Convergence of a first order scheme for a non local eikonal equation *

O. Alvarez, E. Carlini, R. Monneau, E. Rouy

March 22, 2005

Abstract

We prove the convergence of a first order finite difference scheme approximating a non local eikonal Hamilton-Jacobi equation. The non local character of the problem makes the scheme not monotone in general. However, by using in a convenient manner the convergence result for monotone scheme of Crandall Lions, we obtain the same bound $\sqrt{|\Delta X| + \Delta t}$ for the rate of convergence.

Introduction

The paper is concerned with the convergence of a first order finite difference scheme that approximates the solution of a non local Hamilton Jacobi equation of the form

$$u_t = c[u] |\nabla u|$$
 in $\mathbb{R}^2 \times (0, \overline{T}), \quad u(\cdot, 0) = u^0$ in $\mathbb{R}^2.$ (1)

The non-local mapping c enjoys suitable regularity assumptions and the initial condition u^0 is globally Lipschitz continuous, possibly unbounded.

A typical example of mapping c[u] we have in mind is

$$c[u] = c^0 \star [u]$$

where [u] is the characteristic function of the set $\{u \ge 0\}$, defined by

$$[u] = \begin{cases} 1 & \text{if } u \ge 0, \\ 0 & \text{if } u < 0. \end{cases}$$
(2)

Here the kernel c^0 , which depends only on the space variables, is integrable and has bounded variation and \star denotes the convolution in space. The zero level set of the solution of the resulting equation

$$\begin{cases} u_t(x, y, t) = \left(c^0 \star [u](x, y, t)\right) |\nabla u(x, y, t)| & \mathbb{R}^2 \times (0, \overline{T}) \\ u(x, y, 0) = u^0(x, y) & \mathbb{R}^2, \end{cases}$$
(3)

^{*}This work has been supported by funds from ACI JC 1041 "Mouvements d'interfaces avec termes nonlocaux", from ACI-JC 1025 "Dynamique des dislocations" and from ONERA, Office National d'Etudes et de Recherches. The second author was also supported by the ENPC-Région Ile de France.

models the evolution of a dislocation line in a 2D plane (see [AHLM1] and [AHLM2] for a physical presentation of the model for dislocation dynamics).

We approximate the non-local equation (1) by a first order finite difference scheme that uses a monotone numerical Hamiltonian for the norm of the spatial gradient, the forward Euler scheme for the time derivative and a suitable abstract discrete approximation of the nonlocal operator c. The non local character of the problem makes the scheme not monotone in general. However, by using in a convenient manner the convergence result for monotone scheme of Crandall Lions, we are able to obtain the same bound $\sqrt{|\Delta X| + \Delta t}$ for the rate of convergence provided the terminal horizon $\overline{T} > 0$ is small enough.

The present paper is fairly abstract. Its main objective is to find out general assumptions on the discrete approximation of the non-local operator c[u] that guarantee the convergence of the scheme. A companion paper to this article is [ACMR] where we apply this convergence result to the study of the dislocation dynamics equation (3).

The paper is organized as follows. The precise assumptions on the non-local velocity that guarantee the solvability of the nonlocal Hamilton-Jacobi equation (1) are given in section 1. In section 2, we recall the classical finite-difference scheme for the approximation of local eikonal equations. The extension of the scheme to non-local equations is given in section 4. Section 3 recalls the Crandall-Lions [CL1] estimate of the rate of convergence for local Hamilton-Jacobi equations. We give an updated proof of the result that tackles the non-classical assumptions we make (in particular, the non-boundedness of the initial condition). Finally, we state and prove in section 5 our main convergence result.

1 The continuous problem

We are interested in the nonlocal Hamilton-Jacobi equation

$$u_t = c[u] |\nabla u|$$
 in $\mathbb{R}^2 \times (0, \overline{T})$, $u(\cdot, 0) = u^0$ in \mathbb{R}^2 ,

where the mapping c enjoys suitable regularity assumptions to be specified in a moment and where the initial condition u^0 is (globally) Lipschitz continuous, possibly unbounded.

First, we consider the eikonal equation

$$u_t = c(x, y, t) |\nabla u| \quad \text{in } \mathbb{R}^2 \times (0, \overline{T}), \qquad u(\cdot, 0) = u^0 \quad \text{in } \mathbb{R}^2$$
(4)

to set a few notations. We assume that the velocity c is bounded and Lipschitz continuous with respect to all the variables.

The classical theory of viscosity solution ensures that (4) as a unique continuous viscosity solution with at most linear growth in space. Moreover, the solution u is Lipschitz continuous in space and time, with a Lipschitz constant that depends only on the velocity c and on u^0 . We denote by $G: W^{1,\infty}(\mathbb{R}^2 \times [0,\overline{T})) \to \operatorname{Lip}(\mathbb{R}^2 \times [0,\overline{T}))$ the operator that associates to c the solution u of (4), i.e.

$$G(c) = u. (5)$$

Here, $\operatorname{Lip}(\mathbb{R}^2 \times [0, \overline{T}))$ denotes the set of the globally Lipschitz functions in space and time, possibly unbounded.

Next, we consider two sets $U \subset \operatorname{Lip}(\mathbb{R}^2 \times [0,\overline{T}))$ and $V \subset W^{1,\infty}(\mathbb{R}^2 \times [0,\overline{T}))$. We assume that V is bounded in $W^{1,\infty}(\mathbb{R}^2 \times [0,\overline{T}))$, i.e. that there is a constant K_0 such that

$$|w|_{W^{1,\infty}(\mathbb{R}^2 \times (0,\overline{T}))} \le K_0, \quad \text{for all } w \in V.$$
(6)

For any $0 \leq T \leq \overline{T}$, we set $U_T = U \cap \operatorname{Lip}(\mathbb{R}^2 \times [0,T))$ and $V_T = V \cap W^{1,\infty}(\mathbb{R}^2 \times [0,T))$, i.e. U_T and V_T are the restrictions to [0,T) of the functions in U and V respectively. We suppose that, for all T, U_T and V_T are closed for the uniform convergence and that $G(V_T) \subset U_T$. The non local velocity we consider is a mapping $c: U \to V$ so that $c(U_T) \subset V_T$ for all $T \in [0,\overline{T})$.

