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Abstract

We study a two-dimensional phase field model describing the motion of dislocations for a Frank-Read source
when a shear stress o is applied. The level sets of the phase describe the dislocation curves and allows their change of
topology. The phase solves a nonlinear reaction-diffusion equation of Allen-Cahn type, on a bounded large domain
with Neumann boundary conditions. The large domain mimics the whole plane with two holes to which some of the
dislocation curves are attached. We show that dislocations are created at the rate w which is a monotone function
of the shear stress o. Using the time-shifting method, we study the long time behavior of the solution, and this
allows us to identify a periodic permanent regime whose periodicity is 1/w. Moreover, using a semi-norm method,
we show that the difference between the solution and the periodic permanent regime converges to zero with an
exponential decay in time.
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1 Introduction

1.1 Setting of the problem

In this paper we investigate a nonlinear diffusion Allen-Cahn type equation with homogenous Neumann condition
on a two-dimensional domain Q C R? defined by

Q = B(0,Rp) \ (B(P+750) U B(P*7go))

where Ry > 2, 0 < g9 < 1 and P* = (£1,0). We are interested in the existence of solutions u = u(z,t) of the
following equation

+ _ —
utAuV’<u+0(x)29(x))+a on QxI
T

Onu =0 on 0N xI,

(1.1)

for some time interval I = R or I = [tg, +00). Here the nonlinearity V' is assumed to be smooth and 1-periodic in
the following sense

(1.2) Vel R) and V(z+k)=V(z) for (z,k)€RXZ,
and o is a real number. Here n = (ny,ng) denotes the unit outward normal to 092 and 9,u is the normal derivative
of u. For z = (x1,x2) € 2, the angles 07 (x) and 6~ () are defined as follows: if we let Q = (Ry, 0), then

—_— — —_— =
0t (z) := Z(PTQ,PTz) and 0 (z):=Z(P Q,P z),

where both angles are defined modulo 27 (see Figure 1). The multivalued functions v and ¢q are defined by

0" () — 6~ ()

o mod 7Z

vi=u+¢g with ¢o(x) =



A,

Figure 1: Schematic of the Frank-Read dislocation source.

and v represents a phase transition whose level sets can be seen as dislocation lines. Note that in (1.1), the term
involving V' is well defined because of the 1-periodicity of V' (see condition (1.2)).

Standard physical model

Dislocations are curve defects in the atomic lattice of a crystal (usually a metal). When a shear stress o is applied
on the crystal, the dislocation curves move and have a dynamics, which is basically modelized by a motion where
normal velocity is given by

(1.3) Up i =K+0

where & is the curvature of the dislocation line (hence motion by mean curvature + exterior force o). Physically,
a Frank-Read source is a dislocation curve whose extremities are pinned at the two points P* and subjected to
a shear stress 0. In the physical setting, the evolution of the dislocation undergoes a change in its topology, thus
generating free dislocation loops (surrounding the segment [P~, P*] from very far away) while a new dislocation
line always remains pinned to the two fixed points which constitute the source. The phenomenon is then repeated
periodically in time.

Comparison with our phase field model

Our phase field model (1.1) approximates dislocation dynamics of a Frank-Read source. In our model (1.1), the
pinning is modelized by Neumann boundary conditions on the boundary of two discs B(P¥,¢) with ¢ very small.
It can be directly noticed that our domain € (say for large radius Ry) and the imposed Neumann condition capture
the essential properties of the natural domain of evolution R? \ {P*} of Frank-Read sources. The domain ) has
indeed the advantage of being bounded, without singularities and free from prescribed boundary values.

It is very classical that the solution to an appropriate rescaling of the Allen-Cahn equation with small parameter
4, converges to a geometric motion with normal velocity given by (1.3) (see for instance [18] for stationary problems
and [1] for evolution problems). Hence, in some rough sense, we can think to our model as a model approximating
the physical model of a Frank-Read source.

We aim to construct permanent regime solutions of (1.1). This permanent regime solution will be obtained by
considering the long time behavior of classical solutions of the Cauchy problem (1.1) for I := [0, 400), for some
given initial data.

The basic building block is the following result.
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Theorem 1.1 (Basic existence and uniqueness result)
Let o € R and assume that V' satisfies (1.2). Assume that the initial data ug satisfies the following compatibility
condition

(1.4) Ontig =0 on 9 with uy € W>(Q)

Then there exists a unique function u : Q x [0,+00) — R in the Hélder class for all o € (0,1) u € Clzota’H%(ﬁ X
[0, +00)), solution of (1.1) with initial data u(-,0) = ug.

C2+a,l+%

loc , we mean that w := D?u, u, satisfies the following Holder estimate

By the space
w(z, 1) —w(y,s)] < C (|lz —y|* + [t —s|%)

locally on compact sets of Q x [0, +c0), but not necessarily globally. This result follows from standard parabolic
theory (see [15, 16]). We will still indicate the sketch of the proof in Subsection 3.2. Built on this very basic result,
we will prove several qualitative results below, using two methods (the time shifting method and the semi-norm
method).

1.2 Brief review of the literature

Up to our knowledge, there has been no rigorous study of the permanent regime for the dynamics of dislocations in
the specific geometry of the Frank-Read source. There are, however, some work dealing with simpler configurations
or other sort of results. In this respect, the study of spirals is particularly interesting in the sense that with
appropriate gluing conditions, the movement of a Frank-Read source could possibly be obtained by the study of
the movement of two spirals attached to the points P and P~.

The motion of spiral dislocations has been studied with the help of a level-set formulation by Ohtsuka [22] and
by Goto, Nakagawa and Ohtsuka [10], who obtained the existence of solutions of the level-set approach, and the
uniqueness of the evolution of an initial curve. See also the work of Ohtsuka, Tsai and Giga [23] for numerical
simulations, and the work of Lou [17] for an example of homogenization of a curve moving in some oscillating annulus.
Smereka [26] introduced another original level-set formulation to simulate the evolution of dislocations on a wider
array of geometrical configurations, including the Frank-Read source. Giga, Ishimura and Koshaka [8] showed the
existence of spiral-shaped solutions for the motion of dislocations on a compact annulus using a parametrization of
the spiral dislocation curves.

Forcadel, Imbert and Monneau [4, 5] also used a parametrization of spirals to prove existence and uniqueness
results, this time in an unbounded domain with a singularity at the origin. These articles describe well the problems
encountered with the singularity of the attachment point and with the unbounded character of the domain. See
also Hudson, Rindler and Rydell [11] for numerical simulations.

