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Abstract

We study a mathematical model describing dislocation dynamics in crystals. We con-
sider a single dislocation line moving in its slip plane. The normal velocity is given by the
Peach-Koehler force created by the dislocation line itself. The mathematical model is an
eikonal equation whose velocity is a non-local quantity depending on the whole shape of the
dislocation line. We study the special cases where the dislocation line is assumed to be a
graph or a closed loop. In the framework of discontinuous viscosity solutions for Hamilton-
Jacobi equations, we prove the existence and uniqueness of a solution for small time. We
also give physical explanations and a formal derivation of the mathematical model. Finally,
we present numerical results based on a level-sets formulation of the problem. These results
illustrate in particular the fact that there is no general inclusion principle for this model.
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1 Introduction

1.1 Physical motivation

Plastic deformation of crystals is mainly due to the movement of linear defects called dislo-
cations. This idea was put forward in the XX-th century, in the 30’s, by Taylor [64], Orowan
[50] and Polanyi [54] and was confirmed in 1956 by the first direct observations of dislo-
cations, based on electron microscopy, by Hirsch, Horne, Whelan [34] and Bollmann [11].
We find a description of static equilibrium of dislocations in classical Physics books already
written in the late 60’s (see for instance Cottrell [17], Read [56], Friedel [29], Nabarro [49],
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and Hirth and Lothe [35] for a recent presentation). See also Hull, Bacon [37] for a physi-
cal introduction, François, Pineau, Zaoui [28] or Lemaitre, Chaboche [44] for a mechanical
presentation and Lardner [41] for a more mathematical presentation.

The theoretical study of dislocations in crystals, together with the development of experi-
mental observations using electron microscopy have largely contributed to better understand
the plastic properties of materials. However, even if the elementary mechanisms at the ori-
gin of the deformation of monocrystals are rather well understood, many questions are still
open concerning the plastic behavior of materials containing a high density of defects. The
difficulty lies in the necessity of taking into account, in a 3D geometry, a large number of
mechanisms and interactions.

Since the beginning of the 90’s, the research field of dislocations is enjoying a new boom,
based on the increasing power of computers, partly because it is now possible to directly sim-
ulate the collective behavior of a 3D set of dislocations. In the first 3D models, dislocations
are described by the interconnection of straight dislocation segments, with only a few given
orientations (see Canova, Kubin [14], Devincre, Condat [24], Kubin et al. [40], Devincre
[23], Devincre, Kubin [25], Verdier, Fivel, Groma [65]) or with an arbitrary orientation (e.g.
Schwarz [60], Politano, Salazar [55], Shenoy, Kukta, Phillips [62] ).

Recently, a new approach, called the phase field model of dislocations has emerged, where
dislocations are described by the variation of continuous fields (see Rodney, Le Bouar and
Finel [58], Rodney, Finel [57], Xiang, Cheng, Srolovitz, E [68], Wang, Jin, Cuitino, Khachatu-
ryan [66], Khachaturyan [39], Cuitino, Koslowski, Ortiz [21], Garroni, Müller [30], Haataja,
Léonard [32]). This approach has the advantage that the possible topological changes dur-
ing the dislocation movement are automatically taken into account, and that the interaction
of dislocations with other defects or phases can be easily incorporated in the model. In
the present paper, we study the phase field model of dislocation dynamics which has been
recently proposed by Rodney, Le Bouar and Finel [58].

1.2 Setting of the problem

Dislocation lines are linear defects whose typical length in metallic alloys is of the order of
10−6m, with thickness of the order of 10−9m. The mobility of these defects is very sensitive
to the crystallographic structure of the crystal. In the face centered cubic structure (FCC is
observed in many metals and alloys), dislocations move at low temperature in well defined
crystallographic planes (the slip planes), at velocities of the order of 10ms−1. An idealization
consists in assuming that the thickness of these lines is zero, and in the case of a single line,
in assuming that this line is contained and moves in the (x1, x2) plane. More precisely, we
will study the case where the initial position of the dislocation line is represented by the
graph of a function x2 = f0(x1), see fig. 1.

For the sequel, we define the characteristic function of the subgraph of f0 for x = (x1, x2):

(1.1) ρf0(x) =





1 if x2 < f0(x1)
0 if x2 = f0(x1)

−1 if x2 > f0(x1)

The dislocation line generates an elastic field in the crystal. The normal velocity of
the dislocation line only depends on this elastic field (more precisely, it is proportional to
the resolved Peach-Koehler force calculated from the elastic field). The equation of motion
therefore consists in the coupling of an evolutionary eikonal equation with the stationary
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Figure 1: A dislocation line represented by a graph in the plane

equation that gives the elastic field.
Using the Green function of the equations of linearized elasticity, it is possible to reduce the
problem (see section 2) to only one non-local eikonal equation on the characteristic function
ρ(x, t), namely:

∂ρ

∂t
= (c0 ? ρ

+(·, t))|∇ρ|

with the initial condition

(1.2) ρ(0, ·) = ρf0

The function c0 is a kernel associated to the equations of linearized elasticity and we denote
ρ+ = max(ρ, 0). Here the convolution is done in space for x ∈ R

2. When we add some
external shear stress on the material, or if we want to take into account the inhomogeneities of
the crystal (obstacles to the movement of the dislocation like precipitates, other dislocations,
...), we need to modify the equation, and to consider

(1.3)
∂ρ

∂t
= (c0 ? ρ

+(·, t) + c1)|∇ρ|

where the function c1(x, t) describes the external field.
We refer the reader to Elliot, Schätzle, Stoth [26], and Briggs, Claisse, Elliot [12], for

similar 1D or 2D non-local equations derived from Hamilton-Jacobi/elliptic coupled systems,
for which a comparison principle holds. On the contrary there is no comparison principle
for the dislocation dynamics model that we study in the present paper. See also Soravia,
Souganidis [63] for an example of a system of equations of an interface moving with a non-
local velocity, obtained as the limit of a system of reaction-diffusion equations. Finally,
see Amadori [4] and Cont, Tankov, Voltchkova [16] for studies of continuous solutions to
monotone non-local equations with applications in finance.

1.3 Main results

In this article we prove an existence and uniqueness result for the solutions ρ for (1.3)-
(1.2). Here the functions ρ are by definition discontinuous, and a natural framework is then

3



the theory of discontinuous viscosity solutions (see for instance the monographs of Barles
[6], Bardi, Capuzzo-Dolcetta [5] for a presentation of first order equations). The theory of
viscosity solutions has been first introduced by Crandall, Lions [19]. We also refer to the
article of Barles, Soner, Souganidis [8] and to its references for a detailed presentation of the
theory of geometric equations.

1.3.1 The 2D problem for the dislocation Lipschitz graph

In general, there is no reason that the dislocation line stays a graph. This is due to the
fact that our non-local equation is not monotone (see the counter-example to the inclusion
principle given in subsection 4.4). In section 5, we give a numerical simulation where the
dislocation does not stay a graph for all times. Nevertheless we prove, under certain con-
ditions, that if the dislocation line is initially a Lipschitz graph, then its stays a Lipschitz
graph on a certain interval of time [0, T ∗) and moreover on this interval of time the solution
is unique.

To state our main result, we need for a given function g ∈ L1loc(R2), to define the quantities

||g||L1
unif

(R2) = sup
x∈R2

∫

Q(x)

|g| dy, ||g||L∞
int
(R2) =

∫

R2

‖g‖L∞(Q(x)) dx,

where Q(x) designates the unit square centered at x

Q(x) = {y ∈ R
2 | |y1 − x1| ≤ 1/2, |y2 − x2| ≤ 1/2}.

We denote respectively by L1unif(R
2) and L∞

int(R
2) the space that consists of the functions for

which this quantities are finite.
We recall that for a locally bounded function h defined on [0, T ) × R

2, the function h∗

denotes its upper semi-continuous envelope (i.e. the smallest function u.s.c. ≥ h), and the
function h∗ its lower semi-continuous envelope.

We refer to section 3 for a precise definition of a discontinuous viscosity solution. We also
refer to Definition 3.5 for the definition of discontinuous viscosity solutions to a non-local
equation; this is nothing else than the usual definition for the equation where the non-local
dependence of the Hamiltonian is frozen. We can now precisely state our first main result:

Theorem 1.1 (Short time existence and uniqueness of a graph dislocation)
Assume that

c0 ∈ L∞
int(R

2) ∩BV
(
R
2), c1 ∈W 1,∞(

R
2 × [0,+∞)), f0 ∈ W 1,∞(R).

Then, there is a time T ∗ > 0 (depending only on the bounds of c0, c1 and f0) for which the
following holds.
(Existence) There exists a function ρ in C([0, T ∗);L1unif(R

2)) which is a discontinuous
viscosity solution of the equation

(1.4)
∂ρ

∂t
=
(
c0 ? ρ

+(·, t) + c1
)
|∇ρ| in R

2 × (0, T ∗), ρ(·, 0) = ρf0 on R
2.

Moreover this function ρ(·, t) can be written as the characteristic function of the subgraph
of a function f(·, t) as in (1.1): ρ(·, t) = ρf(·,t)(·), where the function f is a solution of the
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graph equation:
(1.5)

∂f

∂t
=
(
c0 ? ρ

+
f(·,t) + c1

)(
x1, f(x1, t)

)
√

1 +

(
∂f

∂x1

)2
in R× (0, T ∗), f(·, 0) = f0 in R

(Uniqueness) If ρ1, ρ2 ∈ C([0, T ∗);L1unif(R
2)) are two bounded discontinuous viscosity

solutions of (1.4), then (ρ1)
∗ = (ρ2)

∗, (ρ1)∗ = (ρ2)∗ and, for every t ∈ [0, T ∗), ρ1(·, t) =
ρ2(·, t) a.e. in R

2.

The proof of this result relies on an application of the fixed point theorem in the frame-
work of discontinuous viscosity solutions for Hamilton-Jacobi equations. This result has
been announced in [3].

The precise expression of the anisotropic kernel c0 in the model of dislocation dynamics
can be quite complicated, as it is explained in the appendix 6. Nevertheless to fix ideas, let
us give a rough approximation of an isotropic kernel which satisfies almost all the properties
of an admissible kernel:

c0(x) =





−2 if |x| < 1

1

|x|3 if |x| ≥ 1

In particular, we have c0(−x) = c0(x) and
∫

R2 c0 = 0. As a consequence of the symmetry of
c0 and the vanishing of its integral, we deduce that

c0 ? 1Π = 0 on Γ = ∂Π

where Π is any half plane. This result physically means that the self-force of any straight
dislocation line Γ is zero, which is a well-known fact in physics. Therefore these properties
guarantee that, in the absence of external fields, i.e. c1 ≡ 0, straight dislocation lines stay
straight lines which is an expected physical property.

A more physical kernel for isotropic elasticity is the one of Peierls-Nabarro model, given
explicitly by its Fourier transform

ĉ0(ξ1, ξ2) = −
µb2

2

(
ξ22 +

1
1−ν ξ

2
1√

ξ21 + ξ22

)
e−ζ
√
ξ2
1
+ξ2

2

where µ is the shear modulus, ν the Poisson ratio, be1 the Burgers vector, and ζ the parameter
of Peierls-Nabarro which indicates the size of the core of the dislocation.

1.3.2 The 2D problem for the dislocation loop

We now consider the case of a closed dislocation loop. During its evolution the topology
of the loop may change (it could for instance split it two curves). Nevertheless, for short
time the topology is preserved, and this is in this framework that we will give an existence
and uniqueness result, analogous to Theorem 1.1. Our short time existence and uniqueness
result for the evolution of a dislocation loop works when the initial dislocation loop is C 3.
Nevertheless the statement of our result under slightly more general assumptions (that allow
the dislocation loop to be only Lipschitz) is a little bit technical. To this end, we first
introduce the following type of open set we shall work with.
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Assumption 1.2 (Lipschitz open set Ωf)
We assume that there is a constant L > 0 and a closed curve Γ ∈ C3(R/LZ;R2) such

that Γ is injective and τ(s) =
dΓ

ds
(s) satisfies |τ(s)| = 1, n(s) = τ⊥(s),

dτ

ds
(s) = K(s)n(s).

(Here, R/LZ denotes the one-dimensional torus.) We set K0 = ||K||L∞(R/LZ).
We assume also that there is a function f ∈ Lip (R/LZ;R) satisfying ||f ||L∞(R/LZ) ≤ r0

for some fixed r0 ∈ (0,
1

K0

), small enough.

Then, the map
Γf (s) = Γ(s) + f(s)n(s), s ∈ R/LZ

is injective, with
dΓf
ds

(s) 6= 0 a.e., and Γf (R/LZ) is the boundary of a bounded, connected,

simply connected Lipschitz domain. We call this domain Ωf . When f = 0, we denote this
open set by Ω0.

We define the following characteristic function of Ωf for x = (x1, x2):

(1.6) ρ̃f (x) =





1 if x ∈ Ωf

0 if x ∈ ∂Ωf

−1 if x ∈ R
2\Ωf

Our second main result is

Theorem 1.3 (Short time existence and uniqueness of the dislocation loop)
Assume that

c0 ∈ L∞
int(R

2) ∩BV
(
R
2), c1 ∈ W 1,∞(

R
2 × [0,+∞)),

and that the initial domain Ωf0 ⊂ R
2, given by Assumption 1.2, is a bounded connected and

simply connected Lipschitz open set, with f0 ∈ Lip(R/LZ;R) such that ||f0||L∞(R/LZ) ≤
r0
4
.

Then, there is a time T ∗ > 0 (depending only on bounds on c0, c1,

∣∣∣∣
∣∣∣∣
∂f0
∂s

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

and on

Ω0) for which the following holds.
(Existence) There exists a function ρ in C([0, T ∗);L1unif(R

2)) which is a discontinuous
viscosity solution of the equation

(1.7)
∂ρ

∂t
=
(
c0 ? ρ

+(·, t) + c1
)
|∇ρ| in R

2 × (0, T ∗), ρ(·, 0) = ρ̃f0(·) on R
2

Moreover this function ρ(·, t) can be written as the characteristic function of the open set
Ωf(·,t) as in (1.6): ρ(·, t) = ρ̃f(·,t)(·), where the function f is a solution of the local loop
equation:
(1.8)



∂f

∂t
=
(
c0 ? ρ̃

+
f(·,t) + c1

)(
Γf(·,t)(s), t

)
√

1 +

(
1

(1− fK)

∂f

∂s

)2
in (R/LZ)× (0, T ∗),

f(·, 0) = f0 in R/LZ

where Γ and K are given in Assumption 1.2.
(Uniqueness) If ρ1, ρ2 ∈ C([0, T ∗);L1unif(R

2)) are two bounded discontinuous viscosity
solutions of (1.7), then (ρ1)

∗ = (ρ2)
∗, (ρ1)∗ = (ρ2)∗ and, for every t ∈ [0, T ∗), ρ1(·, t) =

ρ2(·, t) a.e. in R
2.
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1.4 Contribution of this paper and the main open problem

The main achievement of this paper is to bring to the attention of the mathematical commu-
nity a non-local equation modelling dislocation dynamics, which presents new mathematical
difficulties.

