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Abstract

In 1952, Ky Fan proved a combinatorial theorem generalizing the Borsuk-Ulam
theorem stating that there is no Zs-equivariant map from the d-dimensional sphere S?
to the (d — 1)-dimensional sphere S9=1 The aim of the present paper is to provide
the same kind of combinatorial theorem for Dold’s theorem, which is a generalization
of the Borsuk-Ulam theorem when Z, is replaced by Z,, and the spheres replaced by
d-dimensional (d — 1)-connected free Zg-spaces. It provides a combinatorial proof of
Dold’s theorem. Moreover, the proof does not work by contradiction.

Key Words: combinatorial proof; Dold’s theorem; Fan’s theorem; labelling; Tucker’s
lemma; triangulation.

1 Introduction

Ky Fan gave ([3]) in 1952 a combinatorial generalization of the Borsuk-Ulam theorem:

Theorem 1 (Fan’s theorem) Let T be a symmetric triangulation of the d-sphere (if o € T
then —o € T) and let X : V(T) — {-1,+1,-2,42,...,—m,+m} be an antipodal la-
belling (\(—v) = —X(v)) of the vertices of T such that no edge is labelled by —j,+j for
some j (there is no antipodal edge). Then we have at least one simplex in T labelled with
—j0, F1s -, (1) 55 where jo < j1 < ... < jq.

In combinatorics, a continuous version of Fan’s theorem is used in particular in the study
of Kneser graphs (see [6],[10],[11]).

Since there is a generalization of Borsuk-Ulam theorem with other free actions (Z,-
actions) than the central symmetry (Zs-action), namely Dold’s theorem, a natural question
is whether there is a generalization of Fan’s theorem using ¢ “signs” instead of the 2 signs
—,+ and leading to a purely combinatorial proof of Dold’s theorem.

The present paper gives such a “Z,-Fan theorem”. An equivariant triangulation T of a
free Z,-space is a triangulation such that if o € T, then v,o € T for all s € Z, (v, is the
homeomorphism corresponding to the action of s € Z, on the Z,-space).

Theorem 2 (Z,-Fan’s theorem) Let g be an odd positive integer, let T be an equivari-
ant triangulation of a d-dimensional (d — 1)-connected free Zq-space and let A : V(T) —
Zq x {1,2,...,m} be a equivariant labelling (if A(v) = (&,7), then A(vsv) = (s + €,7)
- counted modulo q - for all s € Z,) of the vertices of T such that no edge is labelled
by (e,7),(¢',4), with € # €, for some j. Then we have at least one simplex in T la-
belled with (eq,jo), (€1,791)s- -, (€dsja) where ¢; # €41 for all i € {0,1,...,d — 1}, and
Jo<ji1<...<Ja
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It is not clear whether this theorem is also true for ¢ even.

The plan is the following: First, we reprove Fan’s theorem with the same kind of technics
we use in the rest of the paper (Section 3). Then, following the same scheme, we prove the
Zg-Fan theorem (Section 4). Finally, in the Section 5, we explain how this proof provides
a new combinatorial proof of Dold’s theorem, after the one found by Giinter M. Ziegler in
[12]: the Z,-Tucker lemma. “Combinatorial” means, according to Ziegler, no homology, no
continuous map, no approximation. From this point of view our proof has a little advantage:
it does not work by contradiction. This provides a new step in the direction of a constructive
proof of Dold’s theorem, whose existence is an important question (see the discussion of Mark
de Longueville and Rade Zivaljevic in [1]). A constructive proof of Borsuk-Ulam theorem
was found by Freund and Todd in 1981 ([4]). Another one, proving also Fan’s theorem
(Theorem 1), was proposed by Prescott and Su in 2005 ([9]).

2 Notations

We assume basic knowledge in algebraic topology. A good reference is the book of James
Munkres [8].

2.1 General notations
Zy, is the set of integers modulo n.

Let S be a set, and suppose that Z,, acts on .S. We denote by v, the action corresponding
to s € Z,,. We denote v := v;. We have then vy, = v X v X ... X ¥ = v® and in particular
————

s terms
0 =id.

2.2 Simplices, chains and cochains

The definitions of simplices, simplicial complexes, chains and cochains are assumed to be
known. We give here some specific or less well-known definitions and notations.

The join of two simplicial complexes K and L is denoted by K x L and the join of K &
times by itself is denoted by K**.

