A topological lower bound for the circular chromatic number of Schrijver graphs

Frédéric Meunier*

6th September 2004

Abstract

In this paper, we prove that the Kneser graphs defined on a ground set of n elements, where n is even, have their circular chromatic numbers equal to their chromatic numbers.

1 Introduction

1.1 Kneser graphs and reduced Kneser graphs

Given an integer n, we will denote $\{1, \ldots, n\}$ by [n], the collection of all subsets of [n] will be denoted by $2^{[n]}$ and the collection of all k-subsets (subsets of cardinality k) of [n] by $\binom{[n]}{k}$.

A subset S of [n] is called *stable* if $2 \le |x-y| \le n-2$ for distinct elements x and y of S. Let $\mathcal{F} \subseteq 2^{[n]}$ be a hypergraph. By $KG(\mathcal{F})$ we denote the graph whose vertex set is the edge set of \mathcal{F} , and (A, B) is an edge of $KG(\mathcal{F})$ if and only if $A \cap B = \emptyset$. $KG(\mathcal{F})$ is called the *Kneser graph* associated to \mathcal{F} .

The reduced Kneser graphs $SG(\mathcal{F})$ is the subgraph of $KG(\mathcal{F})$ induced by all stable k-subsets.

If $n \geq 2k$, KG(n,k) is $KG(\binom{[n]}{k})$ and SG(n,k) is $SG(\binom{[n]}{k})$. Kneser [5] conjectured in 1955 that $\chi(KG(n,k)) = n-2k+2$. It was first proved by Lovász [6] in 1978 using tools of algebraic topology. Soon after the announcement of Lovász's breakthrough, Bárány [1] found a shorter proof; it is this latter that we will follow here.

This was proved by Schrijver [9] that $\chi(SG(n,k)) = \chi(KG(n,k))$.

1.2 Circular chromatic number

For two positive integers p and q, $p \ge 2q$, a (p,q)-coloring of a graph G is a mapping ϕ from the vertex set V(G) into the set [p] such that

$$(u,v) \in E(G) \Rightarrow q \le |\phi(u) - \phi(v)| \le p - q.$$

The circular chromatic number $\chi_c(G)$ is defined to be the infimum of p/q such that G admits a (p,q)-coloring. This concept was introduced by Vince [11] under the name star chromatic number. He proved that this number is in fact a minimum. It can be shown that

$$\chi(G) - 1 < \chi_c(G) \le \chi(G), \tag{1}$$

^{*}Laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, Grenoble cedex F-38031, France. E-mail: frederic.meunier@imag.fr

and thus $\lceil \chi_c(G) \rceil = \chi(G)$. The circular chromatic number has been studied intensively in recent years, for more see the survey [12], which presents a section about graphs with $\chi_c(G) = \chi(G)$. Johnson, Holroyd and Stahl [4] conjectured that among such graphs we can find the Kneser graphs, proving it for $n \leq 2k+2$, or k=2. In 2003, Hajiabolhassan and Zhu [3] proved this conjecture for $n \geq 2k^2(k-1)$. The main result of this paper is the following theorem:

Theorem 1 For n even, and k such that $n \ge 2k$, we have $\chi_c(SG(n,k)) = \chi_c(KG(n,k)) = \chi(SG(n,k)) = \chi(KG(n,k)) = n - 2k + 2$.

This theorem states that the conjecture of Johnson, Holroyd and Stahl is true for n even. Moreover, the equality between the circular chromatic numbers of Kneser graph and reduced Kneser graph enlightens a question of Lih and Liu [7]: they asked about the minimum t(k) such that for any $n \geq t(k)$, $\chi_c(SG(n,k)) = \chi(KG(n,k))$.

2 Topological tools

2.1 Ky Fan's Theorem

The main theorem we will use is a theorem of Ky Fan [2] which generalizes the Lusternik-Schnirelmann theorem (which is the version of the Borsuk-Ulam theorem involving a cover of the n-sphere by n + 1 sets, all open or all closed).