We make the following stability assumptions on the operators G and c.

Stability property of the operator G on V. There is a constant K_1 so that, for all $0 \le T \le \overline{T}$ and all $c_1, c_2 \in V_T$,

$$|G(c_2) - G(c_1)|_{L^{\infty}(\mathbb{R}^2 \times (0,T))} \le K_1 T | c_2 - c_1|_{L^{\infty}(\mathbb{R}^2 \times (0,T))}$$
(7)

By the comparison principle, the stability of G is ensured if for instance all the functions in U satisfy $|\nabla u| \leq K_1$ a.e. in $\mathbb{R}^2 \times [0, \overline{T})$.

Stability property of the velocity c. There are constants K_2 and K_3 so that, for all $0 \le T \le \overline{T}$ and all $u_1, u_2 \in U_T$,

$$|c[u_2] - c[u_1]|_{L^{\infty}(\mathbb{R}^2 \times (0,T))} \le K_2 |u_2 - u_1|_{L^{\infty}(\mathbb{R}^2 \times (0,T))} \wedge K_3.$$
(8)

Here, $a \wedge b = \min(a, b)$. Note that the quantity $|u_2 - u_1|_{L^{\infty}(\mathbb{R}^2 \times (0,T))}$ may be infinite.

Theorem 1 (Existence and uniqueness of a solution for short time)

Assume that the operator $G: V \to U$ defined in (5) verifies (7) and that the mapping $c: U \to V$ satisfies (8). Then there exists $0 < T^* \leq \overline{T}$ such that the operator $G \circ c$ has a unique fixed point in U_{T^*} .

In other words, the non-local eikonal equation

$$u_t = c[u] |\nabla u|$$
 in $\mathbb{R}^2 \times (0, T^*)$, $u(\cdot, 0) = u^0$ in \mathbb{R}^2 . (9)

has a unique solution in U_{T^*} .

PROOF Fix $T^* < 1/K_1K_2$ so that $T^* \leq \overline{T}$. Endow U_{T^*} with the topology of uniform convergence, say for the distance

$$d(u_1, u_2) = |u_2 - u_1|_{L^{\infty}(\mathbb{R}^2 \times (0, T^*))} \wedge K_3.$$

Since U_{T^*} is closed under the uniform convergence, it is a complete metric space. On the other hand, the stability assumptions on G and c ensures that the operator $G \circ c : U_{T^*} \to U_{T^*}$ is a contraction for the distance d. We can thus apply the classical fixed point theorem. \Box

2 Approximation of the local eikonal equation

In this section, we briefly recall the finite difference scheme associated to the eikonal equation (4).

We first need a few notations. We approximate the underlying space $\mathbb{R}^2 \times [0,T)$ by a lattice

$$Q_T^{\Delta} = (\Delta x)\mathbb{Z} \times (\Delta y)\mathbb{Z} \times \{0, \dots, (\Delta t)N_T\}$$

where N_T is the integer part of $T/\Delta t$. We refer generically to the lattice by Δ in the sequel. The discrete running point is (X_I, t_n) with $X_I = (x_i, y_j)$ for $I = (i, j) \in \mathbb{Z}^2$, $x_i = i(\Delta x)$, $y_j = j(\Delta y)$ and $t_n = n(\Delta t)$. We set $\Delta X = (\Delta x, \Delta y)$ and we define its Euclidean norm $|\Delta X|$ as the space mesh size. We shall assume throughout that $|\Delta X| \leq 1$ and $\Delta t \leq 1$. The approximation of the solution u at the node (X_I, t_n) is written indifferently as $v(X_I, t_n)$ or v_I^n according to whether we view it as a function defined on the lattice or as a sequence.

Given a discrete velocity c^{Δ} , the discrete solution v that approximates the solution of the eikonal equation (4) is computed iteratively by the explicit scheme

$$v_I^0 = \tilde{u}^0(X_I), \qquad v_I^{n+1} = v_I^n + \Delta t \ c^{\Delta}(X_I, t_n) \ E_d^{\operatorname{sign}(c^{\Delta}(X_I, t_n))}(D^+ v^n, D^- v^n), \tag{10}$$

where $\tilde{u}^0(X_I)$ is an approximation of $u^0(X_I)$ (which can be chosen equal to $u^0(X_I)$), where E_d^{\pm} is a suitable approximation of the Euclidean norm and D^+v^n , D^-v^n are discrete gradients whose precise definition is recalled in the next paragraph. Denoting by S the operator on the right-hand side of (10) acting on discrete functions, we can write the scheme more compactly as

$$v_I^0 = \tilde{u}^0(X_I), \qquad v^{n+1} = Sv^n.$$

Defining $E_T^{\Delta} = \mathbb{R}^{\mathbb{Z}^2 \times \{0, \dots, N_T\}}$ the set of the discrete functions defined on the mesh Q_T^{Δ} and $E^{\Delta} = E_{\overline{T}}^{\Delta}$, we denote by $G^{\Delta} : E^{\Delta} \to E^{\Delta}$ the operator that gives the discrete solution v of problem (10) for a given discrete velocity $c^{\Delta} \in E^{\Delta}$, i.e.