Karma and Plapp [13] introduced a phase field formulation to study and simulate the formation of spiral
dislocations. Phase field approaches were then also treated by Rodney, Le Bouar and Finel [25], Koslowski, Cuitino
and Ortiz [14], Wan, Jin, Cuitino and Khachaturyan [28], Xiang, Cheng, Srolovitz and E [27]. In [20], Ogiwara and
Nakamura used such a phase field approach for a theoretical study of the motion of spiral dislocations, in the case
of a bounded domain with no singularity, and proved the existence of spiral travelling wave solutions, which exhibit
a permanent regime behavior. This result has been generalized in Ogiwara and Nakamura [21]. The setting of our
paper shares some partial similarities with [20, 21], even if the solutions we construct for Frank-Read sources are
less constrained than spirals. The use of Neumann boundary conditions is consistent with this approach, we also
refer to Giga and Sato ([6] and [7]) for other studies of dislocation dynamics with Neumann boundary conditions.

1.3 Main results

The first result of this paper is about qualitative properties of the linear growth of solutions of (1.1). More precisely,
using the time shifting method, we show

Theorem 1.2 (Linear growth w in time)

Let 0 € R and assume that V satisfies (1.2). Let u be the solution of (1.1) with time interval I := [0,+00) and
initial data u(-,0) = wuo satisfying (1.4).

i) (Linear growth)

Then there exists a unique w = w(o) € R, independent on the initial data ug, called the growth speed such that

(1.5) lu(z,t) —wt| < C  forall (z,t)€QxI



where C' > 0 is a constant independent of o, but depending on ug only through |uo| e~ (q)-
ii) (Monotonicity)

Moreover, the function o — w(c) is continuous and nondecreasing.

iii) (Special case of even V)

Furthermore if V' is even, i.e. V(—z) =V (z), then w(—0) = —w(0o).

From a physical point of view, the quantity w can be interpreted as the production rate of dislocations by a Frank-
Read source. The above theorem shows that this production rate is a monotone function of the shear stress o
applied to the crystal.

The next result examines the long time behavior of the solution of (1.1) in order to construct a permanent
regime solution of (1.1).

Theorem 1.3 (Existence and uniqueness of a periodic permanent regime)
Assume (1.2), fix o € R and consider the global time interval I := R. Let w be the growth rate obtained in Theorem
1.2. Then we have

(1.6) ow>0 and |w| <ol

i) (Existence and uniqueness for w # 0) -
If w # 0, then there exists a solution u, of (1.1) satisfying (1.5) on Q X R, and

(1.7) U (2, t +Ty) = up(x,t) +1 forall ze€Q,t>0,

1
with T, :== —. Moreover, the solution u,, is unique up to time translations.

ii) (Existegce for w =0)

If w =0, then there exists a stationary solution u, of (1.1).

iii) (Monotonicity and symmetries)

The map t — w - u,(x,t) is nondecreasing in time, and we have the symmetry u,(—x1,x2,t) = uy(z1,22,1).
Moreover k + u,, is also a solution of (1.1) for any k € Z.

iv) (Special case of even V)

Moreover, if V is even, then for any o € R, we can choose permanent regime solutions such that

Ugy(—o) (T, 1) = —Ugy(0) (2, 1).

Remark 1.4 When w = 0, we do not know if the stationary solution is unique (up to addition of integers),
especially when the function o — w(c) vanishes on some non-trivial interval in .

Remark 1.5 Relation (1.6) can be interpreted saying that the answer w of the system is always lower that the
forcing term o, and also has the same sign as o. This result is remarkable, and is probably indirectly due to the
fact that the right hand side of the PDE makes the derivative of the potential V' appear.

From a physical point of view, the existence of a stationary solution corresponds to a situation where the applied
stress is not high enough to overcome the effect of the curvature and then not able to put the dislocation in motion.

Using the semi-norm method, we get the following result.

Theorem 1.6 (Exponential asymptotic when w # 0)

Assume (1.2) and let o € R be such that w # 0. Let u be the solution described in Theorem 1.2 with initial data
u(+,0) = g satisfying (1.4). Then there exists p > 0 (independent on ug, but depending on o) such that the following
holds true. Given the solution u,, in Theorem 1.3, then there exists some 7. € R and C > 0 (both depending on the
initial data ug and on o) such that

(1.8) u(-,t) = uw (-t + 7)o () < Ce™* forall t>0.

1.4 Organization of the paper

This paper is organized as follows. In Section 2, we recall classical parabolic tools. In Section 3, we study the
solution u of the Cauchy problem (1.1), namely, we give the sketch of the proof of Theorem 1.1 based on a control
of the space oscillations of the solution. In Section 4, we show the time linear growth of the solution (Theorem 1.2).
In Section 5, we study the long time behavior of u and thus prove Theorem 1.3 showing the existence of a periodic
permanent regime solution wu,, of (1.1). Finally, Section 6 is devoted to the study of the asymptotics with the proof
of Theorem 1.6.



2 Some tools for parabolic PDEs

In this whole section, we assume that Q C RY with N > 1 is a smooth bounded and connected open set. We
now state some classical results that are frequently used throughout this paper. The standard model equation that
closely resembles our problem is given by the classical heat equation

u  =Au+f on Qx(0,T)
(2.9) Opu =0 on o0 x (0,T)
u = on  Qx {0}

where f and ¢ are given functions. We assume enough regularity on f, ¢, and a compatibility boundary condition
(for instance we can assume 9,0 = 0 on 92) to ensure the unique solvability of the Neumann boundary value
problem (2.9) in the parabolic Sobolev space Wg’l(Q x (0,T)) with p > 1. The compatibility condition is necessary
only when p > N + 2 where N is the spatial dimension; since N = 2, this applies for p > 4. To simplify notation
we write

QT = Q X (O,T) and QT17T2 = Q X (Tl,Tg).

The following results concern global and local a priori estimates for solutions of (2.9).

Theorem 2.1 ([15, Theorem 9.1], Global a priori estimates in parabolic Sobolev spaces)
2

Letp > 1, f € LP(Qr) and ¢ € Wj_g(ﬂ). The compatibility condition Opp = 0 on 0N) is required if p > 4.
Assume that the solution u € W' (Qr) satisfies (2.9). Then there exists a constant C = C(Q,T,p) > 0 such that
the solution u satisfies the following a priori estimate:

lullwz (@py < € (I lzy@n) + 1€llya-2m gy )

Theorem 2.2 ([16, Theorem 7.22], Interior estimate)

Let p>1 and let f € LP(Qr, 1,). If u € W2H(Qr, 1,) solves the first two lines of (2.9) on Qr, 1, Then for every
0 <e<Ty—T, there exists C = C(Q,T,p,e) > 0 such that

(2.10) il (remy) < € (lllzy @ r) + 1 0@y ) ) -

We also recall the following parabolic Sobolev embeddings.

