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Abstract

We prove the convergence of a first order finite difference scheme approximating a non
local eikonal Hamilton-Jacobi equation. The non local character of the problem makes the
scheme not monotone in general. However, by using in a convenient manner the convergence
result for monotone scheme of Crandall Lions, we obtain the same bound

√
|∆X|+ ∆t for

the rate of convergence.

Introduction

The paper is concerned with the convergence of a first order finite difference scheme that
approximates the solution of a non local Hamilton Jacobi equation of the form

ut = c[u] |∇u| in R
2 × (0, T ), u(·, 0) = u0 in R

2. (1)

The non-local mapping c enjoys suitable regularity assumptions and the initial condition u0 is
globally Lipschitz continuous, possibly unbounded.

A typical example of mapping c[u] we have in mind is

c[u] = c0 ? [u]

where [u] is the characteristic function of the set {u ≥ 0}, defined by

[u] =

{
1 if u ≥ 0,
0 if u < 0.

(2)

Here the kernel c0, which depends only on the space variables, is integrable and has bounded
variation and ? denotes the convolution in space. The zero level set of the solution of the
resulting equation {

ut(x, y, t) =
(
c0 ? [u](x, y, t)

)
|∇u(x, y, t)| R

2 × (0, T )
u(x, y, 0) = u0(x, y) R

2,
(3)

∗This work has been supported by funds from ACI JC 1041 “Mouvements d’interfaces avec termes non-
locaux”, from ACI-JC 1025 “Dynamique des dislocations” and from ONERA, Office National d’Etudes et de
Recherches. The second author was also supported by the ENPC-Région Ile de France.
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models the evolution of a dislocation line in a 2D plane (see [AHLM1] and [AHLM2] for a
physical presentation of the model for dislocation dynamics).

We approximate the non-local equation (1) by a first order finite difference scheme that
uses a monotone numerical Hamiltonian for the norm of the spatial gradient, the forward Euler
scheme for the time derivative and a suitable abstract discrete approximation of the nonlocal
operator c. The non local character of the problem makes the scheme not monotone in general.
However, by using in a convenient manner the convergence result for monotone scheme of
Crandall Lions, we are able to obtain the same bound

√
|∆X|+ ∆t for the rate of convergence

provided the terminal horizon T > 0 is small enough.
The present paper is fairly abstract. Its main objective is to find out general assumptions

on the discrete approximation of the non-local operator c[u] that guarantee the convergence
of the scheme. A companion paper to this article is [ACMR] where we apply this convergence
result to the study of the dislocation dynamics equation (3).

The paper is organized as follows. The precise assumptions on the non-local velocity that
guarantee the solvability of the nonlocal Hamilton-Jacobi equation (1) are given in section 1. In
section 2, we recall the classical finite-difference scheme for the approximation of local eikonal
equations. The extension of the scheme to non-local equations is given in section 4. Section 3
recalls the Crandall-Lions [CL1] estimate of the rate of convergence for local Hamilton-Jacobi
equations. We give an updated proof of the result that tackles the non-classical assumptions
we make (in particular, the non-boundedness of the initial condition). Finally, we state and
prove in section 5 our main convergence result.

1 The continuous problem

We are interested in the nonlocal Hamilton-Jacobi equation

ut = c[u] |∇u| in R
2 × (0, T ), u(·, 0) = u0 in R

2,

where the mapping c enjoys suitable regularity assumptions to be specified in a moment and
where the initial condition u0 is (globally) Lipschitz continuous, possibly unbounded.

First, we consider the eikonal equation

ut = c(x, y, t)|∇u| in R
2 × (0, T ), u(·, 0) = u0 in R

2 (4)

to set a few notations. We assume that the velocity c is bounded and Lipschitz continuous
with respect to all the variables.

The classical theory of viscosity solution ensures that (4) as a unique continuous viscosity
solution with at most linear growth in space. Moreover, the solution u is Lipschitz continuous
in space and time, with a Lipschitz constant that depends only on the velocity c and on u0.
We denote by G : W 1,∞(R2 × [0, T )) → Lip(R2 × [0, T )) the operator that associates to c the
solution u of (4), i.e.

G(c) = u. (5)

Here, Lip(R2 × [0, T )) denotes the set of the globally Lipschitz functions in space and time,
possibly unbounded.

