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Abstract
We study a two-dimensional phase field model describing the motion of dislocations for a Frank-Read source

when a shear stress σ is applied. The level sets of the phase describe the dislocation curves and allows their change of
topology. The phase solves a nonlinear reaction-diffusion equation of Allen-Cahn type, on a bounded large domain
with Neumann boundary conditions. The large domain mimics the whole plane with two holes to which some of the
dislocation curves are attached. We show that dislocations are created at the rate ω which is a monotone function
of the shear stress σ. Using the time-shifting method, we study the long time behavior of the solution, and this
allows us to identify a periodic permanent regime whose periodicity is 1/ω. Moreover, using a semi-norm method,
we show that the difference between the solution and the periodic permanent regime converges to zero with an
exponential decay in time.
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1 Introduction
1.1 Setting of the problem
In this paper we investigate a nonlinear diffusion Allen-Cahn type equation with homogenous Neumann condition
on a two-dimensional domain Ω ⊂ R2 defined by

Ω = B(0, R0) \
(
B(P +, ε0) ∪B(P −, ε0)

)
where R0 > 2, 0 < ε0 < 1 and P ± = (±1, 0). We are interested in the existence of solutions u = u(x, t) of the
following equation

(1.1)

 ut = ∆u− V ′
(

u + θ+(x)− θ−(x)
2π

)
+ σ on Ω× I

∂nu = 0 on ∂Ω× I,

for some time interval I = R or I = [t0, +∞). Here the nonlinearity V is assumed to be smooth and 1-periodic in
the following sense

(1.2) V ∈ C3(R) and V (z + k) = V (z) for (z, k) ∈ R× Z,

and σ is a real number. Here n = (n1, n2) denotes the unit outward normal to ∂Ω and ∂nu is the normal derivative
of u. For x = (x1, x2) ∈ Ω, the angles θ+(x) and θ−(x) are defined as follows: if we let Q = (R0, 0), then

θ+(x) := ∠(
−−−→
P +Q,

−−→
P +x) and θ−(x) := ∠(

−−−→
P −Q,

−−→
P −x),

where both angles are defined modulo 2π (see Figure 1). The multivalued functions v and ϕ0 are defined by

v := u + ϕ0 with ϕ0(x) := θ+(x)− θ−(x)
2π

mod Z
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Figure 1: Schematic of the Frank-Read dislocation source.

and v represents a phase transition whose level sets can be seen as dislocation lines. Note that in (1.1), the term
involving V ′ is well defined because of the 1-periodicity of V (see condition (1.2)).

Standard physical model
Dislocations are curve defects in the atomic lattice of a crystal (usually a metal). When a shear stress σ is applied
on the crystal, the dislocation curves move and have a dynamics, which is basically modelized by a motion where
normal velocity is given by

(1.3) vn := κ + σ

where κ is the curvature of the dislocation line (hence motion by mean curvature + exterior force σ). Physically,
a Frank-Read source is a dislocation curve whose extremities are pinned at the two points P ± and subjected to
a shear stress σ. In the physical setting, the evolution of the dislocation undergoes a change in its topology, thus
generating free dislocation loops (surrounding the segment [P −, P +] from very far away) while a new dislocation
line always remains pinned to the two fixed points which constitute the source. The phenomenon is then repeated
periodically in time.

Comparison with our phase field model
Our phase field model (1.1) approximates dislocation dynamics of a Frank-Read source. In our model (1.1), the
pinning is modelized by Neumann boundary conditions on the boundary of two discs B(P ±, ε) with ε very small.
It can be directly noticed that our domain Ω (say for large radius R0) and the imposed Neumann condition capture
the essential properties of the natural domain of evolution R2 \ {P ±} of Frank-Read sources. The domain Ω has
indeed the advantage of being bounded, without singularities and free from prescribed boundary values.

It is very classical that the solution to an appropriate rescaling of the Allen-Cahn equation with small parameter
δ, converges to a geometric motion with normal velocity given by (1.3) (see for instance [18] for stationary problems
and [1] for evolution problems). Hence, in some rough sense, we can think to our model as a model approximating
the physical model of a Frank-Read source.

We aim to construct permanent regime solutions of (1.1). This permanent regime solution will be obtained by
considering the long time behavior of classical solutions of the Cauchy problem (1.1) for I := [0, +∞), for some
given initial data.

The basic building block is the following result.

1Faculty of Science (I), Mathematics Department, Lebanese University, Hadath, Lebanon
2Univ Gustave Eiffel, ENSG, IGN, LASTIG, F-77420 Champs-sur-Marne, France
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Theorem 1.1 (Basic existence and uniqueness result)
Let σ ∈ R and assume that V satisfies (1.2). Assume that the initial data u0 satisfies the following compatibility
condition

(1.4) ∂nu0 = 0 on ∂Ω with u0 ∈W 3,∞(Ω)

Then there exists a unique function u : Ω × [0, +∞) → R in the Hölder class for all α ∈ (0, 1) u ∈ C
2+α,1+ α

2
loc (Ω ×

[0, +∞)), solution of (1.1) with initial data u(·, 0) = u0.

By the space C
2+α,1+ α

2
loc , we mean that w := D2u, ut satisfies the following Hölder estimate

|w(x, t)− w(y, s)| ≤ C
(
|x− y|α + |t− s|α2

)
locally on compact sets of Ω × [0, +∞), but not necessarily globally. This result follows from standard parabolic
theory (see [15, 16]). We will still indicate the sketch of the proof in Subsection 3.2. Built on this very basic result,
we will prove several qualitative results below, using two methods (the time shifting method and the semi-norm
method).

1.2 Brief review of the literature
Up to our knowledge, there has been no rigorous study of the permanent regime for the dynamics of dislocations in
the specific geometry of the Frank-Read source. There are, however, some work dealing with simpler configurations
or other sort of results. In this respect, the study of spirals is particularly interesting in the sense that with
appropriate gluing conditions, the movement of a Frank-Read source could possibly be obtained by the study of
the movement of two spirals attached to the points P + and P −.

The motion of spiral dislocations has been studied with the help of a level-set formulation by Ohtsuka [22] and
by Goto, Nakagawa and Ohtsuka [10], who obtained the existence of solutions of the level-set approach, and the
uniqueness of the evolution of an initial curve. See also the work of Ohtsuka, Tsai and Giga [23] for numerical
simulations, and the work of Lou [17] for an example of homogenization of a curve moving in some oscillating annulus.
Smereka [26] introduced another original level-set formulation to simulate the evolution of dislocations on a wider
array of geometrical configurations, including the Frank-Read source. Giga, Ishimura and Koshaka [8] showed the
existence of spiral-shaped solutions for the motion of dislocations on a compact annulus using a parametrization of
the spiral dislocation curves.

Forcadel, Imbert and Monneau [4, 5] also used a parametrization of spirals to prove existence and uniqueness
results, this time in an unbounded domain with a singularity at the origin. These articles describe well the problems
encountered with the singularity of the attachment point and with the unbounded character of the domain. See
also Hudson, Rindler and Rydell [11] for numerical simulations.

Karma and Plapp [13] introduced a phase field formulation to study and simulate the formation of spiral
dislocations. Phase field approaches were then also treated by Rodney, Le Bouar and Finel [25], Koslowski, Cuitino
and Ortiz [14], Wan, Jin, Cuitino and Khachaturyan [28], Xiang, Cheng, Srolovitz and E [27]. In [20], Ogiwara and
Nakamura used such a phase field approach for a theoretical study of the motion of spiral dislocations, in the case
of a bounded domain with no singularity, and proved the existence of spiral travelling wave solutions, which exhibit
a permanent regime behavior. This result has been generalized in Ogiwara and Nakamura [21]. The setting of our
paper shares some partial similarities with [20, 21], even if the solutions we construct for Frank-Read sources are
less constrained than spirals. The use of Neumann boundary conditions is consistent with this approach, we also
refer to Giga and Sato ([6] and [7]) for other studies of dislocation dynamics with Neumann boundary conditions.

1.3 Main results
The first result of this paper is about qualitative properties of the linear growth of solutions of (1.1). More precisely,
using the time shifting method, we show

Theorem 1.2 (Linear growth ω in time)
Let σ ∈ R and assume that V satisfies (1.2). Let u be the solution of (1.1) with time interval I := [0, +∞) and
initial data u(·, 0) = u0 satisfying (1.4).
i) (Linear growth)
Then there exists a unique ω = ω(σ) ∈ R, independent on the initial data u0, called the growth speed such that

(1.5) |u(x, t)− ωt| ≤ C for all (x, t) ∈ Ω× I
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where C > 0 is a constant independent of σ, but depending on u0 only through |u0|L∞(Ω).
ii) (Monotonicity)
Moreover, the function σ 7→ ω(σ) is continuous and nondecreasing.
iii) (Special case of even V )
Furthermore if V is even, i.e. V (−z) = V (z), then ω(−σ) = −ω(σ).

