n]
k

)
to the s-stable k-subsets. At

the end of his paper, Ziegler made the supposition that the chromatic number of KGr
([n]
k

)
r-stab

is equal to the chromatic number of KGr
([n]
k

)
for any n ≥ kr. This supposition generalizes both

Schrijver’s theorem and the Alon-Frankl-Lovász theorem. Alon, Drewnowski and  Luczak make this
supposition an explicit conjecture in [AD L09].

Conjecture 1. Let n, k, r be non-negative integers such that n ≥ rk. Then

χ

(
KGr

(
[n]

k

)
r-stab

)
=

⌈
n− (k − 1)r

r − 1

⌉
.

1.2. Main results. We prove a weaker form of Conjecture 1 – Theorem 1 below – but which
strengthes the Alon-Frankl-Lovász theorem. Let V (n, k, s) be the set of k-subsets S of [n] such that

for all i, j ∈ S, we have |i−j| ≥ s. We define the almost s-stable Kneser hypergraphs KGr
([n]
k

)∼
s-stab

to be the r-uniform hypergraph whose vertex set is V (n, k, s) and whose edges are the r-tuples of
disjoint elements of V (n, k, s). Note that this kind of edges has already been considered and named
quasistable in a paper by Björner and de Longueville [BdL03].

Theorem 1. Let p be a prime number and n, k be non negative integers such that n ≥ pk. We
have

χ

(
KGp

(
[n]

k

)∼
2-stab

)
≥
⌈
n− (k − 1)p

p− 1

⌉
.

Combined with the lemma by Erdős, we get that

χ

(
KGp

(
[n]

k

)∼
2-stab

)
=

⌈
n− (k − 1)p

p− 1

⌉
.

Moreover, we will see that it is then possible to derive the following corollary. Denote by µ(r) the
number of prime divisors of r counted with multiplicities. For instance, µ(6) = 2 and µ(12) = 3.
We have

Corollary 1. Let n, k, r be non-negative integers such that n ≥ rk. We have

KGr
(

[n]

k

)∼
2µ(r)-stab

=

⌈
n− (k − 1)r

r − 1

⌉
.

For stable Kneser hypergraphs, what happens when s ≥ r ? This question does not seem to
have attracted attention yet. As a first step, we prove the following proposition, which deals with
Kneser graphs. It generalizes the fact that odd-length cycles have their chromatic number equaling
3.

Proposition 1. Let k and s be two positive integers such that s ≥ 2. We have

χ

(
KG2

(
[ks+ 1]

k

)
s-stab

)
= s+ 1.

1.3. Plan. The first section (Section 2) gives the main notations and tools used in the paper. Sec-
tion 3 proves Theorem 1 and Corollary 1. Using a similar method, we are able to write a very short
combinatorial proof of Schrijver’s theorem in Section 4. Section 5 introduces preliminary results for
the study of s-stable r-uniform Kneser hypergraphs when s ≥ r – in particular Proposition 1 – and
proposes a conjecture (Conjecture 2) regarding their chromatic number. Section 6 is a collection
of concluding remarks.
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2. Notations and tools

Zp = {ω, ω2, . . . , ωp} is the cyclic group of order p, with generator ω.

We write σn−1 for the (n− 1)-dimensional simplex with vertex set [n] and by σn−1k−1 the (k − 1)-

skeleton of this simplex, that is the set of faces of σn−1 having k or less vertices.
If A and B are two sets, we write A ] B for the set (A × {1}) ∪ (B × {2}). For two simplicial

complexes, K and L, with vertex sets V (K) and V (L), we denote by K ∗ L the join of these two
complexes, which is the simplicial complex having V (K) ] V (L) as vertex set and

{F ]G : F ∈ K, G ∈ L}
as set of faces. We define also K∗n to be the join of n disjoint copies of K.

A sequence (j1, j2, . . . , jm) of elements of Zp is said to be alternating if any two consecu-
tive terms are different. Let X = (x1, . . . , xn) ∈ (Zp ∪ {0})n. We denote by alt(X) the size
of the longest alternating subsequence of non-zero terms in X. For instance (assume p = 5)
alt(ω2, ω3, 0, ω3, ω5, 0, 0, ω2) = 4 and alt(ω1, ω4, ω4, ω4, 0, 0, ω4) = 2.