Theorem 2.3 ([15, Lemma 3.3], Parabolic Sobolev embeddings in space dimension N = 2)
Let Qr,m, = Q x (T1,Ts). The following embeddings hold for any v € WP (Qr, 1,):

(1) (LT Embedding, p < 2): If 1 < p <2, then u € LY(Qr, 1,) for all ¢ > p such that

1
q < 400 if p=2,

3
*
SRR

and there exists a constant C, independent on u, such that

(2.11) lullza(@ry 2p) < Cllullwz 1 (@, 2y
(i3) (Hélder Embedding, p > 2): If p > 2, then u € C*% (Q1,.1,) for all a € (0,1) such that
a<a®, where o =min <2 - ;4),1)
and there exists a constant C, independent on u, such that
(2.12) lull o8 @) < Cllullwzrr 1)

Now, given T > 0, let us consider the following problem

(2.13) v =Av+kv on Qx(0,T)
' Opv =0 on o0 x (0,7)
We recall that v € Cgi (2 x [0,77]) is a subsolution of problem (2.9) if it satisfies

v < Av+kv on Qx(0,T)
Opv <0 on 0 x (0,T)



Theorem 2.4 (Strong maximum principle)
Let T > 0 and a function k € C°(Q x (0,T)). Letv € C’itl(ﬁ x (0,T7) be a subsolution of (2.13) in the sense just
above, such that

v<0 on Qx(0,7)

Assume that -
v=0 at some point Py e Qx{T}

then -
v=0 on Qx(0,T]

The strong maximum principle is very classical, and we refer to [24] (see Theorem 7 on page 174 in Chapter 3,
Section 3 of [24] in the edition of 1984). The reader may also consult Theorem 2.7 and Lemma 2.8 in [16], and also
[3, 9] for the elliptic counterpart.

3 Study of the Cauchy problem

In a first subsection, we show first a following lemma which provides a uniform control in time of the space oscillation
of some a priori given smooth solution of (1.1). In a second subsection, we use this a priori estimate to show the
existence of a global solution.

3.1 Control of the space oscillations

Lemma 3.1 (A priori bound: control of space oscillations)

Let 0 € R and assume that V satisfies (1.2). Let u be a smooth solution of (1.1) with I = [0,+00) and initial data
u(+,0) = g satisfying (1.4). Then there exists an integer constant No € N (independent of o, but depending on the
initial data ug) such that

(3.14) max u(-,t) —minu(-,t) < Ny for all t>0.
Q Q

Proof of Lemma 3.1.
Step 1: preliminaries
Let

(o) = u(a ) — (u(- 1)) with (u(-,1)) ::ﬁ /Q u(y, )dy

and || denotes the area of Q. The function u satisfies

Uy = Au+ h, in Qx(0,+00)
(3.15) O =0, on 00 x (0,+00)
u =g := up — {uo), on € x {0}
where
(3.16) h(z,t) = f(z,t) = (f(,1)) with f:==V"(u+do)+0

which satisfies (h(-,t)) = 0. Note that for all ¢ > 0, we have

(3.17) |A( )| ooy < 2L where L := mﬂgx|V’\.

The goal is now to bound @ in L*°. To this end, we introduce the (unbounded) linear operator

A: DA CL:(Q) — L2(Q)
v —  Av:i=—-Av

with Hilbert spaces



with the scalar products induced respectively by H?(Q) and by L?(£2). Moreover, notice that A enjoys the following
properties

(Av,v)r2 (@) >0 for all v e D(A) (monotonicity)
for any f € L2 (Q2), there exists v € D(A) such that u + Au = f (maximality)

Here the maximality property follows from Lax-Milgram theorem and classical elliptic estimates. We skip the
details here, but give below in Step 2 some details for a similar and more delicate reasoning. Then from Brezis [2]
(Theorem VII.4 on page 105), Hille-Yosida theorem implies the existence of a contraction semigroup {etA}te[O,oo)
in the Hilbert space L2,(£2). Moreover Duhamel formula gives

t
u(-,t) =e g +/ e~ 4An(, s)ds
0

=:qg(t)  +u(-t) with (-, 1) := e .

Step 2: decomposition on a basis of eigenvectors of A
We now want to decompose h(-, s) onto a basis of eigenvectors of A. To justify this decomposition, let us consider

the following Hilbert space
T HY(Q)
Y= (D(A))

embedded with the scalar product inherited from H!(2). Then it is easy to see that the symmetric bilinear form

a: D(A)xD(A) — R
(v, w) —  a(v,w) = (Av,w)gz = / Vv - Vw dz = (v, Aw) 2
Q

extends by continuity to a : Y x Y — R, and defines a scalar product equivalent to (-,-)y with for some o > 0
(3.18) a-(v,v)y <a(v,v) forall veY

as follows from Poincaré-Wirtinger inequality on the bounded open set 2. Then Lax-Milgram theorem shows that
A=Y L2 (Q) — Y is well-defined. Moreover standard elliptic theory implies that

AT L2 (Q) = X (Q) := D(A)

is a bounded operator. The compactness of the elliptic Sobolev injection X,,(Q2) < L2 (9), implies that A=! :
L2,(9) — L2,(Q) is a compact operator. Now for f,g € D(A) C L2, (), we have for v := A~! f and w := A~ 1g

(A_lf, 92 = (v, Aw) 2 = (Av,w) 2 = (f, A_lg)Lz

This extends by continuity for f,g € L2 (), and then shows that A~! is self-adjoint. Moreover, it is known (and
easy to recover) that L2,(€2) is a separable Hilbert space. Therefore Theorem VI.11 in [2] implies classically that
the compact self-adjoint operator A admits an (orthonormal) Hilbert basis of eigenvectors (e,,)n>1 with

Aen, = Mpen, 0< Ay < Apy1 = 40
where the positivity of ), follows from the fact that (using (3.18))
0<a- (enyen)Y < a(e'ruen) = (JAe'ruen)L2 = )\n(enyen)L2~

Moreover the dimension of any eigenspace (for A, # 0) is finite from Fredholm alternative (see Theorem VI.6 in
[2]). Finally Lemma V1.2 in [2] on the spectrum of compact operators A~!, implies that \,, — 400, as it is classical.
Hence we get

e_(t_S)Ah(-, s) = Z e_(t_s)A"hn(s)en

with
h(8) =Y hn(s)en and Y [hn(s)* = [h(-, 8)l|72 < (9] - [A(, 9) |7~ < QI(2L)*.

n>1 n>1



Step 3: Uniform bounds in L2 (Q)

‘We now compute
t
a0l =3 | [ e s ds
n>1 0

t t

< Z (/0 e~ (t=9)An ds> . (/0 e~ (t=9)2n 2 (s) ds)
n>1

_ t t

Z </ e~ (=) ds> . </ e~ (=92 p2 () ds)

ns1 \Jo 0

t
<O)TY [t e s

n>1

t
— () / =N ||h(., )23 ds
t

< (A1) Y9212 / e~ (=M g
0
< (\)~20) (2L)?

