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Abstract

We prove the convergence of a first order finite difference scheme approximating a non
local eikonal Hamilton-Jacobi equation. The non local character of the problem makes the
scheme not monotone in general. However, by using in a convenient manner the convergence
result for monotone scheme of Crandall Lions, we obtain the same bound /|AX| 4+ At for
the rate of convergence.

Introduction

The paper is concerned with the convergence of a first order finite difference scheme that
approximates the solution of a non local Hamilton Jacobi equation of the form

ug = clu] [Vu| in R? x (0,T), u(-,0) =u® in R% (1)

The non-local mapping ¢ enjoys suitable regularity assumptions and the initial condition u° is
globally Lipschitz continuous, possibly unbounded.

A typical example of mapping c[u] we have in mind is

where [u] is the characteristic function of the set {u > 0}, defined by

1 fu>0
= - 2
[u] {O if u<O. 2)

Here the kernel ¢, which depends only on the space variables, is integrable and has bounded
variation and * denotes the convolution in space. The zero level set of the solution of the
resulting equation
ug(,y,t) = (% [u](z,9,1)) [Vu(z,y,8)] R*x (0,T) (3)
u(,y, 0) = u(z, y) R?,
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models the evolution of a dislocation line in a 2D plane (see [AHLM1] and [AHLM?2] for a
physical presentation of the model for dislocation dynamics).

We approximate the non-local equation (1) by a first order finite difference scheme that
uses a monotone numerical Hamiltonian for the norm of the spatial gradient, the forward Euler
scheme for the time derivative and a suitable abstract discrete approximation of the nonlocal
operator c. The non local character of the problem makes the scheme not monotone in general.
However, by using in a convenient manner the convergence result for monotone scheme of
Crandall Lions, we are able to obtain the same bound /|AX| + At for the rate of convergence
provided the terminal horizon T > 0 is small enough.

The present paper is fairly abstract. Its main objective is to find out general assumptions
on the discrete approximation of the non-local operator c[u] that guarantee the convergence
of the scheme. A companion paper to this article is [ACMR] where we apply this convergence
result to the study of the dislocation dynamics equation (3).

The paper is organized as follows. The precise assumptions on the non-local velocity that
guarantee the solvability of the nonlocal Hamilton-Jacobi equation (1) are given in section 1. In
section 2, we recall the classical finite-difference scheme for the approximation of local eikonal
equations. The extension of the scheme to non-local equations is given in section 4. Section 3
recalls the Crandall-Lions [CL1] estimate of the rate of convergence for local Hamilton-Jacobi
equations. We give an updated proof of the result that tackles the non-classical assumptions
we make (in particular, the non-boundedness of the initial condition). Finally, we state and
prove in section 5 our main convergence result.

1 The continuous problem

We are interested in the nonlocal Hamilton-Jacobi equation
ug = clu] [Vu| in R? x (0,T), u(-,0) =u® in R?

where the mapping ¢ enjoys suitable regularity assumptions to be specified in a moment and
where the initial condition u° is (globally) Lipschitz continuous, possibly unbounded.
First, we consider the eikonal equation

up = c(x,y,t)|Vu| in R? x (0,T), u(-,0) =u® in R? (4)

to set a few notations. We assume that the velocity ¢ is bounded and Lipschitz continuous
with respect to all the variables.

The classical theory of viscosity solution ensures that (4) as a unique continuous viscosity
solution with at most linear growth in space. Moreover, the solution w is Lipschitz continuous
in space and time, with a Lipschitz constant that depends only on the velocity ¢ and on .
We denote by G : WH(R? x [0,T)) — Lip(R? x [0,T)) the operator that associates to c the
solution u of (4), i.e.

G(c) = u. (5)
Here, Lip(R? x [0,T)) denotes the set of the globally Lipschitz functions in space and time,
possibly unbounded.