In this paper, we show that this equation is well-posed in the framework of viscosity
solutions. This can be considered as a preliminary and expected result. Those short time
existence and uniqueness results could also probably be studied using classical solutions or
other frameworks. But, it turns out that the framework of viscosity solutions is powerful to
study the question of the existence (and uniqueness) of a solution for all time: this kind of
result has been proved recently in the case where the velocity is nonnegative (see Alvarez,
Cardaliaguet, Monneau [2] and Barles, Ley [7]).

In its full generality, the long time existence of a solution to this non-monotone non-local
equation is still an open problem. We can even say that this is the essential remaining
mathematical question.

Finally let us underline that one contribution of the present paper is to propose a coherent
approach to the evolution of dislocations, which includes in some sense a variety of different
physical theories describing dislocation dynamics (see section 6).

1.5 Organization of the article

In section 2, we present the physical framework and the formal derivation of the model. In
section 3, we recall the definition of discontinuous viscosity solutions, give some fundamental
results of existence, uniqueness and stability on Lipschitz solutions of Hamilton-Jacobi equa-
tions. We also give an existence and uniqueness result for Lipschitz solutions to non-local
Hamilton-Jacobi equations. Finally we state precisely the relationship between geometric
equations and graph or loop equations. In section 4, we prove theorems 1.1 and 1.3. In sec-
tion 5, we present our numerical results. We use in particular the Lax-Friedrichs scheme for
Hamilton-Jacobi equations and compute the non-local velocity using fast Fourier transform.
These results illustrate in particular the fact that there is no general inclusion principle for
this model. In the appendix (section 6), we give more information on the kernel c0.

2 Physical presentation and formal derivation of the

model

Let us consider an orthonormal basis (e1, e2, e3) of R
3. In this section we denote the coordi-

nates by x = (x1, x2, x3), and x
′ = (x1, x2).

2.1 A formulation of linear elasticity without dislocations

We define the operator of incompatibility inc as the curl of the columns of the curl of the
rows of a field e = (eij) ∈ (D′(R3))

3×3
sym of symmetric 3× 3 matrices:

(inc(e))ij =
3∑

i1,j1=1

εii1i2εjj1j2∂i1∂j1ei2j2 , i, j = 1, 2, 3
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where we denote as usual

εijk =





1 if (ijk) is a positive permutation of (123)
−1 if (ijk) is a negative permutation of (123)
0 if two indices are the same

and where ∂k stands for
∂

∂xk
, for k = 1, 2, 3. Then it is known (see for instance [41], Lemma

5 page 277) that

(2.9) inc(e) = 0 in
(
D′(R3)

)3×3
sym

if and only if there exists a displacement u = (u1, u2, u3) ∈ (D′(R3))
3
such that the strain

can be written

e = e(u) where eij(u) =
1

2
(∂iuj + ∂jui)

We now consider a linearly elastic material represented by the whole space and whose
constant elastic coefficients are given by Λ = (Λijkl) ∈ R

3×3×3×3, and satisfy the following
symmetry property

(2.10) Λijkl = Λjikl = Λijlk = Λklij, for i, j, k, l = 1, 2, 3

and the following coercivity assumption for some m > 0

(2.11)
3∑

i,j,k,l=1

Λijkleijekl ≥ m
3∑

i,j=1

(eij)
2

for all constant matrices e = (eij) ∈ R
3×3
sym, i.e. such that eij = eji for i, j = 1, 2, 3.

Then the strain e needs to satisfy the equation of linear elasticity (here with zero body
forces)

(2.12) div(Λe) = 0

where

(div(Λe))j =
3∑

i=1

∂i

(
3∑

k,l=1

Λijklekl

)

Moreover in the absence of dislocations, equation (2.9) is satisfied.

2.2 Description of the dislocation line

Let us assume that the dislocation line is represented by the boundary Γ of a smooth bounded
domain Ω0 ⊂ R

2. The plane R
2 is assumed to be the plane where the dislocation can move.

This plane is naturally imbedded in the three-dimensional material which is assumed to be
the whole space R

3 (see fig. 2).
We then identify Γ and Γ × {0}. The classical theory of dislocations asserts that the

dislocation line Γ creates a distorsion in the strain e such that the operator of incompatibility
is non-zero on the dislocation line Γ, and is given by:

(2.13) inc(e) = −inc
(
ρδ0(x3)e

0
)

where e0 =
1

2
(b⊗ n+ n⊗ b)
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Dislocation line
Slip plane

Figure 2: Example of a bounded dislocation line in a slip plane

Here δ0(x3) is the Dirac mass only in the x3 component, n = e3 is the unit vector perpendic-
ular to the plane which contains the dislocation, ρ(x) = ρ(x′) for x′ = (x1, x2) and is defined
by

ρ(x′) =

{
1 if x′ ∈ Ω0
0 if x′ ∈ R

2\Ω0
and b ∈ R

3 is a constant vector associated to the dislocation line, which is called the Burgers
vector. It is easily seen that the support of the distribution in the right hand side of (2.13)
is the dislocation line Γ. Moreover there exists a unique solution e ∈ (D ′(R3))

3×3
sym satisfying

(2.13), (2.12) and

(2.14) e(x) −→ 0, as |x| −→ +∞
Here the strain e is a physical quantity, and can not be written as the symmetric part of the
gradient of a displacement, because inc(e) 6≡ 0. If we apply an exterior stress corresponding
to a strain eext (constant or not, if we want to describe the action of body forces), the total
strain is then given by

e+ eext

The total energy (up to a constant
∫
1
2
Λ(eext)2, which may be infinite) is then formally given

by ∫
1

2
Λe2 + Λeeext

where we denote

Λe2 =
3∑

i,j,k,l=1

Λijkleijekl, Λeeext =
3∑

i,j,k,l=1

Λijkleije
ext
kl

2.3 Mollification by the core tensor

When Ω0 is bounded, it can be seen (see proposition 6.2 in the appendix) that we have

|e(x)| ≤ C

r3
for r = dist(x,Γ) large enough

But one difficulty of the classical theory of dislocations is that the elastic self-energy
∫
1
2
Λe2

has no meaning on the core of the dislocation and is infinite because the strain behaves like

e(x) ' 1

r
for r = dist(x,Γ) small enough
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The divergence of the strain near the dislocation line is of course not physical. Indeed,
near the dislocation line, the atomic positions can not be described by a small homogeneous
deformation of the reference crystal, and so the linear continuum elasticity theory is no longer
valid. In other words, the dislocation line is surrounded by a region, known as the dislocation
core, within which the linear continuum elasticity theory ceases to be a good approximation
(see the volume of Chapman et al [15] for similar descriptions of line singularities in partial
differential equations).

To overcome this difficulty within the framework of dislocations in a continuous medium,
we need to regularize the strain on the dislocation line. The simplest way to do it consists
in introducing a core tensor χ = (χijkl), which satisfies the following
Assumptions
a) χ satisfies the symmetry property (2.10).
b) χijkl ∈ M(R3) for i, j, k, l = 1, 2, 3, where M(R3) is the set of Radon measures on R

3

satisfying |χijkl| (R3) < +∞.
c) χijkl (R

3) = 1
2
(δikδjl + δjkδil).

d) χ is smooth enough.
Here assumptions b) and d) are necessary to get well defined Peach-Koehler force or

energy. Assumptions a) and c) are compatible with the symmetry properties of Λ, and c)
guarantees that the convolution of χ with a constant strain tensor is the strain tensor itself.

We now assume that the “true physical strain” eχ satisfies (2.12),(2.14) and involves a
convolution by the core tensor

inc(eχ) = −inc
(
χ ? ρδ0(x3)e

0
)

which replaces (2.13), where we define

(χ ? g)ij =
3∑

k,l=1

χijkl ? gkl

for a general tensor g.
If χ is smooth enough, this ensures that, as physically expected, the strain is finite even
on the dislocation line, which is experimentally observed. Then the physical energy is now
given by

E(Γ) =

∫

R3

1

2
Λe2χ +

∫

R3

Λeχe
ext

where the first term is finite. We will precise later (in subsection 2.6) the meaning of the
last term, in particular for constant eext.

This kind of model has been used in the physical literature: see Rodney, Le Bouar, Finel
[58] for a recent reference, and the appendix for more information on the core tensor.

2.4 First variation of the energy

We consider the case where the line Γ is constrained to move in the (x1, x2)-plane (case
without cross-slip). We denote by s the curvilinear abscissa on Γ and by Γ(s) the current
point on Γ. Let nΓ(s) be the outer unit normal vector to the open set Ω0 in the plane R

2.
Then for a given function h(s), we define the planar perturbation Γδ of Γ by

Γδ(s) = Γ(s) + δh(s)nΓ(s)
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A computation gives

− d

dδ
E(Γδ)|δ=0 =

∫

Γ

ds h(s)c(Γ(s))

where the function c is called the generalized resolved Peach-Koehler force, and will be
computed in subsection 2.6.

2.5 The dislocation dynamics

The simplest dislocation dynamics of a curve t 7−→ Γt consists to assume that the normal
velocity to the curve is proportional to the resolved Peach-Koehler force c:

(2.15)
dΓ

dt
(s) =

1

B
c(Γ(s))nΓ(s)

where B is a constant called the viscous drag coefficient (see Hirth, Lothe [35], page 208).
Physically this constant depends on the properties of the material. Nevertheless, up to
rescaling the time, we can remove B in the equation, and we will assume from now on that
B = 1 in (2.15). In particular, we have formally (if eext = eext(x) does not depend on time)

d

dt
E(Γt) = −

∫

Γ

c2

which shows that the total energy is non-increasing.

2.6 Computation of the resolved Peach-Koehler force and refor-
mulation of the dynamics

Usually, it is not very convenient to work with the strain e. Because the incompatibility
operator inc applied to e+ ρδ0(x3)e

0 is zero, we can write

e+ ρδ0(x3)e
0 = e(u)

for some displacement u. Because of (2.12), we deduce

(2.16) div(Λe(u)) = div
(
Λρδ0(x3)e

0
)

and we can look for such u satisfying moreover

(2.17) u(x) −→ 0, as |x| −→ +∞

Remark 2.1 In the physical literature, the authors usually write e−ρδ0(x3)e0 = e(u), which
is equivalent to our formulation if we change ρ in −ρ or the Burgers vector b in −b.

Computation of the self-Peach-Koehler force
We now compute the generalized resolved Peach-Koehler force c in the special case where
eext = 0. To this end we remark that, using for instance Fourier transform and the explicit
computation of the Green function for linear elasticity, it is possible to see that there exists
a forth order tensor R0 such that e(u) = (R0e

0) ? ρδ0(x3) and then we have with R =
−δ0(x)Id+R0 (for (Id)ijkl =

1
2
(δikδjl + δilδjk)):

e = R ?
(
ρδ0(x3)e

0
)
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and
eχ = R ? χ ?

(
ρδ0(x3)e

0
)

Therefore we get

d

dδ
E(Γδ)|δ=0

=

∫

R3

Λeχ(R ? χe0 ? (hδΓ))

=

∫

R3

Λ((R ? χe0) ? (ρδ0(x3)))((R ? χe0) ? (hδΓ))

=

∫

R3

[{
t(Ř ? χ̌e0) ? Λ(R ? χe0)

}
? (ρδ0(x3)))

]
(hδΓ)

=

∫

Γ

−(c0 ? ρ)h

where χ̌(x) = χ(−x), and we have used a transposition of the tensor χ. Here the last
convolution c0 ? ρ is taken on R

2, and

(2.18) c0(x
′) = C0(x

′, 0), with C0(x) = −t(Ř ? χ̌e0) ? Λ(R ? χe0)

Meaning of the energy for constant exterior forces
We now consider the case of constant eext. Then we can give the following meaning to the
second term in the energy (with eχ+χ?(ρδ0(x3)e

0) = e(uχ) for some associated displacement
uχ): ∫

R3

Λeχe
ext

=

∫

R3

Λ
(
e(uχ)− χ ? (ρδ0(x3)e

0)
)
eext

= −
∫

R3

Λ
(
χ ? (ρδ0(x3)e

0)
)
eext

= −
∫

R3

(
χ̌ ? Λeext

)
(ρδ0(x3)e

0)

= −
∫

R3

Λeext(ρδ0(x3)e
0)

= −
(∫

R2

ρ

)
Λe0eext

where we have used an integration by parts on e(uχ) and the assumptions on the core tensor
χ.
The additional force due to the exterior field
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For general (possibly non-constant) eext, and for a given δ we consider the strain eχ =
eχ[Γδ] created by the dislocation line Γδ. Then we have

d

dδ

{∫

R3

Λeexteχ

}

|δ=0

=

∫

R3

Λeext(R ? χe0 ? (hδΓ))

=

∫

Γ

−c1h

with
c1 =

t(Ř ? χ̌e0) ? Λeext

In particular when eext is constant we get c1 = Λe0eext which is a constant force.
The full dynamics

In the general case we have both the self-force and the additional force due to the exterior
field. This means that the total resolved force is given by

c = c0 ? ρ+ c1

Finally, we see that equation (2.15) with B = 1 means that ρ formally satisfies the following
equation

(2.19)
∂ρ

∂t
= (c0 ? ρ+ c1)|∇ρ|

This ends the formal derivation of (2.19), which is the model that we study in this paper.

3 Viscosity solutions of non-local Hamilton-Jacobi e-

quations

3.1 Discontinuous viscosity solutions

We recall in this section a few classical results from the theory of viscosity solutions for the
Hamilton-Jacobi equation

(HJ)
∂u

∂t
= H(x, t,∇u) in R

N × (0, T ), u(·, 0) = u0 on R
N

for a possibly infinite horizon T and for a continuous Hamiltonian H. It is well known that
the equation has a unique continuous viscosity solution with an appropriate behavior at
infinity under mild assumptions on the Hamiltonian and the initial data u0.