Next, we consider two sets U ⊂ Lip(R2 × [0, T )) and V ⊂ W 1,∞(R2 × [0, T )). We assume
that V is bounded in W 1,∞(R2 × [0, T )), i.e. that there is a constant K0 such that

|w|W 1,∞(R2×(0,T )) ≤ K0, for all w ∈ V . (6)
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For any 0 ≤ T ≤ T , we set UT = U ∩Lip(R2× [0, T )) and VT = V ∩W 1,∞(R2× [0, T )), i.e.
UT and VT are the restrictions to [0, T ) of the functions in U and V respectively. We suppose
that, for all T , UT and VT are closed for the uniform convergence and that G(VT ) ⊂ UT . The
non local velocity we consider is a mapping c : U → V so that c(UT ) ⊂ VT for all T ∈ [0, T ).

We make the following stability assumptions on the operators G and c.

Stability property of the operator G on V . There is a constant K1 so that, for all 0 ≤ T ≤ T
and all c1, c2 ∈ VT ,

|G(c2)−G(c1)|L∞(R2×(0,T )) ≤ K1T |c2 − c1|L∞(R2×(0,T )) (7)

By the comparison principle, the stability of G is ensured if for instance all the functions in U
satisfy |∇u| ≤ K1 a.e. in R2 × [0, T ).

Stability property of the velocity c. There are constants K2 and K3 so that, for all 0 ≤ T ≤ T
and all u1, u2 ∈ UT ,

|c[u2]− c[u1]|L∞(R2×(0,T )) ≤ K2 |u2 − u1|L∞(R2×(0,T )) ∧K3. (8)

Here, a ∧ b = min(a, b). Note that the quantity |u2 − u1|L∞(R2×(0,T )) may be infinite.

Theorem 1 (Existence and uniqueness of a solution for short time)
Assume that the operator G : V → U defined in (5) verifies (7) and that the mapping c : U → V
satisfies (8). Then there exists 0 < T ∗ ≤ T such that the operator G◦ c has a unique fixed point
in UT ∗.

In other words, the non-local eikonal equation

ut = c[u] |∇u| in R
2 × (0, T ∗), u(·, 0) = u0 in R

2. (9)

has a unique solution in UT ∗.

Proof Fix T ∗ < 1/K1K2 so that T ∗ ≤ T . Endow UT ∗ with the topology of uniform
convergence, say for the distance

d(u1, u2) = |u2 − u1|L∞(R2×(0,T ∗)) ∧K3.

Since UT ∗ is closed under the uniform convergence, it is a complete metric space. On the other
hand, the stability assumptions on G and c ensures that the operator G ◦ c : UT ∗ → UT ∗ is a
contraction for the distance d. We can thus apply the classical fixed point theorem. 2

2 Approximation of the local eikonal equation

In this section, we briefly recall the finite difference scheme associated to the eikonal equation
(4).

We first need a few notations. We approximate the underlying space R2× [0, T ) by a lattice

Q∆
T = (∆x)Z× (∆y)Z× {0, . . . , (∆t)NT }
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where NT is the integer part of T/∆t. We refer generically to the lattice by ∆ in the sequel. The
discrete running point is (XI , tn) with XI = (xi, yj) for I = (i, j) ∈ Z2, xi = i(∆x), yj = j(∆y)
and tn = n(∆t). We set ∆X = (∆x,∆y) and we define its Euclidean norm |∆X| as the space
mesh size. We shall assume throughout that |∆X| ≤ 1 and ∆t ≤ 1. The approximation of the
solution u at the node (XI , tn) is written indifferently as v(XI , tn) or vnI according to whether
we view it as a function defined on the lattice or as a sequence.

Given a discrete velocity c∆, the discrete solution v that approximates the solution of the
eikonal equation (4) is computed iteratively by the explicit scheme

v0
I = ũ0(XI), vn+1

I = vnI + ∆t c∆(XI , tn)Esign(c∆(XI ,tn))
d (D+vn, D−vn), (10)

where ũ0(XI) is an approximation of u0(XI) (which can be chosen equal to u0(XI)), where
E±d is a suitable approximation of the Euclidean norm and D+vn, D−vn are discrete gradients
whose precise definition is recalled in the next paragraph. Denoting by S the operator on the
right-hand side of (10) acting on discrete functions, we can write the scheme more compactly
as

v0
I = ũ0(XI), vn+1 = Svn.