Next, we consider two sets U C Lip(R? x [0,7)) and V C WH*°(R2 x [0,T)). We assume
that V is bounded in W1>°(R? x [0,7)), i.e. that there is a constant Ky such that

|w|W1,oo(R2><(O7T)) < Ky, forallweV. (6)
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For any 0 < T < T, we set U = UNLip(R? x [0,T)) and Vo = VN WH®(R2 x [0,7)), i.e.
Ur and Vp are the restrictions to [0,7) of the functions in U and V respectively. We suppose
that, for all 7', Ur and Vi are closed for the uniform convergence and that G(Vr) C Up. The
non local velocity we consider is a mapping ¢ : U — V so that ¢(Uz) C V for all T € [0,T).

We make the following stability assumptions on the operators G and c.

Stability property of the operator G on V. There is a constant K so that, for all 0 < T < T
and all ¢1,cy € Vp,

|G(c2) — Gle1)| L@z x0,1)) < KiT'le2 — c1|poo(m2x(0,1)) (7)
By the comparison principle, the stability of G is ensured if for instance all the functions in U

satisfy |Vu| < K; a.e. in R? x [0, 7).

Stability property of the velocity c. There are constants Ky and K3 so that, forall0 < T <T
and all uy,us € Up,

|c[ua] = clur]| oo w2 x (0,1)) < K2 [u2 — wi|peer2x(0,1)) A Ks- (8)

Here, a A b = min(a,b). Note that the quantity |uz — u1]rec®2x(0,r)) may be infinite.

Theorem 1 (Existence and uniqueness of a solution for short time)
Assume that the operator G : V. — U defined in (5) verifies (7) and that the mapping ¢ : U — V
satisfies (8). Then there exists 0 < T* < T such that the operator G oc has a unique fized point
m UT* .

In other words, the non-local eikonal equation

ug = clu] |[Vu| in R? x (0,T%), u(-,0) =u® in RZ 9)
has a unique solution in Up~.

ProoF Fix T* < 1/K1K3 so that T* < T. Endow Up+ with the topology of uniform
convergence, say for the distance

d(ul,UQ) = |u2 - U1|L00(R2><(0’T*)) A Ks.

Since Up+ is closed under the uniform convergence, it is a complete metric space. On the other
hand, the stability assumptions on G and c ensures that the operator G o ¢ : Up» — Ur~ is a
contraction for the distance d. We can thus apply the classical fixed point theorem. O

2 Approximation of the local eikonal equation

In this section, we briefly recall the finite difference scheme associated to the eikonal equation

(4).

We first need a few notations. We approximate the underlying space R? x [0, T) by a lattice
Q2 = (AD)Z x (Ay)Z x {0, ..., (At)N7}



where N7 is the integer part of 7'/ At. We refer generically to the lattice by A in the sequel. The
discrete running point is (Xy,t,) with X; = (z;,y;) for I = (i,7) € Z2, z; = i(Az), y; = j(Ay)
and t, = n(At). We set AX = (Az, Ay) and we define its Euclidean norm |AX]| as the space
mesh size. We shall assume throughout that |[AX| < 1 and At < 1. The approximation of the
solution u at the node (X7r,t,) is written indifferently as v(Xy,t,) or v} according to whether
we view it as a function defined on the lattice or as a sequence.

Given a discrete velocity ¢, the discrete solution v that approximates the solution of the
eikonal equation (4) is computed iteratively by the explicit scheme

W= @0(Xp),  opT = 4 AL A (X, t) BT (D Doy (10)

where @°(X[) is an approximation of u%(X;) (which can be chosen equal to u®(X;)), where
Edi is a suitable approximation of the Euclidean norm and Dtv", D~v™ are discrete gradients
whose precise definition is recalled in the next paragraph. Denoting by S the operator on the
right-hand side of (10) acting on discrete functions, we can write the scheme more compactly
as
) = a%(X7), "t = Sy™

Defining E:% = RZ>{0..N7} the set of the discrete functions defined on the mesh Q% and
EA = E%, we denote by G® : EA — E® the operator that gives the discrete solution v of
problem (10) for a given discrete velocity ¢® € E?, i.e.