From a physical point of view, the quantity ω can be interpreted as the production rate of dislocations by a Frank-
Read source. The above theorem shows that this production rate is a monotone function of the shear stress σ
applied to the crystal.

The next result examines the long time behavior of the solution of (1.1) in order to construct a permanent
regime solution of (1.1).

Theorem 1.3 (Existence and uniqueness of a periodic permanent regime)
Assume (1.2), fix σ ∈ R and consider the global time interval I := R. Let ω be the growth rate obtained in Theorem
1.2. Then we have

(1.6) σω ≥ 0 and |ω| ≤ |σ|.

i) (Existence and uniqueness for ω ̸= 0)
If ω ̸= 0, then there exists a solution uω of (1.1) satisfying (1.5) on Ω× R, and

(1.7) uω(x, t + Tω) = uω(x, t) + 1 for all x ∈ Ω, t > 0,

with Tω := 1
ω

. Moreover, the solution uω is unique up to time translations.
ii) (Existence for ω = 0)
If ω = 0, then there exists a stationary solution uω of (1.1).
iii) (Monotonicity and symmetries)
The map t 7→ ω · uω(x, t) is nondecreasing in time, and we have the symmetry uω(−x1, x2, t) = uω(x1, x2, t).
Moreover k + uω is also a solution of (1.1) for any k ∈ Z.
iv) (Special case of even V )
Moreover, if V is even, then for any σ ∈ R, we can choose permanent regime solutions such that

uω(−σ)(x, t) = −uω(σ)(−x, t).

Remark 1.4 When ω = 0, we do not know if the stationary solution is unique (up to addition of integers),
especially when the function σ 7→ ω(σ) vanishes on some non-trivial interval in σ.

Remark 1.5 Relation (1.6) can be interpreted saying that the answer ω of the system is always lower that the
forcing term σ, and also has the same sign as σ. This result is remarkable, and is probably indirectly due to the
fact that the right hand side of the PDE makes the derivative of the potential V appear.

From a physical point of view, the existence of a stationary solution corresponds to a situation where the applied
stress is not high enough to overcome the effect of the curvature and then not able to put the dislocation in motion.

Using the semi-norm method, we get the following result.

Theorem 1.6 (Exponential asymptotic when ω ̸= 0)
Assume (1.2) and let σ ∈ R be such that ω ̸= 0. Let u be the solution described in Theorem 1.2 with initial data
u(·, 0) = u0 satisfying (1.4). Then there exists ρ > 0 (independent on u0, but depending on σ) such that the following
holds true. Given the solution uω in Theorem 1.3, then there exists some τ∗ ∈ R and C > 0 (both depending on the
initial data u0 and on σ) such that

(1.8) ∥u(·, t)− uω(·, t + τ∗)∥L∞(Ω) ≤ Ce−ρt for all t ≥ 0.

1.4 Organization of the paper
This paper is organized as follows. In Section 2, we recall classical parabolic tools. In Section 3, we study the
solution u of the Cauchy problem (1.1), namely, we give the sketch of the proof of Theorem 1.1 based on a control
of the space oscillations of the solution. In Section 4, we show the time linear growth of the solution (Theorem 1.2).
In Section 5, we study the long time behavior of u and thus prove Theorem 1.3 showing the existence of a periodic
permanent regime solution uω of (1.1). Finally, Section 6 is devoted to the study of the asymptotics with the proof
of Theorem 1.6.
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2 Some tools for parabolic PDEs
In this whole section, we assume that Ω ⊂ RN with N ≥ 1 is a smooth bounded and connected open set. We
now state some classical results that are frequently used throughout this paper. The standard model equation that
closely resembles our problem is given by the classical heat equation

(2.9)


ut = ∆u + f on Ω× (0, T )
∂nu = 0 on ∂Ω× (0, T )
u = φ on Ω× {0}

where f and φ are given functions. We assume enough regularity on f , φ, and a compatibility boundary condition
(for instance we can assume ∂nφ = 0 on ∂Ω) to ensure the unique solvability of the Neumann boundary value
problem (2.9) in the parabolic Sobolev space W 2,1

p (Ω× (0, T )) with p > 1. The compatibility condition is necessary
only when p > N + 2 where N is the spatial dimension; since N = 2, this applies for p > 4. To simplify notation
we write

QT = Ω× (0, T ) and QT1,T2 = Ω× (T1, T2).
The following results concern global and local a priori estimates for solutions of (2.9).

Theorem 2.1 ([15, Theorem 9.1], Global a priori estimates in parabolic Sobolev spaces)

Let p > 1, f ∈ Lp(QT ) and φ ∈ W
2− 2

p
p (Ω). The compatibility condition ∂nφ = 0 on ∂Ω is required if p > 4.

Assume that the solution u ∈ W 2,1
p (QT ) satisfies (2.9). Then there exists a constant C = C(Ω, T, p) > 0 such that

the solution u satisfies the following a priori estimate:

∥u∥W 2,1
p (QT ) ≤ C

(
∥f∥Lp(QT ) + ∥φ∥

W
2−2/p
p (Ω)

)
.

Theorem 2.2 ([16, Theorem 7.22], Interior estimate)
Let p > 1 and let f ∈ Lp(QT1,T2). If u ∈W 2,1

p (QT1,T2) solves the first two lines of (2.9) on QT1,T2 . Then for every
0 < ε < T2 − T1, there exists C = C(Ω, T, p, ε) > 0 such that

(2.10) ∥u∥W 2,1
p (QT1+ε,T2 ) ≤ C

(
∥u∥Lp(QT1,T2 ) + ∥f∥Lp(QT1,T2 )

)
.

We also recall the following parabolic Sobolev embeddings.

Theorem 2.3 ([15, Lemma 3.3], Parabolic Sobolev embeddings in space dimension N = 2)
Let QT1,T2 = Ω× (T1, T2). The following embeddings hold for any u ∈W 2,1

p (QT1,T2):

(i) (Lq Embedding, p ≤ 2): If 1 < p ≤ 2, then u ∈ Lq(QT1,T2) for all q > p such that q ≤ p∗,
1
p∗ = 1

p
− 1

2 if p < 2,

q < +∞ if p = 2,

and there exists a constant C, independent on u, such that

(2.11) ∥u∥Lq(QT1,T2 ) ≤ C∥u∥W 2,1
p (QT1,T2 ).

(ii) (Hölder Embedding, p > 2): If p > 2, then u ∈ Cα, α
2 (QT1,T2) for all α ∈ (0, 1) such that

α < α∗, where α∗ = min
(

2− 4
p

, 1
)

and there exists a constant C, independent on u, such that

(2.12) ∥u∥
Cα, α

2 (QT1,T2 ) ≤ C∥u∥W 2,1
p (QT1,T2 ).

Now, given T > 0, let us consider the following problem

(2.13)
{

vt = ∆v + kv on Ω× (0, T )
∂nv = 0 on ∂Ω× (0, T )

We recall that v ∈ C2,1
x,t (Ω× [0, T ]) is a subsolution of problem (2.9) if it satisfies{

vt ≤ ∆v + kv on Ω× (0, T )
∂nv ≤ 0 on ∂Ω× (0, T )
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Theorem 2.4 (Strong maximum principle)
Let T > 0 and a function k ∈ C0(Ω× (0, T ]). Let v ∈ C2,1

x,t (Ω× (0, T ]) be a subsolution of (2.13) in the sense just
above, such that

v ≤ 0 on Ω× (0, T )

Assume that
v = 0 at some point P0 ∈ Ω× {T}

then
v ≡ 0 on Ω× (0, T ]

The strong maximum principle is very classical, and we refer to [24] (see Theorem 7 on page 174 in Chapter 3,
Section 3 of [24] in the edition of 1984). The reader may also consult Theorem 2.7 and Lemma 2.8 in [16], and also
[3, 9] for the elliptic counterpart.

3 Study of the Cauchy problem
In a first subsection, we show first a following lemma which provides a uniform control in time of the space oscillation
of some a priori given smooth solution of (1.1). In a second subsection, we use this a priori estimate to show the
existence of a global solution.