Any element X = (x1, . . . , xn) ∈ (Zp ∪ {0})n can alternatively and without further mention be
denoted by a p-tuple (X1, . . . , Xp) where Xj := {i ∈ [n] : xi = ωj}. Note that the Xj are then
necessarily disjoint. For two elements X,Y ∈ (Zp∪{0})n, we denote by X ⊆ Y the fact that for all
j ∈ [p] we have Xj ⊆ Yj . When X ⊆ Y , note that the sequence of non-zero terms in (x1, . . . , xn)
is a subsequence of (y1, . . . , yn).

The proof of Theorem 1 makes use of a variant of the Zp-Tucker lemma by Ziegler [Zie02].

Lemma 1 (Zp-Tucker lemma). Let p be a prime, n,m ≥ 1, α ≤ m and let

λ : (Zp ∪ {0})n \ {(0, . . . , 0)} −→ Zp × [m]
X 7−→ (λ1(X), λ2(X))

be a Zp-equivariant map satisfying the following properties:

• for all X(1) ⊆ X(2) ∈ (Zp∪{0})n\{(0, . . . , 0)}, if λ2(X
(1)) = λ2(X

(2)) ≤ α, then λ1(X
(1)) =

λ1(X
(2));

• for all X(1) ⊆ X(2) ⊆ . . . ⊆ X(p) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}, if λ2(X
(1)) = λ2(X

(2)) =

. . . = λ2(X
(p)) ≥ α+ 1, then the λ1(X

(i)) are not pairwise distinct for i = 1, . . . , p.

Then α+ (m− α)(p− 1) ≥ n.

We can alternatively say that X 7→ λ(X) = (λ1(X), λ2(X)) is a Zp-equivariant simplicial map

from sd
(
Z∗np

)
to
(
Z∗αp

)
∗
(

(σp−1p−2)∗(m−α)
)

, where sd(K) denotes the first barycentric subdivision of

a simplicial complex K.

Proof of the Zp-Tucker lemma. According to Dold’s theorem [Dol83, Mat03], if such a map λ exists,

the dimension of
(
Z∗αp

)
∗
(

(σp−1p−2)∗(m−α)
)

is strictly larger than the connectivity of Z∗np , that is

α+ (m− α)(p− 1)− 1 > n− 2. �

It is also possible to give a purely combinatorial proof of this lemma through the generalized Ky
Fan theorem from [HSSZ09].

3. Almost stable Kneser hypergraphs

Proof of Theorem 1. We follow the scheme used by Ziegler in [Zie02]. We endow 2[n] with an
arbitrary linear order �.

Assume that KGp
([n]
k

)∼
2-stab

is properly colored with C colors {1, . . . , C}. For S ∈ V (n, k, 2), we
denote by c(S) its color. Let α = p(k − 1) and m = p(k − 1) + C.

Let X = (x1, . . . , xn) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}. We can write alternatively X = (X1, . . . , Xp).
3



• if alt(X) ≤ p(k− 1), let j be the index of the Xj containing the smallest integer (ωj is then
the first non-zero term in (x1, . . . , xn)), and define

λ(X) := (j, alt(X)).

• if alt(X) ≥ p(k − 1) + 1: in the longest alternating subsequence of non-zero terms of X, at
least one of the elements of Zp appears at least k times; hence, in at least one of the Xj

there is an element S of V (n, k, 2); choose the smallest such S (according to �). Let j be
such that S ⊆ Xj and define

λ(X) := (j, c(S) + p(k − 1)).

λ is a Zp-equivariant map from (Zp ∪ {0})n \ {(0, . . . , 0)} to Zp × [m].

Let X(1) ⊆ X(2) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}. If λ2(X
(1)) = λ2(X

(2)) ≤ α, then the longest

alternating subsequences of non-zero terms of X(1) and X(2) have the same size. Clearly, the first
non-zero terms of X(1) and X(2) are equal.