GA (™) = . (11)

The discrete gradients are Do (X)) = (Dmiv”(XI),D;tv”(X[)), where DFv™(X;) and
D;tv”(X 1) are the standard forward and backward first order differences, i.e. for a general
function f(Xy) :

D* (X)) = f(@iv1,y5) — (@i, y5)

Ax ’
oz ) = K)o
D F(X7) = f(%yjﬂi; f(ﬂfivyj)’
Dy () = L0 8) _Ag(xi’yj‘l).

We suppose that the functions EC:lIE are Lipschitz continuous with respect to the discrete
gradients, i.e.

|E7(P,Q) — Ef (P.Q")| < Li (IP - P/l +|Q - Q') (12)
and that they are consistent with the Euclidean norm
EF(P,P)=|P|. (13)

We also suppose that Edjt(jz);EF ,p; 1Dz Py ) enjoy suitable monotonicity with respect to each
variable

OET OET OE; OET
Opz apy Opz apy
8Ei <0, aEi <o, Paso %as
Opz apy Opz 8py



Finally, we assume that the mesh satisfies the following CFL (Courant, Friedrichs, Levy) con-
dition
Lo Lo

At < —1— Az, < i Ay (15)
|2 Lo |2 Lo
for + + + +
oF oFE oF oF
L_1:2max< d Lo + i Lo, d Lo + i L°°>7
; Gl + 15 e (G + |5

where we assume that the max is also taken on the signs +. Under these assumptions, one
checks classically that the scheme S is monotone in the sense that

if v > w, then Sv > Sw.

An example of scheme, satisfying the previous assumptions, is given by the following ex-
pression:

+ .
U;H_l — w4 Afx c(XI,tn)Ed_ %f c(Xy,ty) >0
c(X1,tn) By if ¢(Xp,t,) <0
vi= W (wi,yp),

where E:{, E; are the numerical monotone Hamiltonians proposed by Osher and Sethian in

[OS]:
Ec'l|r = {max(Div"(xI), 0)2 + max(D;v”(xI), 0)2 + min(D_ v"(x), 0)2 + min(Dy_v”(:B]), 0)2}%
E; = {min(D;v"(zy), 0)% + min(D;'U"(xI), 0)? 4+ max(D, v"(z7),0)? + max (D, v"(rr), 0)2}% .

A second example is given by choosing the numerical Hamiltonians proposed by Rouy and
Tourin in [RT]:

1

ET = {max(D}v"(z1), =Dy v"(z1), 0)% + max(DJv”(a:I), —D,v"(z1), 0)2} 2
1

E; = {min(D}v"(z1),—D;v"(x),0) + min(D;v"(xI), —D,v"(x1), 0)%}2.

T

3 The Crandall-Lions rate of convergence for the local eikonal
equation

The Crandall-Lions [CL1] estimate provides a bound for the rate of convergence of finite dif-
ference schemes for solving numerically Hamilton-Jacobi equations. The scheme is of the form

’U(I) = aO(X]), U?—H = U? + At Hd(X[, tn, D+’Un, D_’Un). (16)

where 7°(X[) is an approximation of u%(X ). To simplify the presentation and to be consistent
with the notations of the preceding sections, we shall limit ourselves to the eikonal equation
(4) with velocity ¢ € W1°(R? x [0,T)). In this case, the discrete Hamiltonian is of the form

Hy(X1,tn, P, Q) = c( X7, tn) ESEX)(p ),

We give an updated proof of the result that concentrates on (globally) Lipschitz solutions
of the eikonal equation (4). One technicality is that the functions may be unbounded.



Theorem 2 (Crandall-Lions rate of convergence) Assume that T <1 and |[AX|+ At <
1. Assume that ¢ € WH(R? x [0,T)) and that the discrete approzimation of the Euclidean
norm Ey satisfies the assumptions (12), (13), (14). Assume also that the CFL condition (15)
holds.

