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Abstract

We study a mathematical model describing dislocation dynamics in crystals. This phase-field model is based on

the introduction of a core tensor which mollifies the singular field on the core of the dislocation. We present this

model in the case of the motion of a single dislocation, without cross-slip. The dynamics of a single dislocation

line, moving in its slip plane, is described by an Hamilton-Jacobi equation whose velocity is a non-local quantity

depending on the whole shape of the dislocation line. Introducing a level sets formulation of this equation, we

prove the existence and uniqueness of a continuous viscosity solution when the dislocation stays a graph in one

direction. We also propose a numerical scheme for which we prove that the numerical solution converges to the

continuous solution.

Key words: Dislocation dynamics, Peach-Koehler force, Hamilton-Jacobi equations, viscosity solutions, level sets method,
non-local equations.
PACS:

1. Introduction

Since the beginning of the 90’s, a lot of work
has been done to develop Discrete Dislocation Dy-
namics (see for instance [1] to only cite one work).
Recently, a new approach, called the phase field
model of dislocations has emerged, where disloca-
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tions are described by the variation of continuous
fields (see Rodney, Le Bouar and Finel [2], Xi-
ang, Cheng, Srolovitz, E [3], Wang, Jin, Cuitino,
Khachaturyan [4], Cuitino, Koslowski, Ortiz [5]).
In this approach, possible topological changes dur-
ing the dislocation movement are automatically
taken into account by the model. In the present
paper, we study the phase field model of disloca-
tion dynamics which has been recently proposed
by Rodney, Le Bouar and Finel [2], and propose a
general presentation based on the notion of core
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tensor.

2. The general model

Let us consider an orthonormal basis (e1, e2, e3)
of R

3. In this section we denote the coordinates by
x = (x1, x2, x3), and x′ = (x1, x2).

2.1. Dislocation dynamics for a single dislocation

Let us assume that the dislocation line is rep-
resented by the boundary Γ of a smooth bounded
domain Ω ⊂ R

2. We define ρ(x′) the characteristic
function of Ω, which is equal to 1 if x′ ∈ Ω and
zero if x′ ∈ R

2\Ω.
Let us call n = e3 the normal to the slip plane, and
b the Burgers vector. We set ε0

ij = 1

2
(binj + bjni).

The plane R
2 is assumed to be the plane where

the dislocation can move. This plane is naturally
imbedded in the three-dimensional material which
is assumed to be the whole space R

3.

The classical theory of dislocations asserts that
the dislocation line Γ creates a distorsion in the
classical strain εcl such that

εcl
ij = ρδ0(x3)ε

0
ij + εij(U)

where δ0(x3) is the Dirac mass only in the x3 com-
ponent and U(x) = U = (U1, U2, U3) is a displace-
ment which defines εij(U) = 1

2
(Ui,j + Uj,i).

Here the energy formally associated to this strain
is

∫

R3

1

2
Λijklε

cl
ijε

cl
kl where Λijkl are the coefficients

of elasticity. Minimizing on U , we find that the
strain εcl

ij is given by εcl
ij = Rijklε

0
kl?ρδ0(x3), where

Rijkl is a kind of Green function. The difficulty in
this approach is that the energy is infinite because
the strain field εcl is too singular on the disloca-
tion line itself. To overcome this difficulty, we pro-
pose to introduce a core tensor χijkl which satis-
fies

∫

R3 χijkl = 1

2
(δijδkl + δjkδil) and the symme-

try conditions χijkl = χklij = χjikl . This core ten-
sor will describe the fine structure of the core of
the dislocation. Then the “true physical strain” is
given by the convolution

εij = χijkl ?
(

ρδ0(x3)ε
0
ij

)

+ εij(U) .

Now the energy of the line is well defined

E(Γ) =

∫

R3

1

2
Λijklεijεkl

if χijkl is smooth enough, and the displacement U

is chosen to minimize this energy, i.e. satisfying the
following equations of elasticity

(Λijkl εkl),i
= 0 .