2

IA

ie.
= 2L
la(-, )|z < /19 - ~ for all ¢t > 0.
1
Moreover, we also have (from the classical energy estimate for Heat equation with Neumann boundary equation)

ldo(-, t)|lL2() < |ltollL2(q)- Therefore, we get

_ 2L _
(3.19) la(-, )2 < /9] N + ||uol|z2() forall ¢>0.

Step 4: Bounds in L>(Q)

Step 4.1: initial regularity

Since h is smooth enough, it follows from the regularity of parabolic equations (See Theorems 2.1 and 2.3) that for
some time Ty > 0 (independent of o, but depending on the initial data ug), we have:

(3.20) 1l o8 @go,0my) F 1l (@x(0.2700) < Co,

where the constant Cy > 0 is independent of o, but depending on Tp, L,  and ug.

Step 4.2: interior in time estimate

The global boundedness of h together with the uniform-in-time L? bound (3.19) of @ enables us, using interior L?
estimates for parabolic equations, to establish an estimate similar to (3.20) for the time interval (27, 37T). In what
follows, the constants C,C; > 0 (independent of o and ug, but depending on Tp, 2 and constants p, ¢, «) may vary
from line to line. As a first step, we apply the interior L? estimate with p = 2 (see Theorem 2.2) for strong solutions
of parabolic equations and we obtain

(3.21) lallywz 1 x (1,310 < Clll2(@x(0,370)) + 1Bl L2020 0,370)) ) -

By the parabolic Sobolev embedding (Theorem 2.3), we get that for all ¢ > 2, there exists C' > 0 (depending in
particular on ¢) such that

(3.22) 1l Lax (mo.370)) < Clltllwz x(zy,370))-
Hence, by reapplying the interior L? estimate with p = ¢ and reducing the time interval, we get
1l x 21,310y < ClEllLac@x(m,310)) + 11l Lacx (10,370)))-
From (3.21) and (3.22), the final estimate leads to
Iz x @m 310y < C 1l L2(@x(0,370)) + 1Bl Lac@x ©0,310)))-

This, together with the uniform L° bound (3.17) on h and the uniform L2 bound (3.19) on (-, t) infers that

Il (@x om 310) < Ci-



Since ¢ > 2, we may rely on the parabolic Sobolev embedding in Hélder spaces to finally conclude that

”ﬂHct% (Q@x[2T0,3T0)) il @xemam) < Cr-

Step 4.3: propagation of the interior in time estimate

For any a > 27p, and assuming the control of the norm ||u|[z2(Qx (a—27y,a+1,)), We Want to get a control of 4 in
better norms on the time interval (a,a + Tp). The whole process of Step 4.2 can be easily extended, replacing
Q x (2T, 3T)) by Q x (a,a + Tp) for any a > 2T,. We get

(3.23) HﬂHCt% @xlaatTo) T 14|l Lo (2 (a,a+T0)) < Ch-

with C; independent of ¢ and the initial data uqg.

Step 4.4: conclusion
We can finally conclude from (3.20) and (3.23) that ||u(-, t)||Lw(5) < Cy, where Cj is independent of o and therefore

max u(-,t) —minu(-,t) < 2||ﬁ(~,t)||Loo(§) <Ny forall ¢>0,
Q Q

which shows the required control on space oscillations. O

3.2 Sketch of the proof of Theorem 1.1: Cauchy problem

Sketch of the proof of Theorem 1.1.

Short time existence of a solution of (1.1) with initial data uy € W3°°(£2) satisfying 9,uo = 0 on 95, can easily be
obtained by a fixed point theorem, and classical parabolic theory, on a short time interval [0, Tp] for T > 0 small
enough (depending on the size of the initial data ug). We can obviously repeat the argument on further intervals
of length T} > 0 as time goes on. To get global solutions, we must show that

(3.24) D T = +oc.
k

The difficulty here comes from the fact that the size of the solution u can increase as the time increases, which may
reduce the size of T, and possibly not satisfy (3.24). Here we circumvent this difficulty, showing that even if u may
increase, the quantity

a(yt) == u(-,t) —m(t) with m(¢) := ﬁ/ﬂu(y,t)dy

stays bounded in L°°(€2) uniformly in time ¢ € [0,400). Moreover, we have m/(t) =< u; >=< f > with f =
—V'(...) 4+ o defined in (3.16). Therefore

(3.25) [ (O)] < || fll=(@x ooy < L + o]

and m is Lipschitz continuous, uniformly in time. Now, those two uniform bounds on % and on m’ are sufficient to
show that the equation for 4 has nice enough estimates such that there exists some § > 0 such that for all k£ > 0,
we have T, > ¢ > 0. This implies the existence of a global solution and ends the proof of the theorem.

4 Proof of Theorem 1.2: linear growth

We are now ready to present the proof of our first qualitative result.

Proof of Theorem 1.2.
We use the time-shifting method introduced in [12].
For T > 0, we define the following approximations of the mean time slope of the solution u,

MH(T) = sup w(0,t +T) — u(0,¢t) and A~ (T) = inf u(0,t+T) — u(O,t).
t>0 T t>0

We will show that w = lim A*(7) = lim A7 (T) and the proof is divided into several steps.

T—o0 T—o0



Step 1: Uniform bound on \*(T) for T > 1
It is evident from the definition that A= < AT. Fix tq > 0. Since (1.1) is invariant by time translations and addition
of integers we know that
w(z,t) =u(z,to+t) — ko, with ko := |minu(-,to)]
Q
is a solution of (1.1). Using (3.14), we compute
u(z,0) =u(z,to) — ko
< maxu(-,tg) — ko
Q
< minu(-,to) — ko + No
Q
<14 Ny =:A.

This suggests to set
u(x,t) = A+ Bt,

for some constant B € R to fix later. Then
U =B>Au—-V'(u+¢o)+o, if B:=|V|r=~+0
which shows that @ is a supersolution of (1.1) with @(-,0) > wu(-,0). From the comparison principle, we deduce
u(-,t) > u(-,t) forall ¢>0.

At z =0, we deduce
u(0,t0 +1t) — u(0,t0) < u(0,t) <u(0,t) = A+ Bt

Hence for T' > 1, we get AT (T) < C; := A + B. We get a similar estimate for A= (T") and deduce that
—Cy <A (T) <A (1) <Oy for T>1.