Then there exists a constant K > 0 such that the error estimate between the solution u of
the eikonal equation (4) and the discrete solution v of the finite difference scheme (16) is given

by

and sup|u’—0%) <1

sup [u—v| < K(T(AX|+A)) " +sup |u® =00, if |AX|+At <
Qg

Q7 Qg

=1

for a constant K depending only on ‘VU0|L00(R2)7 |C‘W1v°°(]R2><(O,T)) and the constants Lg and
L.

ProOOF  The proof splits into several steps. We denote throughout by K various constants
depending only on |Vu0‘ Loo(R2)? |C\W1,m(R2X(O’T)) and the constants Ly and Li. We first assume
that

u(Xp) > vf = a°(Xr) (17)

and we set
p? = sup |u® — 0% > 0.
Qg

Step 1 We have the estimate for the discrete solution Kt, + u® > u®(X;) — v(Xy,t,) >
—Kt,.

To show this, we note that the function w(Xy,t,) = u(X;) — Kt, — p° is a discrete
subsolution of (10) provided the constant K is conveniently chosen. Indeed, w(-,0) = u° and,
using the Lipschitz continuity of Hy, its consistency and the Lipschitz continuity of u°, we get

Wit — (Sw™); = —~KAt — At Hy(X1,tn, Du®, D™u)
< —At(K — Li|c|pe | D u’| — Lile| o | D™ 0’| + Hy(X1,t0,0,0)) <0

for K = 2v/2L1|c|pe |[VuO| L>(r?)- By the monotonicity of the scheme, we deduce by induction
that w™ < v™ for all n. This can be rewritten as u%(X;) — v(X7, tn) < Kt + u°.
The lower bound u®(X;) + Kt,, > v(X7,t,) is proved similarly.

Before continuing the proof, we need a few notations. We put

= sup(u — v),

Q7
which quantity may be infinite a priori. Moreover, for every 0 < a <1,0<e <1 and o > 0,
we set
MY = sup Vs (Xt X, ty)
R2x[0,T]x Q%
with

X — X112 (t—t,)?
2e 2e

wg’g(X7t7XI7tn) = U(Xa t) - U(letn) — ot — &’XP — &’XI|2.



We shall drop the super and subscripts on @ and M when no ambiguity arises as concerns the
value of the parameters.

Since the solution w is Lipschitz continuous, with a Lipschitz constant that depends only
on ‘Vuol 0o a0d [c[p10, it has a linear growth in the space variable. This growth is also true
for v by virtue of step 1. Therefore, there is a constant K so that

(X, )] < K(1+[X]),  [o(X7,tn)| < K(1+|X7])

(recall that 7" < 1). This implies in particular that the function ¢ actually achieves its maxi-
mum at some point that we denote (X*,t*, X7,t"), i.e.

I'"n
Y(X* XTI t) = max (X, t, X1, t,).
R2x[0,T]x Q%
Step 2 The maximum point of ¢ enjoys the following estimates
al X'+ ol X7| < K (18)
and
| X* — X7| < Ke, [t" —t| < (K +20)e. (19)

To see this, we first use the inequality (X*,t*, X7,t) > 1(0,0,0,0) > 0 (by (17) and the
linear growth of u and v. We obtain that

K? « «
QX"+ ol XJ2 < K(1+ |XC|+ X)) < K + = + SIX P+ S 2

This clearly implies (18) since o < 1.
The first bound in (19) follows from the Lipschitz regularity of v and from the inequality
Y(X*, 5, XT ) > (X7, t5, X7, t;) and from (18). This indeed entails that

X* — X* 2
AT <o 1) (X7 1) — ol X + ol X P
< KIX* ~ X[ + al X"~ X7[(1X"] + |X)

< K|X* — X}l.

This gives the estimate | X* — X7| < Ke.
The second bound in (19) is deduced from (X*,t*, X7, tr) > (X*, t5, X7, 1) in exactly
the same way.