A typical choice which matches with the Peierls-
Nabarro model for isotropic elasticity is
χijkl = χ0(x1, x2)δ0(x3)

1

2
(δijδkl + δjkδil) where

the Fourier transform of χ0 is

χ̂0(ξ1, ξ2) = −µb2

2

(

ξ2

1
+ 1

1−ν
ξ2

2√
ξ2

1
+ξ2

2

)

e−
ζ
2

√
ξ2

1
+ξ2

2 with

ζ > 0 a parameter proportional to the size of the
core of the dislocation, ν the Poisson ratio, µ a
Lamé coefficient, and b = |b|e1.
To evaluate the resolved Peach-Koehler force act-
ing on the dislocation line, we can proceed as
follows. We denote by nΓ(s) the outer unit normal
to Ω, contained in the slip plane and parametrized
by the curvilinear abscissa s of Γ. For a given
δ > 0, we consider a variation of Γ defined by
Γδ(s) = Γ(s)+δh(s)nΓ(s) for any general function
h. Then a computation gives

− d

dδ
E(Γδ)|δ=0 =

∫

Γ

ds h(s)c(Γ(s)) (1)

where the function

c = c0 ? ρ

is called the generalized resolved Peach-Koehler
force, and c0(x

′) =
(

Řklmn ? χ̌mnpqε
0
pq ? ΛijklRijab ? χabcdε

0
cd

)

(x′, 0)

where f̌(x) = f(−x) for any general function
f . Classically dislocation dynamics of Γ = Γt is
defined by

dΓt

dt
(s) =

1

B
c(Γt(s))nΓt

(s)

where B is a viscous drag coefficient. To simplify
the presentation we assume from now on that B =
1. Then this equation is equivalent to a single non-
local equation satisfied by ρ(x′, t), namely

∂ρ

∂t
= (c0 ? ρ) |∇ρ| . (2)
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This non-local Hamilton-Jacobi equation describes
the self-dynamics of a single dislocation line and is
studied in details in [6,7].

2.2. Dislocation dynamics for several dislocations

In this subsection we consider the case of N dislo-
cations Γα, α = 1, ..., N , which are the boundaries
of open sets Ωα contained in the planes defined by
{x · nα = aα}, with burgers vectors bα. We define
ε0α

ij = 1

2

(

bα
i nα

j + bα
j nα

i

)

. We set ρα the character-
istic functions of Ωα. Then

εij =
∑

α

χα
ijkl ?

(

ραδ0(x · nα − aα)ε0α
ij

)

+ εij(U)

and the energy is

E(Γ1, ..., ΓN ) =

∫

R3

1

2
Λijklεijεkl + σext

ij εij

if σext
ij is an exterior applied stress. Finally the re-

solved Peach-Koehler force cα can be computed
still using formula (1), and the functions ρα satisfy

the Hamilton-Jacobi equations
∂ρα

∂t
= cα |∇ρα|.

3. The level sets formulation for a single
dislocation

In equation (2), the function ρ is discontinuous.
It is more convenient to localize the dislocation
as the zero level set of a function u(x1, x2, t), i.e.
Γt =

{

x′ ∈ R
2, u(x′, t) = 0

}

where u solves the
following equation






∂u

∂t
= (c0 ? [u]) |∇u|

u(x′, 0) = u0(x′)
(3)

with [u] = 1 if u > 0 and [u] = 0 if u ≤ 0, and u0 is
the initial condition. The solution of this equation
should be understood in the viscosity sense, see
[9] for a general theory.
For this equation we have the following result

Theorem 1 (Short time existence and
uniqueness)
Let u0 satisfying |∇u0(x′)| < B in R

2 and

∂u0

∂x2

(x′) > b > 0 in R
2. Let c0 be such that

|c0(x
′)|, |∇c0(x

′)| ≤ C

(1 + |x′|2)
3

2

. Then there ex-

ists T ∗ > 0 such that there exists a unique (viscos-
ity) solution u of (3) on R

2 × [0, T ∗).
The proof of this result is done in a work in

preparation.