Step 2: Upper bound of A\ (T") — A~ (T)
Let T > 0 and assume that A (T), \=(T) are attained at some points tT,¢~ > 0 respectively. Let

k= |u(0,t7) —u(0,t7)] +1 >wu(0,tT) —u(0,t7)
> u(z,tT) —u(z,t7) — 2Ny

where in the last inequality we have used Lemma 3.1. We set
v(z,t) =u(z,t+t= —t7) +k+ 2N,
Then v(z,tT) = u(x,t~) + k + 2Ny > u(x,t). The comparison principle gives
u(w,t) <wv(x,t) forallt>th,
and in particular for t = tT + T, we get
u(z, ™ +T) <wu(z,t” +T)+k+ 2N,
Taking z = 0 and substracting «(0,¢"), we get

w(0,tt +T) —u(0,tT) w(0,t7 +T) —u(0,tT) + k + 2Ny

<
<u(0,t™ 4+ T) —u(0,t7) + 1 + 2N,

where we have used the definition of k& in the last inequality. Dividing by T', we get
14 2N
(4.26) 0<AT(T) = A~ (T) < %

The cases when A* are not attained can be proved using quasi-optimizers in the inf/sup definition of A*.

Step 3: Estimate of the variations of AT and A\~
Step 3.1: uniform time continuity of «
We write

u=u+m with m(t) =<u(,t) >= \Q|_1/ u(-, t)dz
Q

10



Recall from (3.25), that we know that m is uniformly Lipschitz continuous. Now because u satisfies the short time
estimate (3.20) up to time 27p, and the uniform Holder estimate (3.23) above time 27}, we deduce that both @ and
u are uniformly continuous in time.

Step 3.2: core of the argument
w(0,tt +nT) — u(0,t1)
nT

Let n € N* and assume that AT (nT) is attained at t+ > 0, i.e. that AT (nT) = . Clearly

nTAY (nT) = u(0,tT +nT) —u(0,t1) < nTAT(T),
and hence
(4.27) AT (nT) < XT(T).

The above computations can be easily adjusted to the case where the supremum is not attained. Arguing in a
similar manner we get the inequality

(4.28) A~ (nT) > A~ (T).

T
Now, let 17,T» > 0 such that ?1 .y Q. From (4.27), (4.28) and (4.26) we get
2 g

_ _ 142N,
T 2 X () = X (0T2) 2 A (012) 2 A7 (1) 2 M (1) = ——=,
% 14 2N,
N (Ty) = AF(Ty) < 220,
15

Exchanging T7 and T5, we get

+ + L1
(4.29) AT (Te) = AT (T1)| < (14 2Np)max | —, — | .

T T

Moreover from Step 3.1, we deduce that 7'+ AT (T') is continuous. This implies that (4.29) remains valid for all
T1,T5 > 0. The above method can be adapted to get a similar estimate on A™, and gives

1 1
(430) |>\_(T2) — )\_(Tl)| < (1 + 2N0) max (T, T) for all 17,75 > 0.
1 2

Step 4: Limit of \*
If T}, is a sequence such that 7,, — oo then both sequences A\*(T},) are Cauchy thanks to (4.29) and (4.30).
Consequently, both functions A\*(7") have limits as T — co. Moreover, from (4.26), these two limits are equal. We
may then define

w:= lim AT(T) = lim A\~ (T).

T—o0 T—o0

Moreover from (4.29) and (4.30) with T3 =T > 0 and T» — oo, we deduce that

AHT) — o] < 142N,

< 1+2N0.

and |A7(T)—w| <
Therefore, we deduce for all T > 0

wl' — (14 2Np) <u(0,T) —u(0,0) < wT + (14 2Ny).
Together with (3.14), this leads to

wTl — (14 3Np) < u(z,T) —u(0,0) <wT + (1+ 3Ny).

We finally get for any 7" > 0
|u(x, T) —wT| < 1+ 3Ny + |u(0,0)] =: C

and this shows (1.5) with constant C.
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Step 5: Monotonicity of w
Let 01 < 09 and let uy,us be solutions of (1.1) corresponding to o1 and oo respectively, with the same initial data
u1(+,0) = 0 = us(-,0). Since o1 < 09, then uy is a supersolution of

w = Au—V'(u+ ¢g)+ o1 on Qx (0,00)
Opu =0 on 09 x (0,00),

while wu; is a solution and hence a subsolution. Eventually, by the comparison principle, we get

(4.31) (751 < Uusg.
Note also that, thanks to (1.5), we may find C' > 0 such that |u; —wit| < C and |ug — wet| < C. Assume by
2
contradiction that wy > wy. Then for t* > ——— and using the above inequalities, we obtain
w1 — W2

up (2, %) > wit™ — C > wot™ + C > ug(x, t).
This is in contradiction with (4.31). Therefore we conclude that wy < ws.

Step 6: Continuity of the map o — w(o)
The proof is classical and follows from the uniqueness of the solution and the fact that the constant C' in inequality
(1.5) is independent of o. Indeed consider a sequence o0,, — 0o, € R, and with zero initial data, the associated
solutions u,, — s satisfying

[tn(x,t) —tw,| < C with  w, =w(op).

Because of the monotonicity of the map o — w(o), the sequence wy, is then bounded, and up to the extraction of a
subsequence, we deduce that w, — we € R with |us(,t) — twe| < C. The uniqueness of the solution u, implies
Weo = W(0x), and then shows that w(o,) = w(0w), which shows the continuity of the map w.

Step 7: Uniqueness of w with respect to the initial data ug

We claim that the growth speed w is the same for any initial data ug satisfying (1.4) Indeed, if uy,us are two
solutions of (1.1) with initial data u{ = uy(-,0) and u§ = us(-,0) respectively then there exist wy, we, C1 and Cq
such that for all (z,t) € Q x [0, oo[ we have

(4.32) lug(z,t) —wit]| <Oy and  |ug(z,t) — wat] < Cs.

Since u{ and u$ are bounded then there exists an integer N € N such that [uJ — uf| < N. By the comparison
principle, the same inequality remains valid for all times ¢ > 0,

lug —up| < N

because u; £+ N is still a solution of (1.1). However, we have (wg — w1)t = (wa — w1)t — (ug — u1) + (uz — u1) and
then from (4.32), we deduce that
|(OJ2 — wl)t| S Cl + CQ + N

which implies ws = wy for large t.

Step 8: Control of the constant C in (1.5) by |uo| z=(q)
Let us call Cy the constant for zero initial data such that

u(,t) —wt| < Co

where Cj is known not to depend on . Now for another initial data uo and its associated solution wu,,,, we set the
integer part N, := [|luo| z(q)]|. Then —N, < ug < N, implies by the comparison principle that

—Ni+u<uy, < Ni+u.