Step 3 We have 4 < K.

We first claim that for o large enough, we must have either t* = 0 or t; = 0. Suppose

the contrary. Then, the function (X,t) — ¢(X,t, X, t}) achieves its maximum at a point in

R? x (0,T]. Using the fact that u is a viscosity subsolution of (4), we get the inequality
o+ pi < c(X*,t%)|px + 20X (20)

for g X*— X*
Py = oo opx=——"L

9 S




(to handle the case t* = T, we take advantage here of the well-known fact that, for the Cauchy
problem, the equation holds also in the viscosity sense at the terminal time).

On the other hand, since t}; > 0, we know that ¢(X*,t*, X7, t5) > (X*, t*
This reads as

~ AY).

77n

’U('vt: - At) Z (P('at: - At) + U(X}k7t7t) - SO(X}k?tZ)
for

X5 — X2 (¢ —t,)?
X7, t,) = — —
#(X1,tn) 2¢ 2¢

Using the fact that the scheme is monotone and commutes with the addition of the constants,
we get that

—a]X1|2.

o(X], ) = (Su(t, — A (X]) = St — A)(XT) +v(XT, 1) — @(X], ),
ie.
(X7, 1) = Seo(- t, — At)(XT).
Expliciting the scheme S, we arrive at the supersolution inequality

P(XT,th) — o(XT, b, — At)
At

> Hd(Xfa t;kz o Ata D+90(X;<a t;kz - At)v D_QO(X}kat:L - At))

Straightforward computations of the discrete derivatives of ¢ yield

* At * ok *
Py + 5 > Hd(vatn - Atva -

AX
5 a(2X] + AX), pk + — — a(2X] — AX)).

2 2e

Subtracting the above inequality to (20), we obtain

At AX
o <c(X* ) px|+ Ka|X*| + 5 Hq(X7,t: — At,p, p%) +K’6—‘ + Ka|X7| + Ka|AX|

AX

<K| - |+2_ K(|X*—X}F|+‘t*—tm+At)|P§(|+Ka(|X?!+|X*\+yAx|)
AX

<K| ’ +K€+KO'€+K (21)
g

The first inequality uses the Lipschitz regularity of c; the second one the consistency of H; and
the Lipschitz regularity of ¢ in space and time; the third one the bounds (18) and (19) and the
fact that |AX|, At < 1. Choosing € = 1/(2K), we get that for alle <&

K|AX|€+ At

+ K.

Putting

AX|+ At
o (|AX| + At ) = %

+ K,

we therefore conclude that we must have t* = 0 or t;, = 0 provided o > o*.
Whenever t! = 0, we deduce from the Lipschitz regularity of u and the bound (19) that

M = (X", ¢, X7,0) < u(X", %) — @(X}) < K(IX* — Xj| +1°) + 10 < K(1+ 0)e + o



Similarly, whenever t* = 0, we deduce from step 1 and from (19) that
M =9(X*,0,X],1,) < u’(X7) - v(X], 1)
< W0(XY) — a(X]) + Kty + 10 < KX = Xj|+8) + 1 < K(1+0)e + 1
To sum up, we have shown that
M2 < K(1+0)e+ u° provided o > 0*(|JAX|,¢) and ¢ <E.
Specializing to the case ¢ = g, we deduce that, for every (X7,t,), we have

w(X7,tn)—0(X1, tn)—0* (|AX|+AL,E)T—2a| X/|? < Mffmxwmz) < K(1+0*(|AX |+At,E))z+u°.

Sending o — 0, taking the supremum over (X7,t,) and recalling that |[AX| + At <1, T < 1,
we conclude that

p< K(1+0*(|AX|+AtE) < K(1+0%(1,8)) + p°.
This completes the proof of step 3.
We again allow 0 < € <1 to be arbitrary and we now assume that o < 1.