We give the theorem exactly as it is written in the original paper of Fan (without proof):

Theorem 2 (Fan's theorem) Let n,k be two arbitrary positive integers. If k closed subsets $F_1, F_2, ..., F_k$ of the n-sphere S^n cover S^n and if no one of them contains a pair of antipodal points, then there exist n+2 indices $l_1, l_2, ..., l_{n+2}$, such that $1 \le l_1 < l_2 < ... < l_{n+2} \le k$ and

$$F_{l_1} \cap -F_{l_2} \cap F_{l_3} \cap \ldots \cap (-1)^{n+1} F_{l_{n+2}} \neq \emptyset,$$

where $-F_i$ denotes the antipodal set of F_i . In particular, k is necessarily $\geq n+2$.

Fan proved this theorem with a combinatorial lemma, which looks like Tucker's lemma. It holds for open sets too:

Theorem 3 Let n,k be two arbitrary positive integers. If k open subsets $U_1, U_2, ..., U_k$ of the n-sphere S^n cover S^n and if no one of them contains a pair of antipodal points, then there exist n+2 indices $l_1, l_2, ..., l_{n+2}$, such that $1 \le l_1 < l_2 < ... < l_{n+2} \le k$ and

$$U_{l_1} \cap -U_{l_2} \cap U_{l_3} \cap \ldots \cap (-1)^{n+1} U_{l_{n+2}} \neq \emptyset,$$

where $-U_i$ denotes the antipodal set of U_i . In particular, k is necessarily $\geq n+2$.

Proof: The proof goes as for Borsuk (see [8]) using the compactness of the n-sphere: because of Theorem 2, it suffices to prove that there are k closed sets $F_i \subset U_i$ which cover the n-sphere. This can be done as follows: For each $x \in U_i$, take V_x , an open neighborhood whose closure is in U_i . By compactness, there is a finite family of the $\{V_x\}_{x \in S^n}$ which covers S^n and we define F_i to be the union of the closures of the V_x of this finite family which are strictly included in U_i .

Gale's lemma - Ziegler's version 2.2

In our proof, we will need another topological result: Gale's lemma.

In Matousek's book [8] (a collection of beautiful topological methods in combinatorics), one can find a version of Gale's lemma strenghtening the original version of Gale, with a short proof using the moment curve. This new version was found by Ziegler (we state the lemma here without proof), in order to simplify the proof of Schrijver's theorem:

Lemma 1 (Ziegler's version of Gale's lemma) For every $d \ge 0$ and every $k \ge 1$, there exists a (2k+d)-point set $X \subset S^d$ such that under a suitable identification of X with [2k+d], every open hemisphere contains a stable k-tuple.

An open hemisphere of a sphere is determined by its "center" x on this sphere: if we note H(x) the hemisphere, we have formally: $H(x) = \{y \in S^d: \langle x, y \rangle > 0\}.$

Proof of Theorem 1 3

Let n be an even positive integer, and k a positive integer such that n > 2k. It is sufficient to prove that $\chi_c(SG(n,k)) \geq \chi(KG(n,k))$, since the reverse inequality is straightforward using the well-known $\chi_c(SG(n,k)) \leq \chi(KG(n,k)) \leq n-2k+2$.

Let ϕ be a (p,q)-coloring of SG(n,k). Let us recall that the vertices of SG(n,k) are the stable k-subsets of [n]. We identify these n integers with n points on the (n-2k)-sphere such that every open hemisphere contains a stable k-set (see lemma 1).

We define p open subsets of the (n-2k)-sphere $U_1, U_2, ..., U_p$ as follows: x is in U_i if and only of H(x) (the open hemisphere whose center is x) contains a stable k-set whose color is i.

It is easy to see that these subsets are all open and cover the (n-2k)-sphere by construction. For $i \in [p]$, U_i cannot contain two antipodal points: otherwise, we would have two disjoint hemispheres, each of them containing a k-tuple of color i.