(Z4)*™ is the (m — 1)-dimensional simplicial complex whose vertex set is the disjoint
union of m copies of Z, and whose simplices are the subsets of this disjoint union containing
at most one vertex of each copy. It is often denoted by E,,_1Z, in the literature. A vertex
of (Zy)*™ is of the form (e, j), with € € Zy and j € {1,2,...,m}.

Let ¢, be a k-chain and ¢* be a k-cochain. We denote the value taken by ¢* at ¢ by
(c*, c1,). Moreover, we identify through (.,.) chains and cochains.

Let G be a group acting on a topological space X. The action of G on X is said to be
free if every non-trivial element of G acts without fixed-point. In this case, we also say that
G acts freely on X.

Let G be a group acting on two sets X and Y. A map (or a labelling) f: X — Y is said
to be G-equivariant if fog=go f for any g € G.
2.3 The standard complex
2.3.1 Definition

The standard complez is defined in [5] for instance. Let S be a set. For i = 0,1,2.... let
E;(S,G) be the free module over an abelian group G generated by (i + 1)-tuples (xo, ..., x;)



with xg,...,2; € S. Thus such (i + 1)-tuples form a basis of F;(S,G) over G. There is a
unique homomorphism
8 : Ei+1(5, G) — EZ(S, G)
such that
i+l _
6(I0, s 71'7;_;,_1) = Z(il)J(l‘(% ) ‘i‘_]v s 7xi+1)7
§=0
where the symbol #; means that this term is to be omitted.
An element of E;(S,G) is an (¢ + 1)-chain and can be written ), Aoy, where the oy
are (i + 1)-tuples of S, and the \; are taken in G.
We denote this complex C(S,G) and the corresponding coboundary map 4:

i1
(g, X1y, x5) = Z ((a, Lo, L1,y - 7.’1%‘) + Z(—l)k+1(m0,x1, ey Xy Ay Ty 1y - - - ,LI’,’Z')
acs k=0
+<—1)i+1(l‘07l‘1, R ) a))
A standard complex used throughout the paperis C(Z,, Z,): E;(Z,,Z,) is the free module
over Z, generated by the elements of Z:*'. For instance, ((O7 1,0) — (2,2,2) — (0,2,1)) €
C(Zs, Zs) and 9((0,1,0)—(2,2,2)+(0,2,1)) = (0,1) = (0,0) +(1,0) - (2,2) +(2,2) - (2,2) +

(0,2) — (0,1) + (2,1) = (2,1) + (0,2) +2(2,2) + (1,0) + 2(0,0).
As we use in this paper the elements of C(Z,, Z,) as cochains, we illustrate the action of
& on one of these elements: for ((0,2) — (0,1)) € C(Zs,Z3), we have:

5((0,2) = (0,1)) = 6(0,2) —5(0,1)
((0,0,2)+(1,0,2)+(2,02) (0,0,2) — (0,1,2) — (0,2,2) + (0, 2,0) + (0,2, 1) +(0,2,2)) —
)

((0,0,1) +(2,0,1) + (1,0,1) — (0,0,1) — (0,2,1) — (0,1,1) + (0,1,0) 4+ (0,1,2) + (0,1,1))
= ((1,0,2) + (2,0,2) + 2(0,1,2) + (0,2,0) + (0,2,1)) +2((2,0,1) + (1,0,1) + 2(0,2,1) +
(0,1,0) + (0,1,2))

= (1 0,2) +(2,0,2) + (0,1,2) + (0,2,0) +2(0,2,1) +2(2,0,1) +2(1,0,1) 4 2(0,1,0).

2.3.2 Actions on the standard complex

Moreover, if there is a group H acting on S, then H acts also on C(S,G): for vy, an action
corresponding to an element h of H, we extend it as follows: vp% is the unique homomor-
phism E;(S,G) — E;(S,G) such that vpu(zo,...,2;) = (VnZo,...,vpz;). We define yf
similarly for cochains.

2.3.3 Concatenation

We introduce the following notation: for a (i 4+ 1)-tuple (zg,1,...,2;) € S and ¢; €
E;(S,G) a j-chain, we denote (xo, z1, ..., %;, ¢;) the (i+j+1)-chain >, A\p(zo, 21,..., 25, 0%)
where the o, are the (j 4 1)-tuples such that ¢; =), A\poy.