3.1 Control of the space oscillations
Lemma 3.1 (A priori bound: control of space oscillations)
Let σ ∈ R and assume that V satisfies (1.2). Let u be a smooth solution of (1.1) with I = [0, +∞) and initial data
u(·, 0) = u0 satisfying (1.4). Then there exists an integer constant N0 ∈ N (independent of σ, but depending on the
initial data u0) such that

(3.14) max
Ω

u(·, t)−min
Ω

u(·, t) ≤ N0 for all t ≥ 0.

Proof of Lemma 3.1.
Step 1: preliminaries
Let

ū(x, t) = u(x, t)− ⟨u(·, t)⟩ with ⟨u(·, t)⟩ := 1
|Ω|

∫
Ω

u(y, t)dy

and |Ω| denotes the area of Ω. The function ū satisfies

(3.15)


ūt = ∆ū + h, in Ω× (0, +∞)
∂nū = 0, on ∂Ω× (0, +∞)
ū = ū0 := u0 − ⟨u0⟩, on Ω× {0}

where

(3.16) h(x, t) = f(x, t)− ⟨f(·, t)⟩ with f := −V ′ (u + ϕ0) + σ

which satisfies ⟨h(·, t)⟩ = 0. Note that for all t ≥ 0, we have

(3.17) ∥h(·, t)∥L∞(Ω) ≤ 2L where L := max
R
|V ′|.

The goal is now to bound ū in L∞. To this end, we introduce the (unbounded) linear operator

A : D(A) ⊂ L2
m(Ω) → L2

m(Ω)
v 7→ Av := −∆v

with Hilbert spaces
D(A) := Xm(Ω) :=

{
v ∈ H2(Ω),

∫
Ω

v dx = 0, ∂nv = 0 on ∂Ω
}

,

L2
m(Ω) :=

{
v ∈ L2(Ω),

∫
Ω

v dx = 0
}
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with the scalar products induced respectively by H2(Ω) and by L2(Ω). Moreover, notice that A enjoys the following
properties {

(Av, v)L2
m(Ω) ≥ 0 for all v ∈ D(A) (monotonicity)

for any f ∈ L2
m(Ω), there exists v ∈ D(A) such that u + Au = f (maximality)

Here the maximality property follows from Lax-Milgram theorem and classical elliptic estimates. We skip the
details here, but give below in Step 2 some details for a similar and more delicate reasoning. Then from Brezis [2]
(Theorem VII.4 on page 105), Hille-Yosida theorem implies the existence of a contraction semigroup {etA}t∈[0,∞)
in the Hilbert space L2

m(Ω). Moreover Duhamel formula gives

ū(·, t) = e−tAū0 +
∫ t

0
e−(t−s)Ah(·, s)ds

=: ũ0(t) +¯̄u(·, t) with ũ0(·, t) := e−tAū0.

Step 2: decomposition on a basis of eigenvectors of A
We now want to decompose h(·, s) onto a basis of eigenvectors of A. To justify this decomposition, let us consider
the following Hilbert space

Y := (D(A))
H1(Ω)

embedded with the scalar product inherited from H1(Ω). Then it is easy to see that the symmetric bilinear form

a : D(A)×D(A) → R

(v, w) 7→ a(v, w) := (Av, w)L2 =
∫

Ω
∇v · ∇w dx = (v, Aw)L2

extends by continuity to a : Y × Y → R, and defines a scalar product equivalent to (·, ·)Y with for some α > 0

(3.18) α · (v, v)Y ≤ a(v, v) for all v ∈ Y

as follows from Poincaré-Wirtinger inequality on the bounded open set Ω. Then Lax-Milgram theorem shows that
A−1 : L2

m(Ω)→ Y is well-defined. Moreover standard elliptic theory implies that

A−1 : L2
m(Ω)→ Xm(Ω) := D(A)

is a bounded operator. The compactness of the elliptic Sobolev injection Xm(Ω) ↪→ L2
m(Ω), implies that A−1 :

L2
m(Ω)→ L2

m(Ω) is a compact operator. Now for f, g ∈ D(A) ⊂ L2
m(Ω), we have for v := A−1f and w := A−1g

(A−1f, g)L2 = (v, Aw)L2 = (Av, w)L2 = (f, A−1g)L2

This extends by continuity for f, g ∈ L2
m(Ω), and then shows that A−1 is self-adjoint. Moreover, it is known (and

easy to recover) that L2
m(Ω) is a separable Hilbert space. Therefore Theorem VI.11 in [2] implies classically that

the compact self-adjoint operator A admits an (orthonormal) Hilbert basis of eigenvectors (en)n≥1 with

Aen = λnen, 0 < λn ≤ λn+1 → +∞

where the positivity of λn follows from the fact that (using (3.18))

0 < α · (en, en)Y ≤ a(en, en) = (Aen, en)L2 = λn(en, en)L2 .

Moreover the dimension of any eigenspace (for λn ̸= 0) is finite from Fredholm alternative (see Theorem VI.6 in
[2]). Finally Lemma VI.2 in [2] on the spectrum of compact operators A−1, implies that λn → +∞, as it is classical.
Hence we get

e−(t−s)Ah(·, s) =
∑
n≥1

e−(t−s)λnhn(s)en

with
h(·, s) :=

∑
n≥1

hn(s)en and
∑
n≥1
|hn(s)|2 = ∥h(·, s)∥2

L2 ≤ |Ω| · ∥h(·, s)∥2
L∞ ≤ |Ω|(2L)2.
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Step 3: Uniform bounds in L2
m(Ω)

We now compute

∥¯̄u(·, t)∥2
L2 =

∑
n≥1

∣∣∣∣∫ t

0
e−(t−s)λnhn(s) ds

∣∣∣∣2

≤
∑
n≥1

(∫ t

0
e−(t−s)λn ds

)
·
(∫ t

0
e−(t−s)λn h2

n(s) ds

)
≤

∑
n≥1

(∫ t

0
e−(t−s)λ1 ds

)
·
(∫ t

0
e−(t−s)λ1 h2

n(s) ds

)
≤ (λ1)−1

∑
n≥1

∫ t

0
e−(t−s)λ1 h2

n(s) ds

= (λ1)−1
∫ t

0
e−(t−s)λ1 ∥h(·, s)∥2

L2(Ω) ds

≤ (λ1)−1|Ω|(2L)2
∫ t

0
e−(t−s)λ1 ds

≤ (λ1)−2|Ω|(2L)2

i.e.
∥¯̄u(·, t)∥L2 ≤

√
|Ω| · 2L

λ1
for all t ≥ 0.

Moreover, we also have (from the classical energy estimate for Heat equation with Neumann boundary equation)
∥ũ0(·, t)∥L2(Ω) ≤ ∥ū0∥L2(Ω). Therefore, we get

(3.19) ∥ū(·, t)∥L2 ≤
√
|Ω| · 2L

λ1
+ ∥ū0∥L2(Ω) for all t ≥ 0.

Step 4: Bounds in L∞(Ω)
Step 4.1: initial regularity
Since h is smooth enough, it follows from the regularity of parabolic equations (See Theorems 2.1 and 2.3) that for
some time T0 > 0 (independent of σ, but depending on the initial data u0), we have:

(3.20) ∥ū∥
C

α
2

t (Ω×[0,2T0)
+ ∥ū∥L∞(Ω×[0,2T0]) ≤ C0,

where the constant C0 > 0 is independent of σ, but depending on T0, L, Ω and u0.

Step 4.2: interior in time estimate
The global boundedness of h together with the uniform-in-time L2 bound (3.19) of ū enables us, using interior Lp

estimates for parabolic equations, to establish an estimate similar to (3.20) for the time interval (2T, 3T ). In what
follows, the constants C, C1 > 0 (independent of σ and u0, but depending on T0, Ω and constants p, q, α) may vary
from line to line. As a first step, we apply the interior Lp estimate with p = 2 (see Theorem 2.2) for strong solutions
of parabolic equations and we obtain

(3.21) ∥ū∥W 2,1
2 (Ω×(T0,3T0)) ≤ C

(
∥ū∥L2(Ω×(0,3T0)) + ∥h∥L2(Ω×(0,3T0))

)
.

By the parabolic Sobolev embedding (Theorem 2.3), we get that for all q > 2, there exists C > 0 (depending in
particular on q) such that

(3.22) ∥ū∥Lq(Ω×(T0,3T0)) ≤ C∥ū∥W 2,1
2 (Ω×(T0,3T0)).