Therefore
[ty (-, 1) — wt| < Ny + Co =: C)

which shows that Cj is also independent on ¢, and only depends on |lug|| e (q)-

12



Step 9: Proof when V is even
Consider the central symmetry S : R? — R? with S(z) := —x. We notice that

)
S(x)) =0F(z)+7 mod (2)

Recall that u solves uy = Au — V' (u + ¢g) + o with zero initial data. Then it is easy to check that
(4.33) v(x,t) == —u(S(z),t)
does not affect the Neumann boundary condition nor the zero initial data and solves
v =Av—=V"(v+¢y) — 0.
Hence v solves Cauchy problem (1.1), but with ¢ changed in —o. From (1.5), we have
(1) —tw(=0)| <O, |u(-,t) —tw(o)| < C

Then (4.33) shows that w(—oc) = —w(o), and ends the proof of the theorem. O

5 Proof of Theorem 1.3: existence of a permanent regime

The solution u obtained in Theorem 1.2 on Q x [0, +00) will serve as a base for the existence result of Theorem
1.3 on ©Q x R. Indeed, in the case where w # 0, the solution u,, is constructed by examining time translations of u,
while for w = 0, the solution u,, is constructed by examining the long time behavior of w. This will be made clear
in the following proof.

Proof of Theorem 1.3. We only consider w > 0 if w # 0. The case w < 0 is treated similarly. The proof is
divided into five steps. The first four steps deal with w # 0, and the final step deals with w = 0. Let u be the
solution obtained in Theorem 1.2 defined on 2 x [0, +00).

Step 1: Case w > 0 and existence of a global solution of (1.1) satisfying (1.5) on Q x R
Let u be the solution to Cauchy problem (1.1) on © x (0,+00) with zero initial data. Consider the function w
defined by

w(z,t) == u(z,t) —wt, with |w(z,t)|<C forall (x,t)€ Qx[0,+00)

then w satisfies for g = 0

wy = Aw + f, on QX (tg,00)

3 — _\! —
(5.34) { 9w = 0 on 99 x (ty, ), with  f, ==V (w+ ¢o +wt) —w+ 0.

Setting

wp(z,t) == w (x,t+ g) with |w,(z,t)] < C forall (z,t) € Q x [fg,+oo)

we see that w, is solution of (5.34) with ¢y = -
w

Let M > 0. Then for n large enough, we have the bound |wy,|z~Qx(—2m,20)) < C which is independent on
n. Therefore interior parabolic estimates and standard parabolic regularity theory imply that the sequence w,, is
bounded in C2+®:1+% (Q x [—M, M]) for some a € (0,1). This shows that w, is pre-compact in C2+51+% (0 x
[-M, M]) for 0 < 5 < a. Now considering a sequence M — 400, and using a diagonal extraction procedure, we
ensure the existence of

248,144 = .
Weo € CLFPITZ(@ X R) with  |weo| 1 (ur) < C
CFAI+E

loc (2 x R), up to the extraction of a subsequence. Moreover wq, is still solution

such that lim w, = wy in
n—oo

of (5.34), but now for tg = —oo.
Now, setting

n
Up(2,t) := wp(z,t) + wt =u (x,t + —) —n
w

13



246,145 5

we see that u, is a solution of (1.1) on X (—ﬁ, +00) and converges, in C| (Q x R), t0 Upo = Woo + wi,

w loc
which satisfies

(5.35) [too (2, 1) — wit| < C.

where uo, is a global solution of (1.1) on © x R.

Step 2: Existence of a permanent regime solution
In this step we show the existence of the solution w, by relying on u., given in the first step. For the clarity of
presentation we denote uo, by u. Define

T, :=sup{T € [0,+0), wu(w,t+7)<u(z,t)+1 forall (z,t)€QxR}.
Since u is Lipschitz continuous in time and verifies (5.35), we infer that T is positive and finite with
(5.36) w(x,t +T,) <u(z,t)+1 forall (x,t) € QxR.

From the definition of T,,, we know that for every n € N\ {0} there exists (z,,t,) € Q x R such that
1

(5.37) wW(Tp, tn + Tw) + — > w(@n, ty) + 1.
n

Note that x,, converges (up to a subsequence) to zo, € Q, and t,, — to, € RU {—00, +00}.

Case 1: t € R.
Then by passing to the limit n — oo in (5.37) and by using (5.36), we get

(5.38) UW(Zooy too + Tiw) = U(Too, teo) + 1.

This shows that we have equality at (zo,t0) in the inequality (5.36). Because both functions u(-,- + T,,) and
u+ 1 are both global solutions of (1.1), we deduce from the strong maximum principle (Theorem 2.4) (in its strong
comparison version) that we have

w(z, t+T,) =u(x,t)+1 forall (z,t)e QxR
1
which shows (1.7) with u,, := u. Moreover (5.35) implies that T,, = "

Case 2: [too| = 0.
We aim to drag the contact point close to {¢ = 0}. To this end, we set

1
Un(x,t) = u(x, t + %) — My, tn =: M +7, with m, €2, 7,€]0,—)
w w w

1
Then up to the extraction of a subsequence, we have 7, — 7o, € [0, —] and u,, — us which satisfies (5.36) and

Uoo (Too, Too + T') = Uso(Too, Teo) + 1. As in Case 1, we deduce that

Uso (T, t + T),) = uso(z,t) +1 forall (z,t) € QxR
and (5.35) is still true and again implies 7., = w™*. This gives again (1.7) but with wu, = .
Step 3: Monotonicity

Define
A = inf{\ € [0, +00) : uy(z,t + \') > uy(x,t) forall (z,t) € QxR, XN €[\ +o0)}.

From (5.35), we deduce that

Uy (2, 6+ N) —uy (2, t) = wXN +{ug(x,t+ N) —w(t+ X))} — {un(z,t) — wt}
>wN —-2C

and then A, is bounded. Moreover we have u,,(z,t + \.) > uy(2,t) for all (x,t) € Q x R. Recall that T, = w™.
From the T, -periodicity of t + u,(z,t) — wt, we deduce from the definition of A, the existence of a contact point
(x,ts) € Q % [0,T,,) such that uy, (@, tx + Ax) = Up (T4, tx). Then the strong comparison principle implies

Uy (2, T+ ) = up(x, t).
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Consequently u,, (z,t + NA.) = uy(z,t) for all N € N, and this implies for (z,t) = (0,0)
[uw(0,0) — wN AL = |uy, (0, NA,) —wNA| < C

where the last inequality follows from (5.35). The limit N — +oco implies that A\, = 0 which shows the time
monotonicity of u,,.