So, we can apply Fan's theorem: there exist integers $l_1, l_2, ..., l_{n-2k+2}$ such that $1 \le n$

 $l_1 < l_2 < \ldots < l_{n-2k+2} \le p \text{ and } U_{l_1} \cap -U_{l_2} \cap U_{l_3} \cap \ldots \cap (-1)^{n-2k+1} U_{l_{n-2k+2}} \ne \emptyset.$ Let i be in [n-2k+1]. $U_{l_i} \cap -U_{l_{i+1}} \ne \emptyset$. Since for every x on the (n-2k)-sphere $H(x) \cap H(-x) = \emptyset$, there are two disjoint stable k-tuples, one of color l_i , the other of color l_{i+1} . Since ϕ is a (p,q)-coloring, we have $l_i + q \leq l_{i+1}$.

Moreover, n is even. Thus n-2k+1 is odd, and $U_{l_1}\cap -U_{l_{n-2k+2}}\neq \emptyset$. For the same reasons as above, l_1 and l_{n-2k+2} are colors of two disjoint stable k-tuples. Then we have: $l_{n-2k+2} - l_1 \le p - q.$

We can write: $0 = (l_{n-2k+2} - l_1) + (l_1 - l_2) + (l_2 - l_3) + \dots + (l_{n-2k+1} - l_{n-2k+2}) \le 1$ (p-q) + (n-2k+1)(-q).

Hence: $0 \le p - (n - 2k + 2)q$. Or, more clearly:

$$n - 2k + 2 \le \frac{p}{q}.$$

Theorem 1 follows.

Remark 1 In the proof, we exploit the fact that n is even: if n is odd, we can not conclude that l_1 and l_{n-2k+2} are colors of two disjoint stable k-tuples. Moreever, we have, for k > 1, $\chi_c(SG(2k+1,k)) = 2 + \frac{1}{k} < 3 = \chi(SG(2k+1,k))$. But no counterexample is known with n odd for the equality $\chi(KG(n,k)) = n - 2k + 2$ to hold.

Remark 2 It is interesting to note that the proof does not use the full power of Fan's result, but only the fact that, among the n-2k+2 selected sets U_i , each intersects the antipodal set of the next one.

Remark 3 Theorem 1 was recently independently obtained by Simonyi and Tardos [10].

Aknowledgement Thanks to András Sebö for his thorough reading of my manuscript and for all his precious remarks.

References

- [1] I.Bárány. A short Proof of Kneser's conjecture. J. Combinatorial Theory, Ser. A, 25:325-326, 1978.
- [2] K.Fan. A generalization of Tucker's combinatorial lemma with topological applications. *Ann. of Math.* (2), 56:431-437, 1952.
- [3] H.Hajiabolhassan and X.Zhu, Circular chromatic number of Kneser graphs, J. of Combinatorial Theory, Ser. A,88:299-303, 2003.
- [4] A.Johnson, F.C. Holroyd, and S.Stahl, Multichromatic numbers, star chromatic numbers and Kneser graphs, *J. Graph Theory*, 26:137-145, 1997.
- [5] M.Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58:2. Abteilung, S. 27, 1955.
- [6] L.Lovász. Kneser's conjecture, chromatic number and homotopy. J. of Combinatorial Theory, Ser. A, 25:319-324, 1978.
- [7] K.W.Lih and D.F.Liu, Circular chromatic numbers of some reduced Kneser graphs, *J. Graph Theory*, 41:62-68, 2002.
- [8] J.Matousek, *Using the Borsuk-Ulam Theorem*, Springer-Verlag Berlin Heidelberg New York, 2003.
- [9] A.Schrijver. Vertex-critical subgraphs of Kneser graphs. *Nieuw Arch. Wiskd.*, *III. Ser.*, 26:454-461, 1978.
- [10] G. Simonyi and G. Tardos, Local chromatic number and the Borsuk-Ulam Theorem, preprint, 2004.
- [11] A.Vince, Star chromatic number, J. Graph Theory, 12:551-559, 1988.
- [12] X.Zhu, Circular chromatic number: a survey, Discrete Math. 229:371-410, 2001.