Step 4 Inequality (18) can be strengthened to
A X* P +a|lX;P<K (22)

This simply follows from the inequality (X™,t*, X7, t7) > 4(0,0,0,0) > 0 together with
step 3 and (19). We get indeed

A X ol XF? <u(XH 1) —o(X5 ) S K(I X = XF|+ |t —t)+p<pu+ K(1+o)e < K.

Step & We have the bound p < K (T(|AX| + At))1/2 if [AX|+At < L.

We argue as in step 3, using (22) instead of (18). The only difference is that the inequality
(21) becomes

AX|+ A
o< KHith + Ke + KAt + Ka'/2.
g

Following the reasoning of step 3, we conclude that

IAX]|+ At
g

M2 < Ke + p° provided K +Ke+ KAt+ Ka'/? <o <1.

This implies as before that

w(X1,tn) — v(Xr1,t0) < Ke+ p° + (

AX|+ At
K¢ +K5+KAt+Ka1/2)T+2a|X[\2
3

provided the quantity within parentheses is < 1. Sending o — 0, taking the supremum over
(Xr,tn) and choosing e = (T(|AX | + At))l/Q, we conclude that

sup(u —v) = p < K(T(|AX] + A1) + sup(u® — °) (23)
Q% Qg



provided %, |AX]|, At are small enough and (17) is assumed.

In the general case, we first remark that @ = v + pu! with p' = supQa (v — u®) satisfies
u’(X7) > 09 and u = c(x,y,t)|Va|. Then (23) is true with u in place of u, i.e.

sup(u + pt —v) < K(T(|AX|+ At))1/2 + sup(u® + pt — oY),
QP Qp

which still implies (23) in the general case.

The lower bound for the error is obtained by exchanging v and v. As the proof is similar
to the above, we omit it. O

4 Approximation of the non-local eikonal equation

To solve numerically the non-local Hamilton-Jacobi equation (9), we need to approximate the
velocity ¢. We mimic the continuous setting.

For every mesh A and every T < T, we consider two subsets U2 and V2 of E2 and put
UL =UANER and VP = VAN ER. For all T < T, we assume that G®(V2) C UR and that
the set U:% is consistent with Ur in the sense that

{(u)A |ueUr} C U:,é

where (u)? is the restriction to Q% of the continuous function u. Similarly, we assume that
VTA is consistent with V7, i.e.
{(% |cevr}c Vi

We also assume that V2 is equibounded, i.e. that there is a constant K4 so that, for every
mesh A,
sup || < Ky, for all ¢ € VA2, (24)
Q7

We shall say that a mesh A satisfies the CFL condition uniformly if

Lo Lo
< — < — .
At < X A, At < X Ay (25)

Note that every mesh satisfying the uniform CFL condition satisfies the classical CFL condition
(15) for every ¢ € V2.

We approximate the nonlocal velocity mapping ¢ : U — V by a map ¢® : U — V2 so
that cA(US) C VR foral T < T.

The main assumption is the following.

Consistency for the discrete velocity ¢® There is a constant K5 such that, for every
mesh A, for every T' < T and for every u € U, we have

up [efu] = *[(u)?]] < Ks5|AX]| (26)
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We also assume that the discrete operators G2 and ¢® satisfy stability assumptions that
are similar to those satisfied by their continuous analogues.

Stability property of the operator G2 There is a constant K¢ so that, for every mesh A
satisfying the uniform CFL condition (25), for all 0 < 7' < T and all ¢, c2 € V&,

sup |GA(c2) — GA ()| < KﬁTsuf 5 — ). (27)

Q2 QT

As for the continuous case, this assumption is satisfied if the functions in Urﬁ are equi-lipschitz,
i.e. if there is a constant Kj such that every u® € U# satisfies | D u®| < K§.

