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American options

B

Vanilla American Option (put) with Strike K and Maturity T°

-

he American options can be exercised at any time before the maturity 7.

spot price: x
payoff function: u.(z) = (K — x)4.

Interest rate r, (assumed constant for simplicity)

e o o o

local volatility: o(t, z). We use sometimes

n(t,z) = o*(T —t,x).

o |
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Pricing

-

|7With Black-Scholes assumptions, the value of the American option with
payoff u, and maturity 7' is

u(t, zt) = SUp Dy (e‘T(T‘t)uo(flfT)!Ft)
T t, T

o |
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Pricing

-

fWith Black-Scholes assumptions, the value of the American option with
payoff u, and maturity 7' is

u(t,xy) = sup E* (e_T(T_t)uo(azT)]Ft)

TET:, T

Using now the time to maturity, we obtain: forO <t < T and x > 0

)2
Opu — I ,;3):1: 02 u—rxdyut+ru > 0, u>ue
b )2
(Oru — Ul 7;3)3; 02 u—rxdyu+ru)(u—u,) = 0,
u(t=0) = wuo

o |
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/ariational Inequality with Local Volatility

Ov Ov
_ 2 2 2 _ 2 2
V_{?}EL (R+)’x8xEL (R+)}, |v]|3/ /sz +\x8x| :

Closed Convexof V : K={veV,v>u,inR}
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/ariational Inequality with Local Volatility

o N

ov Ov
_ 2 2 2 _ 2 2
V {?}EL (Ry),z— € L (R+)}, ||v|\‘f—/2v + |l —|°.

Closed Convexof V : K={veV,v>u,inR}

Weak problem: find « € L*(0,7;K)NC°([0, T); L*(Ry.)), O;u € L*(0,T; V') s.t.

<g—?z+A(t)u,v—u>20, Vv e I, u(t =0) = uo
with
ov 0 0 0
(A(t)v, w) = /R (nga—Za—: +(n+ wa—z - r)wa—zw + Ww> dz.
-

o |
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Assumptions

-

Due to the particular choice of u, (piecewise affine and convex), mild
assumptions suffice to get a lot of information on wu:

Assumption |
For two positive constants n < 7,

and for M > 0,

o |
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Results on the V.I.
o

® yiscontinuous and wu(t,0) = K

-

nder Assumptions | on 7, the V.I. has a unique solution v and

® u > u. (u. price of the European put)

® O,u(t,.)is continuousin z fora.e.t > 0and —1 < d,u < 0.

o |
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Results on the V.I.

L N

® yiscontinuous and wu(t,0) = K

nder Assumptions | on 7, the V.I. has a unique solution v and

u > u, (ue price of the European put)

du(t,.) is continuous in x fora.e. t > 0and —1 < J,u < 0.

© o o

There exists a function v, [0, 7] — [0, K|, (called price of exercise),
S.L

u(t,r) = uo(x) & x < ~(t), Vte (0,T),

°

The function -~ Is upper semi-continuous, right continuous, and V¢ > 0
lim,_,; ~(t) exists. Therefore, the set 0{u = u.} is negligeable.

o |
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Results on the V.I.
o

® yiscontinuous and wu(t,0) = K

-

nder Assumptions | on 7, the V.I. has a unique solution v and

u > u, (ue price of the European put)

du(t,.) is continuous in x fora.e. t > 0and —1 < J,u < 0.

© o o

There exists a function v, [0, 7] — [0, K|, (called price of exercise),
S.L

u(t,r) = uo(x) & x < ~(t), Vte (0,T),

°

The function -~ Is upper semi-continuous, right continuous, and V¢ > 0
lim,_,; ~(t) exists. Therefore, the set 0{u = u.} is negligeable.

t, x)x?

Oy — 77( 5 ‘ 02 u — rx0,u +1U = 1, I = K1 {y—y, -

® Bounds in various norms, independent of 7.
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To summarize

r
% o'~y )

K X

profiles of watz =0 and ¢ > 0. the free boundary

The option should be exercised when wu(t, z:) = uo(xy).

o |
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Other results

fProposition: the price of exercice is bounded away from 0:
Under Assumption I, there exists v, > 0 depending only on 77 s.t.

’y(t) ~ 0, Vit € [Oa T]

More regularity of n = continuity of ~.

If n is regular and non increasing, then v € C1((0,T]).

o |
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|_ocalization

. N

runcate the domain, i.e. focus on prices in x € (0, ), for  large enough.
Impose an artificial boundary condition on x = z: either Dirichlet, Neu-
-mann or transparent condition.