Defining E∆
T = R

Z
2×{0,...,NT } the set of the discrete functions defined on the mesh Q∆

T and
E∆ = E∆

T
, we denote by G∆ : E∆ → E∆ the operator that gives the discrete solution v of

problem (10) for a given discrete velocity c∆ ∈ E∆, i.e.

G∆(c∆) = v. (11)

The discrete gradients are D±vn(XI) =
(
D±x v

n(XI), D±y v
n(XI)

)
, where D±x v

n(XI) and
D±y v

n(XI) are the standard forward and backward first order differences, i.e. for a general
function f(XI) :

D+
x f(XI) =

f(xi+1, yj)− f(xi, yj)
∆x

,

D−x f(XI) =
f(xi, yj)− f(xi−1, yj)

∆x
,

D+
y f(XI) =

f(xi, yj+1)− f(xi, yj)
∆y

,

D−y f(XI) =
f(xi, yj)− f(xi, yj−1)

∆y
.

We suppose that the functions E±d are Lipschitz continuous with respect to the discrete
gradients, i.e. ∣∣E±d (P,Q)− E±d (P ′, Q′)

∣∣ ≤ L1

(
|P − P ′|+ |Q−Q′|

)
(12)

and that they are consistent with the Euclidean norm

E±d (P, P ) = |P |. (13)

We also suppose that E±d (p+
x , p

+
y , p

−
x , p

−
y ) enjoy suitable monotonicity with respect to each

variable
∂E+

d

∂p+
x
≥ 0,

∂E+
d

∂p+
y
≥ 0,

∂E+
d

∂p−x
≤ 0,

∂E+
d

∂p−y
≤ 0, (14)

∂E−d
∂p+

x
≤ 0,

∂E−d
∂p+

y
≤ 0,

∂E−d
∂p−x

≥ 0,
∂E−d
∂p−y

≥ 0.
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Finally, we assume that the mesh satisfies the following CFL (Courant, Friedrichs, Levy) con-
dition

∆t ≤ L0

‖c∆‖L∞
∆x, ∆t ≤ L0

‖c∆‖L∞
∆y (15)

for

L−1
0 = 2 max

(
|
∂E±d
∂p+

x
|L∞ + |

∂E±d
∂p−x
|L∞ , |

∂E±d
∂p+

y
|L∞ + |

∂E±d
∂p−y
|L∞
)
,

where we assume that the max is also taken on the signs ±. Under these assumptions, one
checks classically that the scheme S is monotone in the sense that

if v ≥ w, then Sv ≥ Sw.

An example of scheme, satisfying the previous assumptions, is given by the following ex-
pression: v

n+1
I = vnI + ∆t×

{
c(XI , tn)E+

d if c(XI , tn) ≥ 0
c(XI , tn)E−d if c(XI , tn) < 0

v0
i,j = u0(xi, yj),

where E+
d , E

−
d are the numerical monotone Hamiltonians proposed by Osher and Sethian in

[OS]:

E+
d =

{
max(D+

x v
n(xI), 0)2 + max(D+

y v
n(xI), 0)2 + min(D−x v

n(xI), 0)2 + min(D−y v
n(xI), 0)2

} 1
2

E−d =
{

min(D+
x v

n(xI), 0)2 + min(D+
y v

n(xI), 0)2 + max(D−x v
n(xI), 0)2 + max(D−y v

n(xI), 0)2
} 1

2 .

A second example is given by choosing the numerical Hamiltonians proposed by Rouy and
Tourin in [RT]:

E+
d =

{
max(D+

x v
n(xI),−D−x vn(xI), 0)2 + max(D+

y v
n(xI),−D−y vn(xI), 0)2

} 1
2

E−d =
{

min(D+
x v

n(xI),−D−x vn(xI), 0)2 + min(D+
y v

n(xI),−D−y vn(xI), 0)2
} 1

2 .

3 The Crandall-Lions rate of convergence for the local eikonal
equation

The Crandall-Lions [CL1] estimate provides a bound for the rate of convergence of finite dif-
ference schemes for solving numerically Hamilton-Jacobi equations. The scheme is of the form

v0
I = ũ0(XI), vn+1

I = vnI + ∆t Hd(XI , tn, D
+vn, D−vn). (16)

where ũ0(XI) is an approximation of u0(XI). To simplify the presentation and to be consistent
with the notations of the preceding sections, we shall limit ourselves to the eikonal equation
(4) with velocity c ∈W 1,∞(R2 × [0, T )). In this case, the discrete Hamiltonian is of the form

Hd(XI , tn, P,Q) = c(XI , tn)Esign(c(XI ,tn))
d (P,Q).

