Uniqueness of equilibrium

Frédéric Meunier

December 14th, 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Frédéric Meunier and Thomas Pradeau, The uniqueness property for networks with several origin-destination pairs, *European Journal of Operational Research*, 2014.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

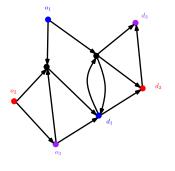
Model

D = (V, A) a directed graph.

 $\mathcal{L} \subseteq V^2$ a set of origin-destination pairs.

 b^{od} = number of users going from o to d (the demand).

On each arc $a \in A$, there is a continuous cost $c_a(\cdot) : \mathbb{R}_+ \to \mathbb{R}_+$.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 x_a = number of users choosing arc a.

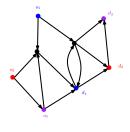
$$\sum_{a\in P} c_a(x_a) = \text{cost} \text{ of a path } P.$$

Equilibrium

 x_a^{od} = number of users choosing arc *a* among those going from *o* to *d*.

 $(x_a^{od})_{a \in A, (o,d) \in \mathcal{L}}$ is an equilibrium if

$$\begin{aligned} (x_a^{od})_{a\in A} &= o \text{-}d \text{ flow of value } b^{od} \quad (o,d) \in \mathcal{L} \\ x_a &= \sum_{(o,d)\in\mathcal{L}} x_a^{od} \qquad a \in A \\ \sum_{a\in P} c_a(x_a) &\leq \sum_{a\in Q} c_a(x_a) \qquad P, Q \in \mathcal{P}^{od}, P \text{ is used, } (o,d) \in \mathcal{L} \end{aligned}$$



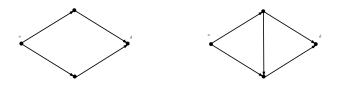
(日) (日) (日) (日) (日) (日) (日)

 $\mathcal{P}^{od} = \text{set of } o\text{-}d \text{ paths}$

P used if $x_a^{od} > 0$ for all $a \in P$.

Practical interest

- This model = good approximation of what happens in practice
 - * used in transport engineering, telecoms,...
- Useful since the phenomenons are nonintuitive
 - Braess paradox = opening a new road may increase all travel times
 - * paradox recovered by the model



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Existence and uniqueness of the equilibrium

Theorem (Beckman, 1956)

An equilibrium always exists and it is unique when the cost functions $c_a(\cdot)$ are increasing.

"Unique" means there are unique x_a 's solutions of the system

$$\begin{array}{ll} (x_a^{od})_{a\in A} = o \cdot d \text{ flow of value } b^{od} & (o,d) \in \mathcal{L} \\ x_a = \sum_{(o,d)\in\mathcal{L}} x_a^{od} & a \in A \\ \sum_{a\in P} c_a(x_a) \leq \sum_{a\in Q} c_a(x_a) & P, Q \in \mathcal{P}^{od}, \\ P \text{ is used}, \\ (o,d)\in\mathcal{L} \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

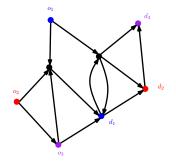
Model – multiclass case

D = (V, A) a directed graph.

 $\mathcal{L} \subseteq V^2$ a set of origin-destination pairs.

 $b^{od,k}$ = number of class *k* users going from *o* to *d* (the demand).

On each arc $a \in A$ and for each class k, there is a continuous cost $c_a^k(\cdot) : \mathbb{R}_+ \to \mathbb{R}_+.$



(日) (日) (日) (日) (日) (日) (日)

 x_a = number of users choosing arc a.

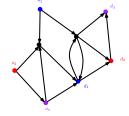
 $\sum_{a \in P} c_a^k(x_a) = \text{cost of path } P \text{ experienced by class } k.$

Equilibrium

 $x_a^{od,k}$ = number of class *k* users choosing arc *a* among those going from *o* to *d*.

 $(x_a^{od,k})_{a \in A, (o,d) \in \mathcal{L}, k \in K}$ is an equilibrium if

$$(x_a^{od,k})_{a \in A} = o \cdot d \text{ flow of value } b^{od,k} \quad (o,d) \in \mathcal{L}, \ k \in K$$
$$x_a = \sum_{(o,d) \in \mathcal{L}, \ k \in K} x_a^{od,k} \qquad a \in A$$
$$\sum_{a \in P} c_a^k(x_a) \le \sum_{a \in Q} c_a^k(x_a) \qquad \qquad P, Q \in \mathcal{P}^{od}, \ P \text{ is used, } (o,d) \in \mathcal{L}, \\ k \in K$$



(日) (日) (日) (日) (日) (日) (日)

 $\mathcal{P}^{od} = \text{set of } o-d \text{ paths}$

P used if
$$x_a^{od,k} > 0$$
 for all $a \in P$.

The uniqueness issue

Theorem (Schmeidler, 1973)

An equilibrium always exists in the multiclass setting.

There are examples with several equilibria, i.e. several possible x_a 's, while all $c_a^k(\cdot)$ are increasing: uniqueness is not automatically ensured. (It contrasts with the monoclass case).

・ロト・ 日本・ モー・ モー・ うくぐ

Challenge: Find necessary and/or sufficient conditions ensuring uniqueness.

Uniqueness property

G = undirected graph, \mathcal{L} = collection of *o*-*d* pairs.

 (G, \mathcal{L}) has the uniqueness property (UP) if for any classes, demands $(b^{od,k})$, and increasing costs $(c_a^k(\cdot))$, the equilibrium is unique.