Hence, by reapplying the interior Lp estimate with p = q and reducing the time interval, we get

∥ū∥W 2,1
q (Ω×(2T0,3T0)) ≤ C

(
∥ū∥Lq(Ω×(T0,3T0)) + ∥h∥Lq(Ω×(T0,3T0))

)
.

From (3.21) and (3.22), the final estimate leads to

∥ū∥W 2,1
q (Ω×(2T0,3T0)) ≤ C

(
∥ū∥L2(Ω×(0,3T0)) + ∥h∥Lq(Ω×(0,3T0))

)
.

This, together with the uniform L∞ bound (3.17) on h and the uniform L2
x bound (3.19) on ū(·, t) infers that

∥ū∥W 2,1
q (Ω×(2T0,3T0)) ≤ C1.
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Since q > 2, we may rely on the parabolic Sobolev embedding in Hölder spaces to finally conclude that

∥ū∥
C

α
2

t (Ω×[2T0,3T0])
+ ∥ū∥L∞(Ω×(2T0,3T0)) ≤ C1.

Step 4.3: propagation of the interior in time estimate
For any a ≥ 2T0, and assuming the control of the norm ||ū||L2(Ω×(a−2T0,a+T0)), we want to get a control of ū in
better norms on the time interval (a, a + T0). The whole process of Step 4.2 can be easily extended, replacing
Ω× (2T0, 3T0) by Ω× (a, a + T0) for any a ≥ 2T0. We get

(3.23) ∥ū∥
C

α
2

t (Ω×[a,a+T0])
+ ∥ū∥L∞(Ω×(a,a+T0)) ≤ C1.

with C1 independent of σ and the initial data u0.

Step 4.4: conclusion
We can finally conclude from (3.20) and (3.23) that ∥ū(·, t)∥L∞(Ω) ≤ C0, where C0 is independent of σ and therefore

max
Ω

u(·, t)−min
Ω

u(·, t) ≤ 2∥ū(·, t)∥L∞(Ω) ≤ N0 for all t ≥ 0,

which shows the required control on space oscillations. 2

3.2 Sketch of the proof of Theorem 1.1: Cauchy problem
Sketch of the proof of Theorem 1.1.
Short time existence of a solution of (1.1) with initial data u0 ∈W 3,∞(Ω) satisfying ∂nu0 = 0 on ∂Ω, can easily be
obtained by a fixed point theorem, and classical parabolic theory, on a short time interval [0, T0] for T0 > 0 small
enough (depending on the size of the initial data u0). We can obviously repeat the argument on further intervals
of length Tk > 0 as time goes on. To get global solutions, we must show that

(3.24)
∑

k

Tk = +∞.

The difficulty here comes from the fact that the size of the solution u can increase as the time increases, which may
reduce the size of Tk, and possibly not satisfy (3.24). Here we circumvent this difficulty, showing that even if u may
increase, the quantity

ū(·, t) := u(·, t)−m(t) with m(t) := 1
|Ω|

∫
Ω

u(y, t)dy

stays bounded in L∞(Ω) uniformly in time t ∈ [0, +∞). Moreover, we have m′(t) =< ut >=< f > with f =
−V ′(. . . ) + σ defined in (3.16). Therefore

(3.25) |m′(t))| ≤ ∥f∥L∞(Ω×[0,+∞)) ≤ L + |σ|

and m is Lipschitz continuous, uniformly in time. Now, those two uniform bounds on ū and on m′ are sufficient to
show that the equation for ū has nice enough estimates such that there exists some δ > 0 such that for all k ≥ 0,
we have Tk ≥ δ > 0. This implies the existence of a global solution and ends the proof of the theorem.

4 Proof of Theorem 1.2: linear growth
We are now ready to present the proof of our first qualitative result.

Proof of Theorem 1.2.
We use the time-shifting method introduced in [12].
For T > 0, we define the following approximations of the mean time slope of the solution u,

λ+(T ) = sup
t≥0

u(0, t + T )− u(0, t)
T

and λ−(T ) = inf
t≥0

u(0, t + T )− u(0, t)
T

.

We will show that ω = lim
T →∞

λ+(T ) = lim
T →∞

λ−(T ) and the proof is divided into several steps.
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Step 1: Uniform bound on λ±(T ) for T ≥ 1
It is evident from the definition that λ− ≤ λ+. Fix t0 ≥ 0. Since (1.1) is invariant by time translations and addition
of integers we know that

u(x, t) = u(x, t0 + t)− k0, with k0 := ⌊min
Ω

u(·, t0)⌋

is a solution of (1.1). Using (3.14), we compute

u(x, 0) = u(x, t0)− k0
≤ max

Ω
u(·, t0)− k0

≤ min
Ω

u(·, t0)− k0 + N0

≤ 1 + N0 =: A.

This suggests to set
u(x, t) = A + Bt,

for some constant B ∈ R to fix later. Then

ut = B ≥ ∆u− V ′ (u + ϕ0) + σ, if B := ∥V ′∥L∞ + σ

which shows that u is a supersolution of (1.1) with u(·, 0) ≥ u(·, 0). From the comparison principle, we deduce

u(·, t) ≥ u(·, t) for all t ≥ 0.

At x = 0, we deduce
u(0, t0 + t)− u(0, t0) ≤ u(0, t) ≤ u(0, t) = A + Bt

Hence for T ≥ 1, we get λ+(T ) ≤ C1 := A + B. We get a similar estimate for λ−(T ) and deduce that

−C1 ≤ λ−(T ) ≤ λ+(T ) ≤ C1 for T ≥ 1.

Step 2: Upper bound of λ+(T )− λ−(T )
Let T > 0 and assume that λ+(T ), λ−(T ) are attained at some points t+, t− ≥ 0 respectively. Let

k := ⌊u(0, t+)− u(0, t−)⌋+ 1 ≥ u(0, t+)− u(0, t−)
≥ u(x, t+)− u(x, t−)− 2N0

where in the last inequality we have used Lemma 3.1. We set

v(x, t) := u(x, t + t− − t+) + k + 2N0

Then v(x, t+) = u(x, t−) + k + 2N0 ≥ u(x, t+). The comparison principle gives

u(x, t) ≤ v(x, t) for all t ≥ t+,

and in particular for t = t+ + T , we get

u(x, t+ + T ) ≤ u(x, t− + T ) + k + 2N0

Taking x = 0 and substracting u(0, t+), we get

u(0, t+ + T )− u(0, t+) ≤ u(0, t− + T )− u(0, t+) + k + 2N0
≤ u(0, t− + T )− u(0, t−) + 1 + 2N0

where we have used the definition of k in the last inequality. Dividing by T , we get

(4.26) 0 ≤ λ+(T )− λ−(T ) ≤ 1 + 2N0

T
.

The cases when λ± are not attained can be proved using quasi-optimizers in the inf/sup definition of λ±.

Step 3: Estimate of the variations of λ+ and λ−

Step 3.1: uniform time continuity of u
We write

u = ū + m with m(t) :=< u(·, t) >:= |Ω|−1
∫

Ω
u(·, t)dx

10



Recall from (3.25), that we know that m is uniformly Lipschitz continuous. Now because ū satisfies the short time
estimate (3.20) up to time 2T0, and the uniform Hölder estimate (3.23) above time 2T0, we deduce that both ū and
u are uniformly continuous in time.

Step 3.2: core of the argument

Let n ∈ N∗ and assume that λ+(nT ) is attained at t+ ≥ 0, i.e. that λ+(nT ) = u(0, t+ + nT )− u(0, t+)
nT

. Clearly

nTλ+(nT ) = u(0, t+ + nT )− u(0, t+) ≤ nTλ+(T ),

and hence

(4.27) λ+(nT ) ≤ λ+(T ).

The above computations can be easily adjusted to the case where the supremum is not attained. Arguing in a
similar manner we get the inequality

(4.28) λ−(nT ) ≥ λ−(T ).

Now, let T1, T2 > 0 such that T1

T2
= p

q
∈ Q. From (4.27), (4.28) and (4.26) we get

λ+(T1) ≥ λ+(qT1) = λ+(pT2) ≥ λ−(pT2) ≥ λ−(T2) ≥ λ+(T2)− 1 + 2N0

T2
,

so
λ+(T2)− λ+(T1) ≤ 1 + 2N0

T2
.

Exchanging T1 and T2, we get

(4.29) |λ+(T2)− λ+(T1)| ≤ (1 + 2N0) max
(

1
T1

,
1
T2

)
.