We give an updated proof of the result that concentrates on (globally) Lipschitz solutions
of the eikonal equation (4). One technicality is that the functions may be unbounded.
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Theorem 2 (Crandall-Lions rate of convergence) Assume that T ≤ 1 and |∆X|+ ∆t ≤
1. Assume that c ∈ W 1,∞(R2 × [0, T )) and that the discrete approximation of the Euclidean
norm Ed satisfies the assumptions (12), (13), (14). Assume also that the CFL condition (15)
holds.

Then there exists a constant K > 0 such that the error estimate between the solution u of
the eikonal equation (4) and the discrete solution v of the finite difference scheme (16) is given
by

sup
Q∆
T

|u−v| ≤ K
(
T (|∆X|+∆t)

)1/2+sup
Q∆

0

|u0−v0|, if |∆X|+∆t ≤ T

K
and sup

Q∆
0

|u0−v0| ≤ 1

for a constant K depending only on
∣∣∇u0

∣∣
L∞(R2)

, |c|W 1,∞(R2×(0,T )) and the constants L0 and
L1.

Proof The proof splits into several steps. We denote throughout by K various constants
depending only on

∣∣∇u0
∣∣
L∞(R2)

, |c|W 1,∞(R2×(0,T )) and the constants L0 and L1. We first assume
that

u0(XI) ≥ v0
I = ũ0(XI) (17)

and we set
µ0 = sup

Q∆
0

|u0 − v0| ≥ 0.

Step 1 We have the estimate for the discrete solution Ktn + µ0 ≥ u0(XI) − v(XI , tn) ≥
−Ktn.

To show this, we note that the function w(XI , tn) = u0(XI) − Ktn − µ0 is a discrete
subsolution of (10) provided the constant K is conveniently chosen. Indeed, w(·, 0) = u0 and,
using the Lipschitz continuity of Hd, its consistency and the Lipschitz continuity of u0, we get

wn+1
I − (Swn)I = −K∆t−∆t Hd(XI , tn, D

+u0, D−u0)

≤ −∆t
(
K − L1|c|L∞ |D+u0| − L1|c|L∞ |D−u0|+Hd(XI , tn, 0, 0)

)
≤ 0

for K = 2
√

2L1|c|L∞ |∇u0|L∞(R2). By the monotonicity of the scheme, we deduce by induction
that wn ≤ vn for all n. This can be rewritten as u0(XI)− v(XI , tn) ≤ Ktn + µ0.

The lower bound u0(XI) +Ktn ≥ v(XI , tn) is proved similarly.

Before continuing the proof, we need a few notations. We put

µ = sup
Q∆
T

(u− v),

which quantity may be infinite a priori. Moreover, for every 0 < α ≤ 1, 0 < ε ≤ 1 and σ > 0,
we set

Mα,ε
σ = sup

R2×[0,T ]×Q∆
T

ψα,εσ (X, t,XI , tn)

with

ψα,εσ (X, t,XI , tn) = u(X, t)− v(XI , tn)− |X −XI |2

2ε
− (t− tn)2

2ε
− σt− α|X|2 − α|XI |2.

6



We shall drop the super and subscripts on ψ and M when no ambiguity arises as concerns the
value of the parameters.

Since the solution u is Lipschitz continuous, with a Lipschitz constant that depends only
on
∣∣∇u0

∣∣
L∞

and |c|W 1,∞ , it has a linear growth in the space variable. This growth is also true
for v by virtue of step 1. Therefore, there is a constant K so that

|u(X, t)| ≤ K
(
1 + |X|

)
, |v(XI , tn)| ≤ K

(
1 + |XI |

)
(recall that T ≤ 1). This implies in particular that the function ψ actually achieves its maxi-
mum at some point that we denote (X∗, t∗, X∗I , t

∗
n), i.e.

ψ(X∗, t∗, X∗I , t
∗
n) = max

R2×[0,T ]×Q∆
T

ψ(X, t,XI , tn).