Stability property of the velocity ¢ There is a constant K7 so that, for all meshes A,
for all 0 < T < T and all ulA,uzA € UTA,

sup |A[us] — A ]| < K7(suAp lus* — ud| + |AX]). (28)
QT QT

To resume, we have the following (non-commutative) diagram

l(')A X l(~)A
Vi 2% Up

To simplify the presentation, we suppose that ¢® is stationary, i.e. that there is a mapping
e to that ¢®(u®)(-,tn) = e (u”(-,tn)). By the definition of the explicit marching scheme (10),
this implies that the operator G2 : U® — U® admits a unique fixed point v, even without
making the stability assumptions. The function v € U? is the solution of the discrete eikonal
equation

W= @0(Xp),  opT = o) 4 A A ) ESE ) (Dtyn Do) (29)

where 74°(X[) is an approximation of u®(X;) (which can be chosen equal to u®(X7)).

5 Rate of convergence for the non local eikonal equation

The main result of this section is the proof that the rate of convergence for the non-local eikonal
equation (9) is the same as the one for the local eikonal equation (4).

By Theorem 1, the non-local equation (9) has a unique solution u € Up«. It is the fixed
point of the operator G o c. Moreover, the approximated equation (29) has a unique solution
v E Ujé*. It is the fixed point of G2 o ¢2.

Theorem 3 (Discrete-continuous error estimate)
Assume that T <T* A1 and supga |u® — 0 < 1.

Suppose that the data of the continuous problem U, V, G and c satisfies the assumptions
of section 1, in particular assumptions (6), (7) and (8). Suppose that the lattice A satisfies
the uniform CFL condition (25). Suppose that the data of the discrete problem U®, VA, GA
and ¢® satisfies the assumptions of sections 2 and 4, in particular assumptions (24), (26), (27)
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and (28). Let u € Up« be the unique solution of the non-local equation (9) and v € UA. be the
unique solution of the corresponding approzimated equation (29).
Then there exists a positive constant K such that, for all0 <T <T* A1,

K
sup [u —v| < ————— | VT|AX|+sup [u® — oY provided |[AX| < T/K.
The constant K only depends on the constant Kg, ... K7, Lo, L1 and ‘VUO‘LOO(RQ).
In particular, there are T** > 0 and K' depending only on K such that

sup |u —v| < K’ (w\AX\ + sup |u° —v0]> :

Q%** OA

Remark 5.1 The assumptions on the continuous problem were only needed to guarantee the
existence of a solution to (9). If instead of making these assumptions we suppose that (9)
has a solution so that clu] € Wh(R? x [0,T*)), then the conclusion of the result prevails
with a constant K that depends only on Ky, K5, Kg, K7, Lo, L1, |VUO‘L00(R2); T and
lc[ully1.00 m2x[0,7+))-  Moreover the consistency of the discrete velocity (26) only needs to be
satisfied by the solution u, as shows the the proof of the Theorem below.

Remark 5.2 [ierating Theorem 8 on several intervals of time, it is possible to get an estimate
on Q% with T > 1.

PROOF  Since u is the fixed point of G o ¢ and v is the fixed point of G2 o ¢®, we have the
inequality

suAp lu —v| = SuAp |G (c[u]) — GA(CA[UM

Q7 Q7
< sup [G(clu)) — G (eul) )|+ sup G (eul)) = G

The function G2 ((c[u])?) is simply the discrete solution associated to the eikonal equation (4)
with velocity c[u]. Since c[u] is bounded in W* uniformly in u by assumption (6), we deduce
from Theorem 2 that

Sglf |G (clu]) — GA((c[u])AN < K\/mJr S(;AI.) 0 — 0|,

provided |[AX| < T/K, for a constant K that depends only on Ky, Vu0’Loc7 Lo and L.
To estimate the second term in the inequality, we apply the stability properties (27) and
(28) and the consistency (26):

sup G ((eul)) = Gl < KaT supleful = ]
< KT sup (el = A0 + e[ - Aol

< Ko(Is + Kq)T <|AX +sup |u—vr>
o
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We conclude that

sup |u —v| < K/T|AX| + KT|AX |+ KT sup |u — v| + sup [u® —2°|.
Qf Qf Q6

This gives the required estimate since T|AX| < 1. O
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