Step 4: Uniqueness up to time translations
Let u}, u2 be two global solutions of (1.1), (1.5) on Q x R satisfying periodicity condition (1.7). Since the function

w? w
u2 — ul is periodic in time with period T}, then there exists an integer N € N such that

ul + N > .

Let
Be =sup{B >0:ul(x,t) + N >u2(z,t+ B)}.
Similar arguments as in Step 3 infer that

ul(z,t) + N = ul(z,t + ),

and so, owing to (1.7), we may write
ui(x,t) = ui(az,t + B — NTW)
which shows the uniqueness of the solution, up to time translations.

Step 5: Case w =0 and existence of a stationary solution
Associate to the dissipative PDE (1.1), let us introduce the following energy defined for v € H'(Q) as

B(v) = /Q {;WUF V(0 + o) — av}.

Because u € 2715 (Q x [0, +00)) solves equation (1.1), as it is very classical, we can multiply by u; and integrate
over (2, to deduce that

d
(539) / |ut('7t)|2 + 7E(u(7t)) =0,
Q dt
Because of (1.5) and w = 0, we have

(5.40) lu(z,t)] < C for all (z,t) € Q x [0,+00)

Therefore the energy F(u(-,t)) is nonincreasing and bounded from below, hence converging to a constant. Using

(5.40), we deduce from classical parabolic estimates that |u|02+°“1+%(5x[0 too)) S Cy for some a € (0,1). Now

g
setting u,(x,t) := u(x,t 4+ n), up to the extraction of a subsequence, we have u,, — U in C?:;aHQ (Q x R) for
any S € (0, ). Therefore
E(tus(-t)) = Foo := lim E(u(:,s))

s—+00

and because uq, is still solution of (1.1), it also satisfies (5.39), which implies

1 2
| 3l 0p =0

Therefore uq, is a stationary solution of (1.1), as desired.

Step 6: proof of (1.6) and bounds on w(o)

Given o € R, consider w = w(o) and the permanent regime solution w := wu, which is T,,-time periodic with
T, = w ! when w # 0, and independent on time, when w = 0. Then u satisfies again the energy equality (5.39).
Now writing w := u — wt, where the functions w and wy are T,,-time periodic, we get after integration in time over
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[0, 2]
0 = / IUt(-J)Iz}+E(U(~»Tw))—E(u(-70))
Qx[0,T,]

/ |w; +w|2} —|—/ {—o(wT,)}
Qx[0,T.] Q

/ lwe|? + w? + 2ww, —|—/ {—ow}
Qx[0,T,] Qx[0,T,]

{lwe?* + w?* — ow}
Qx[0,T,]

This implies that
ow > w?

which shows (1.6). Notice that it remains true when w = 0.

Step 7: proof of iv) when V is even
The result follows as in Step 9 of the proof of Theorem 1.2. O

6 Proof of Theorem 1.6: asymptotic convergence

Proof of Theorem 1.6.

We work with w # 0 and assume without loss of generality that w > 0 (the case w < 0 is similar). We call u,, the
permanent regime solution given by Theorem 1.3, and u be any solution given by Theorem 1.2. Starting from Step
3, we will use the semi-norm method.

Step 1: bound on the time derivative of u,
From Theorem 1.3, we know that

(6.41) 0< Oy, and wug(x,t+T,) =14 u,(z,t) with T, =w !

Because u,, solves the parabolic PDE (1.1) on Q x R, we deduce that w := dyu,, > 0 also solves the following
parabolic PDE

(6.42)

wy = Aw — wV" (uy + ¢o) in xR,
Opw =10 on 0N xR.

Because V € (2 (from assumption (1.2)), we see that the strong comparison principle shows that either w = 0
(which is impossible from (6.41)), or w > 0. Because u,(x,t) —wt is T-periodic, we deduce that w is also T-periodic,
and this implies the existence of some constant ¢; > 0 such that

(6.43) 0<c <w= 0.

Step 2: long time convergence
We now set
Up(z,1) == u(z, t +nw™ ) —n.

From the proof of Theorem 1.3, we know that up to a subsequence, we have for some 5 € (0, 1)

1 . 28148 = . 1 5

Up, — Uy, 0 C . (QxR) with |ug(z,t)—wt|<C forall (x,t) € QxR

Then an argument similar to Step 4 of the proof of Theorem 1.3 gives the existence of some 71 € R such that
ul, =uTt with  wTt =g (, -+ 7).

Similarly for a second subsequence, we get the existence of some 75 € R such that

. 248,142 =
Up, — U = ul? in C717 2@ xR).

w loc
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Hence for any € > 0 and M > 0, there exists j. and k. large enough such that
U, — ult Lo (x[—m,m)) ZE,
[Un,,. — U2 | Lo (x[—n,m]) < €
Then using time derivative estimate (6.43), we get

{1“kS6+UESu3h~+wf%

T —1 T
U — D) < —e 4 U < tin,,

Without loss of generality, assume that 0 < N :=ny_—n;_. Then the relation uy,, (-,- + NT,) — N = u,,_implies

uf(~, T 561_1) < Uny,,

—ty, (- +NT,) =N
<ult (- + NT, +ec;t) = N
=ult (-, +ecyt).

This implies
To — ecl_l <7+ scl_l,

ie. p—1 < 250{1. We also get similarly the upper bound on 7 — 75, and deduce that
|To — 11| < 2501_1.

Because € > 0 is arbitrarily small, we deduce that 71 = 75. Therefore 7, := 73 = 75 is independent on the choice of
the convergence subsequence. We conclude to the convergence of the full sequence

(6.44) lu(-,t) —ug (- t)|pee() = 0 as t— +oo.

Step 3: exponential convergence

We use the semi-norm method introduced in [19].
Step 3.1: preliminaries

Fort > 1 and 7 € R, we set

M(t) :=sup N(to) with N(to):= inf{ sup |u—uL|} and - ug, i = up( -+ 1)
to>t TER |\ Qx[to—1,t041]

where the infimum and suppremum in N(¢g) are reached. Here N (tp) is a semi-norm. From (6.44), we know that
M(t) — 0 as t — +00. We want to show that

(6.45) there exists u € (0,1) and R > 0 such that M(t+ R) < uM(t) forall t>1

Step 3.2: beginning of the proof by contradiction
Assume that (6.45) is false. Then there exists sequences 1 > u, — 1 and R,, — 400, t, > 1, such that

(6.46) 04— ep i= M(tn + Ry) > pnM(t,).