Step 2 The maximum point of ψ enjoys the following estimates

α|X∗|+ α|X∗I | ≤ K (18)

and
|X∗ −X∗I | ≤ Kε, |t∗ − t∗n| ≤ (K + 2σ)ε. (19)

To see this, we first use the inequality ψ(X∗, t∗, X∗I , t
∗
n) ≥ ψ(0, 0, 0, 0) ≥ 0 (by (17) and the

linear growth of u and v. We obtain that

α|X∗|2 + α|X∗I |2 ≤ K(1 + |X∗|+ |X∗I |) ≤ K +
K2

α
+
α

2
|X∗|2 +

α

2
|X∗I |2.

This clearly implies (18) since α ≤ 1.
The first bound in (19) follows from the Lipschitz regularity of u and from the inequality

ψ(X∗, t∗, X∗I , t
∗
n) ≥ ψ(X∗I , t

∗, X∗I , t
∗
n) and from (18). This indeed entails that

|X∗ −X∗I |2

2ε
≤ u(X∗, t∗)− u(X∗I , t

∗)− α|X∗|2 + α|X∗I |2

≤ K|X∗ −X∗I |+ α|X∗ −X∗I |(|X∗|+ |X∗I |)
≤ K|X∗ −X∗I |.

This gives the estimate |X∗ −X∗I | ≤ Kε.
The second bound in (19) is deduced from ψ(X∗, t∗, X∗I , t

∗
n) ≥ ψ(X∗, t∗n, X

∗
I , t
∗
n) in exactly

the same way.

Step 3 We have µ ≤ K.

We first claim that for σ large enough, we must have either t∗ = 0 or t∗n = 0. Suppose
the contrary. Then, the function (X, t) 7→ ψ(X, t,X∗I , t

∗
n) achieves its maximum at a point in

R
2 × (0, T ]. Using the fact that u is a viscosity subsolution of (4), we get the inequality

σ + p∗t ≤ c(X∗, t∗)|p∗X + 2αX∗| (20)

for
p∗t =

t∗ − t∗n
ε

, p∗X =
X∗ −X∗I

ε
.
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(to handle the case t∗ = T , we take advantage here of the well-known fact that, for the Cauchy
problem, the equation holds also in the viscosity sense at the terminal time).

On the other hand, since t∗n > 0, we know that ψ(X∗, t∗, X∗I , t
∗
n) ≥ ψ(X∗, t∗, ·, t∗n − ∆t).

This reads as
v(·, t∗n −∆t) ≥ ϕ(·, t∗n −∆t) + v(X∗I , t

∗
n)− ϕ(X∗I , t

∗
n)

for

ϕ(XI , tn) = −|X
∗ −XI |2

2ε
− (t∗ − tn)2

2ε
− α|XI |2.

Using the fact that the scheme is monotone and commutes with the addition of the constants,
we get that

v(X∗I , t
∗
n) =

(
Sv(·, t∗n −∆t)

)
(X∗I ) ≥ Sϕ(·, t∗n −∆t)(X∗I ) + v(X∗I , t

∗
n)− ϕ(X∗I , t

∗
n),

i.e.
ϕ(X∗I , t

∗
n) ≥ Sϕ(·, t∗n −∆t)(X∗I ).

Expliciting the scheme S, we arrive at the supersolution inequality

ϕ(X∗I , t
∗
n)− ϕ(X∗I , t

∗
n −∆t)

∆t
≥ Hd

(
X∗I , t

∗
n −∆t,D+ϕ(X∗I , t

∗
n −∆t), D−ϕ(X∗I , t

∗
n −∆t)

)
.

Straightforward computations of the discrete derivatives of ϕ yield

p∗t +
∆t
2ε
≥ Hd

(
X∗I , t

∗
n −∆t, p∗X −

∆X
2ε
− α(2X∗I + ∆X), p∗X +

∆X
2ε
− α(2X∗I −∆X)

)
.

Subtracting the above inequality to (20), we obtain

σ ≤ c(X∗, t∗)|p∗X |+Kα|X∗|+ ∆t
2ε
−Hd(X∗I , t

∗
n −∆t, p∗X , p

∗
X) +K

|∆X|
ε

+Kα|X∗I |+Kα|∆X|

≤ K |∆X|
ε

+
∆t
2ε

+K(|X∗ −X∗I |+ |t∗ − t∗n|+ ∆t)|p∗X |+Kα
(
|X∗I |+ |X∗|+ |∆X|

)
< K

|∆X|
ε

+
∆t
2ε

+Kε+Kσε+K. (21)

The first inequality uses the Lipschitz regularity of c; the second one the consistency of Hd and
the Lipschitz regularity of c in space and time; the third one the bounds (18) and (19) and the
fact that |∆X|,∆t ≤ 1. Choosing ε = 1/(2K), we get that for all ε ≤ ε

σ ≤ K |∆X|+ ∆t
ε

+K.