3 Proof of Fan’s theorem

This section is devoted to a new proof of Ky Fan’s theorem (Theorem 1). A simple com-
binatorial proof can also be found in [7]. In the one presented here, we try to extract the
exact mechanism that explains this theorem. We distinguish four steps.

Let T be a symmetric triangulation of the d-sphere S¢ and let A : V(T) — {£1,42,...,+m}
be an antipodal labelling of the vertices of T such that no edge is labelled by —j,+7 for some
j. A commutes with v, where v is defined for any vertex v of T by v(v) = —v.



In the first step, using the definition of A, we embed C(T,Zs) in the standard complex
C(Z3,Zs). In the second and third step, we build a sequence (hx)refo,1,...,qy of k-chains
of C(T,Zs) and a sequence (ex)reqo,1,...,qy Of k-cochains of C(Za,Z) which satisfy dual
relations. Finally, using this duality and an induction, we achieve the proof.

3.1 @/J# : C(T,ZQ) - C(Z27Z2)

We see A as a simplicial map going from T into the (m—1)-dimensional simplicial complex C,
whose simplices are the subsets of {—1,+1,—2,42,..., —m, +m} containing no pair {—i, +i}
for some i € {1,2,...,m} (such a complex is the boundary complex of the cross-polytope).

Let ¢ : ¢ € Z\{0} — ¢(z) € Zs where ¢(z) = 1 if and only if z > 0. We define
then the following chain map ¢4 : C(C,Z2) — C(Z2,Z3) for o = {jo,...,jr} € C with
ldol < |71l < ... < |jkl by ¢x(o) = (6(jo), #(j1); - - -, P(jx)) (checking that it is a chain map
is straightforward).

We define ¢4 1= ¢4 0 Ay. It is a chain map going from the chain complex C(T,Zs) into
the standard complex C(Zy,Z3). Note that 1)x commutes with vy (where v : a € Zy —
(a+1) € Zy).

3.2 the “hemispheres”

It is easy to see that there is a sequence (hx)reco,1
is a vertex and such that

.y of k-chains in C(T, Zy) such that ho

yees

Ohk11 = (id# + V#)hk, (1)

for all k € {0,1,...,d—1}. These k-chains can be seen as k-dimensional hemispheres of S<.
There is an easy construction of them. We can also see their existence through an homology
argument: let hy be any vertex; then

8(1(21# + I/#)hk = (id# + I/#)aho =0

and there exists an hy such that Ohy = (idg +vg)ho (the 0th homology group of the d-sphere
is 0); finally, if hj exists, then

O(idy+vy)hy = (idg+vy)Ohy, = (idytvy)(idgtvy)hs 1 = (idgtvi )by = 2idghy1 = 0;

hence there exists an hyy;1 such that Ohyy1 = (idg + vg)hy (the kth homology group of the
d-sphere is 0 for k < d —1).

3.3 the “co-hemispheres”

On the other side, we have for the standard complex C(Zsy,Z5):

§(0,1,0,1,...) = (0,1,0,1,...)+(1,0,1,0,...),

k terms k+1 terms k+1 terms
which can be written
de, = (id¥ + v#)epi, (2)
where e, = (0,1,0,1,...) and where v : (e, €1,...,€x) — (c0+ 1,61+ 1,...,ex+1) (counted
—_————

k terms
modulo 2). There is an obvious duality between equations (1) and (2). We call the ey

“co-hemispheres”.



3.4 induction

We use now this symmetry to achieve the proof: we prove now the following property by
induction on k < d:

<€k,1/}#((id# + V#)hk» =1 mod 2.

It is true for k = 0: eg = (0) and ¥4 ((idg + v )ho) = (0) + (1).
If it is true for k£ > 0, we have

(enrs g ((idg + vy b)) = (17 + 0% )erp1, Pyphiin) = (Ser, Pyhiga)
= (ek, Y Ohpy1) = <ek,’¢#((id# + l/#)hk)> =1 mod 2.

This proves the property. For k = d, it means that there is at least one d-simplex ¢ such
that ¢4 () = (0,1,0,1,...), which is exactly the statement of the theorem. ]

4 Proof of Z,-Fan theorem

In this section, we prove Theorem 2. We follow similar four steps.

Let ¢ be an odd positive integer, let T be an equivariant triangulation of a d-dimensional
(d — 1)-connected free Z,-space and let A : V(T) — Z, x {1,2,...,m} be an equivariant
labelling (if A(v) = (¢,7), then A(vsv) = (s + ¢, j) for all s € Z,) of the vertices of T such
that no edge is labelled by (e, 7),(¢', ), with € # €', for some j.