$$G^{\Delta}(c^{\Delta}) = v. \tag{11}$$

The discrete gradients are $D^{\pm}v^n(X_I) = (D_x^{\pm}v^n(X_I), D_y^{\pm}v^n(X_I))$, where $D_x^{\pm}v^n(X_I)$ and $D_y^{\pm}v^n(X_I)$ are the standard forward and backward first order differences, i.e. for a general function $f(X_I)$:

$$D_x^+ f(X_I) = \frac{f(x_{i+1}, y_j) - f(x_i, y_j)}{\Delta x},$$

$$D_x^- f(X_I) = \frac{f(x_i, y_j) - f(x_{i-1}, y_j)}{\Delta x},$$

$$D_y^+ f(X_I) = \frac{f(x_i, y_{j+1}) - f(x_i, y_j)}{\Delta y},$$

$$D_y^- f(X_I) = \frac{f(x_i, y_j) - f(x_i, y_{j-1})}{\Delta y}.$$

We suppose that the functions E_d^{\pm} are Lipschitz continuous with respect to the discrete gradients, i.e.

$$\left| E_d^{\pm}(P,Q) - E_d^{\pm}(P',Q') \right| \le L_1 \left(|P - P'| + |Q - Q'| \right)$$
(12)

and that they are consistent with the Euclidean norm

$$E_d^{\pm}(P,P) = |P|.$$
 (13)

We also suppose that $E_d^{\pm}(p_x^+, p_y^+, p_x^-, p_y^-)$ enjoy suitable monotonicity with respect to each variable

$$\frac{\partial E_d^+}{\partial p_x^+} \ge 0, \quad \frac{\partial E_d^+}{\partial p_y^+} \ge 0, \quad \frac{\partial E_d^+}{\partial p_x^-} \le 0, \quad \frac{\partial E_d^+}{\partial p_y^-} \le 0, \quad (14)$$
$$\frac{\partial E_d^-}{\partial p_x^+} \le 0, \quad \frac{\partial E_d^-}{\partial p_y^+} \ge 0, \quad \frac{\partial E_d^-}{\partial p_x^-} \ge 0, \quad \frac{\partial E_d^-}{\partial p_y^-} \ge 0.$$

Finally, we assume that the mesh satisfies the following CFL (Courant, Friedrichs, Levy) condition

$$\Delta t \le \frac{L_0}{\|c^{\Delta}\|_{L^{\infty}}} \,\Delta x, \qquad \Delta t \le \frac{L_0}{\|c^{\Delta}\|_{L^{\infty}}} \,\Delta y \tag{15}$$

for

$$L_0^{-1} = 2 \max \left(\left| \frac{\partial E_d^{\pm}}{\partial p_x^+} \right|_{L^{\infty}} + \left| \frac{\partial E_d^{\pm}}{\partial p_x^-} \right|_{L^{\infty}}, \left| \frac{\partial E_d^{\pm}}{\partial p_y^+} \right|_{L^{\infty}} + \left| \frac{\partial E_d^{\pm}}{\partial p_y^-} \right|_{L^{\infty}} \right),$$

where we assume that the max is also taken on the signs \pm . Under these assumptions, one checks classically that the scheme S is monotone in the sense that

if
$$v \ge w$$
, then $Sv \ge Sw$.

An example of scheme, satisfying the previous assumptions, is given by the following expression:

$$\begin{cases} v_I^{n+1} = v_I^n + \Delta t \times \begin{cases} c(X_I, t_n) E_d^+ & \text{if } c(X_I, t_n) \ge 0\\ c(X_I, t_n) E_d^- & \text{if } c(X_I, t_n) < 0 \end{cases}\\ v_{i,j}^0 = u^0(x_i, y_j), \end{cases}$$

where E_d^+, E_d^- are the numerical monotone Hamiltonians proposed by Osher and Sethian in [OS]:

$$E_d^+ = \left\{ \max(D_x^+ v^n(x_I), 0)^2 + \max(D_y^+ v^n(x_I), 0)^2 + \min(D_x^- v^n(x_I), 0)^2 + \min(D_y^- v^n(x_I), 0)^2 \right\}^{\frac{1}{2}}$$
$$E_d^- = \left\{ \min(D_x^+ v^n(x_I), 0)^2 + \min(D_y^+ v^n(x_I), 0)^2 + \max(D_x^- v^n(x_I), 0)^2 + \max(D_y^- v^n(x_I), 0)^2 \right\}^{\frac{1}{2}}$$

A second example is given by choosing the numerical Hamiltonians proposed by Rouy and Tourin in [RT]:

$$E_d^+ = \left\{ \max(D_x^+ v^n(x_I), -D_x^- v^n(x_I), 0)^2 + \max(D_y^+ v^n(x_I), -D_y^- v^n(x_I), 0)^2 \right\}^{\frac{1}{2}}$$
$$E_d^- = \left\{ \min(D_x^+ v^n(x_I), -D_x^- v^n(x_I), 0)^2 + \min(D_y^+ v^n(x_I), -D_y^- v^n(x_I), 0)^2 \right\}^{\frac{1}{2}}.$$

3 The Crandall-Lions rate of convergence for the local eikonal equation

The Crandall-Lions [CL1] estimate provides a bound for the rate of convergence of finite difference schemes for solving numerically Hamilton-Jacobi equations. The scheme is of the form

$$v_I^0 = \tilde{u}^0(X_I), \qquad v_I^{n+1} = v_I^n + \Delta t \ H_d(X_I, t_n, D^+ v^n, D^- v^n).$$
(16)

where $\tilde{u}^0(X_I)$ is an approximation of $u^0(X_I)$. To simplify the presentation and to be consistent with the notations of the preceding sections, we shall limit ourselves to the eikonal equation (4) with velocity $c \in W^{1,\infty}(\mathbb{R}^2 \times [0,T))$. In this case, the discrete Hamiltonian is of the form

$$H_d(X_I, t_n, P, Q) = c(X_I, t_n) E_d^{\operatorname{sign}(c(X_I, t_n))}(P, Q).$$

We give an updated proof of the result that concentrates on (globally) Lipschitz solutions of the eikonal equation (4). One technicality is that the functions may be unbounded.