Putting

σ∗(|∆X|+ ∆t, ε) = K
|∆X|+ ∆t

ε
+K,

we therefore conclude that we must have t∗ = 0 or t∗n = 0 provided σ ≥ σ∗.
Whenever t∗n = 0, we deduce from the Lipschitz regularity of u and the bound (19) that

M = ψ(X∗, t∗, X∗I , 0) ≤ u(X∗, t∗)− ũ0(X∗I ) ≤ K(|X∗ −X∗I |+ t∗) + µ0 ≤ K(1 + σ)ε+ µ0.
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Similarly, whenever t∗ = 0, we deduce from step 1 and from (19) that

M = ψ(X∗, 0, X∗I , t
∗
n) ≤ u0(X∗)− v(X∗I , t

∗
n)

≤ u0(X∗)− u0(X∗I ) +Kt∗n + µ0 ≤ K(|X∗ −X∗I |+ t∗n) + µ0 ≤ K(1 + σ)ε+ µ0.

To sum up, we have shown that

Mα,ε
σ ≤ K(1 + σ)ε+ µ0 provided σ ≥ σ∗(|∆X|, ε) and ε ≤ ε.

Specializing to the case ε = ε, we deduce that, for every (XI , tn), we have

u(XI , tn)−v(XI , tn)−σ∗(|∆X|+∆t, ε)T−2α|XI |2 ≤Mα,ε
σ∗(|∆X|+∆t,ε) ≤ K

(
1+σ∗(|∆X|+∆t, ε)

)
ε+µ0.

Sending α → 0, taking the supremum over (XI , tn) and recalling that |∆X|+ ∆t ≤ 1, T ≤ 1,
we conclude that

µ ≤ K
(
1 + σ∗(|∆X|+ ∆t, ε)

)
≤ K

(
1 + σ∗(1, ε)

)
+ µ0.

This completes the proof of step 3.

We again allow 0 < ε ≤ 1 to be arbitrary and we now assume that σ ≤ 1.

Step 4 Inequality (18) can be strengthened to

α|X∗|2 + α|X∗I |2 ≤ K (22)

This simply follows from the inequality ψ(X∗, t∗, X∗I , t
∗
n) ≥ ψ(0, 0, 0, 0) ≥ 0 together with

step 3 and (19). We get indeed

α|X∗|2 +α|X∗I |2 ≤ u(X∗, t∗)− v(X∗I , t
∗
n) ≤ K(|X∗−X∗I |+ |t∗− t∗n|) + µ ≤ µ+K(1 + σ)ε ≤ K.

Step 5 We have the bound µ ≤ K
(
T (|∆X|+ ∆t)

)1/2 if |∆X|+ ∆t ≤ T
K .

We argue as in step 3, using (22) instead of (18). The only difference is that the inequality
(21) becomes

σ < K
|∆X|+ ∆t

ε
+Kε+K∆t+Kα1/2.

Following the reasoning of step 3, we conclude that

Mα,ε
σ ≤ Kε+ µ0 provided K

|∆X|+ ∆t
ε

+Kε+K∆t+Kα1/2 ≤ σ ≤ 1.

This implies as before that

u(XI , tn)− v(XI , tn) ≤ Kε+ µ0 +
(
K
|∆X|+ ∆t

ε
+Kε+K∆t+Kα1/2

)
T + 2α|XI |2

provided the quantity within parentheses is ≤ 1. Sending α → 0, taking the supremum over
(XI , tn) and choosing ε =

(
T (|∆X|+ ∆t)

)1/2, we conclude that

sup
Q∆
T

(u− v) = µ ≤ K
(
T (|∆X|+ ∆t)

)1/2 + sup
Q∆

0

(u0 − v0) (23)
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provided |∆X|+∆t
T , |∆X|, ∆t are small enough and (17) is assumed.

In the general case, we first remark that u = u + µ1 with µ1 = supQ∆
0

(v0 − u0) satisfies
u0(XI) ≥ v0

I and ut = c(x, y, t)|∇u|. Then (23) is true with u in place of u, i.e.

sup
Q∆
T

(u+ µ1 − v) ≤ K
(
T (|∆X|+ ∆t)

)1/2 + sup
Q∆

0

(u0 + µ1 − v0),

which still implies (23) in the general case.