Moreover from Step 3.1, we deduce that T 7→ λ+(T ) is continuous. This implies that (4.29) remains valid for all
T1, T2 > 0. The above method can be adapted to get a similar estimate on λ−, and gives

(4.30) |λ−(T2)− λ−(T1)| ≤ (1 + 2N0) max
(

1
T1

,
1
T2

)
for all T1, T2 > 0.

Step 4: Limit of λ±

If Tn is a sequence such that Tn → ∞ then both sequences λ±(Tn) are Cauchy thanks to (4.29) and (4.30).
Consequently, both functions λ±(T ) have limits as T →∞. Moreover, from (4.26), these two limits are equal. We
may then define

ω := lim
T →∞

λ+(T ) = lim
T →∞

λ−(T ).

Moreover from (4.29) and (4.30) with T1 = T > 0 and T2 →∞, we deduce that

|λ+(T )− ω| ≤ 1 + 2N0

T
and |λ−(T )− ω| ≤ 1 + 2N0

T
.

Therefore, we deduce for all T > 0

ωT − (1 + 2N0) ≤ u(0, T )− u(0, 0) ≤ ωT + (1 + 2N0).

Together with (3.14), this leads to

ωT − (1 + 3N0) ≤ u(x, T )− u(0, 0) ≤ ωT + (1 + 3N0).

We finally get for any T > 0
|u(x, T )− ωT | ≤ 1 + 3N0 + |u(0, 0)| =: C

and this shows (1.5) with constant C.
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Step 5: Monotonicity of ω
Let σ1 ≤ σ2 and let u1, u2 be solutions of (1.1) corresponding to σ1 and σ2 respectively, with the same initial data
u1(·, 0) = 0 = u2(·, 0). Since σ1 ≤ σ2, then u2 is a supersolution of{

ut = ∆u− V ′ (u + ϕ0) + σ1 on Ω× (0,∞)
∂nu = 0 on ∂Ω× (0,∞),

while u1 is a solution and hence a subsolution. Eventually, by the comparison principle, we get

(4.31) u1 ≤ u2.

Note also that, thanks to (1.5), we may find C > 0 such that |u1 − ω1t| ≤ C and |u2 − ω2t| ≤ C. Assume by
contradiction that ω1 > ω2. Then for t∗ >

2C

ω1 − ω2
, and using the above inequalities, we obtain

u1(x, t∗) ≥ ω1t∗ − C > ω2t∗ + C ≥ u2(x, t∗).

This is in contradiction with (4.31). Therefore we conclude that ω1 ≤ ω2.

Step 6: Continuity of the map σ 7→ ω(σ)
The proof is classical and follows from the uniqueness of the solution and the fact that the constant C in inequality
(1.5) is independent of σ. Indeed consider a sequence σn → σ∞ ∈ R, and with zero initial data, the associated
solutions un → u∞ satisfying

|un(x, t)− tωn| ≤ C with ωn = ω(σn).

Because of the monotonicity of the map σ 7→ ω(σ), the sequence ωn is then bounded, and up to the extraction of a
subsequence, we deduce that ωn → ω∞ ∈ R with |u∞(x, t)− tω∞| ≤ C. The uniqueness of the solution u∞ implies
ω∞ = ω(σ∞), and then shows that ω(σn)→ ω(σ∞), which shows the continuity of the map ω.

Step 7: Uniqueness of ω with respect to the initial data u0
We claim that the growth speed ω is the same for any initial data u0 satisfying (1.4) Indeed, if u1, u2 are two
solutions of (1.1) with initial data u0

1 = u1(·, 0) and u0
2 = u2(·, 0) respectively then there exist ω1, ω2, C1 and C2

such that for all (x, t) ∈ Ω× [0,∞[ we have

(4.32) |u1(x, t)− ω1t| ≤ C1 and |u2(x, t)− ω2t| ≤ C2.

Since u0
1 and u0

2 are bounded then there exists an integer N ∈ N such that |u0
2 − u0

1| ≤ N . By the comparison
principle, the same inequality remains valid for all times t ≥ 0,

|u2 − u1| ≤ N

because u1 ±N is still a solution of (1.1). However, we have (ω2 − ω1)t = (ω2 − ω1)t− (u2 − u1) + (u2 − u1) and
then from (4.32), we deduce that

|(ω2 − ω1)t| ≤ C1 + C2 + N

which implies ω2 = ω1 for large t.

Step 8: Control of the constant C in (1.5) by ∥u0∥L∞(Ω)
Let us call C0 the constant for zero initial data such that

|u(·, t)− ωt| ≤ C0

where C0 is known not to depend on σ. Now for another initial data u0 and its associated solution uu0 , we set the
integer part N∗ := ⌈∥u0∥L∞(Ω)⌉. Then −N∗ ≤ u0 ≤ N∗ implies by the comparison principle that

−N∗ + u ≤ uu0 ≤ N∗ + u.

Therefore
|uu0(·, t)− ωt| ≤ N∗ + C0 =: C ′

0

which shows that C ′
0 is also independent on σ, and only depends on ∥u0∥L∞(Ω).

12



Step 9: Proof when V is even
Consider the central symmetry S : R2 → R2 with S(x) := −x. We notice that

S(P ±) = P ∓

S(Ω) = Ω
θ±(S(x)) = θ∓(x) + π mod (2π)
V ′(−z) = −V ′(z)

Recall that u solves ut = ∆u− V ′ (u + ϕ0) + σ with zero initial data. Then it is easy to check that

(4.33) v(x, t) := −u(S(x), t)

does not affect the Neumann boundary condition nor the zero initial data and solves

vt = ∆v − V ′ (v + ϕ0)− σ.

Hence v solves Cauchy problem (1.1), but with σ changed in −σ. From (1.5), we have

|v(·, t)− tω(−σ)| ≤ C, |u(·, t)− tω(σ)| ≤ C

Then (4.33) shows that ω(−σ) = −ω(σ), and ends the proof of the theorem. 2

5 Proof of Theorem 1.3: existence of a permanent regime
The solution u obtained in Theorem 1.2 on Ω × [0, +∞) will serve as a base for the existence result of Theorem
1.3 on Ω×R. Indeed, in the case where ω ̸= 0, the solution uω is constructed by examining time translations of u,
while for ω = 0, the solution uω is constructed by examining the long time behavior of u. This will be made clear
in the following proof.

Proof of Theorem 1.3. We only consider ω > 0 if ω ̸= 0. The case ω < 0 is treated similarly. The proof is
divided into five steps. The first four steps deal with ω ̸= 0, and the final step deals with ω = 0. Let u be the
solution obtained in Theorem 1.2 defined on Ω× [0, +∞).

Step 1: Case ω > 0 and existence of a global solution of (1.1) satisfying (1.5) on Ω× R
Let u be the solution to Cauchy problem (1.1) on Ω × (0, +∞) with zero initial data. Consider the function w
defined by

w(x, t) := u(x, t)− ωt, with |w(x, t)| ≤ C for all (x, t) ∈ Ω× [0, +∞)

then w satisfies for t0 = 0

(5.34)
{

wt = ∆w + fω on Ω× (t0,∞)
∂nw = 0 on ∂Ω× (t0,∞),

∣∣∣∣ with fω := −V ′ (w + ϕ0 + ωt)− ω + σ.

Setting
wn(x, t) := w

(
x, t + n

ω

)
with |wn(x, t)| ≤ C for all (x, t) ∈ Ω× [−n

ω
, +∞)

we see that wn is solution of (5.34) with t0 = −n

ω
.

Let M > 0. Then for n large enough, we have the bound |wn|L∞(Ω×(−2M,2M)) ≤ C which is independent on
n. Therefore interior parabolic estimates and standard parabolic regularity theory imply that the sequence wn is
bounded in C2+α,1+ α

2 (Ω × [−M, M ]) for some α ∈ (0, 1). This shows that wn is pre-compact in C2+β,1+ β
2 (Ω ×

[−M, M ]) for 0 < β < α. Now considering a sequence M → +∞, and using a diagonal extraction procedure, we
ensure the existence of

w∞ ∈ C
2+β,1+ β

2
loc (Ω× R) with |w∞|L∞(Ω×R) ≤ C

such that lim
n→∞

wn = w∞ in C
2+β,1+ β

2
loc (Ω×R), up to the extraction of a subsequence. Moreover w∞ is still solution

of (5.34), but now for t0 = −∞.
Now, setting

un(x, t) := wn(x, t) + ωt = u
(

x, t + n

ω

)
− n
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we see that un is a solution of (1.1) on Ω × (−n

ω
, +∞) and converges, in C

2+β,1+ β
2

loc (Ω × R), to u∞ = w∞ + ωt,
which satisfies

(5.35) |u∞(x, t)− ωt| ≤ C.

where u∞ is a global solution of (1.1) on Ω× R.