Theorem 2 (Crandall-Lions rate of convergence) Assume that $T \leq 1$ and $|\Delta X| + \Delta t \leq 1$. Assume that $c \in W^{1,\infty}(\mathbb{R}^2 \times [0,T))$ and that the discrete approximation of the Euclidean norm E_d satisfies the assumptions (12), (13), (14). Assume also that the CFL condition (15) holds.

Then there exists a constant K > 0 such that the error estimate between the solution u of the eikonal equation (4) and the discrete solution v of the finite difference scheme (16) is given by

$$\sup_{Q_{T}^{\Delta}} |u - v| \le K \left(T(|\Delta X| + \Delta t) \right)^{1/2} + \sup_{Q_{0}^{\Delta}} |u^{0} - v^{0}|, \quad if \quad |\Delta X| + \Delta t \le \frac{T}{K} \quad and \quad \sup_{Q_{0}^{\Delta}} |u^{0} - v^{0}| \le 1$$

for a constant K depending only on $|\nabla u^0|_{L^{\infty}(\mathbb{R}^2)}$, $|c|_{W^{1,\infty}(\mathbb{R}^2 \times (0,T))}$ and the constants L_0 and L_1 .

PROOF The proof splits into several steps. We denote throughout by K various constants depending only on $|\nabla u^0|_{L^{\infty}(\mathbb{R}^2)}$, $|c|_{W^{1,\infty}(\mathbb{R}^2 \times (0,T))}$ and the constants L_0 and L_1 . We first assume that

$$u^{0}(X_{I}) \ge v_{I}^{0} = \tilde{u}^{0}(X_{I})$$
 (17)

and we set

$$\mu^0 = \sup_{Q_0^{\Delta}} |u^0 - v^0| \ge 0.$$

Step 1 We have the estimate for the discrete solution $Kt_n + \mu^0 \ge u^0(X_I) - v(X_I, t_n) \ge -Kt_n$.

To show this, we note that the function $w(X_I, t_n) = u^0(X_I) - Kt_n - \mu^0$ is a discrete subsolution of (10) provided the constant K is conveniently chosen. Indeed, $w(\cdot, 0) = u^0$ and, using the Lipschitz continuity of H_d , its consistency and the Lipschitz continuity of u^0 , we get

$$w_I^{n+1} - (Sw^n)_I = -K\Delta t - \Delta t \ H_d(X_I, t_n, D^+u^0, D^-u^0)$$

$$\leq -\Delta t \left(K - L_1 |c|_{L^{\infty}} |D^+u^0| - L_1 |c|_{L^{\infty}} |D^-u^0| + H_d(X_I, t_n, 0, 0) \right) \leq 0$$

for $K = 2\sqrt{2}L_1|c|_{L^{\infty}} |\nabla u^0|_{L^{\infty}(\mathbb{R}^2)}$. By the monotonicity of the scheme, we deduce by induction that $w^n \leq v^n$ for all n. This can be rewritten as $u^0(X_I) - v(X_I, t_n) \leq Kt_n + \mu^0$.

The lower bound $u^0(X_I) + Kt_n \ge v(X_I, t_n)$ is proved similarly.

Before continuing the proof, we need a few notations. We put

$$\mu = \sup_{Q_T^{\Delta}} (u - v),$$

which quantity may be infinite a priori. Moreover, for every $0 < \alpha \leq 1$, $0 < \varepsilon \leq 1$ and $\sigma > 0$, we set

$$M^{\alpha,\varepsilon}_{\sigma} = \sup_{\mathbb{R}^2 \times [0,T] \times Q^{\Delta}_T} \psi^{\alpha,\varepsilon}_{\sigma}(X,t,X_I,t_n)$$

with

$$\psi_{\sigma}^{\alpha,\varepsilon}(X,t,X_{I},t_{n}) = u(X,t) - v(X_{I},t_{n}) - \frac{|X-X_{I}|^{2}}{2\varepsilon} - \frac{(t-t_{n})^{2}}{2\varepsilon} - \sigma t - \alpha|X|^{2} - \alpha|X_{I}|^{2}.$$

We shall drop the super and subscripts on ψ and M when no ambiguity arises as concerns the value of the parameters.

Since the solution u is Lipschitz continuous, with a Lipschitz constant that depends only on $|\nabla u^0|_{L^{\infty}}$ and $|c|_{W^{1,\infty}}$, it has a linear growth in the space variable. This growth is also true for v by virtue of step 1. Therefore, there is a constant K so that

$$|u(X,t)| \le K(1+|X|), \qquad |v(X_I,t_n)| \le K(1+|X_I|)$$

(recall that $T \leq 1$). This implies in particular that the function ψ actually achieves its maximum at some point that we denote (X^*, t^*, X_I^*, t_n^*) , i.e.

$$\psi(X^*, t^*, X_I^*, t_n^*) = \max_{\mathbb{R}^2 \times [0, T] \times Q_T^{\Delta}} \psi(X, t, X_I, t_n).$$

Step 2 The maximum point of ψ enjoys the following estimates

$$\alpha |X^*| + \alpha |X_I^*| \le K \tag{18}$$

and

$$|X^* - X_I^*| \le K\varepsilon, \qquad |t^* - t_n^*| \le (K + 2\sigma)\varepsilon.$$
⁽¹⁹⁾

To see this, we first use the inequality $\psi(X^*, t^*, X_I^*, t_n^*) \ge \psi(0, 0, 0, 0) \ge 0$ (by (17) and the linear growth of u and v. We obtain that

$$\alpha |X^*|^2 + \alpha |X_I^*|^2 \le K(1 + |X^*| + |X_I^*|) \le K + \frac{K^2}{\alpha} + \frac{\alpha}{2} |X^*|^2 + \frac{\alpha}{2} |X_I^*|^2.$$

This clearly implies (18) since $\alpha \leq 1$.