The lower bound for the error is obtained by exchanging u and v. As the proof is similar
to the above, we omit it. 2

4 Approximation of the non-local eikonal equation

To solve numerically the non-local Hamilton-Jacobi equation (9), we need to approximate the
velocity c. We mimic the continuous setting.

For every mesh ∆ and every T ≤ T , we consider two subsets U∆ and V ∆ of E∆ and put
U∆
T = U∆ ∩E∆

T and V ∆
T = V ∆ ∩E∆

T . For all T ≤ T , we assume that G∆(V ∆
T ) ⊂ U∆

T and that
the set U∆

T is consistent with UT in the sense that

{(u)∆ | u ∈ UT } ⊂ U∆
T

where (u)∆ is the restriction to Q∆
T of the continuous function u. Similarly, we assume that

V ∆
T is consistent with VT , i.e.

{(c)∆ | c ∈ VT } ⊂ V ∆
T

We also assume that V ∆ is equibounded, i.e. that there is a constant K4 so that, for every
mesh ∆,

sup
Q∆
T

|c∆| ≤ K4, for all c∆ ∈ V ∆. (24)

We shall say that a mesh ∆ satisfies the CFL condition uniformly if

∆t ≤ L0

K4
∆x, ∆t ≤ L0

K4
∆y. (25)

Note that every mesh satisfying the uniform CFL condition satisfies the classical CFL condition
(15) for every c∆ ∈ V ∆

T .
We approximate the nonlocal velocity mapping c : U → V by a map c∆ : U∆ → V ∆ so

that c∆(U∆
T ) ⊂ V ∆

T for all T ≤ T .
The main assumption is the following.
Consistency for the discrete velocity c∆ There is a constant K5 such that, for every

mesh ∆, for every T ≤ T and for every u ∈ U , we have

sup
Q∆
T

|c[u]− c∆[(u)∆]| ≤ K5|∆X| (26)
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We also assume that the discrete operators G∆ and c∆ satisfy stability assumptions that
are similar to those satisfied by their continuous analogues.

Stability property of the operator G∆ There is a constant K6 so that, for every mesh ∆
satisfying the uniform CFL condition (25), for all 0 ≤ T ≤ T and all c∆

1 , c
∆
2 ∈ V ∆

T ,

sup
Q∆
T

|G∆(c∆
2 )−G∆(c∆

1 )| ≤ K6T sup
Q∆
T

|c∆
2 − c∆

1 |. (27)

As for the continuous case, this assumption is satisfied if the functions in U∆
T are equi-lipschitz,

i.e. if there is a constant K ′6 such that every u∆ ∈ U∆
T satisfies |D+u∆| ≤ K ′6.

Stability property of the velocity c∆ There is a constant K7 so that, for all meshes ∆,
for all 0 ≤ T ≤ T and all u∆

1 , u
∆
2 ∈ U∆

T ,

sup
Q∆
T

|c∆[u∆
2 ]− c∆[u∆

1 ]| ≤ K7

(
sup
Q∆
T

|u∆
2 − u∆

1 |+ |∆X|
)
. (28)

To resume, we have the following (non-commutative) diagram

VT �G
c UT

↓(·)∆ ↓(·)∆

V ∆
T �G∆

c∆
U∆
T

To simplify the presentation, we suppose that c∆ is stationary, i.e. that there is a mapping
c∆ to that c∆(u∆)(·, tn) = c∆

(
u∆(·, tn)

)
. By the definition of the explicit marching scheme (10),

this implies that the operator G∆ : U∆ → U∆ admits a unique fixed point v, even without
making the stability assumptions. The function v ∈ U∆ is the solution of the discrete eikonal
equation

v0
I = ũ0(XI), vn+1

I = vnI + ∆t c∆[v](XI , tn)Esign(c∆(XI ,tn))
d (D+vn, D−vn), (29)

where ũ0(XI) is an approximation of u0(XI) (which can be chosen equal to u0(XI)).

5 Rate of convergence for the non local eikonal equation

The main result of this section is the proof that the rate of convergence for the non-local eikonal
equation (9) is the same as the one for the local eikonal equation (4).

