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Abstract

In this paper, we prove that the Kneser graphs defined on a ground set of n ele-
ments, where n is even, have their circular chromatic numbers equal to their chromatic
numbers.

1 Introduction

1.1 Kneser graphs and reduced Kneser graphs

Given an integer n, we will denote {1,...,n} by [n], the collection of all subsets of [n] will
be denoted by 2!l and the collection of all k-subsets (subsets of cardinality k) of [n] by ([Z]).
A subset S of [n] is called stable if 2 < |z —y| < n— 2 for distinct elements z and y of S.
Let F C 2[" be a hypergraph. By KG(F) we denote the graph whose vertex set is the
edge set of F, and (4, B) is an edge of KG(F) if and only if AN B = 0. KG(F) is called
the Kneser graph associated to F.

The reduced Kneser graphs SG(F) is the subgraph of KG(F) induced by all stable
k-subsets.

It n > 2k, KG(n,k) is KG((\7))) and SG(n,k) is SG((7))). Kneser [5] conjectured in
1955 that x(KG(n,k)) = n — 2k + 2. It was first proved by Lovasz [6] in 1978 using tools
of algebraic topology. Soon after the announcement of Lovasz’s breakthrough, Barany [1]
found a shorter proof; it is this latter that we will follow here.

This was proved by Schrijver [9] that x(SG(n, k)) = x(KG(n,k)).

1.2 Circular chromatic number

For two positive integers p and ¢, p > 2q, a (p, q)-coloring of a graph G is a mapping ¢ from
the vertex set V(G) into the set [p] such that

(u,0) € E(G) = ¢ < |¢(u) — ¢(v)| <p—g.

The circular chromatic number x.(G) is defined to be the infimum of p/q such that G
admits a (p, g)-coloring. This concept was introduced by Vince [11] under the name star
chromatic number. He proved that this number is in fact a minimum. It can be shown that

x(G) =1 < x.(G) < x(G), (1)
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and thus [x.(G)] = x(G). The circular chromatic number has been studied intensively
in recent years, for more see the survey [12], which presents a section about graphs with
Xc(G) = x(G). Johnson, Holroyd and Stahl [4] conjectured that among such graphs we can
find the Kneser graphs, proving it for n < 2k+2, or k¥ = 2. In 2003, Hajiabolhassan and Zhu
[3] proved this conjecture for n > 2k%(k — 1). The main result of this paper is the following
theorem:

Theorem 1 For n even, and k such that n > 2k, we have x.(SG(n,k)) = x.(KG(n,k)) =
x(SG(n, k) = x(KG(n,k)) =n — 2k + 2.

This theorem states that the conjecture of Johnson, Holroyd and Stahl is true for n even.
Moreover, the equality between the circular chromatic numbers of Kneser graph and reduced
Kneser graph enlightens a question of Lih and Liu [7]: they asked about the minimum ¢(k)
such that for any n > #(k), x.(SG(n, k)) = x(KG(n, k)).

2 Topological tools

2.1 Ky Fan’s Theorem

The main theorem we will use is a theorem of Ky Fan [2] which generalizes the Lusternik-
Schnirelmann theorem (which is the version of the Borsuk-Ulam theorem involving a cover
of the n-sphere by n + 1 sets, all open or all closed).

We give the theorem exactly as it is written in the original paper of Fan (without proof):

Theorem 2 (Fan’s theorem) Let n,k be two arbitrary positive integers. If k closed sub-
sets Fy, Fy, ..., Fy, of the n-sphere S™ cover S™ and if no one of them contains a pair of
antipodal points, then there exist n + 2 indices l1, la, ..., lpyo, such that 1 <l; <lx < ... <
lnt2 <k and

F,.N-F,NnE,Nn..n(-1)""F,., #0,

where —F; denotes the antipodal set of F;. In particular, k is necessarily > n + 2.

Fan proved this theorem with a combinatorial lemma, which looks like Tucker’s lemma.
It holds for open sets too:

Theorem 3 Let n,k be two arbitrary positive integers. If k open subsets Uy, Us, ..., Uy of
the n-sphere S™ cover S™ and if no one of them contains a pair of antipodal points, then
there exist n + 2 indices l1, l2, ..., lpya, such that 1 <l <ly < ... <lp42 <k and

U,N=-U,NU,N...0 (-1, ., #0,

where —U; denotes the antipodal set of U;. In particular, k is necessarily > n + 2.