Let us introduce the functional spaces we shall work with. For T < +∞, we denote
by C(RN × [0, T ]) the set of continuous functions, Cb(R

N × [0, T ]) the subset of continuous
bounded functions. We denote by W 1,∞(RN × [0, T ]) the set of the functions that are
Lipschitz continuous and bounded in (x, t).
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We shall also work with functions that are defined on [0, T ) for T possibly infinite. Such
a function will belong to a certain functional space if its restriction to [0, S] for all S < T is
in the functional space defined above. As an example, we shall write

W 1,∞(RN × [0, T )) =
⋃

S<T

W 1,∞(RN × [0, S])

with a straightforward abuse in the notation, which, we hope, will raise no confusion.
For geometric equations, it is most convenient to work with discontinuous viscosity so-

lutions. This corresponds to the case where the initial condition may be discontinuous. We
briefly recall the definition. Given a locally bounded function u defined on R

N × [0, T ), the
function u∗ designates its upper-semicontinuous envelope (i.e. the smallest u.s.c. function
≥ u) and the function u∗ its lower-semicontinuous envelope.

Definition 3.1 (Discontinuous viscosity solution)
Assume that H ∈ C(RN × [0, T )× R

N) and that the initial data u0 is locally bounded.

– A locally bounded function u : R
N × [0, T )→ R is a viscosity subsolution of (HJ) if it

satisfies the following.

– Initial condition. u∗(·, 0) ≤ u∗0

– Equation in (0, T ). For every point (x, t) ∈ R
N×(0, T ) and every test function

φ ∈ C1(RN × (0, T )) that is tangent from above to u∗ at (x, t) (i.e. satisfying
u∗ ≤ φ in R

N × (0, T ) and u∗(x, t) = φ(x, t)), we have

∂φ

∂t
(x, t) ≤ H

(
x, t,∇φ(x, t)

)
.

– A locally bounded function u : R
N × [0, T )→ R is a viscosity supersolution of (HJ) if

it satisfies the following.

– Initial condition. u∗(·, 0) ≥ (u0)∗

– Equation in (0, T ). For every point (x, t) ∈ R
N×(0, T ) and every test function

φ ∈ C1(RN × (0, T )) that is tangent from below to u∗ at (x, t), we have

∂φ

∂t
(x, t) ≥ H

(
x, t,∇φ(x, t)

)
.

– A locally bounded function u : R
N × [0, T )→ R is a discontinuous viscosity solution if

its u.s.c. envelope u∗ is a subsolution and its l.s.c. envelope u∗ is a supersolution.

Remark 3.2 See for instance Giga [31] for a different and new notion of viscosity solution
with shocks.

3.2 Solvability of local Hamilton-Jacobi equations

For further reference, we gather in the next proposition the main properties of viscosity
solutions for the Hamilton-Jacobi equation (HJ). The result is quite classical and we refer
to the standard works for most proofs and for a detailed presentation of the theory (see
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the review paper by Crandall, Ishii, Lions [18] and the books by Barles [6] and by Bardi,
Capuzzo-Dolcetta [5]).

We shall make assumptions on the Hamiltonian that are well adapted to our dislocation
model. They are not the most general and could be improved. An important assumption is
the continuity of the Hamiltonian with respect to all the variables, in particular time. Some
special attention will be needed later to check that all the Hamiltonians we consider enjoy
this property.

A delicate issue for discontinuous viscosity solutions of Hamilton-Jacobi equation is the
question of uniqueness. When the initial data is discontinuous, the natural notion of unique-
ness is that any two discontinuous solutions must have the same semicontinuous envelopes
because the definition of viscosity solutions only view these envelopes. But, as is well-known,
uniqueness in this sense may be untrue for non-stationary Hamilton-Jacobi equations (see
Barles, Soner, Souganidis [8]). This issue will be discussed in a more detailed manner later
in the context of geometric equations. Nonetheless, when the initial data is continuous and
the Hamiltonian enjoys certain smoothness properties, there is a unique (discontinuous) vis-
cosity solution and it is continuous. When the initial data is Lipschitz continuous, then so is
the solution. We shall need later a sharp estimate of ‖u(·, t)‖W 1,∞(RN ) with respect to time.
The one we propose seems to be new.

Proposition 3.3 (Viscosity solution: existence, uniqueness and regularity)
Consider a Hamiltonian H ∈ C(RN × [0, T )× R

N) with the following properties.

– Local boundedness. There is a constant C1 such that |H(x, t, 0)| ≤ C1 for all (x, t).

– Local Lipschitz regularity in space. There are nonnegative functions C2, C3 ∈
L∞

loc([0, T )) so that

(3.20) |H(x, t, p)−H(y, t, p)| ≤ C2(t)|p| |x− y|+ C3(t)|x− y|

for all (x, y, t, p).

– Lipschitz regularity in the gradient. There is a constant C4 such that |H(x, t, p) −
H(x, t, q)| ≤ C4|p− q| for all (x, t, p, q).

Then, the following holds.

– Comparison principle. Let u and v are respectively a discontinuous viscosity subsolu-
tion and a discontinuous viscosity supersolution of the equation

∂u

∂t
= H(x, t,∇u) in R

N × (0, T ).

Assume that u is bounded from above, that v is bounded from below and that u∗(·, 0) ≤
v∗(·, 0). Then, u ≤ v in R

N × [0, T ).

– Existence. If u0 is bounded, then there is a discontinuous bounded viscosity solution
of (HJ).

– Lipschitz regularity. If u0 ∈ W 1,∞(RN), then there is a unique viscosity solution of
(HJ). It is in W 1,∞(RN × [0, T )) and we have the estimates

(3.21) ‖u(·, t)‖L∞(RN ) ≤ L(t), ‖∇u(·, t)‖L∞(RN ) ≤M(t),
∥∥∂u
∂t

(·, t)
∥∥
L∞(RN )

≤ P (t)
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where
L(t) = ‖u0‖L∞(RN ) + C1t, P (t) = C1 + C4M(t)

and where M is the solution of the differential equation

(3.22) M ′(t) = C∗
2M + C∗

3 in (0, T ), M(0) = ‖∇u0‖L∞(RN ).

where C∗
2 and C∗

3 are the upper-semicontinuous envelope of C2 and C3.

Proof of proposition 3.3 The comparison principle and the construction of a dis-
continuous solution by Perron’s method is classical in the theory of viscosity solutions (see
for instance the books Barles [6] or Bardi, Capuzzo-Dolcetta [5]). It follows that when
u0 ∈ W 1,∞(RN), (HJ) has a unique bounded viscosity solution and that it is continuous.
The bound for ‖u(·, t)‖L∞(RN ) follows classically from the comparison principle and from the
observation that L and −L are respectively a supersolution and a subsolution of the equation
(HJ). The fact that one can control the modulus of continuity of the solution by a solution
of a differential equation was established by Crandall Lions [20] and Ishii [38]. As the ODE
we need differs from theirs, we briefly explain how to adapt their argument.

We want to estimate the bound on ‖∇u(·, t)‖L∞(RN ) (see Ley [46] for an interesting
estimate from below on the gradient, when the Hamiltonian is convex in the gradient). We
first assume that the functions C2 and C3 in (3.20) are continuous. The function w(x, y, t) =
u(x, t)− u(y, t) is a viscosity subsolution of the equation

(3.23)
∂w

∂t
= H(x, t,∇xw)−H(y, t,−∇yw)

with initial data w0(x, y) = u0(x) − u0(y). The claim is obvious if u is C1 and we refer to
Crandall Lions [20] when u is a continuous viscosity solution.

For ε > 0, we consider the C1 function

φε(x, y, t) = M(t)(|x− y|2 + ε2)1/2.

We claim that φε is a supersolution of the equation (3.23) with initial condition w0. The
validity of the initial condition follows at once from the definition of M0 as the Lipschitz
constant of u0. To check the equation, we note that ∇xφ

ε = −∇yφ
ε. Therefore, using

assumption (3.20) and the differential equation (3.22) solved by M , we compute for every
t > 0

∂φε

∂t
−H(x, t,∇xφ

ε) +H(y, t,−∇yφ
ε)

≥ ∂φε

∂t
− C2(t)|∇xφ

ε| |x− y| − C3(t)|x− y|

= M ′(t)(|x− y|2 + ε2)1/2 − C2(t)
|x− y|2

(|x− y|2 + ε2)1/2
− C3(t)|x− y|

≥ (|x− y|2 + ε2)1/2
(
M ′(t)− C2(t)M(t)− C3(t)

)

≥ 0.

This means that φε is a supersolution. As φε is bounded from below and w is bounded,
we deduce from the comparison principle for (3.23) that w ≤ φε. Sending ε → 0, we
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obtain that u(x, t) − u(y, t) ≤ M(t)|x − y| for all t, x and y. Exchanging x and y yields
|u(x, t)− u(y, t)| ≤M(t)|x− y|. Consequently,

‖∇u(·, t)‖L∞(RN ) = sup
x6=y

|u(x, t)− u(y, t)|
|x− y| ≤M(t)

for every t ≥ 0.
When the functions C2 and C3 are upper-semicontinuous, they can be approximated

by a non-increasing sequence of continuous functions Ck
2 and Ck

3 . Applying the dominated
convergence theorem to the explicit formula for P k and Mk, we see that the sequences
converge pointwise to the functions P and M of the proposition (where M is the unique
Lipschitz continuous function that solves (3.22) a.e.). Therefore, the a priori estimates still
holds when the functions C2 and C3 are upper-semicontinuous. This implies of course that,
when the functions are locally bounded, the estimates are true provided the functions are
replaced by their upper-semicontinuous envelopes.

The equation yields the bound

|∂u
∂t
| = |H(x, t,∇u)| ≤ |H(x, t, 0)|+ C4|∇u(·, t)| ≤ C1 + C4M(t) = P (t)

in the viscosity sense. As it is well-known, this implies that u is Lipschitz continuous in time
with Lipschitz constant equal to P (t). ¤

Proposition 3.4 (Stability with respect to the Hamiltonian)
Let two Hamiltonian H i, i = 1, 2 satisfy the assumptions of Proposition 3.3 with the same
constants. Let u0 ∈W 1,∞(RN). Let ui be the solution of (HJ) with H i instead of H. Then,
for all t ∈ [0, T ), we have the uniform bound

‖u1(·, t)− u2(·, t)‖L∞(RN ) ≤ sup
RN×[0,t]×RN

∣∣H
1(x, s, p)−H2(x, s, p)

1 + |p|
∣∣
∫ t

0

(
1 +M(s)

)
ds,

where M is the solution of the differential equation (3.22).

Proof of proposition 3.4 The solution u1 of (HJ) with Hamiltonian H1 satisfies the
equation with H2 up to the quantity

∣∣∣∂u
1

∂t
−H2(x, s,∇u1)

∣∣∣ ≤
∣∣∣H1(x, s,∇u1)−H2(x, s,∇u1)

∣∣∣

≤ sup
RN×[0,t]×RN

∣∣H
1(x, s, p)−H2(x, s, p)

1 + |p|
∣∣ (1 +M(s)

)
.

It is a routine exercise to check that the differential inequality actually holds in the viscosity
sense.

But, the quantity evaluated for u2 is 0. Therefore, one deduces from the comparison
principle that

‖u1(·, t)− u2(·, t)‖L∞(RN ) ≤ sup
RN×[0,t]×RN

∣∣H
1(x, s, p)−H2(x, s, p)

1 + |p|
∣∣
∫ t

0

(
1 +M(s)

)
ds.

This is the estimate we want. ¤
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3.3 Small time solvability of non-local Hamilton-Jacobi equations

In this section we study the short time solvability of the non-local Hamilton-Jacobi equation

(3.24)
∂u

∂t
= H([u], x, t,∇u) in R

N × (0, T ), u(·, 0) = u0 on R
N

with initial condition u0 ∈ W 1,∞(RN). In the equation, the notation [u] or [u(·, t)] refers to
the function u(·, t) to distinguish it with its value at the current point (x, t). The solution is
required to be Lipschitz continuous in space so that the Hamiltonian only acts on Lipschitz
functions.

Under our assumptions, we shall check that, for every Lipschitz function u ∈ W 1,∞(RN×
[0, T )), the Hamiltonian

(3.25) Hu(x, t, p) = H([u(·, t)], x, t, p)

is continuous with respect to all the variables.
More generally we can introduce the following definition of viscosity solutions to non-local

equations, which is not restricted to Lipschitz solutions, but is given in general for possibly
discontinuous solutions:

Definition 3.5 (Discontinuous viscosity solutions to non-local equations)
We shall say that a locally bounded function u : R

N × [0, T ) → R is a viscosity solution of
(3.24) if it is a viscosity solution (in the sense of Definition 3.1) of equation (HJ) for the
Hamiltonian Hu defined in (3.25), when Hu(x, t, p) is continuous in (x, t, p).

Remark 3.6 Let us remark that when the Hamiltonian has a local dependence in u, i.e.
for H(u, x, t, p), we can in particular set H([u], x, t, p) = H(u, x, t, p), and consider this
Hamiltonian as having a non-local dependence in u. When moreover the considered solutions
u are continuous, Definition 3.5 gives a sense to solutions u of local equations of the type:

∂u

∂t
= H(u, x, t,∇u) in R

N × (0, T ), u(·, 0) = u0 on R
N

Here, we do not assume that H is monotone with respect to the non-local term [u].
Therefore, the comparison principle is not expected. An elementary example is the equation

ut = ‖u(·, t)‖L∞(RN ) ∧ 1

For the initial condition u0 = 0, the solution is u = 0, while for v0(x) = sinx−1, the solution
is v(x, t) = sinx − 1 + t. Though u0 ≥ v0, the solutions are not comparable for 0 < t < 2
and we have u(·, t) ≤ v(·, t) for t ≥ 2. A geometric example in the context of our dislocation
model will be given at the end of the next section. The non validity of the comparison
principle renders delicate the question of defining for large time a notion of weak solution to
(3.24).

Theorem 3.7 (Short time solvability of non-local Hamilton-Jacobi equations)
Consider a non-local Hamiltonian H : W 1,∞(RN)×R

N × [0, T )×R
N → R with the following

properties.
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– For every fixed h ∈ W 1,∞(RN), the Hamiltonian H([h], ·, ·, ·) satisfies the assumptions
of Proposition 3.3. Moreover, there are constants K1 and K2 that are independent of
h such that ∣∣H([h], x, t, 0)

∣∣ ≤ K1,

(3.26)
∣∣H([h], x, t, p)−H([h], y, t, p)

∣∣ ≤ K2

(
1 + |p|

)(
1 + ‖∇h‖L∞(RN )

)
|x− y|

∣∣H([h], x, t, p)−H([h], x, t, q)
∣∣ ≤ K3|p− q|.