Change V' and A(t) accordingly . In particular V' becomes

V ={v e L*0,z); 28,v € L*(0,Z); v(Z) = 0}.

o |
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|_ocalization
-

runcate the domain, i.e. focus on prices in x € (0, ), for  large enough.

Impose an artificial boundary condition on x = z: either Dirichlet, Neu-
-mann or transparent condition.

Change V' and A(t) accordingly . In particular V' becomes

V = {ve L*0,7);2d,v € L*(0,7);v(z) = 0}.

If v € (0, K) is known, one can even focus on [z, Z], with 0 < z < v¢:

find uw € L2(0,T,K) nC°([0,T]; L*(Q)), with O,u € L*(0,T;V’), s.t.
u(t=0)=u,and (Qyu—+ A(t)u,v—u) >0, YveK,

with the new closed set K:

L K={veV,v>u,in (0,z],u =u,in (0, x]}. J
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A Finite Element Method

o N

® Partition [0, 7] into subintervals [t,,_1,t,], 1 < n < N, with
Ati = tz' — ti—l; At = max; Ati.

o |

Remarks on the pricing of American options —p. 11



A Finite Element Method
- -

® Partition [0, 7] into subintervals [t,,_1,t,], 1 < n < N, with
Ati = tz' — tz’—l, At = max; Ati.

® Partition |0, z] into subintervals w; = [x;_1,x;], 1 < < Np + 1, such
that0 =z <21 < ... <zN, < TN, +1 = Z.

o |
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A Finite Element Method
- -

® Partition [0, 7] into subintervals [t,,_1,t,], 1 < n < N, with
Ati = tz' — tz’—l, At = max; Ati.

® Partition |0, z] into subintervals w; = [x;_1,x;], 1 < < Np + 1, such
that0 =z <21 < ... <zN, < TN, +1 = Z.

® Assume that both K and x coincide with nodes of 7;,: dJa < k,
0<a<k<Np+1stz.,=Kandzxz,_1==zx.
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A Finite Element Method
- -

® Partition [0, 7] into subintervals [t,,_1,t,], 1 < n < N, with
Ati = tz' — tz’—l, At = max; Ati.

® Partition |0, z] into subintervals w; = [x;_1,x;], 1 < < Np + 1, such
that0 =z <21 < ... <zN, < TN, +1 = Z.

® Assume that both K and x coincide with nodes of 7;,: dJa < k,
0<a<k<Np+1stz.,=Kandzxz,_1==zx.

Vi, = {Uh < V, Yw € %,vmw c P1(w)}

o |
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A Finite Element Method

® Partition [0, 7] into subintervals [t,,_1,t,], 1 < n < N, with
Ati = tz' — tz’—l, At = max; Ati.

® Partition |0, z] into subintervals w; = [x;_1,x;], 1 < < Np + 1, such
that0 =z <21 < ... <zN, < TN, +1 = Z.

® Assume that both K and x coincide with nodes of 7;,: dJa < k,
0<a<k<Np+1stz.,=Kandzxz,_1==zx.

Vi, = {Uh < V, Yw € 'Th,vmw c P1(w)}

Since K and z are nodes of 7, u, € V), and we can define K, C V}, by

Krn ={veVy, v>uoin|0,Z), v=u,inl0,z]}
={v € Vo, v(wi) 2 uo(®i), 1 =0,..., Np + 1, v(x;) = uo(z;), i < a}.

o |
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Discrete problem

|7The discrete problem arising from an implicit Euler scheme is: find T
(u™)o<n<n € K, satisfying u’ = u,, and foralln, 1 <n < N,

Vo € K,  (u” —u™ v —u") + Aty (A(t,)u™, v —u™) > 0.

Let (w’);—o,...n, be the nodal basis of V,, and let M and A™ in
(Nn+1)x(Nnt+1) pe the mass and stiffness matrices defined by

M, ; = (w',w’), A}, = (Altm)w’,w"), 0<i,5< Ny

the discrete problem reads, in matrix form

,
(MU™ —=U™ 1) + At, A"U™); > 0, fori> a,
. ur = UY fori<a,
ur > U’O7
@)U - U 4 AR AU = 0. |
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Results

o .

® With Assumption | and if At small enough, the discrete problem has a
unigue solution.

o |
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Results

With Assumption | and if At small enough, the discrete problem has aT
unigue solution.