The first bound in (19) follows from the Lipschitz regularity of u and from the inequality $\psi(X^*, t^*, X_I^*, t_n^*) \ge \psi(X_I^*, t^*, X_I^*, t_n^*)$ and from (18). This indeed entails that

$$\begin{split} \frac{|X^* - X_I^*|^2}{2\varepsilon} &\leq u(X^*, t^*) - u(X_I^*, t^*) - \alpha |X^*|^2 + \alpha |X_I^*|^2 \\ &\leq K |X^* - X_I^*| + \alpha |X^* - X_I^*| (|X^*| + |X_I^*|) \\ &\leq K |X^* - X_I^*|. \end{split}$$

This gives the estimate $|X^* - X_I^*| \le K\varepsilon$.

The second bound in (19) is deduced from $\psi(X^*, t^*, X_I^*, t_n^*) \ge \psi(X^*, t_n^*, X_I^*, t_n^*)$ in exactly the same way.

Step 3 We have $\mu \leq K$.

We first claim that for σ large enough, we must have either $t^* = 0$ or $t_n^* = 0$. Suppose the contrary. Then, the function $(X, t) \mapsto \psi(X, t, X_I^*, t_n^*)$ achieves its maximum at a point in $\mathbb{R}^2 \times (0, T]$. Using the fact that u is a viscosity subsolution of (4), we get the inequality

$$\sigma + p_t^* \le c(X^*, t^*) |p_X^* + 2\alpha X^*|$$
(20)

for

$$p_t^* = \frac{t^* - t_n^*}{\varepsilon}, \qquad p_X^* = \frac{X^* - X_I^*}{\varepsilon}$$

(to handle the case $t^* = T$, we take advantage here of the well-known fact that, for the Cauchy problem, the equation holds also in the viscosity sense at the terminal time).

On the other hand, since $t_n^* > 0$, we know that $\psi(X^*, t^*, X_I^*, t_n^*) \ge \psi(X^*, t^*, \cdot, t_n^* - \Delta t)$. This reads as

$$v(\cdot, t_n^* - \Delta t) \ge \varphi(\cdot, t_n^* - \Delta t) + v(X_I^*, t_n^*) - \varphi(X_I^*, t_n^*)$$

for

$$\varphi(X_I, t_n) = -\frac{|X^* - X_I|^2}{2\varepsilon} - \frac{(t^* - t_n)^2}{2\varepsilon} - \alpha |X_I|^2.$$

Using the fact that the scheme is monotone and commutes with the addition of the constants, we get that

$$v(X_{I}^{*}, t_{n}^{*}) = \left(Sv(\cdot, t_{n}^{*} - \Delta t)\right)(X_{I}^{*}) \ge S\varphi(\cdot, t_{n}^{*} - \Delta t)(X_{I}^{*}) + v(X_{I}^{*}, t_{n}^{*}) - \varphi(X_{I}^{*}, t_{n}^{*}),$$

i.e.

$$\varphi(X_I^*, t_n^*) \ge S\varphi(\cdot, t_n^* - \Delta t)(X_I^*).$$

Expliciting the scheme S, we arrive at the supersolution inequality

$$\frac{\varphi(X_I^*, t_n^*) - \varphi(X_I^*, t_n^* - \Delta t)}{\Delta t} \ge H_d \big(X_I^*, t_n^* - \Delta t, D^+ \varphi(X_I^*, t_n^* - \Delta t), D^- \varphi(X_I^*, t_n^* - \Delta t) \big).$$

Straightforward computations of the discrete derivatives of φ yield

$$p_t^* + \frac{\Delta t}{2\varepsilon} \ge H_d \big(X_I^*, t_n^* - \Delta t, p_X^* - \frac{\Delta X}{2\varepsilon} - \alpha (2X_I^* + \Delta X), p_X^* + \frac{\Delta X}{2\varepsilon} - \alpha (2X_I^* - \Delta X) \big).$$

Subtracting the above inequality to (20), we obtain

$$\sigma \leq c(X^*, t^*)|p_X^*| + K\alpha|X^*| + \frac{\Delta t}{2\varepsilon} - H_d(X_I^*, t_n^* - \Delta t, p_X^*, p_X^*) + K\frac{|\Delta X|}{\varepsilon} + K\alpha|X_I^*| + K\alpha|\Delta X|$$

$$\leq K\frac{|\Delta X|}{\varepsilon} + \frac{\Delta t}{2\varepsilon} + K(|X^* - X_I^*| + |t^* - t_n^*| + \Delta t)|p_X^*| + K\alpha(|X_I^*| + |X^*| + |\Delta X|)$$

$$< K\frac{|\Delta X|}{\varepsilon} + \frac{\Delta t}{2\varepsilon} + K\varepsilon + K\sigma\varepsilon + K.$$
(21)

The first inequality uses the Lipschitz regularity of c; the second one the consistency of H_d and the Lipschitz regularity of c in space and time; the third one the bounds (18) and (19) and the fact that $|\Delta X|, \Delta t \leq 1$. Choosing $\overline{\varepsilon} = 1/(2K)$, we get that for all $\varepsilon \leq \overline{\varepsilon}$

$$\sigma \le K \frac{|\Delta X| + \Delta t}{\varepsilon} + K.$$

Putting

$$\sigma^*(|\Delta X| + \Delta t, \varepsilon) = K \frac{|\Delta X| + \Delta t}{\varepsilon} + K,$$

we therefore conclude that we must have $t^* = 0$ or $t_n^* = 0$ provided $\sigma \ge \sigma^*$.