Proof:  The proof goes as for Borsuk (see [8]) using the compactness of the n-sphere:
because of Theorem 2, it suffices to prove that there are &k closed sets F; C U; which cover
the n-sphere. This can be done as follows: For each x € U;, take V,, an open neighborhood
whose closure is in U;. By compactness, there is a finite family of the {V, },cs» which covers
S™ and we define F; to be the union of the closures of the V,, of this finite family which are
strictly included in Uj;. |



2.2 Gale’s lemma - Ziegler’s version

In our proof, we will need another topological result: Gale’s lemma.

In Matousek’s book [8] (a collection of beautiful topological methods in combinatorics),
one can find a version of Gale’s lemma strenghtening the original version of Gale, with a
short proof using the moment curve. This new version was found by Ziegler (we state the
lemma here without proof), in order to simplify the proof of Schrijver’s theorem:

Lemma 1 (Ziegler’s version of Gale’s lemma) For every d > 0 and every k > 1, there
ezists a (2k+d)-point set X C S¢ such that under a suitable identification of X with [2k+d],
every open hemisphere contains a stable k-tuple.

An open hemisphere of a sphere is determined by its "center" x on this sphere: if we
note H(z) the hemisphere, we have formally: H(z) = {y € S% (z,y) > 0}.

3 Proof of Theorem 1

Let n be an even positive integer, and k a positive integer such that n > 2k. It is sufficient
to prove that x.(SG(n,k)) > x(KG(n,k)), since the reverse inequality is straightforward
using the well-known x.(SG(n,k)) < x(KG(n,k)) <n — 2k +2.

Let ¢ be a (p, q)-coloring of SG(n, k). Let us recall that the vertices of SG(n, k) are the
stable k-subsets of [n]. We identify these n integers with n points on the (n — 2k)-sphere
such that every open hemisphere contains a stable k-set (see lemma, 1).

We define p open subsets of the (n — 2k)-sphere Uy, Us, ..., U, as follows: z isin U; if and
only of H(z) (the open hemisphere whose center is z) contains a stable k-set whose color is
i.

It is easy to see that these subsets are all open and cover the (n — 2k)-sphere by con-
struction. For i € [p], U; cannot contain two antipodal points: otherwise, we would have
two disjoint hemispheres, each of them containing a k-tuple of color i.

So, we can apply Fan’s theorem: there exist integers l1, lo, ..., [—2k42 such that 1 <
Lh<b<..<lpgpy2<pand U, N-=-U,NU,N...N (—l)n_2k+1Uln_2k+2 # 0.

Let i be in [n — 2k 4+ 1]. U, N =U,,, # 0. Since for every x on the (n — 2k)-sphere
H(z) N H(—z) = 0, there are two disjoint stable k-tuples, one of color I;, the other of color
li+1. Since ¢ is a (p, ¢)-coloring, we have l; + ¢ < l;y1.

Moreover, n is even. Thus n — 2k + 1 is odd, and U, N =Uj, _,,,, # 0. For the same
reasons as above, Iy and [, o2 are colors of two disjoint stable k-tuples. Then we have:
ln—2kt2—li <p—gq.

We can write: 0 = (ln—2k+2 - ll) + (ll - lz) + (12 - l3) + ...+ (ln—2k+1 - ln—2k+2) <
(p—q)+ (n—2k+1)(—q).

Hence: 0 < p— (n — 2k + 2)g. Or, more clearly:

n—2k+2<

Q'I'U

Theorem 1 follows.

Remark 1 In the proof, we exploit the fact that n is even: if n is odd, we can not conclude
that I; and l,,_2g4+2 are colors of two disjoint stable k-tuples. Moreever, we have, for k > 1,
Xc(SG(2k + 1,k)) = 2+ + < 3 = x(SG(2k + 1,k)). But no counterexample is known with
n odd for the equality x(KG(n, k)) = n — 2k + 2 to hold.



Remark 2 It is interesting to note that the proof does not use the full power of Fan’s
result, but only the fact that, among the n — 2k + 2 selected sets U;, each intersects the
antipodal set of the next one.

Remark 3 Theorem 1 was recently independently obtained by Simonyi and Tardos [10].
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