Stability : calling ua; the piecewise affine function in time such that
unt(tn) = u”, if At is small enough,

T
sup Jusi(®l* + [ Juadt)fdt < Clusf-
0<t<T 0

|
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s

9

.

Results

-

With Assumption | and if At small enough, the discrete problem has a
unigue solution.

Stability : calling ua; the piecewise affine function in time such that
unt(tn) = u”, if At is small enough,

T
sup Jusi(®l* + [ Juadt)fdt < Clusf-
0<t<T 0

Convergence: Assume that the coefficients o and r are smooth
enough so that

A(t,) — At
s s s ()~ A®)w)
At—0 n=1,....Nt€l[t,_1,tn] v,weV HUHVHU}HV

= 0,
then

,Hm (Il = uatllz20,m3v) + llu — watllLe0,1:22(0,2))) = O- J
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The discrete exercise boundary

-

Question : is there is a well defined exercise boundary ¢t — ~ (%) in the
discrete problem too?

-

® Jaillet, Lamberton Lapeyre : Yes if the volatility is constant.
Main reason: the solution to the discrete problem is nondecreasing
w.r.t. t.

o |
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The discrete exercise boundary
=

Question : is there is a well defined exercise boundary ¢t — ~ (%) in the
discrete problem too?

® Jaillet, Lamberton Lapeyre : Yes if the volatility is constant.

Main reason: the solution to the discrete problem is nondecreasing
w.r.t. t.

® In the general case, this may not hold.

o |
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The discrete exercise boundary
=

Question : is there is a well defined exercise boundary ¢t — ~ (%) in the
discrete problem too?

® Jaillet, Lamberton Lapeyre : Yes if the volatility is constant.

Main reason: the solution to the discrete problem is nondecreasing
w.r.t. t.

® In the general case, this may not hold.

Theorem: Assume that 73 is uniform and that x > 0. For h and Z—i small

enough st. A? and M, + At,, A are M-matrices Vn, there exist NV real
numbers v, s.t.

<~ <K,

v Is a node of 7p,,
Vi,0 <@ < Np, u™(x;) =uo(z;) &z < 7.
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proof: penalized monotonous problem

f ® Choose V. T

(v) = V(%), V a smooth nonincreasing convex function

with
VO) = 1, and V(u)=0, u>1, K
0 > Vi(u)>-2 uekR. 5

o |
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proof: penalized monotonous problem

f ® Choose V. T

(v) = V(%), V a smooth nonincreasing convex function

with

1, and V(u)=0, u>1, \

Viiu)> -2 ueR.

V(0)
0

AVARRN|

® Introduce Vi, = {vs € Vi, vp(x;) =0, Vi < al.

o |
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proof: penalized monotonous problem

f ® Choose V. T

(v) = V(%), V a smooth nonincreasing convex function

with
VO) = 1, and V(u)=0, u>1, K
0 > Vi(u)>-2 uekR. 5

® |Introduce Vi, = {vy, € Vi, vn(z;) =0, Vi < a}.

® n=0...N:findu® €V}, s.t. u* —u, € V3, and Yo € V4,

(u?_u?_lav) n |Qz‘ ng.. | N
Ar T {Aln)ud,v) rKOKZKH 5 Ve (1) = uo(i))u(z:) = 0,
0. = ] _ K
where Q; = supp(w;) N (0, K), so 3l = [Faw;

o |
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-

® discrete maximum principle for proving that “?(5”"&')_;?(“‘1) > —1.
(needs a strong assumption on the mesh).

® pass to the limit when ¢ — 0.

o |
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Solution Procedures

fA free boundary tracking algorithm T
Assume that there is a free boundary in the discrete problem as in the
theorem above. Then at time step n, one just needs to look for v (t,,).

o |
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Solution Procedures

fA free boundary tracking algorithm T
Assume that there is a free boundary in the discrete problem as in the
theorem above. Then at time step n, one just needs to look for v (t,,).

® Start from 47 =77,

o |
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Solution Procedures

fA free boundary tracking algorithm T
Assume that there is a free boundary in the discrete problem as in the
theorem above. Then at time step n, one just needs to look for v (t,,).

® Start from 47 =77,

® solve the discrete problem corresponding to

u"—u"t n(z,tn)z” 9%u” ou™

At 5 5o — TG+ ru™ =0 for ) <z <z,

u =u, for0 <z < 47,

and u"(z) = 0,

o |
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Solution Procedures

fA free boundary tracking algorithm T
Assume that there is a free boundary in the discrete problem as in the
theorem above. Then at time step n, one just needs to look for v (t,,).