– There is a constant K4 such that

(3.27)
∣∣H([h1], x, t, p)−H([h2], x, t, p)

∣∣ ≤ K4

(
1 + |p|

)
‖h1 − h2‖L∞(RN )

Then, for every u0 ∈ W 1,∞(RN), there is a time T ∗ > 0 (depending only on K2 and
‖∇u0‖L∞(RN )) so that the non-local Hamilton-Jacobi equation

(NL-HJ)
∂u

∂t
= H([u(·, t)], x, t,∇u) in R

N × (0, T ∗ ∧ T ), u(·, 0) = u0 on R
N .

has a unique viscosity solution u ∈W 1,∞(RN × [0, T ∗ ∧ T )).
Moreover this solution satisfies

(3.28)

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, t)

∣∣∣∣
∣∣∣∣
L∞(RN )

≤ K1 +
K3

K2

1

(T ∗ − t)

with T ∗ =
1

K2

(
1 + ||∇u0||L∞(RN )

) .

A similar result was proved by N. Alibaud [1]. Within our framework, the main difference
is the assumption that estimate (3.26) is uniform in h. The strengthening of the assump-
tion permits to construct a solution for all time to the non-local Hamilton-Jacobi equation
(NL-HJ). But, of course, this excludes graph-like equations.

Proof of theorem 3.7 Put

M0 = ‖∇u0‖L∞(RN ).

The solution N of the differential equation

N ′ = K2(1 +N)2

with initial condition M0 blows up at time

T ∗ =
1

K2(1 +M0)
.

To prove the theorem, we shall apply the fixed point theorem for contraction mappings to a
set of functions that are Lipschitz continuous up to a certain time S < T ∗ ∧ T .

We choose 0 < S < T ∗ ∧ T so that

K4

∫ S

0

(
1 +N(t)

)
dt ≤ 1

2
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and we consider the space

E =
{
u ∈ W 1,∞(R× [0, S]) | ‖u(·, t)‖L∞ ≤ L(t), ‖∇u(·, t)‖L∞ ≤ N(t),

∥∥∂u
∂t

(·, t)
∥∥
L∞
≤ P (t) on [0, S]

}

where
L(t) = ‖u0‖L∞(RN ) +K1t, P (t) = K1 +K3N(t).

It is a nonempty complete metric space for the uniform convergence. Given u ∈ E, we
denote by v = Φ(u) the solution of the equation

(3.29)
∂v

∂t
= H([u], x, t,∇v) in R

N × (0, S), u(·, 0) = u0 on R
N .

We claim that Φ : E → E is well-defined and is a contraction mapping.
For u ∈ E fixed, we first note that the Hamiltonian H([u(·, t)], ·, ·, ·) fulfils the conditions

of Proposition 3.3. Indeed, its regularity with respect to x and p is guaranteed by assumption.
Its continuity in time follows from the estimate

|H([u(·, t)], x, t, p)−H([u(·, s)], x, s, p)|
≤ |H([u(·, t)], x, t, p)−H([u(·, t)], x, s, p)|+K4

(
1 + |p|

)
‖u(·, t)− u(·, s)‖L∞(RN )

≤ |H([u(·, t)], x, t, p)−H([u(·, t)], x, s, p)|+K4

(
1 + |p|

)
P
(
max(t, s)

)
|t− s|

and from the continuity of s 7→ H([u(·, t)], x, s, p) for t fixed. Therefore, by Proposi-
tion 3.3, equation (3.29) has a unique viscosity solution v. Moreover, using assumption
(3.26), we know that v is Lipschitz continuous in x with the bounds ‖v(·, t)‖L∞(RN ) ≤ L(t)
and ‖∇v(·, t)‖L∞(RN ) ≤M(t) for the a.e. solution M of the differential equation

M ′(t) = K2

(
1 + ‖∇u(·, t)‖∗L∞(RN )

) (
1 +M(t)

)

with initial conditionM0. But, since u ∈ E, we get that ‖∇u(·, t)‖L∞(RN ) ≤ N(t). Taking the
u.s.c. envelope, we obtain ‖∇u(·, t)‖∗L∞(RN ) ≤ N(t). We deduce that M ′ ≤ K2(1 +M)(1 +

N) = N ′1 +M

1 +N
. As M(0) = N(0) = M0, we conclude upon integrating the differential

inequality that
M ≤ N in [0, T ∗ ∧ T ).

Therefore, ‖∇v(·, t)‖L∞ ≤ N(t) in [0, T ∗ ∧ T ). Using Proposition 3.3 again, we also get that

(3.30)
∥∥∂v
∂t

(·, t)
∥∥
L∞
≤ K1 +K3M(t) ≤ K1 +K3N(t) = P (t).

This implies that v ∈ E. Therefore, the mapping Φ : E → E is well defined.
We now show that Φ is a contraction mapping. Let u1, u2 ∈ E and put vi = Φ(ui). Using

the assumption (3.27) and the stability result (proposition 3.4), we deduce that

‖v1 − v2‖L∞(RN×[0,S]) ≤ sup
RN×[0,S]×RN

∣∣H([u1], x, t, p)−H([u2], x, t, p)

1 + |p|
∣∣
∫ S

0

(
1 +N(t)

)
dt

≤ K4‖u1 − u2‖L∞(RN×[0,S])

∫ S

0

(
1 +N(t)

)
dt.
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By the choice of S, this reads as

‖Φ(u1)− Φ(u2)‖L∞(RN×[0,S]) ≤
1

2
‖u1 − u2‖L∞(RN×[0,S]).

Hence, Φ is a contraction mapping for the uniform norm.
The fixed point theorem guarantees that the equation (3.24) in (0, S) has a unique

bounded Lipschitz continuous solution in E. We can observe that this implies that the
equation has a unique Lipschitz continuous solution without prescribing a priori bounds
for the function and its derivatives. Indeed, any Lipschitz continuous viscosity solution
u of (3.24) belongs to E. To see this, we know by Proposition 3.3 and (3.26) that
‖∇u(·, t)‖L∞(RN ) ≤M(t) where M solves

M ′(t) = K2

(
1 + ‖∇u(·, t)‖∗L∞(RN )

) (
1 +M(t)

)

with the initial condition M(0) = M0. Therefore,

M ′(t) ≤ K2

(
1 +M(t)

)2
.

Since N solves the equation with initial condition M0, we must have M ≤ N on [0, S]. The
bounds for ‖u(·, t)‖L∞ and

∥∥∂u
∂t
(·, t)

∥∥
L∞

are obtained in an elementary manner. Therefore,
u ∈ E.

It remains to show the solvability of (3.24) up to time T ∗ ∧ T . We put

S = sup{0 ≤ S ′ < T ∗ ∧ T | (3.24) has a unique solution u in (0, S ′)}

for u ∈W 1,∞(R× [0, S ′]). If we had S < T ∗ ∧ T , then we could find η > 0 so that 0 < S − η
and S + η ≤ T ∗ ∧ T with

K4

∫ S+η

S−η

(
1 +N(t)

)
dt ≤ 1

2

as well as S ′ ∈ (S − η, S] for which there is a unique solution u of (3.24) in (0, S ′) . The
fixed point theorem above, up to a translation in time, yields a unique solution v to

∂v

∂t
= H([v], x, t,∇v) in R

N × (S − η, S + η), v(·, S − η) = u(·, S − η) in R
N .

By uniqueness, we must have v = u in R
N × [S − η, S ′). The function that coincides with

u in R
N × [0, S ′) and with v in R

N × [S − η, S + η) is then clearly a Lipschitz continuous
viscosity solution of (3.24). It is unique as uniqueness holds on [0, S ′) and on (S− η, S + η).
Therefore, (3.24) has a unique viscosity solution up to S+ η. This contradicts the definition
of S. So, we must have S = T ∗ ∧ T .
Finally the estimate (3.28) on

∂u

∂t
is a consequence of (3.30). ¤

3.4 Geometric viscosity solutions

Consider the following geometrical problem. Given an oriented hypersurface with normal
n, we make it evolve by prescribing its normal speed c. In our dislocation model, the speed
will depend on the full dislocation line, but, to keep the discussion elementary, we shall

21



restrict ourselves in this section to the case of a local normal speed c(x, t, n). As long as
the hypersurface is of class C1, there is no difficulty to define the motion. However, after a
certain time, the hypersurface may loose its smoothness and develop topological singularities
(such as the appearance of an interior).

The phase field method, which was introduced by Barles, Soner, Souganidis [8] in the
context of Hamilton-Jacobi equations as a limiting case of the level set approach, allows to
define an evolution that is global in time by exploiting the theory of discontinuous viscosity
solutions. It relies on the extension to an arbitrary closed set of the notion of an oriented
hypersurface. A (generalized) front is a partition (Ω−,Γ,Ω+) of R

N consisting of a closed
set Γ and of two open sets Ω− and Ω+. When Γ is the oriented boundary of a smooth open
set Ω, then we simply choose Ω+ = Ω and Γ = ∂Ω. Its outer normal n, which points from
Ω+ to Ω−, endows Γ with its canonical orientation. In the general case, the partition of the
complement of the front Γ into two open sets appears as a very weak way to orientate it.
We attach to the generalized front (Ω−,Γ,Ω+) the discontinuous function

ρΓ(x) = +1 if x ∈ Ω+, ρΓ(x) = 0 if x ∈ Γ, ρΓ(x) = −1 if x ∈ Ω−.

It is called the phase field (as used in the physics literature) or the (signed) characteristic
function.

Let us informally explain how one can relate the motion of an hypersurface to a Hamilton-
Jacobi equation for its phase field. When the front Γt is the boundary of a smooth open set
and moves with normal speed c(x, t, n), the derivatives of its phase field ρ(·, t) = ρΓt in the
sense of distribution are

∇ρ = −2n dσt,
∂ρ

∂t
= 2c(x, t, n) dσt

where σt is the surface area of Γt. This can be very informally rewritten as an Hamilton-
Jacobi equation

∂ρ

∂t
= H(x, t,∇ρ)

for the positively homogeneous Hamiltonian

(3.31) H(x, t, p) = c
(
x, t,− p

|p|
)
|p| if p 6= 0, H(x, t, 0) = 0.

The idea of the phase field method is therefore to solve the Hamilton-Jacobi equation

(3.32)
∂ρ

∂t
= H(x, t,∇ρ) in R

N × (0, T ), ρ(·, 0) = ρ0 on R
N

with the Hamiltonian above, for the initial data which is the characteristic function of the
initial front (Ω−

0 ,Γ0,Ω
+
0 ), i.e. ρ0 = ρΓ0

. Under the assumptions of Proposition 3.3, we know
that there is a discontinuous solution ρ to (3.32). The function ρ takes values in [−1, 1] by
the comparison principle. It defines a generalized front at time t by the formula

Ω+t = {ρ∗(·, t) > 0}, Ω−
t = {ρ∗(·, t) < 0}.

The front may be non unique, but, if all the discontinuous solutions have the same semi-
continuous envelopes, then the generalized front will be independent of the solution.
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When the initial front is a graph

Γ0 = {xN = f0(x
′) | x′ = (x1, . . . , xN−1) ∈ R

N−1},

one may look for a generalized front of the graph form, i.e. such that Γt = {xN = f(x′, t)}
for some function f . The outward normal to the (hypo)graph is proportional to (−∇x′f, 1).

The normal speed of the point x =
(
x′, f(x′, t)

)
is therefore

∂f

∂t
(1 + |∇x′f |2)−1/2. Thus,

when evaluated along the graph, the geometric motion of the hypersurface reduces to the
Hamilton-Jacobi equation

(3.33)
∂f

∂t
= H

(
x′, f(x′, t), t,∇x′f,−1

)

for the Hamiltonian given by (3.31). Of course, for general Hamiltonians, this graph equation
may not have a solution for all time. The solution will blow up when the front curls up.

The next result gives a precise meaning to this informal discussion and establishes the
equivalence between the graph equation (3.33) and the geometric equation (3.32), when the
initial front is a graph. It is expressed with the help of the oriented characteristic function
for the graph

ρf (x
′, xN ) = +1 if xN<f(x

′), ρf (x
′, xN) = 0 if xN=f(x′), ρf (x

′, xN ) = −1 if xN>f(x
′).

When f also depends on t, we still denote by ρf the function ρf (x, t) = ρf(·,t)(x).

Proposition 3.8 (Geometric and graph equations)
Consider a Hamiltonian that is positively homogeneous in the gradient and that satisfies the
assumptions of Proposition 3.3. Let the initial condition f0 be in W 1,∞(RN−1). Assume that
there is a time T > 0 for which the graph equation

(3.34)
∂f

∂t
= H

(
x′, f(x′, t), t,∇x′f,−1

)
in R

N−1 × (0, T ), f(·, 0) = f0 on R
N−1

has a viscosity solution f ∈ W 1,∞(
R
N−1 × [0, T )

)
.

Then, the function ρf is the unique bounded discontinuous viscosity solution of the geo-
metric equation (3.32).

Proof of proposition 3.8 We first show that ρf is a discontinuous viscosity solution
of (3.32). As f is a solution of the graph equation (3.34) in (0, T ), the function

u(x′, xN , t) = f(x′, t)− xN

is a viscosity solution of

(3.35)
∂u

∂t
= H(x′, f(x′, t), t,∇u)

in (0, T ) with initial condition u0(x
′, xN ) = f0(x

′)−xN . Because of the positive homogeneity
of the Hamiltonian in the gradient, for every increasing C1 function Φ, Φ(u) is a viscosity
solution of (3.35) for the initial condition Φ(u0). This claim, which is trivial for C1 solutions,
is classical in the viscosity sense (see for instance [8]).
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Consider a decreasing sequence Φk of C1 bounded increasing functions that converges
pointwise to the function σ+ = 1[0,+∞) − 1(−∞,0). By the stability properties of viscosity
solutions, the upper semilimit

u(x, t) = lim sup
k→∞, s→t, y→x

Φk(u)(s, y)

is a subsolution of the equation (3.35). An immediate computation reveals that

u(x, t) = inf
k
Φk(u)(x, t) = σ+[u(x, t)] = ρ∗f (x, t).