Let X(1) ⊆ X(2) ⊆ . . . ⊆ X(p) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}. If λ2(X
(1)) = λ2(X

(2)) = . . . =

λ2(X
(p)) ≥ α + 1, then for each i ∈ [p] there is Si ∈ V (n, k, 2) and ji ∈ [p] such that we have

Si ⊆ X
(i)
ji

and λ2(X
(i)) = c(Si) + p(k − 1). If all λ1(X

(i)) would be distinct, then it would mean
that all ji would be distinct, which implies that the Si would be disjoint but colored with the same
color, which is impossible since c is a proper coloring.

We can thus apply the Zp-Tucker lemma (Lemma 1) and conclude that n ≤ p(k− 1) +C(p− 1),
that is

C ≥
⌈
n− (k − 1)p

p− 1

⌉
.

�

To prove Corollary 1, we prove the following lemma, both statement and proof of which are
inspired by Lemma 3.3 of [AD L09].

Lemma 2. Let r1, r2, s1, s2 be non-negative integers ≥ 1, and define r = r1r2 and s = s1s2.

Assume that for i = 1, 2 we have χ
(
KGri

([n]
k

)∼
si-stab

)
=
⌈
n−(k−1)ri

ri−1

⌉
for all integers n and k such

that n ≥ rik.

Then we have χ
(
KGr

([n]
k

)∼
s-stab

)
=
⌈
n−(k−1)r

r−1

⌉
for all integers n and k such that n ≥ rk.

Proof. Let n ≥ (t−1)(r−1)+rk. We have to prove that χ
(
KGr

([n]
k

)∼
s-stab

)
> t. For a contradiction,

assume that KGr
([n]
k

)
s-stab

is properly colored with t colors. For S ∈ V (n, k, s), we denote by
c(S) its color. We wish to prove that there are S1, . . . , Sr disjoint elements of V (n, k, s) with
c(S1) = . . . = c(Sr).

Take A ∈ V (n, n1, s2), where n1 := r1k+(t−1)(r1−1). Denote a1 < . . . < an1 the elements of A
and define h : V (n1, k, s1)→ [t] as follows: let B ∈ V (n1, k, s1); the k-subset S = {ai : i ∈ B} ⊆ [n]
is an element of V (n, k, s), and gets as such a color c(S); define h(B) to be this c(S). Since
n1 = r1k + (t − 1)(r1 − 1), there are B1, . . . , Br1 disjoint elements of V (n1, k, s1) having the same

color by h. Define h̃(A) to be this common color.

Make the same definition for all A ∈ V (n, n1, s2). The map h̃ is a coloring of KGr2
(
[n]
n1

)∼
s2-stab

with t colors. Now, note that

(t− 1)(r− 1) + rk = (t− 1)(r1r2 − r2 + r2 − 1) + r1r2k = (t− 1)(r2 − 1) + r2((t− 1)(r1 − 1) + r1k)

and thus that n ≥ (t−1)(r2−1)+r2n1. Hence, there are A1, . . . , Ar2 disjoint elements of V (n, n1, s2)
with the same color. Each of the Ai gets its color from r1 disjoint elements of V (n, k, s), whence
there are r1r2 disjoint elements of V (n, k, s) having the same color by the map c. �
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Proof of Corollary 1. Direct consequence of Theorem 1 and Lemma 2. �

4. Short combinatorial proof of Schrijver’s theorem

Recall that Schrijver’s theorem is

Theorem 2. Let n ≥ 2k. χ
(
KG

([n]
k

)
2-stab

)
= n− 2k + 2.

When specialized for p = 2, Theorem 1 does not imply Schrijver’s theorem since the vertex set
is allowed to contain subsets with 1 and n together. However, by a slight modification of the proof,
we can get a short combinatorial proof of Schrijver’s theorem. Alternative proofs of this kind – but
not that short – have been proposed in [Meu08, Zie02]

For a positive integer n, we write {+,−, 0}n for the set of all signed subsets of [n], that is, the
family of all pairs (X+, X−) of disjoint subsets of [n]. Indeed, for X ∈ {+,−, 0}n, we can define
X+ := {i ∈ [n] : Xi = +} and analogously X−.