By Theorem 1, the non-local equation (9) has a unique solution u ∈ UT ∗ . It is the fixed
point of the operator G ◦ c. Moreover, the approximated equation (29) has a unique solution
v ∈ U∆

T ∗ . It is the fixed point of G∆ ◦ c∆.

Theorem 3 (Discrete-continuous error estimate)
Assume that T ≤ T ∗ ∧ 1 and supQ∆

0
|u0 − v0| ≤ 1.

Suppose that the data of the continuous problem U , V , G and c satisfies the assumptions
of section 1, in particular assumptions (6), (7) and (8). Suppose that the lattice ∆ satisfies
the uniform CFL condition (25). Suppose that the data of the discrete problem U∆, V ∆, G∆

and c∆ satisfies the assumptions of sections 2 and 4, in particular assumptions (24), (26), (27)
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and (28). Let u ∈ UT ∗ be the unique solution of the non-local equation (9) and v ∈ U∆
T ∗ be the

unique solution of the corresponding approximated equation (29).
Then there exists a positive constant K such that, for all 0 ≤ T ≤ T ∗ ∧ 1,

sup
Q∆
T

|u− v| ≤ K

(1−KT )+

(√
T |∆X|+ sup

Q∆
0

|u0 − v0|

)
provided |∆X| ≤ T/K.

The constant K only depends on the constant K0, . . .K7, L0, L1 and
∣∣∇u0

∣∣
L∞(R2)

.
In particular, there are T ∗∗ > 0 and K ′ depending only on K such that

sup
Q∆
T∗∗

|u− v| ≤ K ′
(√
|∆X|+ sup

Q∆
0

|u0 − v0|

)
.

Remark 5.1 The assumptions on the continuous problem were only needed to guarantee the
existence of a solution to (9). If instead of making these assumptions we suppose that (9)
has a solution so that c[u] ∈ W 1,∞(R2 × [0, T ∗)), then the conclusion of the result prevails
with a constant K that depends only on K0, K5, K6, K7, L0, L1,

∣∣∇u0
∣∣
L∞(R2)

, T ∗ and
|c[u]|W 1,∞(R2×[0,T ∗)). Moreover the consistency of the discrete velocity (26) only needs to be
satisfied by the solution u, as shows the the proof of the Theorem below.

Remark 5.2 Iterating Theorem 3 on several intervals of time, it is possible to get an estimate
on Q∆

T
with T > 1.

Proof Since u is the fixed point of G ◦ c and v is the fixed point of G∆ ◦ c∆, we have the
inequality

sup
Q∆
T

|u− v| = sup
Q∆
T

|G(c[u])−G∆(c∆[v])|

≤ sup
Q∆
T

|G(c[u])−G∆((c[u])∆)|+ sup
Q∆
T

|G∆((c[u])∆)−G∆(c∆[v])|

The function G∆((c[u])∆) is simply the discrete solution associated to the eikonal equation (4)
with velocity c[u]. Since c[u] is bounded in W 1,∞ uniformly in u by assumption (6), we deduce
from Theorem 2 that

sup
Q∆
T

|G(c[u])−G∆((c[u])∆)| ≤ K
√
T |∆X|+ sup

Q∆
0

|u0 − v0|,

provided |∆X| ≤ T/K, for a constant K that depends only on K0,
∣∣∇u0

∣∣
L∞

, L0 and L1.
To estimate the second term in the inequality, we apply the stability properties (27) and

(28) and the consistency (26):

sup
Q∆
T

|G∆((c[u])∆)−G∆(c∆[v])| ≤ K6T sup
Q∆
T

|c[u]− c∆[v]|

≤ K6T sup
Q∆
T

(
|c[u]− c∆[(u)∆]|+ |c∆[(u)∆]− c∆[v]|

)
≤ K6(K5 +K7)T

(
|∆X|+ sup

Q∆
T

|u− v|

)
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We conclude that

sup
Q∆
T

|u− v| ≤ K
√
T |∆X|+KT |∆X|+KT sup

Q∆
T

|u− v|+ sup
Q∆

0

|u0 − v0|.

This gives the required estimate since T |∆X| ≤ 1. 2

References

[ACMR] O. Alvarez, E. Carlini, R. Monneau, E. Rouy. A convergent scheme for a non local
Hamilton Jacobi equation modelling dislocation dynamics, Preprint (2005).

[AHLM1] O. Alvarez, P. Hoch, Y. Le Bouar, R. Monneau. Existence et unicité en temps
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