Step 2: Existence of a permanent regime solution
In this step we show the existence of the solution uω by relying on u∞ given in the first step. For the clarity of
presentation we denote u∞ by u. Define

Tω := sup{τ ∈ [0, +∞), u(x, t + τ) ≤ u(x, t) + 1 for all (x, t) ∈ Ω× R}.

Since u is Lipschitz continuous in time and verifies (5.35), we infer that T is positive and finite with

(5.36) u(x, t + Tω) ≤ u(x, t) + 1 for all (x, t) ∈ Ω× R.

From the definition of Tω, we know that for every n ∈ N\ {0} there exists (xn, tn) ∈ Ω× R such that

(5.37) u(xn, tn + Tω) + 1
n
≥ u(xn, tn) + 1.

Note that xn converges (up to a subsequence) to x∞ ∈ Ω, and tn → t∞ ∈ R ∪ {−∞, +∞}.

Case 1: t∞ ∈ R.
Then by passing to the limit n→∞ in (5.37) and by using (5.36), we get

(5.38) u(x∞, t∞ + Tω) = u(x∞, t∞) + 1.

This shows that we have equality at (x∞, t∞) in the inequality (5.36). Because both functions u(·, · + Tω) and
u + 1 are both global solutions of (1.1), we deduce from the strong maximum principle (Theorem 2.4) (in its strong
comparison version) that we have

u(x, t + Tω) = u(x, t) + 1 for all (x, t) ∈ Ω× R

which shows (1.7) with uω := u. Moreover (5.35) implies that Tω = 1
ω

.

Case 2: |t∞| =∞.
We aim to drag the contact point close to {t = 0}. To this end, we set

un(x, t) := u(x, t + mn

ω
)−mn, tn =: mn

ω
+ τn with mn ∈ Z, τn ∈ [0,

1
ω

)

Then up to the extraction of a subsequence, we have τn → τ∞ ∈ [0,
1
ω

] and un → u∞ which satisfies (5.36) and
u∞(x∞, τ∞ + T ) = u∞(x∞, τ∞) + 1. As in Case 1, we deduce that

u∞(x, t + Tω) = u∞(x, t) + 1 for all (x, t) ∈ Ω× R

and (5.35) is still true and again implies Tω = ω−1. This gives again (1.7) but with uω := u∞.

Step 3: Monotonicity
Define

λ∗ := inf{λ ∈ [0, +∞) : uω(x, t + λ′) ≥ uω(x, t) for all (x, t) ∈ Ω× R, λ′ ∈ [λ, +∞)}.
From (5.35), we deduce that

uω(x, t + λ′)− uω(x, t) = ωλ′ + {uω(x, t + λ′)− ω(t + λ′)} − {uω(x, t)− ωt}
≥ ωλ′ − 2C

and then λ∗ is bounded. Moreover we have uω(x, t + λ∗) ≥ uω(x, t) for all (x, t) ∈ Ω × R. Recall that Tω = ω−1.
From the Tω-periodicity of t 7→ uω(x, t)− ωt, we deduce from the definition of λ∗, the existence of a contact point
(x∗, t∗) ∈ Ω× [0, Tω) such that uω(x∗, t∗ + λ∗) = uω(x∗, t∗). Then the strong comparison principle implies

uω(x, t + λ∗) = uω(x, t).
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Consequently uω(x, t + Nλ∗) = uω(x, t) for all N ∈ N, and this implies for (x, t) = (0, 0)

|uω(0, 0)− ωNλ∗| = |uω(0, Nλ∗)− ωNλ∗| ≤ C

where the last inequality follows from (5.35). The limit N → +∞ implies that λ∗ = 0 which shows the time
monotonicity of uω.

Step 4: Uniqueness up to time translations
Let u1

ω, u2
ω be two global solutions of (1.1), (1.5) on Ω×R satisfying periodicity condition (1.7). Since the function

u2
ω − u1

ω is periodic in time with period Tω, then there exists an integer N ∈ N such that

u1
ω + N > u2

ω.

Let
β∗ = sup{β ≥ 0 : u1

ω(x, t) + N ≥ u2
ω(x, t + β)}.

Similar arguments as in Step 3 infer that

u1
ω(x, t) + N = u2

ω(x, t + β∗),

and so, owing to (1.7), we may write
u1

ω(x, t) = u2
ω(x, t + β∗ −NTω)

which shows the uniqueness of the solution, up to time translations.

Step 5: Case ω = 0 and existence of a stationary solution
Associate to the dissipative PDE (1.1), let us introduce the following energy defined for v ∈ H1(Ω) as

E(v) =
∫

Ω

{
1
2 |∇v|2 + V (v + ϕ0)− σv

}
.

Because u ∈ C2+α,1+ α
2 (Ω× [0, +∞)) solves equation (1.1), as it is very classical, we can multiply by ut and integrate

over Ω, to deduce that

(5.39)
∫

Ω
|ut(·, t)|2 + d

dt
E(u(·, t)) = 0,

Because of (1.5) and ω = 0, we have

(5.40) |u(x, t)| ≤ C for all (x, t) ∈ Ω× [0, +∞)

Therefore the energy E(u(·, t)) is nonincreasing and bounded from below, hence converging to a constant. Using
(5.40), we deduce from classical parabolic estimates that |u|

C2+α,1+ α
2 (Ω×[0,+∞)) ≤ C2 for some α ∈ (0, 1). Now

setting un(x, t) := u(x, t + n), up to the extraction of a subsequence, we have un → u∞ in C
2+β,1+ β

2
loc (Ω × R) for

any β ∈ (0, α). Therefore
E(u∞(·, t)) = E∞ := lim

s→+∞
E(u(·, s))

and because u∞ is still solution of (1.1), it also satisfies (5.39), which implies∫
Ω

1
2 |(u∞)t(·, t)|2 = 0

Therefore u∞ is a stationary solution of (1.1), as desired.

Step 6: proof of (1.6) and bounds on ω(σ)
Given σ ∈ R, consider ω = ω(σ) and the permanent regime solution u := uω which is Tω-time periodic with
Tω = ω−1 when ω ̸= 0, and independent on time, when ω = 0. Then u satisfies again the energy equality (5.39).
Now writing w := u− ωt, where the functions w and wt are Tω-time periodic, we get after integration in time over
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[0, Tω]

0 =
{∫

Ω×[0,Tω]
|ut(·, t)|2

}
+ E(u(·, Tω))− E(u(·, 0))

=
{∫

Ω×[0,Tω]
|wt + ω|2

}
+

∫
Ω
{−σ(ωTω)}

=
{∫

Ω×[0,Tω]
|wt|2 + ω2 + 2ωwt

}
+

∫
Ω×[0,Tω]

{−σω}

=
∫

Ω×[0,Tω]

{
|wt|2 + ω2 − σω

}
This implies that

σω ≥ ω2

which shows (1.6). Notice that it remains true when ω = 0.

Step 7: proof of iv) when V is even
The result follows as in Step 9 of the proof of Theorem 1.2. 2

6 Proof of Theorem 1.6: asymptotic convergence
Proof of Theorem 1.6.
We work with ω ̸= 0 and assume without loss of generality that ω > 0 (the case ω < 0 is similar). We call uω the
permanent regime solution given by Theorem 1.3, and u be any solution given by Theorem 1.2. Starting from Step
3, we will use the semi-norm method.

Step 1: bound on the time derivative of uω

From Theorem 1.3, we know that

(6.41) 0 ≤ ∂tuω and uω(x, t + Tω) = 1 + uω(x, t) with Tω = ω−1.

Because uω solves the parabolic PDE (1.1) on Ω × R, we deduce that w := ∂tuω ≥ 0 also solves the following
parabolic PDE

(6.42)
{

wt = ∆w − wV ′′ (uω + ϕ0) in Ω× R,

∂nw = 0 on ∂Ω× R.

Because V ∈ C3 (from assumption (1.2)), we see that the strong comparison principle shows that either w ≡ 0
(which is impossible from (6.41)), or w > 0. Because uω(x, t)−ωt is T -periodic, we deduce that w is also T -periodic,
and this implies the existence of some constant c1 > 0 such that

(6.43) 0 < c1 ≤ w = ∂tuω.