We define X ⊆ Y if and only if X+ ⊆ Y + and X− ⊆ Y −.
By alt(X) we denote the length of the longest alternating subsequence of non-zero signs in X.

For instance: alt(+0−−+ 0−) = 4, while alt(−−+ +−+ 0 +−) = 5.
The proof makes use of the following well-known lemma see [Mat03, Tuc46, Zie02] (which is a

special case of Lemma 1 for p = 2).

Lemma 3 (Tucker’s lemma). Let λ : {−, 0,+}n \{(0, 0, . . . , 0)} → {−1,+1, . . . ,−(n−1),+(n−1)}
be a map such that λ(−X) = −λ(X). Then there exist A,B in {−, 0,+}n such that A ⊆ B and
λ(A) = −λ(B).

Proof of Schrijver’s theorem. The inequality χ
(
KG2

([n]
k

)
2-stab

)
≤ n− 2k+ 2 is easy to prove (with

an explicit coloring [Kne55, Mat03] – see also Proposition 2 below). So, to obtain a combinatorial
proof, it is sufficient to prove the reverse inequality.

Let us assume that there is a proper coloring c of KG2
([n]
k

)
2-stab

with n−2k+1 colors. We define
the following map λ on {−, 0,+}n \ {(0, 0, . . . , 0)}.

• if alt(X) ≤ 2k − 1, we define λ(X) = ± alt(X), where the sign is determined by the first
sign of the longest alternating subsequence of X (which is actually the first non zero term
of X).
• if alt(X) ≥ 2k, then X+ and X− both contain a stable subset of [n] of size k. Among all

stable subsets of size k included in X− and X+, select the one having the smallest color.
Call it S. Then define λ(X) = ±(c(S) + 2k − 1) where the sign indicates which of X− or
X+ the subset S has been taken from. Note that c(S) ≤ n− 2k.

The fact that for any X ∈ {−, 0,+}n \ {(0, 0, . . . , 0)} we have λ(−X) = −λ(X) is obvious. λ
takes its values in {−1,+1, . . . ,−(n−1),+(n−1)}. Now let us take A and B as in Tucker’s lemma,
with A ⊆ B and λ(A) = −λ(B). We cannot have alt(A) ≤ 2k − 1 since otherwise we will have
a longest alternating subsequence in B containg the one of A, of same length but with a different
sign. Hence alt(A) ≥ 2k. Assume w.l.o.g. that λ(A) is defined by a stable subset SA ⊆ A−. Then
the stable subset SB defining λ(B) is such that SB ⊆ B+, which implies that SA ∩ SB = ∅. We
have moreover c(SA) = |λ(A)| = |λ(B)| = c(SB), but this contradicts the fact that c is a proper

coloring of KG2
([n]
k

)
2-stab

. �

5. And when the stability is larger than the uniformity ?

It seems (among other things, through computational tests – see Conclusion – and Proposition
1) that Conjecture 1 can be generalized as follows.

5



Conjecture 2. Let n, k, r, s be non-negative integers such that n ≥ sk and s ≥ r. Then

χ

(
KGr

(
[n]

k

)
s-stab

)
=

⌈
n− (k − 1)s

r − 1

⌉
.

Conjecture 1 is the particular case when s = r. If c is a proper coloring of the Kneser hypergraph

KGr
([n]
k

)
s-stab

, then X 7→
⌈
1
ρc(X)

⌉
is a proper coloring of KGρ(r−1)+1

([n]
k

)
s-stab

, whence we have

(1) χ

(
KGρ(r−1)+1

(
[n]

k

)
s-stab

)
≤
⌈

1

ρ
χ

(
KGr

(
[n]

k

)
s-stab

)⌉
.

We prove the easy part of the equality of Conjecture 2.

Proposition 2. Let n, k, r, s be non-negative integers such that n ≥ sk and s ≥ r. Then

χ

(
KGr

(
[n]

k

)
s-stab

)
≤
⌈
n− (k − 1)s

r − 1

⌉
.