Therefore, ρf is a subsolution of (3.35) with initial condition ρf0 .
This implies that ρf is actually a subsolution of (3.32). Indeed, at every point (x, t) such

that f(x′, t) 6= xN , the equation trivially holds in the viscosity sense because ρf is constant
in a neighborhood of this point and because H(x, t, 0) = 0. On the other hand, at every
(x, t) such that f(x′, t) = xN , the equation (3.32) and (3.35) are the same.

Similarly, by considering an increasing sequence of C1 bounded increasing functions con-
verging pointwise to σ− = 1(0,+∞) − 1(−∞,0], one can show that ρf is a supersolution of
(3.32).

Next, let ρ be a bounded discontinuous solution of (3.32). Fix S < T arbitrary. For
every ε > 0, an elementary computation shows that the function

f ε = f + εeKt

with K = ‖C2‖L∞([0,S]) (1 + ‖∇f‖2L∞(RN−1×[0,S]))
1/2 + ‖C3‖L∞([0,S]) is a supersolution of the

graph equation in [0, S] with initial condition f0 + ε (the constant C2 and C3 are those in
assumption (3.20)). The preceding step implies that the function ρfε is a supersolution of
(3.32) with initial condition (ρf0+ε)∗ = σ−[f0 + ε] ≥ σ+(f0) = ρ∗f0 . Since ρ∗(·, 0) ≤ ρ∗f0 , we
deduce from the comparison principle of Proposition 3.3 that ρ ≤ ρfε in R

N × [0, S]. But,
ρfε ↓ ρ∗f pointwise as ε→ 0. Passing to the limit in the inequality, we deduce that ρ ≤ ρ∗f in
R
N × [0, S]. Since S < T is arbitrary, we conclude that ρ ≤ ρ∗f in R

N × [0, T ).

One shows similarly that ρ ≥ (ρf )∗. Hence, (ρf )∗ ≤ ρ ≤ (ρf )
∗ As

(
(ρf )∗

)∗
= ρ∗f and(

ρ∗f
)
∗ = (ρf )∗, we conclude that ρ and ρf must have the same semicontinuous envelopes. ¤

When the initial front is a Lipschitz compact (N − 1)-dimensional submanifold of R
N we

can state similar results. For simplicity, let us work in dimension N = 2; this is the natural
framework for planar dislocation dynamics. We assume that the initial front is a Lipschitz
simple closed curve in the plane R

2

Γf0 = {Γf0(s) := Γ(s) + f0(s)n(s), s ∈ R/LZ}
as given in Assumption 1.2 for some fixed constant L > 0. Then one may look for a
generalized front of the loop form, i.e. Γf(·,t) for some function f . The unit tangent vector is

parallel to (1−K(s)f(s, t)) τ(s) +
∂f

∂s
(s, t) n(s) where we recall that τ(s) =

dΓ

ds
(s) satisfies

|τ(s)| = 1, and n(s) = τ⊥(s),
dτ

ds
(s) = K(s)n(s). Then the normal unit vector is parallel

to n(s)− 1

(1−K(s)f(s, t))

∂f

∂s
(s, t) τ(s). When evaluated along the curve, the geometric

motion of the loop reduces to the Hamilton-Jacobi equation

(3.36)
∂f

∂t
(s, t) = H

(
Γf(·,t)(s), t,−

(
n(s)− 1

(1−K(s)f(s, t))

∂f

∂s
(s, t) τ(s)

))
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for the Hamiltonian given by (3.31).
Then we have the following result which is the analogue of Proposition 3.8.

Proposition 3.9 (Geometric and loop equations)
Consider a Hamiltonian that is positively homogeneous in the gradient and that satisfies
the assumptions of Proposition 3.3 in dimension N = 2. Let the initial condition f0 be in
W 1,∞(R/LZ). Assume that there is a time T > 0 for which the loop equation
(3.37)



∂f

∂t
= H

(
Γf(·,t)(s), t,−

(
n(s)− 1

(1−K(s)f(s, t))

∂f

∂s
(s, t) τ(s)

))
in (R/LZ)× (0, T ),

f(·, 0) = f0 on R/LZ

has a viscosity solution f ∈ W 1,∞( (R/LZ)× [0, T )
)
.

Then, the function ρ̃f (as given in (1.6)) is the unique bounded discontinuous viscosity
solution of the geometric equation (3.32) with the initial condition ρ0 = ρ̃f0.

Proof of proposition 3.9 We proceed similarly as in the proof of Proposition 3.8.
The only change is in checking that ρ̃f is a discontinuous solution of (3.32). To this end, we
introduce the map

Ψ : (R/LZ)× (−r0/2, r0/2) −→ U ⊂ R
2

(s, h) 7−→ Ψ(s, h) = x = (x1, x2) = Γ(s) + h n(s)

which is a C1-diffeomorphism, for r0 given in Assumption 1.2. Here U is a neighborhood of Γ
(where Γ is introduced in Assumption 1.2). For x ∈ U , we denote (s(x), h(x)) = Ψ−1(x), and
easily check that the function h(x) is the signed distance function to ∂Ω0 which is negative
on Ω0 (where Ω0 is given in Assumption 1.2). Then we consider the function

u(x, t) = f(s(x), t)− h(x).

We easily check that ∇u(x, t) = −n(s(x)) + 1

(1−K(s(x))h(x))

∂f

∂s
(s(x), t) τ(s(x)), and

then u is a viscosity solution on U × (0, T ) of

(3.38)
∂u

∂t
(x, t) = H(Γf(·,t)(s(x)), t,M(x, t) · ∇u(x, t))

in (0, T ) with initial condition u0(x) = f0(s(x))− h(x). Here the matrix M is given by

M(x, t) = n(s(x))⊗ n(s(x)) +

(
1−K(s(x))h(x)

1−K(s(x))f(s(x), t)
τ(s(x))⊗ τ(s(x))

)
.

Note that M(x, t) is the identity matrix when x ∈ Γf(·,t).
Because of the positive homogeneity of the Hamiltonian in the gradient, we can use the

same argument as in the proof of Proposition 3.8 to conclude that ρ̃f is a discontinuous
solution of (3.32) on U × (0, T ), and then on R

2 × (0, T ). ¤
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4 Small-time solvability of the dislocation dynamics

4.1 Preliminaries

Given a function f ∈ L1loc(R2), we define the quantities

||f ||L1
unif

(R2) = sup
x∈R2

∫

Q(x)

|f | dy, ||f ||L∞
int
(R2) =

∫

R2

‖f‖L∞(Q(x)) dx,

where Q(x) designates the unit square centered at x

Q(x) = {y ∈ R
2 | |y1 − x1| ≤ 1/2, |y2 − x2| ≤ 1/2}.

We denote respectively by L1unif(R
2) and L∞

int(R
2) the space that consists of the functions for

which these quantities are finite. The relevancy of L1unif is that it locally coincides with L1

and that it contains the phase field functions.

Lemma 4.1 (Convolution inequality)
For every f ∈ L1unif(R

2) and g ∈ L∞
int(R

2), the convolution product f ? g is bounded and
satisfies

(4.39) ‖f ? g‖L∞(R2) ≤ ‖f‖L1
unif

(R2)‖g‖L∞int(R
2).

Proof of lemma 4.1 For every x ∈ R
2, we can compute

|f ? g(x)| ≤
∫

R2

|f(x− y)g(y)| dy =
∑

k∈Z2

∫

Q(k)

|f(x− y)g(y)| dy ≤ ‖f‖L1
unif

∑

Z2

‖g‖L∞(Q(k)).

Applying the above estimate to the translate τzg = g(· − z) for z fixed, we obtain

|f ? g(x)| = |f ? τzg(x+ z)| ≤ ‖f‖L1
unif

∑

Z2

‖τzg‖L∞(Q(k)) ≤ ‖f‖L1
unif

∑

Z2

‖g‖L∞(Q(k−z)).

We now integrate with respect to z ∈ Q(0) to get

|f ? g(x)| ≤ ‖f‖L1
unif

∑

Z2

∫

Q(0)

‖g‖L∞(Q(k−z)) dz

= ‖f‖L1
unif

∑

Z2

∫

Q(k)

‖g‖L∞(Q(y)) dy = ‖f‖L1
unif

∫

R2

‖g‖L∞(Q(y)) dy = ‖f‖L1
unif
‖g‖L∞

int
.

We conclude that f ? g is bounded with the bound given by (4.39). ¤

For further references, we denote byM(R2) the set of the signed Radon measures endowed
with the total variation norm ‖µ‖M(R2) = |µ|(R2). We denote by BV (R2) the set of the

functions with bounded variation, i.e. the functions f ∈ L1(R2) with
∂f

∂x1
,
∂f

∂x2
∈M(R2).
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4.2 The 1D problem for the graph equation

In this section, we are interested in the graph equation associated to our dislocation model
equation

∂f

∂t
(x1, t) =

(
c0 ? ρ

+
f + c1

)
(x1, f(x1, t), t)

√
1 +

(
∂f

∂x1
(x1, t)

)2

where the initial condition f0 ∈W 1,∞(R) is the function whose graph is the initial dislocation
line. We recall that the convolution acts on the space variable x ∈ R

2.

Theorem 4.2 (Short time existence and uniqueness of a solution of the graph
equation)
Assume that

c0 ∈ L∞
int(R

2) ∩BV
(
R
2), c1 ∈ W 1,∞(

R
2 × [0,+∞)

)
, f0 ∈W 1,∞(R).

Then, there is a time T ∗ > 0 (depending only on the bounds of c0, c1 and f0) so that the
graph equation
(4.40)

∂f

∂t
=
(
c0 ? ρ

+
f + c1

)(
x1, f(x1, t), t

)
√

1 +

(
∂f

∂x1

)2
in R× (0, T ∗), f(·, 0) = f0 in R

has a unique viscosity solution f ∈W 1,∞(R× [0, T ∗)).

Proof of theorem 4.2
The theorem results from the solvability of non-local Hamilton-Jacobi equation (Theorem
3.7) for the Hamiltonian

H([h], x1, t, p) = c[h]
(
x1, h(x1), t

)√
1 + p2

where the non-local velocity of the graph c[h] is given by

c[h](x1, x2, t) = c0 ? ρ
+
h (x1, x2) + c1(x1, x2, t).

First, we note that c[h] is bounded with

‖c[h]‖L∞ ≤ ‖c0‖L1 + ‖c1‖L∞

because |ρ+h | ≤ 1. It is continuous in time. Moreover, it is clearly Lipschitz continuous in
space with the bound

‖∇c[h]‖L∞ ≤ ‖∇c0‖M + ‖∇c1‖L∞ .
The function c[h]

(
x1, h(x1), t

)
is therefore Lipschitz continuous in x1 with

|c[h]
(
x1, h(x1), t

)
− c[h]

(
y1, h(y1), t

)
| ≤ ‖∇c[h]‖L∞

(
1 + ‖ ∂h

∂x1
‖L∞(R)

)
|x1 − y1|.

Therefore, the Hamiltonian H([h], x1, t, p) satisfies the first set of assumptions of Theorem
3.7 for the constants

(4.41) K1 = K3 = ‖c0‖L1 + ‖c1‖L∞ , K2 = ‖∇c0‖M + ‖∇c1‖L∞ .
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As concerns the proof of the Lipschitz regularity of Hamiltonian in h, we note that, for
every x ∈ R

2, we have

‖ρh1 − ρh2‖L1(Q(x)) ≤ ‖ρh1 − ρh2‖L1(R×[x1− 1

2
,x1+

1

2
])

≤
∫ x1+

1

2

x1− 1

2

∫
|1{y2<h1(y1)} − 1{y2<h2(y1)}|+ |1{y2>h1(y1)} − 1{y2>h2(y1)}| dy2 dy1

= 2

∫ x1+
1

2

x1− 1

2

|h1(y1)− h2(y1)| dy1

≤ 2‖h1 − h2‖L∞(R).

Taking the supremum over x, we get

(4.42) ‖ρ+h1 − ρ+h2‖L1
unif
≤ ‖ρh1 − ρh2‖L1

unif
≤ 2‖h1 − h2‖L∞(R).

Therefore, recalling the convolution inequality (Lemma 4.1), we deduce that
∣∣c[h1]

(
x1, h

1(x1), t
)
− c[h2]

(
x1, h

2(x1), t
)∣∣

≤
∣∣c[h1]

(
x1, h

1(x1), t
)
− c[h2]

(
x1, h

1(x1), t
)∣∣+

∣∣c[h2]
(
x1, h

1(x1), t
)
− c[h2]

(
x1, h

2(x1), t
)∣∣

≤ ‖c[h1]− c[h2]‖L∞ + ‖∇c[h2]‖L∞‖h1 − h2‖L∞(R)
≤ ‖c0‖L∞

int
‖ρ+h1 − ρ+h2‖L1

unif
+K2‖h1 − h2‖L∞(R).

≤ (2‖c0‖L∞
int

+K2)‖h1 − h2‖L∞(R).

This clearly implies that the Hamiltonian is Lipschitz continuous in h and that it satisfies
the inequality (3.27) for the constant K4 = 2‖c0‖L∞

int
+K2. ¤

4.3 The 1D problem for the loop equation

In this section, we are interested in the loop equation associated to our dislocation model
equation

∂f

∂t
=
(
c0 ? ρ̃

+
f(·,t) + c1

)(
Γf(·,t)(s), t

)
√

1 +

(
1

(1− fK)

∂f

∂s

)2

where the initial condition f0 ∈W 1,∞(R/LZ) is a function such that the boundary of Ωf0 is
the initial dislocation line. To avoid any problems when fK = 1, we set r1 = r0/2 where r0
is given in Assumption 1.2 and define the truncation function

Tr1(f) =





r1 if f ≥ r1

f if |f | ≤ r1

−r1 if f ≤ −r1
Then we consider the modified equation

∂f

∂t
=
(
c0 ? ρ̃

+
Tr1 (f(·,t))

+ c1

)(
ΓTr1 (f(·,t))(s), t

)
√

1 +

(
1

(1− Tr1(f) K)

∂f

∂s

)2
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Theorem 4.3 (Short time existence and uniqueness of a solution of the truncated
loop equation)
Assume that

c0 ∈ L∞
int(R

2) ∩BV
(
R
2), c1 ∈W 1,∞(

R
2 × [0,+∞)

)
, f0 ∈ W 1,∞(R/LZ).