Step 2: long time convergence
We now set

un(x, t) := u(x, t + nω−1)− n.

From the proof of Theorem 1.3, we know that up to a subsequence, we have for some β ∈ (0, 1)

unj
→ u1

∞ in C
2+β,1+ β

2
loc (Ω× R) with |u1

∞(x, t)− ωt| ≤ C for all (x, t) ∈ Ω× R.

Then an argument similar to Step 4 of the proof of Theorem 1.3 gives the existence of some τ1 ∈ R such that

u1
∞ = uτ1

ω with uτ1
ω := uω(·, ·+ τ1).

Similarly for a second subsequence, we get the existence of some τ2 ∈ R such that

unk
→ u2

∞ = uτ2
ω in C

2+β,1+ β
2

loc (Ω× R).
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Hence for any ε > 0 and M > 0, there exists jε and kε large enough such that{
|unjε

− uτ1
ω |L∞(Ω×[−M,M ]) ≤ ε,

|unkε
− uτ2

ω |L∞(Ω×[−M,M ]) ≤ ε.

Then using time derivative estimate (6.43), we get{
unjε

≤ ε + uτ1
ω ≤ uτ1

ω (·, ·+ εc−1
1 ),

uτ2
ω (·, · − εc−1

1 ) ≤ −ε + uτ2
ω ≤ unkε

Without loss of generality, assume that 0 ≤ N := nkε
− njε

. Then the relation unjε
(·, ·+ NTω)−N = unkε

implies

uτ2
ω (·, · − εc−1

1 ) ≤ unkε

= unjε
(·, ·+ NTω)−N

≤ uτ1
ω (·, ·+ NTω + εc−1

1 )−N
= uτ1

ω (·, ·+ εc−1
1 ).

This implies
τ2 − εc−1

1 ≤ τ1 + εc−1
1 ,

i.e. τ2 − τ1 ≤ 2εc−1
1 . We also get similarly the upper bound on τ1 − τ2, and deduce that

|τ2 − τ1| ≤ 2εc−1
1 .

Because ε > 0 is arbitrarily small, we deduce that τ1 = τ2. Therefore τ∗ := τ1 = τ2 is independent on the choice of
the convergence subsequence. We conclude to the convergence of the full sequence

(6.44) |u(·, t)− uτ∗
ω (·, t)|L∞(Ω) → 0 as t→ +∞.

Step 3: exponential convergence
We use the semi-norm method introduced in [19].
Step 3.1: preliminaries
For t ≥ 1 and τ ∈ R, we set

M(t) := sup
t0≥t

N(t0) with N(t0) := inf
τ∈R

{
sup

Ω×[t0−1,t0+1]
|u− uτ

ω|

}
and uτ

ω := uω(·, ·+ τ)

where the infimum and suppremum in N(t0) are reached. Here N(t0) is a semi-norm. From (6.44), we know that
M(t)→ 0 as t→ +∞. We want to show that

(6.45) there exists µ ∈ (0, 1) and R > 0 such that M(t + R) ≤ µM(t) for all t ≥ 1

Step 3.2: beginning of the proof by contradiction
Assume that (6.45) is false. Then there exists sequences 1 > µn → 1 and Rn → +∞, tn ≥ 1, such that

(6.46) 0←− εn := M(tn + Rn) > µnM(tn).

Because N(t0)→ 0 as t0 → +∞, we know that there exists some sn ≥ tn +Rn and τn ∈ R such that the suppremum
defining M(tn + Rn) is reached at time sn with

(6.47) εn = M(tn + Rn) = N(sn) = sup
Ω×[sn−1,sn+1]

|u− uτn
ω |

From (6.44), we know that τn → τ∗. We also write sn = mnω−1 + rn with mn ∈ Z and rn ∈ [0, ω−1), and set

wn := ε−1
n (un − uτn

ω ) with un(x, t) := u(x, t + mnω−1)−mn.

Then we can rewrite (6.47) and (6.46) respectively as

(6.48) inf
τ∈R

{
sup

Ω×[rn−1,rn+1]

∣∣wn − ε−1
n (uτ

ω − uτn
ω )

∣∣} = sup
Ω×[rn−1,rn+1]

|wn| = 1
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and

(6.49) sup
t0∈[rn−Rn,+∞)

inf
τ∈R

{
sup

Ω×[t0−1,t0+1]

∣∣wn − ε−1
n (uτ

ω − uτn
ω )

∣∣} ≤ 1
µn
→ 1

Moreover wn solves{
∂twn = ∆wn + knwn on Ω× [rn −Rn, +∞)
∂nwn = 0 on (∂Ω)× [rn −Rn, +∞)

∣∣∣∣ with kn(x, t) := −
{

V ′(un + ϕ0)− V ′(uτn
ω + ϕ0)

un − uτn
ω

}
.

Step 3.3: passing to the limit
We have

kn → k∞ = −V ′′(uτ∗
ω + ϕ0) in L∞

loc(Ω× R)

Moreover standard parabolic estimates show that wn is bounded locally uniformly in W 2,1
p for any p > 2. Hence

we get wn → w∞ in L∞
loc(Ω× R), where w∞ solves the linearized problem

(6.50)
{

∂tw∞ = ∆w∞ + k∞w∞ on Ω× R,
∂nw∞ = 0 on (∂Ω)× R.

Notice that the following function w0 := ∂tu
τ∗
ω ≥ c1 > 0 is solution of (6.50). Now (6.48) and (6.49) give at the

limit with rn → r∞ ∈ [0, ω−1]

(6.51) 1 = inf
λ∈R

{
sup

Ω×[r∞−1,r∞+1]
|w∞ − λw0|

}
= sup

Ω×[r∞−1,r∞+1]
|w∞|

and

(6.52) inf
λ∈R

{
sup

Ω×[t0−1,t0+1]
|w∞ − λw0|

}
≤ 1 for all t0 ∈ R.

Step 3.4: uniform bound on w∞
Notice that we have

(6.53) 0 < c1 ≤ w0 ≤ c2

where c1 comes from the bound from below (6.43) on ∂tuω. From (6.52), we deduce that for any t0 ∈ R, there
exists some λt0 ∈ R such that

(6.54) sup
Ω×[t0−1,t0+1]

|w∞ − λt0w0| ≤ 1 ≤ c−1
1 w0(·, t0)

and then

(6.55)
{

λt0 − c−1
1

}
w0(·, t0) ≤ w∞(·, t0) ≤

{
λt0 + c−1

1
}

w0(·, t0).

Then the comparison principle for PDE (6.50) implies

(6.56)
{

λt0 − c−1
1

}
w0(·, t) ≤ w∞(·, t) ≤

{
λt0 + c−1

1
}

w0(·, t) for all t ≥ t0.

Because (6.55) also holds for t, we get{
λt − c−1

1
}

w0(·, t) ≤ w∞(·, t) ≤
{

λt + c−1
1

}
w0(·, t).

Using (6.56), and dividing by w0(·, t), we deduce |λt − λt0 | ≤ 2c−1
1 . Moreover relation (6.51) shows that we can

take λ|t=r∞ = 0, which gives |λt0 | ≤ 2c−1
1 . Therefore (6.54) implies the following bound

|w∞|L∞(Ω×R) ≤ 1 + 2c2c−1
1

Step 3.5: touching w∞ from above
Recall that w0 ≥ c1 > 0 and define

λ∗ := inf {λ ∈ R, w∞ ≤ λ′w0 for all λ′ ≥ λ}
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Then λ∗ ∈ R. Moreover, there exists a sequence of points (xε, tε) ∈ Ω× R such that

(w∞ − {λ∗ − ε}w0) (xε, tε) > 0 with w∞ ≤ λ∗w0

We write tε = mεω−1 + rε with mε ∈ Z, rε ∈ [0, ω−1), and set

w∞,ε(·, ·) := w∞(·, ·+ mεω−1) and w0(·, ·+ mεω−1) ≡ w0,

where we have used the periodicity of w0. Up to extract a convergent subsequence, we get (xε, rε) → (x0, r0) ∈
Ω× [0, ω−1], and {

w∞,ε → w∞,0 locally uniformly on Ω× R, with w∞,0 solution of (6.50),
w∞,0 ≤ λ∗w0 with equality at (x0, r0)