Proof. According to Inequality (1), it is enough to check the inequality for r = 2. We give the usual
explicit coloring (see [Kne55, Erd76, Zie02]): for S an s-stable k-subset of [n], we define its colors
by

c(S) := min(min(S), n− (k − 1)s).

This coloring uses at most n− (k − 1)s colors, and is proper: if A and B are two disjoint s-stable
k-subsets of [n] having the same color by c, then, necessarily, they both get the color n− (k − 1)s
and they both have all elements ≥ n− (k−1)s; but there is only one s-stable k-subset of [n] having
all its elements ≥ n− (k−1)s, namely {n− (k−1)s, n− (k−2)s, . . . , n− s, n}; a contradiction. �

Inequality (1) implies that if Conjecture 1 is true, then Conjecture 2 is also true for Kneser

hypergraphs KGr
([n]
k

)
s-stab

when we have simultaneously s ≡ 1 mod (r − 1) and n − (k − 1)s ≡
β mod (s−1) for some β ∈ [r−1]. Indeed, put s := (r−1)ρ+1; if ρ divides χ := χ

(
KGr

([n]
k

)
s-stab

)
,

there is nothing to prove; if not, write χ = ρq + v, where q and v are integers, and v ∈ [ρ− 1] and
write n− (k − 1)s = (s− 1)u+ β, with integer u; Inequality (1) implies that q ≥ u; hence

χ ≥ (r − 1)ρu+ (r − 1)v

r − 1
≥ (s− 1)u+ β

r − 1
=
n− (k − 1)s

s− 1

since v ≥ 1 (used for the central inequality).
A lemma similar to Lemma 2 holds. It implies that it is enough to prove the cases

• r = s and
• r and s coprime

to prove Conjecture 2.

Lemma 4. If Conjecture 1 holds for r′ (and all n and k such that n ≥ r′k) and Conjecture 2 holds
for r′′ and s′′ such that s′′ ≥ r′′ (and all n and k such that n ≥ s′′k), then Conjecture 2 holds for
r = r′r′′ and s = r′s′′.

Again, the proof follows a very similar scheme as the proof of Lemma 3.3 of [AD L09].

Proof of Lemma 4. Let n ≥ t(r − 1) + s(k − 1) + 1. We have to prove that χ
(
KGr

([n]
k

)
s-stab

)
> t.

For a contradiction, we assume that KGr
([n]
k

)
s-stab

is properly colored with t colors by c : S ∈
V (n, k, s) 7→ c(S) ∈ {1, . . . , t}. We will prove that there are S1, . . . , Sr disjoint s-stable k-subsets
of [n] with c(S1) = . . . = c(Sr).

Now, take A an r′-stable n′-subset of [n] , where n′ := t(r′′ − 1) + s′′(k − 1) + 1. Denote
a1 < . . . < an′ its elements and define h(B) for any s′′-stable k-subset B of [n′] as follows: the
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k-subset S = {ai : i ∈ B} ⊆ [n] is an s-stable k-subset of [n], and gets as such a color c(S); define
h(B) to be this c(S). Since n′ = t(r − 1) + s′′(k − 1) + 1, there are B1, . . . , Br′′ disjoint s′′-stable

k-subsets of [n′] having the same color by h. Define h̃(A) to be this common color.

Make the same definition for all r′-stable n′-subsets A of [n]. The map h̃ is a coloring of

KGr
′([n]
n′

)
r′-stab

with t colors. Now, note that

t(r−1)+s(k−1)+1 = t(r′r′′−r′+r′−1)+r′s′′(k−1)+1 = r′(t(r′′−1)+s′′(k−1)+1)+(t−1)(r′−1)

and thus that n ≥ (t − 1)(r′ − 1) + r′n′. Hence, there are A1, . . . , Ar′ disjoint r′-stable n′-subsets
with the same color (assuming that Conjecture 1 is true). Each of the Ai gets its color from r′′

disjoint s′′-stable k-subsets, whence there are r′r′′ disjoint s′′r′-stable k-subsets of [n] having the
same color by the map c. �

We prove now Proposition 1, which is the particular case when n = ks+ 1 and r = 2. The proof
is quite natural and does not use any advanced tools from topology.