(on the digraph where each edge has been replaced by two opposite arcs)

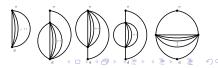
Theorem (Milchtaich, 2007)

There is only one o-d pair:

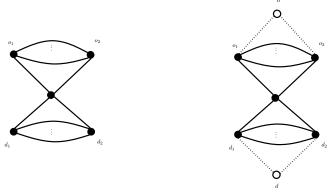
 $(G, \{(o, d)\})$ has the UP \iff G is "nearly-parallel".

"Nearly-parallel" =

combination in series of



Uniqueness for general graphs using Milchtaich's theorem



- Add a fictitious origin vertex connected to every origin.
- Add a fictitious destination vertex connected to every destination.

Augmented graph has uniqueness property \Rightarrow Original graph has uniqueness property.

Uniqueness for general graphs using Milchtaich's theorem

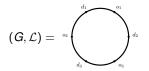
- Add a fictitious origin vertex connected to every origin.
- Add a fictitious destination vertex connected to every destination.

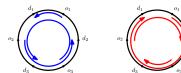
Augmented graph has not the uniqueness property \Rightarrow ????

・ロト ・四ト ・ヨト ・ヨト

Uniqueness property on a cycle

 d_2



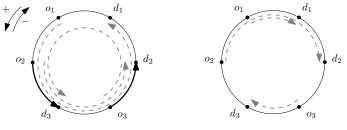


Theorem

Assume that G is a cycle and let \mathcal{L} be any collection of o-d pairs.

 (G, \mathcal{L}) has the UP \iff Each arc belongs to at most two o-d paths.

Example not having the uniqueness property



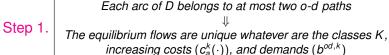
The positive paths.

The negative paths.

イロト イポト イヨト イヨト

The arcs $o_2 d_3$ and $o_3 d_2$ are contained in three *o*-*d* paths.

Proof strategy



Step 2.There is an arc of D belonging to at least three o-d paths \Downarrow \Downarrow There exist classes K, increasing costs $(c_a^k(\cdot))$, and demands
 $(b^{od,k})$ leading to two equilibria with distinct flows

(日) (日) (日) (日) (日) (日) (日)

Proof by an explicit construction of costs and demands.

Step 1:

Each arc of D belongs to at most two o-d paths

The equilibrium flows are unique whatever are the classes, costs, and demands

- Let **x** and $\hat{\mathbf{x}}$ be two equilibria. Define $\Delta_{od} = x_{P^+}^{od} \hat{x}_{P^+}^{od}$.
- Suppose $\Delta_{o_0 d_0} \neq 0$ for some $o_0 \cdot d_0$. There exists an $o_1 \cdot d_1$ s.t. $\Delta_{o_0 d_0} \Delta_{o_1 d_1} < 0$ and $\Delta_{o_0 d_0} + \Delta_{o_1 d_1} < 0$.
- We repeat this argument and get an infinite sequence $|\Delta_{o_0 d_0}| < |\Delta_{o_1 d_1}| < \cdots < |\Delta_{o_j d_j}| < \cdots$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Contradiction with finiteness.

Step 2:

There is an arc of D belonging to at least three o-d paths ψ There exist classes K, increasing costs $(c_a^k(\cdot))$, and demands $(b^{od,k})$ leading to two equilibria with distinct flows

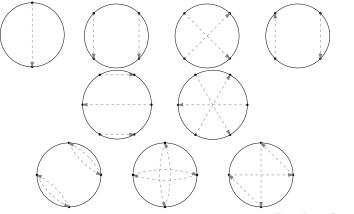
An arc in 3 *o*-*d* paths: explicitly building of cost functions and demands leading to two equilibria with distinct flows.

Some features:

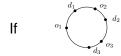
- Three classes.
- Affine cost functions.
- Explicit construction of two equilibria.
- These equilibria are strict and "single-path".

Structural characterization

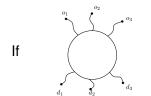
Each arc in at most two *o*-*d* paths \Leftrightarrow (*G*, \mathcal{L}) homeomorphic to a minor of one of



Corollary for general graphs: examples



is in (G, \mathcal{L}) , G does not have the UP.



is in (G, \mathcal{L}) , G does not have the UP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Having a minor without the uniqueness property

A subgraph of (G, \mathcal{L}) does not have the UP \Longrightarrow (G, \mathcal{L}) does not have the UP.

A minor of (G, \mathcal{L}) does not have the UP:

- If the contractions involve only bridges, *G* does not have the UP.
- If the counterexamples are obtained via "single-path" flows, *G* does not have the UP.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• And in general, open question.

Strong uniqueness property

G has the strong uniqueness property (SUP)

 (G, \mathcal{L}) has the UP for any collection of *o*-*d* pairs \mathcal{L}

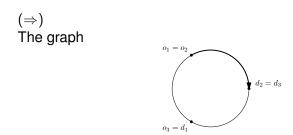
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

G has the SUP \iff No cycles of length 3 or more.

Graph having the SUP are thus graphs obtained from a forest by replicating some edges.

Proof



has one arc in three o-d paths: no UP.

 (\Leftarrow) results from two easy statements:

• A graph with two vertices and parallel edges has the SUP.

・ ロ ト ・ 雪 ト ・ 目 ト ・

· Glueing two graphs on a vertex maintains the SUP.

Open questions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Generalization UP for general graphs?

Minor

What if a minor does not have UP?

Question

What if one-way edges are allowed?

Open questions

Generalization UP for general graphs?

Minor

What if a minor does not have UP?

Question What if one-way edges are allowed?

Thank you

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@