Whenever $t_n^* = 0$, we deduce from the Lipschitz regularity of u and the bound (19) that

$$M = \psi(X^*, t^*, X_I^*, 0) \le u(X^*, t^*) - \tilde{u}^0(X_I^*) \le K(|X^* - X_I^*| + t^*) + \mu^0 \le K(1 + \sigma)\varepsilon + \mu^0.$$

Similarly, whenever $t^* = 0$, we deduce from step 1 and from (19) that

$$M = \psi(X^*, 0, X_I^*, t_n^*) \le u^0(X^*) - v(X_I^*, t_n^*)$$

$$\le u^0(X^*) - u^0(X_I^*) + Kt_n^* + \mu^0 \le K(|X^* - X_I^*| + t_n^*) + \mu^0 \le K(1 + \sigma)\varepsilon + \mu^0.$$

To sum up, we have shown that

$$M^{\alpha,\varepsilon}_{\sigma} \leq K(1+\sigma)\varepsilon + \mu^0$$
 provided $\sigma \geq \sigma^*(|\Delta X|,\varepsilon)$ and $\varepsilon \leq \overline{\varepsilon}$.

Specializing to the case $\varepsilon = \overline{\varepsilon}$, we deduce that, for every (X_I, t_n) , we have

$$u(X_I, t_n) - v(X_I, t_n) - \sigma^*(|\Delta X| + \Delta t, \overline{\varepsilon})T - 2\alpha |X_I|^2 \le M_{\sigma^*(|\Delta X| + \Delta t, \overline{\varepsilon})}^{\alpha, \overline{\varepsilon}} \le K \left(1 + \sigma^*(|\Delta X| + \Delta t, \overline{\varepsilon})\right)\overline{\varepsilon} + \mu^0.$$

Sending $\alpha \to 0$, taking the supremum over (X_I, t_n) and recalling that $|\Delta X| + \Delta t \leq 1, T \leq 1$, we conclude that

$$\mu \leq K \big(1 + \sigma^* (|\Delta X| + \Delta t, \overline{\varepsilon}) \big) \leq K \big(1 + \sigma^* (1, \overline{\varepsilon}) \big) + \mu^0.$$

This completes the proof of step 3.

We again allow $0 < \varepsilon \leq 1$ to be arbitrary and we now assume that $\sigma \leq 1$.

Step 4 Inequality (18) can be strengthened to

$$\alpha |X^*|^2 + \alpha |X_I^*|^2 \le K \tag{22}$$

This simply follows from the inequality $\psi(X^*, t^*, X_I^*, t_n^*) \ge \psi(0, 0, 0, 0) \ge 0$ together with step 3 and (19). We get indeed

$$\alpha |X^*|^2 + \alpha |X_I^*|^2 \le u(X^*, t^*) - v(X_I^*, t_n^*) \le K(|X^* - X_I^*| + |t^* - t_n^*|) + \mu \le \mu + K(1 + \sigma)\varepsilon \le K.$$

Step 5 We have the bound $\mu \leq K (T(|\Delta X| + \Delta t))^{1/2}$ if $|\Delta X| + \Delta t \leq \frac{T}{K}$.

We argue as in step 3, using (22) instead of (18). The only difference is that the inequality (21) becomes

$$\sigma < K \frac{|\Delta X| + \Delta t}{\varepsilon} + K\varepsilon + K\Delta t + K\alpha^{1/2}.$$

Following the reasoning of step 3, we conclude that

$$M^{\alpha,\varepsilon}_{\sigma} \leq K\varepsilon + \mu^0$$
 provided $K \frac{|\Delta X| + \Delta t}{\varepsilon} + K\varepsilon + K\Delta t + K\alpha^{1/2} \leq \sigma \leq 1.$

This implies as before that

$$u(X_I, t_n) - v(X_I, t_n) \le K\varepsilon + \mu^0 + \left(K\frac{|\Delta X| + \Delta t}{\varepsilon} + K\varepsilon + K\Delta t + K\alpha^{1/2}\right)T + 2\alpha|X_I|^2$$

provided the quantity within parentheses is ≤ 1 . Sending $\alpha \to 0$, taking the supremum over (X_I, t_n) and choosing $\varepsilon = (T(|\Delta X| + \Delta t))^{1/2}$, we conclude that

$$\sup_{Q_T^{\Delta}} (u - v) = \mu \le K \left(T(|\Delta X| + \Delta t) \right)^{1/2} + \sup_{Q_0^{\Delta}} (u^0 - v^0)$$
(23)

provided $\frac{|\Delta X| + \Delta t}{T}$, $|\Delta X|$, Δt are small enough and (17) is assumed.

In the general case, we first remark that $\overline{u} = u + \mu^1$ with $\mu^1 = \sup_{Q_0^{\Delta}} (v^0 - u^0)$ satisfies $\overline{u}^0(X_I) \ge v_I^0$ and $\overline{u}_t = c(x, y, t) |\nabla \overline{u}|$. Then (23) is true with \overline{u} in place of u, i.e.

$$\sup_{Q_T^{\Delta}} (u + \mu^1 - v) \le K \big(T(|\Delta X| + \Delta t) \big)^{1/2} + \sup_{Q_0^{\Delta}} (u^0 + \mu^1 - v^0),$$

which still implies (23) in the general case.

The lower bound for the error is obtained by exchanging u and v. As the proof is similar to the above, we omit it.

4 Approximation of the non-local eikonal equation

To solve numerically the non-local Hamilton-Jacobi equation (9), we need to approximate the velocity c. We mimic the continuous setting.