In the first step, using the definition of )\, we embed C(T,Zs) in the standard complex
C(Zq,Zq). In the second and third steps, we build a sequence (hx)re{o,1,...,qy Of k-chains
in C(T,Z,) and a sequence (ex)reqo,1,...,a3 of k-cochains in C(Z,,Z,) which satisfy dual
relations. Finally, using this duality and an induction, we achieve the proof.

4.1 oy C(T,Zy) — C(Zg, Zy)

We see A as a simplicial map going from T into the (m — 1)-dimensional simplicial complex
(Z4)*™, whose simplices are the subsets of Z, x{1,2, ..., m} containing no pair {(e, j), (¢, j) }
for some j € {1,2,...,m} and some €€’ € Z, with € # €.

We define then the following chain map ¢x : C((Z,)*",Z,) — C(Z4,Z,) for o =
[(€0,J0)s- -, (€&, Jk)] € (Zg)*™ with jo < j1 < ... < ji by ¢x(0) = (eo, €1, .., €x) (checking
that it is a chain map is straightforward).

We define 4 1= ¢4 o Ay. It is a chain map going from the chain complex C(T,Z,) into
the standard complex C(Z,,Z,). Note that ¢4 commutes with the vy (where v:a € Zg —
(a+1) € Zy).

4.2 the “hemispheres”

It is not too hard to exhibit a sequence (hy)reqo,1,
is a vertex and such that, for [ any integer > 0:

a4y of k-chains in C(T,Z,) such that hqg

ceey

8h21+1 = (ld# ‘+vg+...+ I/;;l)hgl,
] (3)
Ohaio = (Vg — vy Yharta.
We can also see their existence through an homology argument: let hy be any vertex of
T; then
Ody + vy + ...+ V4 Dho = (idg + v + ...+ 15 oo =0

and there exists an h; such that Oh; = (idg +vg + ... + V;;l)ho (the Oth homology group
of Tis 0: Tis (d — 1)-connected); finally, if ho; exists, then

a(id#—l—l/#—F. . .—H/;&_l)hzl = (id#+V#+. . .+V§¢_1)ah2l = (id#—|—l/#—|—. . .—I—V%E_l)(l/#—l/;l)hgl_l = O;



hence there exists an hg;11 such that Ohgy1 = (idg +ve + ... + l/%:_l)hgl,
and if hojy; exists, then

8(1/# — V%l)hgl_i_l = (1/# — l/;l)ahgl_;,_l = (l/# — I/#_l)(id# +rvp+...+ V;:l)hgl = 0;

hence there exists an hoyyo such that Ohejpo = (Vg — V%l)hglﬂ (the kth homology group of
TisOfor k <d—1: Tis (d— 1)-connected).

4.3 the “co-hemispheres”

Our aim is to find a sequence (ej) of elements of the standard complex C(Z,,Z,) playing
the same role than the e, in the proof of Theorem 1 above.

For the proof, it is enough to know that such a sequence exists (the construction of this
sequence is given in the Appendix - Lemma 2 - at the end of the paper), which satisfies
eo = (0) and, for [ any integer > 0:

degr = (v# —v# ey,
degpp1 = (ld# +uF 4+ V#q71)621+2.

(4)

Again, the h; and the ey satisfy dual relations. We call the latter “co-hemispheres”.

4.4 induction
We use now this symmetry between equations (3) and (4) to achieve the proof: we prove
now the following property by induction on ! < d:
<egl,¢#((id# + Vg 4+ ...+ l/i_l)hgl» = (—l)l mod q
and
(eats1, Yy (v — vz Dharg)) = (=) mod q.
It is true for | = 0: ¢y ((idy +vg + ... + uj#‘l)ho) =0)+1)+...+(¢g—1) and

(eo,w#((id# +rva+...+ V;[l)hgl)) ={(0),0)+ (1) +...+(¢g—1)) =1.
If it is true for [ > 0, we have:

#=1 _ u#)

(2141, Vs (v — V;)hmﬂ)) = ((v €141, Yhory1) = —(0ear, Yyhory1)

— 7<6217¢#ah21+1> = 7<6217¢#((id# + Vg + ...+ V;;l)hzl)> = (71)l+1 mod q,

and
(ear42, Vu ((idg+vpt. . '+V:,qg{:_1)h2l+2)> = ((id*+v#+.. AVFI N egi 0, huhoria) = (0€a41, Yahorya)

= (e1+1, Y O0hay2) = (eas1, Ve (v — V;l)h21+1)> = (=1)""! mod g¢.