L

n—1

Start from ;) =+, ",

solve the discrete problem corresponding to

u"—u"t n(z,tn)z” 9%u” ou™

At 5 s — T — +ru = 0forvy; <x <z,

u =u, for0 <z < 47,

and u"(z) = 0,

If u™ is solution to the V.1., stop else shift the point ~;' to the next node
on the mesh left/right according to which constraint is violated by «™.

|
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Algorithm
-

choose k such that ;' ~" = z; set found=false;
while(not found)

(MU"™ —U™ 1) + At,A"U™); = 0, fori>k,
solve
ur = UY fori<k.
if (U™ =U"41<0)
found=false; k =k + 1;
ese{
compute a = (M(U™ — U™ 1) + At, A"U™)j_1;
if (a < 0)

found=false;: k =%k —1;
else found=true

. }
In our tests, the average number of iterations is ~ 2.
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A Regularized Active Set Strategy
-

fAim: for pricing, use an algorithm of Ito and Kunish based on active sets.
Semi-discrete problem: find «™ € IC such that

Yo e K, (u" —u""t v —u") 4+ Atpar, (U0 —u™) > 0.

Primal-dual formulation for ¢ > 0,

voeV, (UFEv)+a, (@) () = 0,
p = max(0,pu— c(u™ —u?)).
In iterative algorithms, 1”* may not be a function, whereas . is generally a
function.

Remedy: one parameter family of regularized problems based on
modifying the equation for pu:

L 1= amax(0, u — c(u”™ —u')), 0<a<l J
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e

guation for ;1 equivalent to

p=max(0, —x(u" —u’)),  x=ca/(1-a)e(0,+00),
which can be relaxed:
p = max(0, 1 — x(u" —u?)),

where /i is fixed.

Finally

—1

Vo € V7 (%77}) +atn(un7v)_ <,u,v> :Oa
i = max(0, i — x(u" —u°)),
it has a unique solution, with 1 a square integrable function.

o |
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Ito-Kunish Algorithm
-

® Choose u™9, setk = 0.
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Ito-Kunish Algorithm
-

® Choose u™9, setk = 0.

® |Loop

o |
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Ito-Kunish Algorithm
-

® Choose u™?, setk = 0.

® [oop
9

cop 4 AT =L E) - x(@H (@) — ul(@) > 0)
Atk = (0, 7)\ A KL

o |
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Ito-Kunish Algorithm
-

® Choose u™9, setk = 0. T

® |Loop
9

cop 4 AT =L E) - x(@H (@) — ul(@) > 0)
Atk = (0, 7)\ A KL

» Solve for u™* 1 e Vst Yo eV,

unak‘i‘l _ un—l
( At w) +ag,, (un,k+1, V) — (/j_X(un,k—l—l _uo)7 1 wiaw) = 0.
n
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Ito-Kunish Algorithm
-

® Choose u™9, setk = 0. T

® |Loop
9

cop 4 AT =L E) - x(@H (@) — ul(@) > 0)
Atk = (0, 7)\ A KL

» Solve for u™* 1 e Vst Yo eV,

unak‘i‘l _ un—l
( At w) +ag,, (un,k+17 V) — (/j_X(un,k—l—l _uo)7 1 wiaw) = 0.
n

o

0 on ATkl

set Iuk-l—l —
/jL o X(un,k—i—l L UO) on A—,k:—|—1

Y

and k=k-+1

|
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N N

Calling A,, the operator: (A,v,w) = (AL%, w) + a;, (v,w) and

n—1

Apv 41— "z

(v, p) =

Y

p — max(0, i — x (v —u?))

it is proved that G(v, u) defined by

Aphy +h
G(v, pm)h = L
hiz = XU a—x(v—u0)>01 /11

is a generalized derivative in V' x L? of F in the sense that

i |F'(v+hi,pu+ he) — F(v, 1) — G(v+ hy, o+ ho)h|| _
1h]|—0 1A

o |
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Semi-smooth Newton

T

ote that in the algorithm above,

Gl ( Anhy + hy ) |

hg — XlA—,k-H ]’Ll

Thus the primal-dual active set algorithm above can be seen as a
semi-smooth Newton method applied to F, i.e.

(™ T ) = (W, )+ GTH R ) F (™, p).

o |

Remarks on the pricing of American options —p. 23



Convergence

-

Ito and Kunish have proved that the convergence is superlinear, if the
initial guess is not too far from the solution.