For every mesh Δ and every $T \leq \overline{T}$, we consider two subsets U^{Δ} and V^{Δ} of E^{Δ} and put $U_T^{\Delta} = U^{\Delta} \cap E_T^{\Delta}$ and $V_T^{\Delta} = V^{\Delta} \cap E_T^{\Delta}$. For all $T \leq \overline{T}$, we assume that $G^{\Delta}(V_T^{\Delta}) \subset U_T^{\Delta}$ and that the set U_T^{Δ} is consistent with U_T in the sense that

$$\{(u)^{\Delta} \mid u \in U_T\} \subset U_T^{\Delta}$$

where $(u)^{\Delta}$ is the restriction to Q_T^{Δ} of the continuous function u. Similarly, we assume that V_T^{Δ} is consistent with V_T , i.e.

$$\{(c)^{\Delta} \mid c \in V_T\} \subset V_T^{\Delta}$$

We also assume that V^{Δ} is equibounded, i.e. that there is a constant K_4 so that, for every mesh Δ ,

$$\sup_{Q_T^{\Delta}} |c^{\Delta}| \le K_4, \quad \text{for all } c^{\Delta} \in V^{\Delta}.$$
(24)

We shall say that a mesh Δ satisfies the CFL condition uniformly if

$$\Delta t \le \frac{L_0}{K_4} \,\Delta x, \qquad \Delta t \le \frac{L_0}{K_4} \,\Delta y. \tag{25}$$

Note that every mesh satisfying the uniform CFL condition satisfies the classical CFL condition (15) for every $c^{\Delta} \in V_{T}^{\Delta}$.

We approximate the nonlocal velocity mapping $c: U \to V$ by a map $c^{\Delta}: U^{\Delta} \to V^{\Delta}$ so that $c^{\Delta}(U_T^{\Delta}) \subset V_T^{\Delta}$ for all $T \leq \overline{T}$.

The main assumption is the following.

Consistency for the discrete velocity c^{Δ} There is a constant K_5 such that, for every mesh Δ , for every $T \leq \overline{T}$ and for every $u \in U$, we have

$$\sup_{Q_T^{\Delta}} |c[u] - c^{\Delta}[(u)^{\Delta}]| \le K_5 |\Delta X|$$
(26)

We also assume that the discrete operators G^{Δ} and c^{Δ} satisfy stability assumptions that are similar to those satisfied by their continuous analogues.

There is a constant K_6 so that, for every mesh Δ Stability property of the operator G^{Δ} satisfying the uniform CFL condition (25), for all $0 \leq T \leq \overline{T}$ and all $c_1^{\Delta}, c_2^{\Delta} \in V_T^{\Delta}$,

$$\sup_{Q_T^{\Delta}} |G^{\Delta}(c_2^{\Delta}) - G^{\Delta}(c_1^{\Delta})| \le K_6 T \sup_{Q_T^{\Delta}} |c_2^{\Delta} - c_1^{\Delta}|.$$
(27)

As for the continuous case, this assumption is satisfied if the functions in U_T^{Δ} are equi-lipschitz, i.e. if there is a constant K'_6 such that every $u^{\Delta} \in U_T^{\Delta}$ satisfies $|D^+u^{\Delta}| \leq K'_6$. Stability property of the velocity c^{Δ} There is a constant K_7 so that, for all meshes Δ ,

for all $0 \leq T \leq \overline{T}$ and all $u_1^{\Delta}, u_2^{\Delta} \in U_T^{\Delta}$,

$$\sup_{Q_T^{\Delta}} |c^{\Delta}[u_2^{\Delta}] - c^{\Delta}[u_1^{\Delta}]| \le K_7 \big(\sup_{Q_T^{\Delta}} |u_2^{\Delta} - u_1^{\Delta}| + |\Delta X| \big).$$

$$\tag{28}$$

To resume, we have the following (non-commutative) diagram

$$\begin{array}{lll} V_T & \rightleftarrows^G_c & U_T \\ \downarrow^{(\cdot)^{\Delta}} & & \downarrow^{(\cdot)^{\Delta}} \\ V_T^{\Delta} & \rightleftarrows^{G^{\Delta}}_{c^{\Delta}} & U_T^{\Delta} \end{array}$$

To simplify the presentation, we suppose that c^{Δ} is stationary, i.e. that there is a mapping \overline{c}^{Δ} to that $c^{\Delta}(u^{\Delta})(\cdot, t_n) = \overline{c}^{\Delta}(u^{\Delta}(\cdot, t_n))$. By the definition of the explicit marching scheme (10), this implies that the operator $G^{\Delta}: U^{\Delta} \to U^{\Delta}$ admits a unique fixed point v, even without making the stability assumptions. The function $v \in U^{\Delta}$ is the solution of the discrete eikonal equation

$$v_I^0 = \tilde{u}^0(X_I), \qquad v_I^{n+1} = v_I^n + \Delta t \ c^{\Delta}[v](X_I, t_n) \ E_d^{\operatorname{sign}(c^{\Delta}(X_I, t_n))}(D^+ v^n, D^- v^n), \tag{29}$$

where $\tilde{u}^0(X_I)$ is an approximation of $u^0(X_I)$ (which can be chosen equal to $u^0(X_I)$).

$\mathbf{5}$ Rate of convergence for the non local eikonal equation

The main result of this section is the proof that the rate of convergence for the non-local eikonal equation (9) is the same as the one for the local eikonal equation (4).

By Theorem 1, the non-local equation (9) has a unique solution $u \in U_{T^*}$. It is the fixed point of the operator $G \circ c$. Moreover, the approximated equation (29) has a unique solution $v \in U_{T^*}^{\Delta}$. It is the fixed point of $G^{\Delta} \circ c^{\Delta}$.

Theorem 3 (Discrete-continuous error estimate)

Assume that $T \leq T^* \wedge 1$ and $\sup_{Q_0^{\Delta}} |u^0 - v^0| \leq 1$.

Suppose that the data of the continuous problem U, V, G and c satisfies the assumptions of section 1, in particular assumptions (6), (7) and (8). Suppose that the lattice Δ satisfies the uniform CFL condition (25). Suppose that the data of the discrete problem U^{Δ} , V^{Δ} , G^{Δ} and c^{Δ} satisfies the assumptions of sections 2 and 4, in particular assumptions (24), (26), (27) and (28). Let $u \in U_{T^*}$ be the unique solution of the non-local equation (9) and $v \in U_{T^*}^{\Delta}$ be the unique solution of the corresponding approximated equation (29).