This proves the property. For k = d, it means that there is at least one d-simplex ¢ such
that ¢4 (o) = (€0, €1,...,€q) with € # €41 for i =0,1,...,d —1 (in the e, all k + 1-tuples
satisfy this property - see Lemma 1 in the Appendix), which is exactly the statement of the
theorem. 1



5 Combinatorial proof of Dold’s theorem
We recall Dold’s theorem (proved by Dold in 1983 [2]):

Theorem 3 (Dold’s theorem) Let X and Y be two simplicial complexes, which are free
Zyn-space. If f: X =Y is a Z,-equivariant map between free Z,-spaces, then the dimension
of Y is larger than or equal to the connectivity of X.

It is not too hard to give an explicit construction (without using homology arguments) of
a sequence (hx)reqo,1,...,a3 Of k-chains in C(T,Z,), where T is any equivariant triangulation
of (Zp)*(dﬂ), such that hg is a vertex and such that, for [ any integer > 0:

ah2[+1 = (ld# +vy+...+ l/;[l)hgl,
] (5)
Ohaiy2 = (Vg — vy )hars1.

The proof of Theorem 2 is combinatorial (no homology, no continuous map, no approxi-
mation) and does not work by contradiction.

By standard technics, to prove Theorem 3, it is sufficient to consider the case when n = p
is prime, X is an equivariant triangulation of (Z,)*(**") and Y := (Z,)*¢, and to prove that
there is no equivariant simplicial map X — Y.

Thus Theorem 1 (for p = 2) and Theorem 2 (for p = ¢ odd) together provide a purely
combinatorial proof of Theorem 3 without working by contradiction, because they imply
that if A is a equivariant simplicial map X — (Z,)*™ then m > d.

6 Appendix: definition of the ¢; for Z,

6.1 Definitions of C' and (ey)

For simplicity, we write ¢ = 2r + 1. We were not able to find a similar construction for ¢
even (except of course for ¢ = 2).

We define recursively the infinite sequence (ej)ren of element of C(Zy,Z), where e €
Ey(Z4,Z) (we define ey, with coefficients in Z, but the relations they will satisfy will be true
for coefficients in Z4 too).

We first begin with ey and eq:

|
—

r J
e = ((20+1,2r — 25 + 20) — (2r — 2j + 2i,2i + 1)).
§=0i=0
We define then the following application C : Ey(Zy,Z) — Eyy2(Zg,Z) by its value on

the natural basis:

I
<

C: (ao,...,ax) — (ag,.. .,ak,z/;’“el).

For k > 2, we can now define the rest of the infinite sequence:
€ = C(ekfg).
This construction implies immediately the following property:

Lemma 1 Let k > 0, and 0 = (eg,€1,...,€;) € ZZ'H. If {ex,0) # 0, which means that o
has a non-zero coefficient is the formal sum ey, then €; # €11 for any i € {0,1,...,k —1}.



(2,1,0,2),
,1,2,0)+ (0,2,1,0,2), and so on.

Let us see for instance what it gives for ¢ = 3 and ¢ = 5.

6.2 Examples for =3 and ¢ =5
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with x even > 2

with x even or 0 < =z < 2r.
,2r—1}. Forz € X and y € Y, the

+v# ey .
coefficient of (z,%) in (id# — v#)e; is —1 and the coefficient of (y,z) is +1. The equality

Z I/#jeg.

+(2r) = (id# — v#)e,.
jez,

(d* + v# + ...
{0} U{L,3,..
(561

(w#* —v# ey,

(id# — v#)e; follows.

degy
deary1
S((2)+(4) +...
PROOF OF CLAIM 1: According to the definition of ej, if a ¢ is such that {(e;,0) # 0,

, or of the form (0,x) or (x,0)
Hence, if ¢ is such that ((id# — v#)e;, o) # 0, then o is of the form (z,y) or (y,z) with

, we have:

<2r

S2rtandy €Y

+ (27"))

We prove first a serie of claims and finally, prove the equations by induction.
Y

implies that de; can be written 3., v#3(0,h), where h € E1(Z,,Z). As the couples (z,y)

then o is of the form (y, ) or (z,y) with z even, y odd and 0 < y < z < 2r. Similarly, if
PROOF OF CLAIM 2: Applying § on both sides of equation (6), we get: de; = v#(dey). It

o is such that (v#ey, o) # 0, then o is either of the form (y,z) or (x,y)

6.3 Induction property of (e)
We prove now the equations (4):

Lemma 2 Forl >0
S((2)+(4)+...
CLAIM 2:

oddand 0 <z <
x e X :={2/4,..