0.01

700

T T T T
"conv_exerci se"

T T
"convlto"

0.001 ¢ 600

le-04 500
le-05 ¢ 400
le-06 | 300
le-07 ¢ 200

le-08 | 100

le-09 t . t t 0
0

Convergence for one time step in the pricing of an American put on a
basket of two assets. y = 10”.
Left: norm of the increment of u. Right §(#(A*—)).

o |
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Imensional example

A two-d

Mesh adaption and active set strategy

min((K — z1)4, (K — 22)+)

’U,o(afl, .TQ)

A put on a basket of two assets
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S
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i

X
%

%
351‘
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N

= 1 month and ¢ = 1 year to maturity

IcCe at ¢

mesh and pr
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the active set
-

he exercise region one year to maturity (zoom)

"exercise 250" —

— T T T 1 100
i 1%
1 90
1 85
1 80

175

00083 : 10

70 75 8 8 90 95 100

o |
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Another example

Mesh adaption and active set strategy

1
2

Uo (21, 02) = min((K —z1)4, (K —x2)4)+ (K min((zy — K)y, (2 — K)4))

"price_220" ——

VAW
N\
v‘A %\VE

ALY
AN

SSS=r—

Q2=

——

AN
VAV AV AW AW A
SEEOOS
SSS
avs S

AV
==
SIS

252

X
IR
N
OORSRRRS
COARRSRRRS
RN

V.

P
7S¢

IAAVAV/
K
<]

oK
K

AV
AT
VAR DS
O A AvAVATS

<1
&

yAVAN
N
AN
XIS
AVAvATSS
YORICH
SOTA

Kl
DA

VAN DY
DU 5 74 ZAVAVAY
SRR
7 VAVAVS

S/
av,
X

NP ATAVAVAVAWAW.A =) e —
IO A==
OSSN s >

PR

A7)

A
NS

mesh and price at ¢t = 11 months to maturity
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A posteriori error indicators

o N

® Aim Use a posteriori error indicators to adaptively refine the
time-price mesh. The error indicators are computed from the discrete
approximation to the solution.

o |
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A posteriori error indicators

-

® Aim Use a posteriori error indicators to adaptively refine the

time-price mesh. The error indicators are computed from the discrete
approximation to the solution.

® Strategy Refine the mesh independently in time and price with
different error indicators. (C. Bernardi et al)

o |
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A posteriori error indicators

-

® Aim Use a posteriori error indicators to adaptively refine the

time-price mesh. The error indicators are computed from the discrete
approximation to the solution.

® Strategy Refine the mesh independently in time and price with
different error indicators. (C. Bernardi et al)

® [or that, it is necessary to change the discretization, to allow time
dependent z-mesh: = discontinuous functions w.r.t. time.

o |
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A posteriori error indicators

-

® Aim Use a posteriori error indicators to adaptively refine the

time-price mesh. The error indicators are computed from the discrete
approximation to the solution.

® Strategy Refine the mesh independently in time and price with
different error indicators. (C. Bernardi et al)

® [or that, it is necessary to change the discretization, to allow time
dependent z-mesh: = discontinuous functions w.r.t. time.

Let us first consider the semi-discrete problem for European options with
a non uniform time grid s.t. At,, < patAtp41:

find (u™)g<n<n € L?(Q) x V4" satisfying

ud = Uo,

\— Vn,1<n <N, VYvel, (u" — u”_l,v) + Atnae, (u™,v) = 0.

|
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Stability
L

nder assumptions |, Garding’s inequality

vVt € [0,T], Yv € V), ai(v,v) > ~oa. [vlE — A||v]|?.

N

Assume 2)\At < 1. Introduce the norm for the sequence (v™)1<m<n:

L(0™)]]n )
_ ((1_[1(1 _ 2>\Ati)> o™ |2 + %afmn 2:1 At (Hl (1- 2AAt¢)> vm2v> ,
we have

(™)l < [lu].

o |
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The Fully Discrete Problem

f.. V0 <n < N, let (7,,) be a family of grids of 2 = (0, z). The grids TnhT
for different values of n are not independent: indeed, each 7,,;, is

obained from 7,,_; j by cutting some elements of 7,,_; ; or by gluing
together elements of 7,,_1 5.

o |
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The Fully Discrete Problem

f.. V0 <n < N, let (7,,) be a family of grids of 2 = (0, z). The grids TnhT
for different values of n are not independent: indeed, each 7,,;, is
obained from 7,,_; j by cutting some elements of 7,,_; ; or by gluing
together elements of 7,,_1 5.