Proof of Proposition 1. Proposition 2 reduces the proof of the simple checking that s colors are not

enough. Assume for a contradiction that KG2
([ks+1]

k

)
s-stab

is properly colored with colors 1, 2, . . . , s.
Without loss of generality, we can assume that the subset A1,1 := {1, s+1, 2s+1, . . . , (k−1)s+1}

is colored with color 1, the subset A1,2 := {2, s+ 2, 2s+ 2, . . . , (k−1)s+ 2} with color 2, ..., A1,s :=
{s, 2s, . . . , ks} with color s, that is, each of the s subsets of the form {i, s+ i, 2s+ i, . . . , (k−1)s+ i}
with i = 1, 2, . . . , s, denoted A1,i, is colored with color i.

The subset B := {s+ 1, 2s+ 1, . . . , ks+ 1} is disjoint from each of the A1,i, except the first one
A1,1, whence it gets color 1.

Now, we consider the following s subsets: A2,1 := {1, s+ 1, 2s+ 1, . . . , (k− 2)s+ 1, (k− 1)s+ 2},
A2,2 := {2, s+2, 2s+2, . . . , (k−2)s+2, (k−1)s+3}, ..., A2,s := {s, 2s, . . . , (k−1)s, ks+1}. (They
differ from the subsets A1,i only by their largest element). A2,s is disjoint from each element of A1,i

except for i = s, whence it gets color s. The subsets A2,i, for i = 2, . . . , s− 1, are disjoint from B
and A2,s, and pairwise disjoint, whence they are colored with colors 2, . . . , s− 1. The subset A21 is
disjoint from all A2,i for i ≥ 2, whence it gets color 1.

Similary, we define Aj,i for j ∈ [k] and i ∈ [s]:

Aj,i := {i, s+ i, 2s+ i, . . . , (k− j)s+ i, (k− j+ 1)s+ i+ 1, (k− j+ 2)s+ i+ 1, . . . , (k− 1)s+ i+ 1}.
The subset Aj,s is disjoint from each A(j−1),i for i = 1, . . . , s−1. The subsets Aj,i for i = 2, . . . , s−1
are disjoint from B. The subset Aj,1 is disjoint from all Aj,i for i ≥ 2. These three facts combined
with an induction on j imply that the color of Aj,s is s, the colors of the Aj,i for i = 2, . . . , s − 1
are 2, . . . , s− 1 and the color of Aj,1 is 1.

In particular for j = k and i = 1, we get that the color of Ak,1 is 1. But Ak,1 and B are disjoint,
whence they cannot have the same color; a contradiction. �

6. Concluding remarks

We have seen that one of the main ingredients is the notion of alternating sequence of elements
in Zp. Here, our notion only requires that such an alternating sequence must have xi 6= xi+1. To
prove Conjecture 1, we probably need something stronger. For example, a sequence is said to be
alternating if any p consecutive terms are all distinct. However, all our attempts to get something
through this approach have failed.

Recall that Alon, Drewnowski and  Luczak [AD L09] proved Conjecture 1 when r is a power of 2.
With the help of a computer and lpsolve, we have checked that Conjecture 1 is moreover true for

• n ≤ 9, k = 2, r = 3.
• n ≤ 12, k = 3, r = 3.
• n ≤ 14, k = 4, r = 3.
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• n ≤ 13, k = 2, r = 5.
• n ≤ 16, k = 3, r = 5.
• n ≤ 21, k = 4, r = 5.

With the same approach, Conjecture 2 has been checked for

• n ≤ 9, k = 2, r = 2, s = 3.
• n ≤ 10, k = 2, r = 2, s = 4.
• n ≤ 11, k = 3, r = 2, s = 3.
• n ≤ 13, k = 3, r = 2, s = 4.
• n ≤ 14, k = 4, r = 2, s = 3.
• n ≤ 17, k = 4, r = 2, s = 4.
• n ≤ 11, k = 2, r = 3, s = 4.
• n ≤ 14, k = 3, r = 3, s = 4.
• n ≤ 12, k = 2, r = 3, s = 5.
• n ≤ 13, k = 2, r = 4, s = 5.
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