Again the strong comparison principle implies w∞,0 = λ∗w0. We have moreover mε → m0 ∈ Z ∪ {−∞, +∞}, and
we distinguish three cases.
Case A: m0 ∈ Z.
This implies that w∞,0(·, ·) = w∞(·, ·+ m0ω−1) = λ∗w0, and the periodicity of w0 implies w∞ = λ∗w0.
Case B: m0 = −∞.
Then w∞(·, ·+ mεω−1) = w∞,ε → λ∗w0 locally uniformly. Hence for any δ > 0, we can find εδ small enough such
that for all ε ∈ (0, εδ) we have

{λ∗ − δ}w0(·, 0) ≤ w∞(·, mεω−1) ≤ {λ∗ + δ}w0(·, 0)

The comparison principle implies (using also the periodicity of w0) that

{λ∗ − δ}w0 ≤ w∞ ≤ {λ∗ + δ}w0 on [mεω−1, +∞)

In the limit ε→ 0 and then δ → 0, we recover w∞ = λ∗w0.
Case C: m0 = +∞ (the only remaining possibility).
This means that for all t0 ∈ R, we have

0 ≥ sup
Ω×(−∞,t0]

(w∞ − λ∗w0) = −η(t0) < 0 with η(t0)→ 0 as t0 → +∞

Then fix t0 ≤ 0. We get with η0 := η(0)

(w∞ − λ∗w0)(·, t0) ≤ −η0 < 0

Hence (6.53) implies (w∞ − λ∗w0)(·, t0) ≤ −η0c−1
2 w0(·, t0), i.e.

w∞(·, t0) ≤
{

λ∗ − η0c−1
2

}
w0(·, t0)

and the comparison principle implies

w∞ ≤
{

λ∗ − η0c−1
2

}
w0 on Ω× [t0, +∞)

In the limit t0 → −∞, we recover
w∞ ≤

{
λ∗ − η0c−1

2
}

w0 on Ω× R

This leads to a contradiction with the definition of λ∗, and then rules out Case C.

Conclusion
We deduce that in all cases, we get w∞ = λ∗w0, which is in contradiction with (6.51). Therefore we conclude that
(6.45) is true.

Step 3.6: consequences of (6.45)
From (6.45), we deduce the existence of some ρ > 0 and a constant C > 0 such that

M(t) ≤ Ce−ρt for all t ≥ 1

This implies for all t0 ≥ 1 that there exists some τt0 ∈ R such that

(6.57) sup
Ω×[t0−1,t0+1]

|u− u
τt0
ω | = inf

τ∈R

{
sup

Ω×[t0−1,t0+1]
|u− uτ

ω|

}
= N(t0) ≤ Ce−ρt0
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Hence (6.53) implies

c1|τ(t0+1) − τt0 | ≤ sup
Ω×[t0,t0+1]

|uτ(t0+1)
ω − u

τt0
ω | ≤ N(t0) + N(t0 + 1) ≤ 2Ce−ρt0

We also know that τt0 → τ∗ as t0 → +∞. This gives by a telescopic/geometric sum

c1|τ∗ − τt0 | ≤
2C

1− e−ρ
e−ρt0

Again (6.53) implies with (6.57) that for all t0 ≥ 1

sup
Ω×[t0−1,t0+1]

|u− uτ∗
ω | ≤ sup

Ω×[t0−1,t0+1]
|u− u

τt0
ω |+ sup

Ω×[t0−1,t0+1]
|uτt0

ω − uτ∗
ω |

≤ Ce−ρt0 + c2|τ∗ − τt0 |

≤ Ce−ρt0

{
1 + c2

c1
· 2

1− e−ρ

}
which implies (1.8) and ends the proof of the theorem. 2
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[2] H. Brézis, Analyse fonctionnelle - Théorie et applications, ed. Masson (1983).

[3] L.C. Evans, Partial Differential Equations, 2nd Edition, Department of Mathematics, University of California,
Berkeley, American Mathematical Society, (2010)

[4] N. Forcadel, C. Imbert, R. Monneau, Uniqueness and existence of spirals moving by forced mean curvature
motion, Interfaces and Free Boundaries 14 (2012), no. 3, 365-400.

[5] N. Forcadel, C. Imbert, R. Monneau, Steady state and long time convergence of spirals moving by forced
mean curvature motion, CPDE 40 (6) (2015), 1137-1181.

[6] Y. Giga, M.-H. Sato, Generalized interface evolution with the Neumann boundary condition, Proc. Japan
Acad. Ser. A Math. Sci. 67 (1991), 263-266.

[7] Y. Giga, M.-H. Sato, Neumann problem for singular degenerate parabolic equations, Differential Integral
Equations 6, no. 6 (1993), 1217-1230.

[8] Y. Giga, N. Ishimura, Y. Kohsaka, Spiral solutions for a weakly anisotropic curvature flow equation, Adv.
Math. Sci. Appl., 12 (2002), 393-408.

[9] D. Gilbarg, and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag,
Berlin,(2001) .

[10] S. Goto, M. Nakagawa and T. Ohtsuka, Uniqueness and existence of generalized motion for spiral crystal
growth, Indiana Univ. Math. J., 57 (2008), 2571-2599.

[11] T. Hudson, F. Rindler and J. Rydell, A quantitative model for the Frank–Read dislocation source based
on pinned mean curvature flow, Proc. R. Soc. A 481 (2025), 20240740.

[12] C. Imbert and R. Monneau, Homogenization of first order equations with u/epsilon-periodic Hamiltonians.
Part I: local equations, Archive for Rational Mechanics and Analysis, 187 (1), 49-89, (2008).

[13] A . Karma, M. Plapp, Spiral surface growth without desorption, Physical Review Letters, 81 (1998), 4444-
4447.

20



[14] M. Koslowski, A. M. Cuitino, M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening
and hysteresis in ductile single crystals, Journal of the mechanics and physics of solids 50 (2002), no. 12,
2597-2635.

[15] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic
type. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I.,
(1968).

[16] G. M. Lieberman, Second order parabolic differential equations. World Scientific Publishing Co., Inc., River
Edge, NJ, (1996).

[17] Bendong Lou, Periodic rotating waves in an undulating annulus and their homogenization limit, SIAM J.
Math. Anal. 38 (3) (2006), 693-716.

[18] L. Modica, The Gradient Theory of Phase Transitions and the Minimal Interface Criterion, Archive for
Rational Mechanics and Analysis 98 (1987), 123-142.

[19] R. Monneau Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle
problem with Dini coefficients, Journal of Fourier Analysis and Applications 15 (3) (2009), 279-335.

[20] T. Ogiwara, K.-I. Nakamura, Spiral traveling wave solutions of nonlinear diffusion equations related to a
model of spiral crystal growth, Publ. Res. Inst. Math. Sci. 39 (2003), no. 4, 767-783.

[21] T. Ogiwara, K.-I. Nakamura, Periodically growing solutions in a class of strongly monotone semiflows,
Networks and Heterogeneous Media 7 (4) (2012), 881-891.

[22] T. Ohtsuka, A level-set method for spiral growth, Adv. Math. Sci. Appl., 13 (2003), 225-248.

[23] T. Ohtsuka, Y.-H. R. Tsai, Y. Giga, A Level Set Approach Reflecting Sheet Structure with Single Auxiliary
Function for Evolving Spirals on Crystal Surfaces, J. Sci. Comput. 62 (2015), 831-874.

[24] M.H. Protter and H.F. Weinberger Maximum Principles in Differential Equations. Prentice Hall, En-
glewood Cliffs, (1967).

[25] D. Rodney, Y. Le Bouar, A. Finel, Phase field methods and dislocations, Acta Materialia 51 (2003), 17-30.

[26] P. Smereka, Spiral crystal growth, Phys. D, 138 (2000), 282–301.

[27] Y. Xiang, L.-T. Cheng, D. J. Srolovitz, W. E, A level-set method for dislocation dynamics, Acta Mate-
rialia 51 (2003), 5499-5518.

[28] Y. U. Wang, Y. M. Jin, A. M. Cuitino, A. G. Khachaturyan, Nanoscale phase field microelasticity
theory of dislocations: model and 3D simulations, Acta Materialia 49 (2001), 1847-1857.

21


	Introduction
	Setting of the problem
	Brief review of the literature
	Main results
	Organization of the paper

	Some tools for parabolic PDEs
	Study of the Cauchy problem
	Control of the space oscillations
	Sketch of the proof of Theorem 1.1: Cauchy problem

	Proof of Theorem 1.2: linear growth
	Proof of Theorem 1.3: existence of a permanent regime
	Proof of Theorem 1.6: asymptotic convergence