® Assume that for two adjacent elements w and w’ of (7,,1), ho < prhe -
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The Fully Discrete Problem

f.. V0 <n < N, let (7,,) be a family of grids of 2 = (0, z). The grids TnhT
for different values of n are not independent: indeed, each 7,,;, is

obained from 7,,_; j by cutting some elements of 7,,_; ; or by gluing
together elements of 7,,_1 5.

® Assume that for two adjacent elements w and w’ of (7,,1), ho < prhe -

® Definefor0<n <N,

Vo = {vh eV, Vwe’]}m,vhw EP1}, V,r?h:VnhﬂVO.
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The Fully Discrete Problem

f.. V0 <n < N, let (7,,) be a family of grids of 2 = (0, z). The grids TnhT
for different values of n are not independent: indeed, each 7,,;, is

obained from 7,,_; j by cutting some elements of 7,,_; ; or by gluing
together elements of 7,,_1 5.

® Assume that for two adjacent elements w and w’ of (7,,1), ho < prhe -

® Definefor0<n <N,
Vo = {vn €V, Vw € Top,vp), € P1}, VO =V, N V.
® Assuming that uy € Vyy, the fully discrete problem reads:
find (u?)o<n<n,u? € VY st u) =wugand
V1<n<N, Vo, €V, (uf—ul"" vp)+ Atpay, (uj,vs) = 0.
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—rror indicators for adapting the time grit

Assume that the function uy belong to V4. Then, there exists a constant
o < 3 such that if At < <

[u = uadl](tn)

< ( » o)At + —E (14 pai)lua — wn adl(t) + 4 <Zn?n>%>,

. : o-..
min min min ,,—1

2

2 2t 1 9min | m m—12
N = Ate 1—2 uj, —uy Vs

and ¢, c(ug) and L are positive constants which can be computed.
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-rror indicators for adapting the price gri

Assume that ug € V;,. Then the following a posteriori error estimate holds
between (u")o<n<n and (u} )o<n<n: forall t,, 1 <n < N,

[(uae = un,ae)]]*(tn)

n m—1

C
S 0_2 | maX(Q, 1 + pAt) Z At?n H 1 T 2)‘At Z nm ,w?
min m=1 i=1 wWETmn
where
m—1 m
_ — uh _Ouy m
hmw Qfmax(w) H e ox T Tp HLQ(W)

Remark no jump terms, because dimension = 1.
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Upper Bounds for the Error Indicators
| L -

or that, we introduce the notation |||v™|||, for (v")1<n<n, V™ € Vp:

2) n—1
n O min n
oI = 72 A, [T (1 - 220 "}
=1
[ llu™ = uplll + ol lu" = = up | \

e~ AMn-1 9
Mn < C + (H (’LL — uAt)HLQ(tn_l,tn;V’) T H’LL - uAtHLQ(tn—latn;VO))
Omin (9t 0

\ +(E=(max(1, par))® + 2-) Aty [[u)] )
and
u "t — T — w4l o(u™ — u})
o < 0 (I R g+ s 2 B ).

For European options, the indicators are reliable and efficient.
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What about the American options?

-

The same bounds hold, i.e. error < indicators hold for American options.
Therefore the indicators can be used.

On the contrary, the opposite bounds are not proved. Efficiency is not
guaranteed.

o |
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Error vs. Indicators

e

uropean option with Constant volatility

error 5.67 5.66 5.67 4.66 3.73 3.25 3.26 2.53 2.53 1.95 1.45 1.06

estim. err. 12.27 8.56 6.62 5.38 4.58 4.19 3.39 2.95 2.56 2.21 1.85 1.59

error 1.06 0.77 0.77 0.57 0.57 0.41 0.41 0.30

estim. err. 1.48 1.29 1.03 0.90 0.77 0.67 0.52 0.44

O'Hu — uh,AtHLQ((O,T);V) and (Zm(n,?n + % Zw 77727,“0)) 2 for the different
meshes
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Adaptive mesh refinement

"meshé"

" mesh0"

20 40 60 80 100 120 140 160 180 200

0

20 40 60 80 100 120 140 160 180 200

0

“mesh19"

“mesh12"

01

0. 008

0. 006

0. 004

0. 002

100 105 110 115 120

85 90 95

80

20 40 60 80 100 120 140 160 180 200

0

Remarks on the pricing of American options — p. 36



The exercise boundary
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Non uniform volatility

The local volatility surface
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Left: the exercise boundary. Right: the exercise boundaries for different

mesh refinements
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Non uniform volatility

’ Error indicators.
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