Because N (tp) — 0 as tg — 400, we know that there exists some s,, > t,, + R, and 7,, € R such that the suppremum
defining M (¢, + R,) is reached at time s,, with

(6.47) €n=M(t,+ Ry,) = N(sp) = sup lu —ulr
ﬁx[sn—l,sn-i-l]

From (6.44), we know that 7, — 7.. We also write s,, = mpw ' + 7, with m,, € Z and r,, € [O,w_l), and set

Tn

Wy = (U —ulr)  with  up (2, ) == u(e, t + muw™) — my,.

Then we can rewrite (6.47) and (6.46) respectively as

(6.48) in@fR _ sup |wn, — et (ul —u™)| p = _ sup [w,| =1
e Qx[r,—1,rp+1] Qx[r,—1,rp+1]
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and

1
(6.49) sup inf sup wy, — ey (ul, —ul)| p < — — 1
to€lrn—Rn,+00) TER | Qx[to—1,t0+1]

Moreover w,, solves

{ Opwy,, = Aw,, + knwy, on QX [ry,

1y +00) . . V' (un + ¢0) — V' (ulr + ¢o)
Opwy =0 on (99Q) x [ R foo )‘ with  k,(x,t) { 0 0}

Unp ’U/w

Step 3.3: passing to the limit
We have B
kn — koo = —V”(ul* + ¢0) in L?SC(Q X R)
Moreover standard parabolic estimates show that w,, is bounded locally uniformly in WPQ’1 for any p > 2. Hence
we get w, — Woo in LS (Q x R), where we, solves the linearized problem

(6.50)

OitWoo = AWeo + kooWeo on xR,
OpWoo = 0 on (092) xR

Notice that the following function wg := dulr > ¢; > 0 is solution of (6.50). Now (6.48) and (6.49) give at the
limit with r, — 7o € [0,w "]

(6.51) 1= inf sup |wee — Awol p = sup |wWoo|
AER QX [roo—1,700+1] OX[Foo—1,700+1]

and

(6.52) inf sup [Woo — Awg| p <1 forall toeR.
AER Qx[to—1,to+1]

Step 3.4: uniform bound on wy,

Notice that we have

(653) 0<c <wy <o

where ¢; comes from the bound from below (6.43) on diu,,. From (6.52), we deduce that for any to € R, there
exists some Ay, € R such that

(6.54) sup [Woo — Aeywo| < 1 < e two(-, o)
ﬁ)([to—l,to-‘rl]

and then

(6.55) {Mo — 7' wol(,t0) < woolv,to) < { Ay + 7' Fwo(s, to).

Then the comparison principle for PDE (6.50) implies
(6.56) {)‘to — cfl} wo (1) < weol+yt {)‘to +ef }wo t) forall t > t.
Because (6.55) also holds for ¢, we get

{)\t—cfl}wo(-, ) < Weolsyt {)\t+cl }wo

Using (6.56), and dividing by wo(-,t), we deduce |\; — \s,| < 2¢;'. Moreover relation (6.51) shows that we can
take Aj;—,.. =0, which gives |\, | < 2¢;'. Therefore (6.54) implies the following bound

|w°0‘L°°(§><lR) S 1 + 2026;1

Step 3.5: touching w., from above
Recall that wg > ¢; > 0 and define

Ao i=inf{A €R, wo < Nwg forall XN >N}
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Then A\, € R. Moreover, there exists a sequence of points (z.,t.) € @ x R such that
(Woo — { A — €} wp) (we,te) >0 with  wee < Aswo
We write t. = mew ™! 4 7. with m. € Z, . € [0,w™!), and set
Woo (5, *) 1= Woo (-, - + mew ) and  wo(-, - +mew™) = wo,

where we have used the periodicity of wp. Up to extract a convergent subsequence, we get (z.,7:) — (zo,70) €
Q x [0,w™ '], and

Woo,e =+ Woo,0 locally uniformly on Q x R, with Woo 0 solution of (6.50),
Woo 0 < Aswo  with equality at (zg, 7o)

Again the strong comparison principle implies woo 0 = Axwp. We have moreover m. — mgy € Z U {—o00, 400}, and
we distinguish three cases.

Case A: mg € Z.

This implies that wee,o(+; ) = Weo (-, + mow ™) = A,wp, and the periodicity of wg implies wse = A wo.

Case B: my = —oo.

Then woo (-, - + mew™ 1) = Woo,e — AW locally uniformly. Hence for any § > 0, we can find €5 small enough such
that for all € € (0,e5) we have

{X = 6} wo(+,0) < woo (-, mew™) < {As + 6} wo(+,0)
The comparison principle implies (using also the periodicity of wg) that
I =0 wo < weo < {A+ 6wy on  [mew™ !, 400)

In the limit € — 0 and then § — 0, we recover we, = A wg.
Case C: my = +oo (the only remaining possibility).
This means that for all ¢ty € R, we have

0> sup (Weo — Aswg) = —1(to) <0 with n(ts) >0 as ¢H — +o0
ﬁX(—OO,to]

Then fix tg < 0. We get with 79 := 7(0)
(Weo = Aswo)(+ o) < —mo <0
Hence (6.53) implies (woo — Ao (-, o) < —nocy “wo (-, to), i.e.
oo (5 t0) < { A —mocy '} wol-, to)
and the comparison principle implies
Woo < {)\* — nocgl} wo on € x [tg, +00)

In the limit {5 — —o0, we recover -
Weo < {/\*—770(:2_1}100 on QxR

This leads to a contradiction with the definition of A, and then rules out Case C.

Conclusion
We deduce that in all cases, we get weo = Aswp, which is in contradiction with (6.51). Therefore we conclude that
(6.45) is true.

Step 3.6: consequences of (6.45)
From (6.45), we deduce the existence of some p > 0 and a constant C > 0 such that

M(t) < Ce "t forall t>1

This implies for all to > 1 that there exists some 7, € R such that

(6.57) sup lu —uy°| = inﬂfg { sup lu — uL|} = N(tg) < Ce Pl
TE

Qx[to—1,to+1] Qx[to—1,to+1]
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Hence (6.53) implies

1l Tito+1) — ol < sup lul ot —ul®| < N(to) + N(tg + 1) < 2Ce~ Pt
Qx[to,to+1]

We also know that 7, — 7, as to — +o00. This gives by a telescopic/geometric sum

2C
1| — | < iy e~ Pto
Again (6.53) implies with (6.57) that for all ¢5 > 1
sup lu—ulr] < sup |u — uy®| + sup lug,® — ulr
Qx[to—1,to+1] Qx[to—1,to+1] Qx[to—1,to+1]
< Ce P + co|T — Ty
_ Co 2
< CePod14 =
- { * cg l—e " }
which implies (1.8) and ends the proof of the theorem. O
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