Then, there is a time T ∗′ > 0 (depending only on the bounds of c0, c1 and Ωf0) so that the
truncated loop equation





∂f

∂t
=
(
c0 ? ρ̃

+
Tr1 (f(·,t))

+ c1

)(
ΓTr1 (f(·,t))(s), t

)
√

1 +

(
1

(1− Tr1(f) K)

∂f

∂s

)2

in (R/LZ)× (0, T ∗′),

f(·, 0) = f0 in R/LZ

has a unique viscosity solution f ∈W 1,∞((R/LZ)× [0, T ∗′)).
Moreover there exists a constant C0 > 0 (depending only on bounds on c0, c1 and on Ω0

given in Assumption 1.2), such that

(4.43)

∣∣∣∣
∣∣∣∣
∂f

∂t
(·, t)

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

≤ C0

(
1 +

1

T ∗′ − t

)
,

with T ∗′ =
1

C0

(
1 +

∣∣∣∣∂f0
∂s

∣∣∣∣
L∞(R/LZ)

) .

Proof of theorem 4.3
The theorem results from the solvability of non-local Hamilton-Jacobi equation (Theorem
3.7) for the Hamiltonian

H([h], s, t, p) = c̃[Tr1(h)]
(
ΓTr1 (h)(s), t

)
√

1 +

(
p

1−K(s)Tr1(h)(s)

)2

where the non-local velocity of the loop c̃[g] is given by

c̃[g](x1, x2, t) = c0 ? ρ̃
+
g (x1, x2) + c1(x1, x2, t).

First, we note that c̃[g] is bounded with

‖c̃[g]‖L∞ ≤ ‖c0‖L1 + ‖c1‖L∞ ,

is continuous in time, and is Lipschitz continuous in space with the bound

‖∇c̃[g]‖L∞ ≤ ‖∇c0‖M + ‖∇c1‖L∞ .

Let us now remark that for ||g||L∞(R/LZ) ≤ r1 ≤ 1/(2K0), we have

|Γg(s2)− Γg(s1)| ≤ |s2 − s1|
(
1 +

∣∣∣∣
∣∣∣∣
∂g

∂s

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

+K0r1

)
.
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The function c̃[g]
(
Γg(s), t

)
is therefore Lipschitz continuous in s with

|c̃[g]
(
Γg(s2), t

)
− c̃[g]

(
Γg(s1), t

)
| ≤ ‖∇c̃[g]‖L∞

(3
2
+ ‖∂g

∂s
‖L∞(R/LZ)

)
|s2 − s1|.

We also remark that for ||g||L∞(R/LZ) ≤ r1, we have
∣∣∣∣∣∣

√
1 +

(
p

1−K(s2)g(s2)

)2
−
√

1 +

(
p

1−K(s1)g(s1)

)2
∣∣∣∣∣∣

≤ 4|p|
(
r1

∣∣∣∣
∣∣∣∣
∂K

∂s

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

+K0

∣∣∣∣
∣∣∣∣
∂g

∂s

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

)
|s2 − s1|

Applying these results to g = Tr1(h), we get that the Hamiltonian H([h], s, t, p) satisfies the
first set of assumptions of Theorem 3.7 for the constants

K1 =
1

2
K3 = ‖c0‖L1 + ‖c1‖L∞ ,

K2 = 4(1 +K0)

(
1 +

1

2K0

∣∣∣∣
∣∣∣∣
∂K

∂s

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

)
(‖c0‖L1 + ‖c1‖L∞ + ‖∇c0‖M + ‖∇c1‖L∞).

As concerns the proof of the Lipschitz regularity of Hamiltonian in h, we note that
if ||gi||L∞(R/LZ) ≤ r1 for i = 1, 2, if g− = min(g1, g2), g+ = max(g1, g2), and if D =
{(s, r) ∈ (R/LZ)× R, g−(s) < r < g+(s)}, then we have

(4.44)

‖ρ̃+g2 − ρ̃+g1‖L1(R2) ≤
∫

Ψ(D)

1

≤
∫

D

|JacΨ|

≤
∫

R/LZ

ds

∫ g+(s)

g−(s)

dr (1− rK(s))

≤ (1 + r1K0)

∫

R/LZ

ds |g+(s)− g−(s)|

≤ 3L

2
||g2 − g1||L∞(R/LZ)

Therefore, we deduce that
∣∣c̃[g2]

(
Γg2(s), t

)
− c̃[g1]

(
Γg1(s), t

)∣∣
≤
∣∣c̃[g2]

(
Γg2(s), t

)
− c̃[g1]

(
Γg2(s), t

)∣∣+
∣∣c̃[g1]

(
Γg2(s), t

)
− c̃[g1]

(
Γg1(s), t

)∣∣
≤
∣∣∣∣c̃[g2]− c̃[g1]

∣∣∣∣
L∞(R2)

+
∣∣∣∣∇c̃[g1]

∣∣∣∣
L∞(R2)

∣∣∣∣g2 − g1
∣∣∣∣
L∞(R/LZ)

≤
∣∣∣∣c0
∣∣∣∣
L∞(R2)

∣∣∣∣ρ̃+g2 − ρ̃+g1
∣∣∣∣
L1(R2)

+
∣∣∣∣∇c̃[g1]

∣∣∣∣
L∞(R2)

∣∣∣∣g2 − g1
∣∣∣∣
L∞(R/LZ)

≤
(
3L

2

∣∣∣∣c0
∣∣∣∣
L∞(R2)

+ ‖∇c0‖M + ‖∇c1‖L∞
) ∣∣∣∣g2 − g1

∣∣∣∣
L∞(R/LZ)

.
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This implies that the Hamiltonian is Lipschitz continuous in h and that it satis-
fies the inequality (3.27) for the constant K4 = 3L||c0||L∞ + 2 (‖∇c0‖M + ‖∇c1‖L∞) +
4K0 (‖c0‖L1 + ‖c1‖L∞).

Finally the estimate (4.43) on
∂f

∂t
is a consequence of (3.28). ¤

A straightforward consequence of Theorem 4.3 is the

Corollary 4.4 (Short time existence and uniqueness of a solution of the loop
equation)

Under the assumptions of Theorem 4.3, if ||f0||L∞(R/LZ) ≤
r0
4

with r0 given in Assumption

1.2, then there is a time T ∗ > 0 (depending only on the bounds of c0, c1,

∣∣∣∣
∣∣∣∣
∂f0
∂s

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

and

on Ω0) so that the loop equation
(4.45)



∂f

∂t
=
(
c0 ? ρ̃

+
f(·,t) + c1

)(
Γf(·,t)(s), t

)
√

1 +

(
1

(1− f K)

∂f

∂s

)2
in (R/LZ)× (0, T ∗),

f(·, 0) = f0 in R/LZ

has a unique viscosity solution f ∈W 1,∞((R/LZ)× [0, T ∗)).

4.4 The 2D problems : proofs of Theorems 1.1 and 1.3

We give in this section 2D versions of Theorem 4.2 and Corollary 4.4, namely Theorems 4.5
and 4.6, which are a reformulation of Theorems 1.1 and 1.3. Our main purpose is to shed
light onto the framework in which the geometric equation

(4.46)
∂ρ

∂t
=
(
c0 ? ρ

+(·, t) + c1
)
|∇ρ| in R

2 × (0, T ∗), ρ(·, 0) = ρf0 on R
2.

is well posed. As a matter of fact, we expect that a large time solution of the geometric
equation will exist. It should not remain a graph for all time however.

The equivalence between the graph and the geometric equations (Proposition 3.8) ensures
immediately the existence of a solution to (4.46), namely ρf . The delicate question is that
of uniqueness. It pinpoints the functional space where to find solutions of (4.46). It turns
out that a convenient space to work with is the set of the bounded discontinuous functions
(where naturally leaves a phase field) that belong to C([0, T ∗);L1unif(R

2)). This regularity
ensures in particular that the Hamiltonian

Hρ(x, t, p) =
(
c0 ? ρ

+(·, t) + c1
)
|p|

is continuous with respect to all the variables.
Our uniqueness result, though a bit technical, is well adapted to the space. It states that

two solutions must have the same semicontinuous envelopes. This, we recall, is the natural
form of the uniqueness assertion for discontinuous viscosity solutions of Hamilton-Jacobi
equations because it allows to define without ambiguity a generalized front. The result also
states that two solutions must be equal a.e. in space for all time, i.e. in C([0, T ∗);L1unif(R

2)).
This implies that the two solutions will give birth to the same Hamiltonian Hρ.
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Theorem 4.5 (Short time existence and uniqueness of a solution of the 2D graph
problem)
We make the assumptions of the Theorem 4.2 and denote by f the unique solution of the
graph equation (4.40).

Then, there is a time T ∗ > 0 (depending only on the bounds of c0, c1 and f0) for which
the following holds.
(Existence) The function ρf is a solution in C([0, T ∗);L1unif(R

2)) of the equation (4.46)
(Uniqueness) If ρ1, ρ2 ∈ C([0, T ∗);L1unif(R

2)) are two bounded discontinuous viscosity so-
lutions of (4.46), they have the same semi-continuous envelopes and, for every t ∈ [0, T ∗),
ρ1(·, t) = ρ2(·, t) a.e. in R

2.

Proof of theorem 4.5
Given a bounded function ρ, we define the non-local velocity

c[ρ](x1, x2, t) = c0 ? ρ
+(x1, x2) + c1(x1, x2, t)

and write indifferently c[ρ] or c[ρ(·, t)] when the function depends on t.
We first verify that ρf is a discontinuous solution of (4.46) and that it belongs to

C([0, T ∗);L1unif). Estimate (4.42) implies that, for every 0 < s, t ≤ T < T ∗ and every
x ∈ R

2, we have

‖ρf (·, t)− ρf (·, s)‖L1
unif
≤ 2‖f(·, t)− f(·, s)‖L∞(R) ≤ 2|t− s|

∥∥∂f
∂t

∥∥
L∞(R×[0,T ]).

Since f ∈ W 1,∞(R × [0, T ]), we deduce that ρf ∈ C([0, T ];L1unif). As T < T ∗ is arbitrary,
ρf ∈ C([0, T ∗);L1unif).

Next, f solves by definition the graph equation

∂f

∂t
= c[ρf ]

(
x1, f(x1, t), t

)
√

1 +

(
∂f

∂x1

)2
in R× (0, T ∗), f(·, 0) = f0 in R.

The associated Hamiltonian H(x, t, p) = c[ρf(·,t)](x, t) |p| satisfies the assumptions of Propo-
sition 3.8 (its continuity in time follows from the fact that ρf ∈ C([0, T ∗);L1unif), while its
regularity with respect to x and p is proved as in Theorem 4.2). Therefore, ρf solves the
equation

∂ρf
∂t

= c[ρf ](x1, x2, t)|∇ρf | in R
2 × (0, T ∗), ρf (·, 0) = ρf0 on R

2.

This is (4.46).
For the proof of uniqueness, we fix ρ ∈ C([0, T ∗);L1unif), a bounded discontinuous viscosity

solution of (4.46). Applying Theorem 3.7 (with a Hamiltonian with ρ frozen, and with a
proof similar to the one of Theorem 4.2), we see that the graph equation

(4.47)
∂g

∂t
= c[ρ]

(
x1, g(x1, t), t

)
√

1 +

(
∂g

∂x1

)2
in R× (0, T ∗∗), g(·, 0) = f0 in R

has a unique solution up to time T ∗∗ = 1/
(
K2(1 +M0)

)
. Here, the constant K2 is such that

assumption (3.26) holds true and M0 = ‖∂f0/∂x1‖L∞ . As

|c[ρ]
(
x1, h(x1), t

)
− c[ρ]

(
y1, h(y1), t

)
| ≤ ‖∇c[ρ]‖L∞

(
1 + ‖ ∂h

∂x1
‖L∞(R)

)
|x1 − y1|

≤
(
‖∇c0‖M + ‖∇c1‖L∞

)(
1 + ‖ ∂h

∂x1
‖L∞(R)

)
|x1 − y1|,
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we can choose for K2 the constant ‖∇c0‖M+‖∇c1‖L∞ . As this is the same as the one for the
graph equation (4.40) (see (4.41) in the proof of Theorem 4.2), we conclude that T ∗∗ = T ∗.
In other words, the functions f and g will not blow up before the same time.

Using Proposition 3.8 for the Hamiltonian H(x, t, p) = c[ρ(·, t)](x, t) |p|, we deduce that,
up to time T ∗, ρ and ρg have the same semi-continuous envelopes. As |ρ− ρg| ≤ max(ρ∗ −
(ρg)∗, ρ

∗
g − ρ∗), we get

|ρ− ρg| ≤ ρ∗g − (ρg)∗ = 2 · 1{x2=g(x1,t)}.

For every t, the right-hand term has zero Lebesgue integral in R
2. Therefore, ρ(·, t) = ρg(·, t)

a.e. This implies that c[ρ] = c[ρg] everywhere. Consequently, g actually solves the graph
equation

∂g

∂t
= c[ρg]

(
x1, g(x1, t), t

)
√

1 +

(
∂g

∂x1

)2
in R× (0, T ∗), g(·, 0) = f0 in R.

By uniqueness (Theorem 4.2), we conclude that f = g. In view of the relationship between
ρ and ρg, we see that the functions ρ and ρf must have the same semicontinuous envelopes
and be equal a.e. in space for all time. ¤

Similarly we get the following result

Theorem 4.6 (Short time existence and uniqueness of a solution of the 2D loop
problem)
We make the assumptions of the Corollary 4.4 and denote by f the unique solution of the
loop equation (4.45).

Then, there is a time T ∗ > 0 (depending only on the bounds of c0, c1,

∣∣∣∣
∣∣∣∣
∂f0
∂s

∣∣∣∣
∣∣∣∣
L∞(R/LZ)

and on Ω0) for which the following holds.
(Existence) The function ρ̃f is a solution in C([0, T ∗);L1unif(R

2)) of the equation (4.46)
with initial data ρ0 = ρ̃f0.
(Uniqueness) If ρ1, ρ2 ∈ C([0, T ∗);L1unif(R

2)) are two bounded discontinuous viscosity so-
lutions of (4.46), they have the same semi-continuous envelopes and, for every t ∈ [0, T ∗),
ρ1(·, t) = ρ2(·, t) a.e. in R

2.