Proof:
CLAIM 1:



in e1 never begin with a 0, we get (0,e1) while keeping from de; only the couples beginning
with a 0. Hence h = e, and we have indeed de; = ZjEZq v#ie,, since es = (0,e).

CLAIM 3: v# o C = C o v#.
PROOF OF CLAIM 3: straightforward.

CLAIM 4:
doC=Cod. (8)

PROOF OF CLAIM 4: Let 0 = (ag,...,ax) be a (k + 1)-tuple. We have

(500)0) = 8(o,(v*wer))
((80), (Forer)) + (=) (0, 5(v#ker)) — (1)1 Y 0y (0,5, (vFrey)),

et

(Cod)(o) = C(bo) _
= ((50)7 (V#akel)) + (_1)k+1 Z_jeZq (Uvja (V#Jel)) - (_1)k+1 ZjeZq (Ua j7 (V#akel))'

Hence, (50C)(9)— (Co8) () = (~1)F1 (o, 6(u#ke1)) —(— 1)1 5,0, (0, w#ier). But,
according to equation (7), 6(v#%e;) — > ez, U vitiey) = v (Jey ) — > jez, v#3(0,e1) =0
(we have ez = (0,e1)). Thus (§ o C)(o) — (C 0 d)(o) =0.

Proof of Lemma 2: By induction on [.

For [ = 0, we have deg = (v# —v#~1)e;: indeed, let ¢ := (2)+(4)+. ..+ (2r); according to
equation (6), we have dc = (id# —v#)e;; we have also, S((0)+(1)+...+2r—1)+(2r)) =0
(the checking is straightforward); hence, §(0) + dc + dv#~lc = 0; and thus 6(0) = (v —
v#~1)e;. Claim 2 is the relation: de; = (id# +v# + .- + v#9"1)e,. Lemma 2 is proved for
1=0.

Let’s assume that Lemma 2 is proved for [ > 0. According to Claim 3 and Claim 4, we
have then:

(5625+2 = ((5 o C)(egl) = (C o 5)(621) = C((l/# — V#_1)621+1) = (V# — V#_1)€2H_3

and

(5621+3 = (500)(621+1) = (Coé)(eglﬂ) = C( Z V#jegH,Q) = Z V#j621+4 = (id#—i—l/#-l—. . .+V#q71)621+4.
jeZq jeZq

References

[1] M. de Longueville and R. T. Zivaljevic, The Borsuk-Ulam-property, Tucker-property
and constructive proofs in combinatorics, J. Combinatorial Theory, Ser. A, 113:839-850,
2006.

[2] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math., 19:65-69, 1983.

[3] K. Fan, A generalization of Tucker’s combinatorial lemma with topological applications,
Annals Math., II Ser., 56:431-437, 1952.



[4] R. M. Freund and M. J. Todd, A constructive proof of Tucker’s combinatorial lemma,
J. Combinatorial Theory, Ser. A, 30:321-325, 1981.

[5] S. Lang, Algebra, Addison-Wesley Publishing Company, 1993.

[6] F. Meunier, Improving on the chromatic number of Kneser graphs with improved topo-
logical lemmas, J. Graph Theory, 49:257-261, 2005.

[7] F. Meunier, Combinatorial Stokes fomulae, Eur. J. Combinatorics, to appear.
[8] J. Munkres, Elements of Algebraic Topology, Perseus Books Publishing, 1984.

[9] T. Prescott and F. Su, A constructive proof of Ky Fan’s generalization of Tucker’s
lemma, J. Combinatorial Theory, Ser. A, 111:257-265, 2005.

[10] G. Simonyi and G. Tardos, Local chromatic number, Ky Fan’s theorem, and circular
colorings, Combinatorica, to appear.

[11] G. Simonyi and G. Tardos, Colorful subgraphs in Kneser-like graphs, Eur. J. Combi-
natorics, to appear.

[12] G.M. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Inven-
tiones Math., 147:671-691, 2002.

10