4. A numerical scheme

We build a first order finite difference scheme,
essentially using a monotone numerical Hamilto-
nian for the norm of the spatial gradient, discrete
convolution for the non local speed and forward
Euler for the time derivative.

Given a lattice Qd = {(I∆x, n∆t) : I, n ∈
Z

2 × N}, we will denote with (x′
I , tn) the node

(i∆x, j∆x, n∆t) with I = (i, j), and with vn =
(vn

I )I the values of the numerical approximation
of the exact solution u(x′

I , tn).
The main difficulty is clearly due to the non local

term, that requires the availability of the solution
we are intending to approximate. To circumvent
this problem, we freeze the solution at each time
step [tn, tn+1] and we apply a monotone scheme Sn

for local Hamilton Jacobi equation, with a smaller
time scale ∆τ = ∆t3 :

∆τ =
∆t

M
, τn

m = tn + m∆τ, m = 0, ..., M .

Given the intial condition v0
I = u0(x′

I), we solve







w
n,0
I = vn

I

w
n,m+1

I = Sn(wn,m, I) m = 0, ..., M − 1
(4)

then we update the discrete convolution each time
step ∆t = M∆τ :

vn+1

I = w
n,M
I n = 0, ..., N.

The Sn schemes, depending on vn, are explicit
marching schemes:

Sn(wn,m, I) = w
n,m
I + ∆τHd([v

n], Dw
n,m
I , I)

where Dw
n,m
I =

(

D±
x1

w
n,m
I , D±

x2
w

n,m
I

)

are the
standard forward and backward first difference.
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Here Hd is a discrete numerical Hamiltonian,
depending on the discrete convolution

cI([v
n]) =

∑

J∈Z2

c0
I−J [vn]J∆x1∆x2,

where [vn]J = 1 if vn
J > 0 and [vn]J = 0 if vn

J ≤ 0.
The discrete numerical Hamiltonian is a numer-
ical monotone Hamiltonian, for instance the one
proposed by Osher and Sethian in [8]. For this
scheme, we prove the

Theorem 2 (Numerical error estimate)
Under the assumptions of theorem 1, let us consider
the solution u defined on R

2 × [0, T ∗). Let w
n,m
I be

the solution of the scheme (4), that is monotone
under certain CFL condition. Then there exists a
constant C > 0 such that for n = 0, ...N , m =
0, ..., M − 1:

sup
I∈Z2

|u(x′
I , n∆t + m∆τ) − w

n,m
I | ≤ C (∆τ)

1

3

5. Conclusions

The main result of our work is to propose a math-
ematical formulation of a phase field model of dis-
location dynamics. We think that this is an im-
portant first step because the model can now be
studied by the community of mathematicians. We
hope that this will have consequences both on the
modelling of dislocation dynamics and on numeri-
cal methods to compute dislocation dynamics.

In our model, the position of a dislocation loop in
its glide plane is described by a discontinuous field
ρ which is equal to 1 inside the loop and 0 outside.
In order to obtain the mechanical state within the
framework of linear elasticity, we introduce a ”core
tensor” to remove the unphysical divergences near
the dislocation core. Then, assuming that the lo-
cal speed of the dislocation is proportional to the
resolved Peach and Khoeler force, we derive the
kinetic equation for the dislocation field ρ.

This equation falls into the general class of non
local Hamilton Jacobi equations. At this point, a
mathematical difficulty arises, because the kinetic
equation may admit several solutions. To avoid this
problem, we have used the concept of viscosity so-

lutions (see [9]) which helps to choose the physical
solution.

A great benefit of the present mathematical for-
mulation is the development and adaptation of
well controled numerical algorithms. In the present
work, we have shown how to use the Level Set
method in the simplified case of a single dislocation
line. Compared to the algorithm used in [2], our
scheme does not introduce numerical anisotropy,
and we have obtained an exact result for the nu-
merical error.
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