Sketch of the proof of Theorem 4.6
The proof repeats words by words the proof of Theorem 4.5, replacing estimate (4.42) by
(4.44), Proposition 3.8 by Proposition 3.9, equation (4.47) by

∂g

∂t
= c[ρ]

(
Γf(·,t)(s), t

)
√

1 +

(
1

(1− gK)

∂g

∂s

)2
in (R/LZ)× (0, T ∗∗), g(·, 0) = f0 in R/LZ

and replacing Theorem 4.2 by Corollary 4.4. ¤

As explained above, one major difficulty in defining a solution globally in time comes from
the non validity of the inclusion principle, which is the analogous for sets of the comparison
principle for the solutions of Hamilton-Jacobi equations. This results from the fact that the
kernel c0 will take negative values because

∫
c0 dx = 0. We briefly justify this.
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The inclusion principle says roughly that if one front encompasses the second one initially,
this will continue for all subsequent times. Less formally, the principle says that if two
generalized fronts (Ω1−t ,Γ1t ,Ω

1+
t ) and (Ω2−t ,Γ2t ,Ω

2+
t ) satisfy the inclusions

Ω1+t ⊂ Ω2+t , Ω1−t ⊃ Ω2−t

at time t = 0, then the inclusions remain true at every time t > 0.
Let us construct an example to show that the inclusion principle is false, with c0 contin-

uous.
Counter-example to the inclusion principle
Choose a non empty ball B such that c0 < 0 on −B and such that 0 6∈ B. Choose for Ω1+0
a smooth set with Ω1+0 ∩ B = ∅ and 0 ∈ ∂Ω1+0 . Put Ω2+0 = Ω1+0 ∪ B. The initial fronts
are of course Γ10 = ∂Ω1+0 and Γ20 = ∂Ω2+0 = Γ10 ∪ ∂B. At the origin (x, t) = (0, 0), the front
Γ10 has normal speed c1(0) = c0 ? 1Ω1+

0
(0). On the other hand, the front Γ20 has the speed

c2(0) = c0 ?1Ω2+
0
(0) = c0 ?(1Ω1+

0
+1B)(0) = c10(0)−δ for the constant δ = −

∫
B
c0(−x) dx > 0.

Therefore, the set Ω2+0 , though larger than Ω1+0 , will propagate at the origin with a smaller
speed; thus, the set Ω2+t cannot contain Ω1+t when t > 0 is small.

5 Numerical simulations

5.1 A level-sets scheme for dislocation dynamics

We consider discontinuous solutions ρ of the following equation

(5.48)
∂ρ

∂t
= (c0 ? ρ

+(·, t) + c1)|∇ρ|

and assume moreover that for some L1, L2 > 0 the solution is periodic:

(5.49) ρ(x1 + 2L1, x2, t) = ρ(x1, x2, t) = ρ(x1, x2 + 2L2, t)

In order to compute numerically the solution, we first replace equation (5.48) on the discon-
tinuous solution ρ, by a level-sets equation on a continuous function ρ̃:

(5.50)





∂ρ̃

∂t
= c |∇ρ̃|

c = (c0 ? E (ρ̃(·, t)) + c1)

ρ̃(·, 0) = ρ̃0

where E is the Heavyside function defined by

E(ρ̃) =





1 if ρ̃ > 0

0 if ρ̃ ≤ 0

Here, in order to simplify the presentation, we assume that the velocity c1 is a given constant.
We also assume that ρ̃ satisfies the periodicity conditions (5.49).
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We see (at least formally) that if ρ̃ satisfies (5.50), then

ρ = E(ρ̃)

satisfies (5.48).
We work on a cartesian grid where each grid point is defined by

(x1, x2) = (i∆x1, j∆x2) , for i = −N1, ..., N1; j = −N2, ..., N2

with

∆x1 =
L1
N1

, ∆x2 =
L2
N2

.

Moreover the time is also discretized

t = n∆t, for n ∈ N

We approximate the values of the continuous functions ρ̃ (resp. c) on the grid points
(i∆x1, j∆x2) at time n∆t by ρ̃ni,j (resp. cni,j), where we assume periodicity in both space
directions, i.e. for g = ρ̃ or c:

gn−N1,j
= gnN1,j

, for j = −N2, ..., N2

gni,−N2
= gni,N2

, for i = −N1, ..., N1
We choose the Lax-Friedrichs scheme

ρ̃n+1i,j − ρ̃ni,j
∆t

=





cni,j

√(
ρ̃ni+1,j − ρ̃ni−1,j

2∆x1

)2
+

(
ρ̃ni,j+1 − ρ̃ni,j−1

2∆x2

)2

+
α

2

{
ρ̃ni+1,j + ρ̃ni−1,j − 2ρ̃ni,j

∆x1
+
ρ̃ni,j+1 + ρ̃ni,j−1 − 2ρ̃ni,j

∆x2

}





It is known (and easy to check) that this scheme is monotone (for a given fixed velocity cnij)
if the constant α (to be fixed later) satisfies

α ≥ |cni,j| for every i = −N1, ..., N1; j = −N2, ..., N2; n ∈ N

and if we assume the CFL condition

∆t ≤ 1

α

(
1

∆x1
+

1

∆x2

)−1

We define an approximation c0i,j (which will be specified later) of the kernel c0. We extend
all quantities g = ρ̃, c, c0 periodically as follows

gni+2N1,j
= gni,j = gni,j+2N2

for every i, j ∈ Z; n ∈ N

Then we approximate the convolution c0 ? E(ρ̃) by the discrete convolution, and write

cni,j = c1 +

N1∑

i′=−N1+1

N2∑

j′=−N2+1

c0i−i′,j−j′E(ρ̃ni′,j′)
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where c1 is the given velocity (assumed constant, to simplify).
The direct computation of the discrete convolution requires a number of operations of the

order of N 2
1N

2
2 . Here we use the fast Fourier transform (FFT) to compute this convolution,

which is simply a product in Fourier space. This reduces the computational cost to a number
of operations of the order of (N1 lnN1) (N2 lnN2).

We have used the software GO++ in C++ that can be found at the following address:
http://www-rocq.inria.fr/˜benamou/gopp/gopp.html.

Here many schemes are implemented, and in particular the Lax-Friedrich scheme.
At every time step we perform a discrete convolution using FFT. We have chosen an

algorithm that can be found at the following address: http://www.matpack.de/. We use
this package, giving on the one hand c0(x) in a analytical way and on the other hand the
sampling E(ρ̃ni,j). This algorithm computes the convolution of these two signals.

Remark 5.1 Let us mention that we can also use a Rouy-Tourin scheme in place of the
Lax-Friedrichs scheme. Second order approximations both in space and time can also be
considered for first order Hamilton-Jacobi equations. We can for instance consider second
order TVD approximations of the gradient with minmod limiters (see Osher, Sethian [51]),
and a Runge-Kutta (TVD) time discretization of Osher, Shu [52]. Finally, let us add that
the FFT of a signal (given analytically or accurately sampled) can be easily computed using
the following package: http://www.fftw.org/. This could be useful when the kernel c0 is only
given in Fourier space.

5.2 Analysis of the numerical results

Here we propose to study numerically three test cases. In the sequel, we choose the following
approximation of the kernel:

c0i,j = cε0(i∆x1, j∆x2)

where cε0(x) is defined in each case.
Case 1: collapse of a circle (fig. 3)
Here L1 = L2 = 2 and the two-dimensional domain is the square [−2, 2]2. We chose N1 =
N2 = 100, which leads to ∆x1 = L1/N1 = 0.02 = ∆x2. We chose ∆t = 0.00018. Here

cε0(x) = cε0(x)

with

cε0(x) =





1

|x|3 if |x| > ε

− 2

ε3
if |x| ≤ ε

Here we took ε = 0.1. We chose periodic conditions in each direction. At time t = 0, we
chose ρ̃0(x) = 0.5 − |x|, and the final time is t ' 0.8. In this simulation the circle collapse
isotropically in finite time, which is naturally expected.
Case 2: relaxation of the sin curve (fig. 4)
The initial condition is a sin curve given by x2 = 3 sin(πx1). More precisely, at time t = 0,
we chose ρ̃0(x1, x2) = −x2+3 sin(πx1). We work with L1 = 1, L2 = 10, i.e. on the rectangle
[−1, 1]× [−10, 10], discretized with N1 = 20, N2 = 200, which gives ∆x1 = ∆x2 = 0.05.
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Figure 3: Relaxation of a circle dislocation

In this case we set

cε0(x1, x2) =
k=K∑

k=−K
cε0(x1 + 2k, x2) .

It can be checked that we have to choose K of the order of L2/L1. We chose K = 10.
This periodization of the kernel was done to take into account the periodicity in x1, and the
convolution is done assuming periodic conditions in x1. On the contrary, for this example,
we work with Neumann conditions in x2. Our choice of Neumann conditions in x2 is made in
order to control the effect of these fixed boundaries on the graph solution inside the domain.
This is also why we chose L2 >> L1. Until our choice of the final time we know that the
computation is correct.
Simulation 1 (fig. 4 left)
We chose ε = 0.01, ∆t = 0.0014 and the final time T ' 2. In this computation the sin
curve relaxes to a straight line which is physically expected. For this so small value of ε
the dynamics of the dislocation line is expected to be very closed to the motion by mean
curvature, and then the dislocation line stays smooth.
Simulation 2 (fig. 4 right)
We took ε = 5, ∆t = 0.0000185, and the final time equal to T ' 0.0002. In this second
simulation, the core of the dislocation is much larger than the typical length scale of the
dislocation line. This is why we observe short range effects, and the dislocation line does
not stay smooth.
Case 3: a graph becomes a non-graph (fig. 5)
In this example we work on the domain [−2, 2] × [−2, 10] = (0, 4) + [−2, 2] × [−6, 6], i.e.
L1 = 2, L2 = 6. The initial dislocation is the curve x2 = 4e(−10x

2
1). More precisely, at time
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Figure 4: Relaxation of a sinusoidal dislocation line, with ε = 0.01 (left) and ε = 5 (right)

t = 0, we chose ρ̃0(x1, x2) = −x2+4e(−10x
2
1). The discretization is N1 = 40, N2 = 100, which

means ∆x1 = 0.05, ∆x2 = 0.06. We chose ∆t = 0.0000512, and the final time is T ' 0.005.
Here the kernel is non-physical. We define

Ω = B1((−1, 0)) ∪B1((1, 0)) = supp c0

where B1(y) = {x ∈ R
2, |x− y| ≤ 1}. We choose the following function

cε0(x) = c0(x) =





1 if x ∈ Ω, |x1| > 1

−1 if x ∈ Ω, |x1| ≤ 1

0 if x 6∈ Ω

In this simulation we see that starting from a graph dislocation, the solution can become
a non-graph.

6 Appendix

In this appendix, we use the notations of section 2, with x = (x1, x2, x3) and x
′ = (x1, x2).

6.1 Formal properties of the kernel c0

We have
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Figure 5: A graph can become a non-graph

Proposition 6.1 (Formal properties of c0)
The kernel c0 formally satisfies the following properties:

i) c0(−x′) = c0(x
′)

ii)

∫

R2

c0 = 0 if R ? χ = χ ? R

iii) −ĉ0(ξ′) ≥ 0

iv) |c0(x′)| ≤
C

|x′|3 for |x′| large enough

v) c0 is smooth enough

Formal proof of proposition 6.1
i)Using Fourier transform on the definition of C0 (2.18), we get

(6.51) Ĉ0(ξ) = −t( ˆ̌R ˆ̌χe0)Λ(R̂χ̂e0)

where we recall that χ̌(x) = χ(−x), and we have ˆ̌R = R̂. From the symmetry property
(2.10) of Λ, we immediately see that Ĉ0(−ξ) = Ĉ0(ξ). This implies C0(−x) = C0(x) and
then

c0(−x′) = c0(x
′)
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ii) We have formally ∫

R2

−c0

=

∫

R3

t(Ř ? χ̌e0) ? Λ(R ? χe0) δ0(x3)

=

∫

R3

Λ(R ? χe0)(R ? χ ? (δ0(x3)e
0))

=

∫

R3

Λ(R ? χe0)(χ ? R ? (δ0(x3)e
0))

where we have used in the last line the assumption that R?χ = χ?R. But δ0(x3)e
0 = e(v) for

v = bH(x3) whereH is the Heavyside function. As a consequence R?(δ0(x3)e
0) = R?e(v) = 0

because inc(e(v)) = 0. Therefore we get
∫

R2

c0 = 0

iii) We have

E(Γ)

=

∫

R3

1

2
Λe2χ

=

∫

R3

1

2
Λ(R ? χe0 ? (ρδ0(x3))) (R ? χe0 ? (ρδ0(x3)))

=

∫

R3

1

2

[{
t(Ř ? χ̌e0) ? Λ(R ? χe0)

}
? (ρδ0(x3)))

]
(ρδ0(x3))

=

∫

R2

−1

2
(c0 ? ρ)ρ

=

∫

R2

−1

2
ĉ0|ρ̂|2

Because E(Γ) ≥ 0 for every possible function ρ, we deduce formally that

−ĉ0(ξ′) ≥ 0

iv) In the expression (6.51) of Ĉ0(ξ), the quantity R̂ is homogeneous of order one in
ξ ⊗ ξ

|ξ|2 .

Because by homogeneity, we have formally |̂x| = K
|ξ|4 for some K ∈ R, we deduce that C0

can be written formally:
C0 = D4(|x|) ? (mollifier)

where D4(|x|) denotes the forth derivatives of the function x 7−→ |x|. This implies that

|C0(x)| ≤
C

|x|3 for |x| large enough
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and the corresponding result is true for c0(x
′).

v) Finally from the convolution formula (2.18) for C0, we deduce that c0 is smooth enough,
if χ is smooth enough.
This ends the proof of proposition 6.1.
Scaling properties of the problem
If we replace χ by

χε(x′) =
1

ε2
χ

(
x′

ε

)

we see that c0(x
′) is replaced by

cε0(x
′) =

1

ε3
c0

(
x′

ε

)

which is the natural scaling for the kernel c0.
Moreover if ρ satisfies

∂ρ

∂t
= (c0 ? ρ+ c1)|∇ρ|

then we still have
∂ρε

∂t
= (cε0 ? ρ

ε + cε1)|∇ρε|
with 




cε0(x
′) =

1

ε3
c0

(
x′

ε

)

ρε(x′, t) = ρε
(
x′

ε
,
t

ε2

)

cε1 =
c1
ε

6.2 How to compute the kernel c0 and the core tensor?

In this part of the appendix, we explain formally how to compute explicitly the kernel
c0, leading to quite complicated computations. In a first subsection, we give the general
expressions of the kernel c0 in the special case of a scalar core tensor. And in a second
subsection we give the expression of the scalar core tensor for different models, whose the
famous Peierls-Nabarro model of dislocations.