Then there exists a positive constant K such that, for all $0 \leq T \leq T^* \wedge 1$,

$$\sup_{Q_T^{\Delta}} |u - v| \le \frac{K}{(1 - KT)^+} \left(\sqrt{T |\Delta X|} + \sup_{Q_0^{\Delta}} |u^0 - v^0| \right) \qquad provided \ |\Delta X| \le T/K.$$

The constant K only depends on the constant $K_0, \ldots K_7, L_0, L_1$ and $|\nabla u^0|_{L^{\infty}(\mathbb{R}^2)}$.

In particular, there are $T^{**} > 0$ and K' depending only on K such that

$$\sup_{Q_{T^{**}}^{\Delta}} |u - v| \le K' \left(\sqrt{|\Delta X|} + \sup_{Q_0^{\Delta}} |u^0 - v^0| \right).$$

Remark 5.1 The assumptions on the continuous problem were only needed to guarantee the existence of a solution to (9). If instead of making these assumptions we suppose that (9) has a solution so that $c[u] \in W^{1,\infty}(\mathbb{R}^2 \times [0,T^*))$, then the conclusion of the result prevails with a constant K that depends only on K_0 , K_5 , K_6 , K_7 , L_0 , L_1 , $|\nabla u^0|_{L^{\infty}(\mathbb{R}^2)}$, T^* and $|c[u]|_{W^{1,\infty}(\mathbb{R}^2 \times [0,T^*))}$. Moreover the consistency of the discrete velocity (26) only needs to be satisfied by the solution u, as shows the the proof of the Theorem below.

Remark 5.2 Iterating Theorem 3 on several intervals of time, it is possible to get an estimate on $Q_{\overline{T}}^{\Delta}$ with $\overline{T} > 1$.

PROOF Since u is the fixed point of $G \circ c$ and v is the fixed point of $G^{\Delta} \circ c^{\Delta}$, we have the inequality

$$\begin{aligned} \sup_{Q_T^{\Delta}} |u - v| &= \sup_{Q_T^{\Delta}} |G(c[u]) - G^{\Delta}(c^{\Delta}[v])| \\ &\leq \sup_{Q_T^{\Delta}} |G(c[u]) - G^{\Delta}((c[u])^{\Delta})| + \sup_{Q_T^{\Delta}} |G^{\Delta}((c[u])^{\Delta}) - G^{\Delta}(c^{\Delta}[v])| \end{aligned}$$

The function $G^{\Delta}((c[u])^{\Delta})$ is simply the discrete solution associated to the eikonal equation (4) with velocity c[u]. Since c[u] is bounded in $W^{1,\infty}$ uniformly in u by assumption (6), we deduce from Theorem 2 that

$$\sup_{Q_T^{\Delta}} |G(c[u]) - G^{\Delta}((c[u])^{\Delta})| \le K\sqrt{T|\Delta X|} + \sup_{Q_0^{\Delta}} |u^0 - v^0|,$$

provided $|\Delta X| \leq T/K$, for a constant K that depends only on K_0 , $|\nabla u^0|_{L^{\infty}}$, L_0 and L_1 .

To estimate the second term in the inequality, we apply the stability properties (27) and (28) and the consistency (26):

$$\begin{aligned} \sup_{Q_T^{\Delta}} |G^{\Delta}((c[u])^{\Delta}) - G^{\Delta}(c^{\Delta}[v])| &\leq K_6 T \sup_{Q_T^{\Delta}} |c[u] - c^{\Delta}[v]| \\ &\leq K_6 T \sup_{Q_T^{\Delta}} \left(|c[u] - c^{\Delta}[(u)^{\Delta}]| + |c^{\Delta}[(u)^{\Delta}] - c^{\Delta}[v]| \right) \\ &\leq K_6 (K_5 + K_7) T \left(|\Delta X| + \sup_{Q_T^{\Delta}} |u - v| \right) \end{aligned}$$

We conclude that

$$\sup_{Q_T^{\Delta}} |u-v| \le K\sqrt{T|\Delta X|} + KT|\Delta X| + KT \sup_{Q_T^{\Delta}} |u-v| + \sup_{Q_0^{\Delta}} |u^0 - v^0|$$

This gives the required estimate since $T|\Delta X| \leq 1$.

References

- [ACMR] O. Alvarez, E. Carlini, R. Monneau, E. Rouy. A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics, Preprint (2005).
- [AHLM1] O. Alvarez, P. Hoch, Y. Le Bouar, R. Monneau. Existence et unicité en temps court d'une solution de viscosité discontinue d'une équation de Hamilton-Jacobi non locale décrivant la dynamique d'une dislocation., Note C.R. Acad. Sci. Paris, Ser. I 338 (2004) 679-684.
- [AHLM2] O.Alvarez, P.Hoch, Y.Le Bouar and R.Monneau, Dislocation dynamics driven by the self-force: short time existence and uniqueness of the solution, Preprint (2004).
- [B] G. Barles. Solutions de Viscosité des Equations de Hamilton-Jacobi. Springer-Verlag, Berlin, 1994.
- [CL1] G. Crandall and P.L. Lions, Two Approximations of Solutions of Hamilton-Jacobi Equations, Math. Comp, 167 (1984), pp. 1–19.
- [CL2] M. G. Crandall and P.-L. Lions. On existence and uniqueness of solutions of Hamilton-Jacobi equations. Nonlinear Anal., 10:353–370, 1986.
- [CEL] G. Crandall, L.C. Evans and P.L. Lions, Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations, Trans.Amer.Math.Soc, 282 (1984), pp. 487–502.
- [OS] S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi, J. Comput. Phys, 79 (1988), pp. 12–49.
- [RT] E.Rouy and A.Tourin, A viscosity solutions approach to shape-from-shading SIAM J. Numer. Anal., Vol.29, No.3, (1992), pp. 867–84.