6.2.1 Expressions of the kernel c0 for a scalar core tensor

In this subsection we are interested in a special case for the core tensor, namely the case of
a scalar core tensor, which greatly simplifies the computations:

χijkl = χ1(x)
1

2
(δikδjl + δilδjk)

The core function χ1(x) contains certain properties of the physics of the dislocations and
drives the physics of interactions between dislocations at short distances. Its explicit expres-
sion is difficult to compute and really depends on the assumptions of the model behind. It
can be isotropic in the slip plane or anisotropic (see for instance François, Pineau, Zaoui [28]
page 213, for an example of an anisotropic core).
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General expression of the kernel c0 for a scalar core tensor. The kernel c0 is given
by

c0(x
′) = C0(x

′, 0)

If we define

Ĉ0(ξ) =

∫

R3

d3x e−iξ·xC0(x)

we have

Ĉ0(ξ) = −b2|χ̂1(ξ)|2B
(
ξ

|ξ|

)

where
ξ = (ξ1, ξ2, ξ3), and |ξ|2 = ξ21 + ξ22 + ξ23

and

b2B

(
ξ

|ξ|

)
= t( ˆ̌Re0)Λ(R̂e0)

We see that the computation of the kernel can be split in two parts: first the computation of
B (see below), and second the computation of the core function χ1(x) (see subsection 6.2.1).
We recover c0(x

′) = 1
(2π)2

∫
R2 d

2ξ′ eiξ
′·x′ ĉ0(ξ

′), with

ĉ0(ξ
′) =

1

2π

∫

R

dξ3 Ĉ0(ξ)

General expression of B(ξ) for FCC crystals with cubic elasticity. We consider a
direct orthonormal basis (e1, e2, e3) which defines the cell of the cubic crystal. In the special
case of cubic crystal, there exist three constants c11, c12, c44 (in Voigt notations), such that

Λijkl = ((c11 − c12 − 2c44) δik + c12) δijδkl + c44 (δikδjl + δilδjk)

This means that
Λiiii = c11

Λiijj = c12 for i 6= j

Λijij = c44 for i 6= j

We define

α =
c11 − c12 − 2c44

c44

The isotropic case corresponds to the case α = 0, where c11 = λ+ 2µ, c12 = λ, c44 = µ.
If we are interested in dislocations in FCC crystals, we need to consider dislocations

moving in a plane {111}. Let us consider for instance the normal n to the slip plane defined
by n = 1√

3
(1, 1, 1). Here we can choose as a Burgers vector, the vector b = |b|eb with

eb =
1√
2
(1,−1, 0). We also define the tensors

e00ij =
1

2
((eb)inj + (eb)jni)

σ00ij =
∑

k,l

Λijkle
00
kl
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We introduce ec = n ∧ eb = 1√
6
(1, 1,−2), such that (eb, ec, n) is a direct orthonormal basis.

Every vector ξ can then be written both in the basis (eb, ec, n) and (e1, e2, e3):

ξ = ξbeb + ξcec + ξnn = ξ1e1 + ξ2e2 + ξ3e3

Then we have (see Khachaturyan [39], pages 213 and 244)

B(ξ) =
∑

i,j,k,l∈{1,2,3}
Λijkle

00
ij e

00
kl − ξiσ

00
ij Ωjk(ξ)σ

00
kl ξl

where we define

D(ξ) = c11 + α(c11 + c12)
(
ξ21ξ

2
2 + ξ21ξ

2
3 + ξ22ξ

2
3

)
+ α2 (c11 + 2c12 + c44) ξ

2
1ξ
2
2ξ
2
3

and

Ωii(ξ) =
1

c44D(ξ)

(
c44 + (c11 − c44)(ξ

2
j + ξ2k) + α(c11 + c12)ξ

2
j ξ
2
k

)

Ωij(ξ) = −
1

c44D(ξ)

(
(c12 + c44)(1 + αξ2k)ξiξj

)
if i 6= j

Here (ijk) is a circular permutation of the indices (123).

General expression of B(ξ) for crystals with isotropic elasticity. In the case of
isotropic elasticity, the previous expression of B can be greatly simplified. If we now choose
Λijkl = λδijδkl + µ (δikδjl + δilδjk), b = |b|e1, n = e3, we get

B(ξ)

2µ
=

1

2

ξ22
|ξ|2 + γ

ξ21ξ
2
3

|ξ|4

where

γ =
2(λ+ µ)

(λ+ 2µ)
=

1

1− ν
with the Poisson ratio ν =

λ

2(λ+ µ)

6.2.2 Expressions of the scalar core tensor in the case of isotropic elasticity

Here we present some references to the literature which allow us to compute the core tensor
in the special case of a scalar core tensor:

χijkl = χ1(x)
1

2
(δikδjl + δilδjk)

where χ1(x) is called the core function, and in the framework of isotropic elasticity Λijkl =
λδijδkl + µ (δikδjl + δilδjk), b = |b|e1, n = e3.

General relation between the kernel c0 and the stress σ13. Let us consider the case
of a straight dislocation line {x3 = x1 = 0} along the direction x2, moving in the (x1, x2)
plane, and with Burgers vector parallel to e1. In this special case we have

e0 =
1

2
(b⊗ n+ n⊗ b) , with b = |b|e1, n = e3
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Let us recall that the relation between the stress and the kernel c0 is given by

σ · e0 = c0 ? 1Π with Π = {x1 < 0}

i.e.

(6.52) |b|σ13(x1, x2, 0) = |b|σ13(x1, 0, 0) =
∫ +∞

x1

dy1

∫

R

dy2 c0(y1, y2)

We will use expression (6.52) in what follows to compute the core function χ1(x) for different
models.

The Peierls-Nabarro model. See Peierls [53], Nabarro [48], and Hirth, Lothe [35] or
Lardner [41] for a more recent presentation of the Peierls-Nabarro model.

In this model we have in the case of the edge dislocation (see Hirth, Lothe [35] page 221,
and up to the change of sign in σ13, or Lardner [41], page 121):

(6.53) σ13(x1, 0, 0) =
µb

2π(1− ν)

x1
x21 + ζ2

where ζ > 0 is a physical parameter (depending on the material) which indicates the size of
the core of the dislocation.

Similarly still with a Burgers vector b = |b|e1, but for a screw dislocation line
{x3 = x2 = 0} along the direction x1, moving in the plane (x1, x2), we have |b|σ13(x1, x2, 0) =
|b|σ13(0, x2, 0) =

∫ +∞
x2

dy2
∫

R
dy1 c0(y1, y2), and (see [35] page 225 or [41] page 124)

(6.54) σ13(0, x2, 0) =
µb

2π

x2
x22 + ζ2

After some computations, it can be checked that a general solution for the core function,
which matches with expressions (6.53)-(6.54) of the stress, is for ξ = (ξ1, ξ2, ξ3):

χ̂1(ξ) = e−
ζ

2

√
ξ2
1
+ξ2

2

i.e.

χ1(x) = χ0

(√
x21 + x22

)
δ0(x3)

for some function χ0. Here the core function χ1 is isotropic in (x1, x2).
Then we have

ĉ0(ξ1, ξ2) = −
µb2

2

(
ξ22 +

1
1−ν ξ

2
1√

ξ21 + ξ22

)
e−ζ
√
ξ2
1
+ξ2

2

The model of Rodney, Le Bouar, Finel [58]. In this model, we have

χ̂1(ξ) = 1{|ξ1|<K,|ξ2|<K}1{|ξ3|<K′}

where K,K ′ > 0 are two parameters to be fixed (where physically K ′ > K), depending on
the atomistic properties of the material.
Similar functions χ1 are also given in [58] for anisotropic elasticity.
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The model of Saada and Shi [59]. In this model we have

χ1(x) = ξ0(x1)δ0(x2)δ0(x3)

where x1 is the direction of the Burgers vector and the function ξ0 formally satisfies (with
ξ̌0(x1) = ξ0(−x1))

(6.55) ξ̌0 ? ξ0(x1) = φ(x1)

φ(x1) = c(1− x21)
21{|x1|<1}

where the constant c > 0 is chosen such that
∫

R
φ = 1. Here we do not know if φ can really

be written as in (6.55), i.e. if the Fourier transform of φ is non-negative.
Let us remark that in this model the core function is not smooth enough to ensure that

C0 is continuous.
See also Cai et al. [13] for some similar continuous Burgers vectors formulations.

Non-local elasticity models. See Eringen [27], and Lazar (see [42] for screw dislocations
and [43] for edge dislocations).

In this kind of models, we have for instance

χ̂1(ξ) =
1

(1 + ζ2|ξ|2) 1

2

In particular see Eringen [27], page 158 for a picture the regularized stress for a dislocation.

The model of Cuitino, Koslowski, Ortiz [21]. This phase field model is a self-
contained model describing the core of a general curved dislocation. Even if it is not com-
pletely clear, the core function could be in principle theoretically computed to match with
particular solutions of this model, at least for special configurations with straight line dislo-
cations (edge and screw).

More generally a similar estimate of the core function could be made for Ginzburg-
Landau-type models that could be imagined for dislocations (see for instance the modelling
of Denoual [22]).

From atomic simulations. As explained above, the dislocation line is surrounded by
a region, known as the core, within which linear continuum elasticity ceases to be a good
approximation. However, we have seen that calculations can still be performed within the
linear continuum elasticity, provided that the strains are regularized on the dislocation line.
More precisely, the aim of this regularization procedure is to remove the non-physical di-
vergence of the the strains inside the core without modifying (too much) the predictions of
the model outside the core. Thus it is clear that the regularization procedure (i.e. the core
tensor) is directly linked to the shape and size of the dislocation core.

A way to obtain reliable information on the core tensor, consists in measuring the shape
and size of the dislocation core using atomic scale calculations. The latter can be performed
using semi-empirical interatomic potentials (see e.g. Schroll, Vitek, Gumbsch [61], Mrovec,
Nguyen-Manh, Pettifor, Vitek [47]), or more accurately using ’ab initio’ electronic structure
calculations (see e.g. Woodward, Rao [67], Blase, Lin, Canning, Louie, Chrzan, [10]). Then
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the result has to be compared to the linear continuum elasticity solution in order to deduce
the shape and size of the core. Finally, the information obtained for different types of
dislocations cores (edge, screw ...) together with the symmetries of the atomic crystal can
be in principle combined to build a core tensor for the particular crystal under consideration.

6.3 A rough but explicit approximation of the kernel c0

We start with the following result whose proof is left to the reader:

Proposition 6.2 (Expression of the kernel c0 for isotropic elasticity and Burgers
vector in the slip plane) Let us choose Λijkl = λδijδkl + µ (δikδjl + δilδjk), b = |b|e1, and
χijkl =

1
2
(δikδjl + δilδjk) δ0(x3)χ0(x

′). Then we have

c0(x
′) =

µb2

4π
(χ0 ? χ̌0) ?

{
∂22

1

|x′| + γ∂11
1

|x′|

}

where

γ =
2(λ+ µ)

(λ+ 2µ)
=

1

1− ν
with the Poisson ratio ν =

λ

2(λ+ µ)

and we denote ∂ii =
∂2

∂x2i
for i = 1, 2.

A straightforward computation gives:

c0(x
′) =

µb2

4π
(χ0 ? χ̌0) ?

{
1

|x′|5
(
x21(2γ − 1) + x22(2− γ)

)}

where the quantity in the bracket has to be taken formally.
Let us recall that Λ satisfies the coercivity condition (2.11) if and only if the Lamé

coefficients satisfy
µ > 0, 3λ+ 2µ > 0

This implies that

γ ∈
(
1

2
, 2

)

and then this shows that the kernel c0 satisfies:

c0(x
′) > 0 on R

2\BR(0) for R large enough

In particular for λ = 0, we have γ = 1 and the kernel c0 is isotropic:

c0(x
′) =

µb2

4π
(χ0 ? χ̌0) ?∆

(
1

|x′|

)

We can use another way to mollify c0. For instance, when the size of the core is compa-
rable to 1, it seems reasonable to replace 1

|x′| by the function G1 given by

G1(x
′) =





1

|x′| if |x′| > 1

1

2
(3− |x′|2) if |x′| ≤ 1
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Here G1 ∈ W 2,∞(R2). And then we can define:

c0 =
µb2

4π
{∂22G1 + γ∂11G1}

We get

c0(x
′) =

µb2

4π





1

|x′|5
(
x21(2γ − 1) + x22(2− γ)

)
if |x′| > 1

−(1 + γ) if |x′| ≤ 1

The main problem of this approximation of the kernel is that this construction does not
guarantee that its Fourier transform is non positive everywhere, as it is formally required.
In the particular case of isotropic kernels (γ = 1), we get

c0(x
′) =

µb2

4π





1

|x′|3 if |x′| > 1

−2 if |x′| ≤ 1

6.4 A “monotone approximation” of the kernel c0

In this subsection, we mention an interesting “monotone approximation” of the kernel, which
has the interest to be much more convenient to study mathematically. This approximation
garantees that the evolution equation satisfies the inclusion principle.

Let us define for γ ∈ (1/2, 2)

c̃0(x
′) =

µb2

4π





1

|x′|5
(
x21(2γ − 1) + x22(2− γ)

)
if |x′| > 1

0 if |x′| ≤ 1

Then we define

c0(x
′) = c̃0(x

′)−
(∫

R2

c̃0

)
δ0

where δ0 is the Dirac mass. When ρ is the (signed) characteristic function of a smooth open
set Ω, we can evaluate formally at x′ ∈ ∂Ω

(c0 ? ρ
+)(x′) = (c̃0 ? ρ

+)(x′)− 1

2

(∫

R2

c̃0

)

The factor 1/2 comes from the formal convolution of the Dirac mass and the Heavyside
function. This convention garantees that the solution corresponding to a half plane Ω has
a zero velocity on ∂Ω and then is stationary. Because we are only interested in the velocity
on the discontinuity of ρ, we could consider the solutions of

∂ρ

∂t
=

(
(c̃0 ? ρ

+)(x′)− 1

2

(∫

R2

c̃0

))
|∇ρ|

which is a monotone non-local equation because c̃0 ≥ 0.
Even if the description the self-interaction of the dislocation at short distances (i.e. in

the core of the dislocation) is quite rough, this kind of modelling seems acceptable at large
distances.

47



Remark 6.3 Let us remark that the situation where we consider the simultaneous evolutions
of two dislocations in the same plane but with different Burgers vectors, would be modelled by
a non-local system of equations which would have no reason to be monotone. This is another
motivation to try first to study mathematically the case of a single non-local equation without
assuming any kind of monotonicity.
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