
0.5
setgray0

0.5
setgray1

Remarks on the pricing of American
options

Y. Achdou and O. Pironneau

achdou@math.jussieu.fr

Université Paris 7
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American options

The American options can be exercised at any time before the maturity T .

Vanilla American Option (put) with Strike K and Maturity T

spot price: x

payoff function: u◦(x) = (K − x)+.

interest rate r, (assumed constant for simplicity)

local volatility: σ(t, x). We use sometimes

η(t, x) = σ2(T − t, x).
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Pricing

With Black-Scholes assumptions, the value of the American option with
payoff u◦ and maturity T is

u(t, xt) = sup
τ∈Tt,T

E
∗
(

e−r(τ−t)u◦(xτ )|Ft

)

Using now the time to maturity, we obtain: for 0 < t < T and x > 0

∂tu − η(t, x)x2

2
∂2

xxu − rx∂xu + ru ≥ 0, u ≥ u◦

(∂tu − η(t, x)x2

2
∂2

xxu − rx∂xu + ru)(u − u◦) = 0,

u(t = 0) = u◦

Remarks on the pricing of American options – p. 4



Pricing

With Black-Scholes assumptions, the value of the American option with
payoff u◦ and maturity T is

u(t, xt) = sup
τ∈Tt,T

E
∗
(

e−r(τ−t)u◦(xτ )|Ft

)

Using now the time to maturity, we obtain: for 0 < t < T and x > 0

∂tu − η(t, x)x2

2
∂2

xxu − rx∂xu + ru ≥ 0, u ≥ u◦

(∂tu − η(t, x)x2

2
∂2

xxu − rx∂xu + ru)(u − u◦) = 0,

u(t = 0) = u◦

Remarks on the pricing of American options – p. 4



Variational Inequality with Local Volatility

V =

{

v ∈ L2(R+), x
∂v

∂x
∈ L2(R+)

}

, ‖v‖2
V =

∫

R2

v2 + |x∂v

∂x
|2.

Closed Convex of V : K = {v ∈ V, v ≥ u◦ in R+}

Weak problem: find u ∈ L2(0, T ;K)∩C0([0, T ]; L2(R+)), ∂tu ∈ L2(0, T ; V ′) s.t.

〈

∂u

∂t
+ A(t)u, v − u

〉

≥ 0, ∀v ∈ K, u(t = 0) = u◦

with

〈A(t)v, w〉 =

∫

R+

(

η

2
x2 ∂v

∂x

∂w

∂x
+ (η + x

∂η

∂x
− r)x

∂v

∂x
w + rvw

)

dx.
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Assumptions

Due to the particular choice of u◦ (piecewise affine and convex), mild
assumptions suffice to get a lot of information on u:

Assumption I
For two positive constants η ≤ η,

0 < η ≤ η ≤ η a.e.

and for M > 0,

|x∂η

∂x
| ≤ M a.e.
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Results on the V.I.

Under Assumptions I on η, the V.I. has a unique solution u and

u is continuous and u(t, 0) = K

u ≥ ue (ue price of the European put)

∂xu(t, .) is continuous in x for a.e. t > 0 and −1 ≤ ∂xu ≤ 0.

There exists a function γ , [0, T ] → [0, K], (called price of exercise),
s.t.

u(t, x) = u◦(x) ⇔ x ≤ γ(t), ∀t ∈ (0, T ),

The function γ is upper semi-continuous, right continuous, and ∀t > 0

limτ→t− γ(t) exists. Therefore, the set ∂{u = u◦} is negligeable.

∂tu − η(t, x)x2

2
∂2

xxu − rx∂xu + ru = µ, µ = rK1{u=u◦}.

Bounds in various norms, independent of η.
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To summarize

u◦(x) = (K − x)+.

={           }u>u
0

Ω
+

t

K x

u=u0

Γ

profiles of u at t = 0 and t > 0. the free boundary

The option should be exercised when u(t, xt) = u◦(xt).
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Other results

Proposition: the price of exercice is bounded away from 0:
Under Assumption I, there exists γ0 > 0 depending only on η̄ s.t.

γ(t) ≥ γ0, ∀t ∈ [0, T ].

More regularity of η ⇒ continuity of γ.

If η is regular and non increasing, then γ ∈ C1((0, T ]).
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Localization

Truncate the domain, i.e. focus on prices in x ∈ (0, x̄), for x̄ large enough.
Impose an artificial boundary condition on x = x̄: either Dirichlet, Neu-
-mann or transparent condition.
Change V and A(t) accordingly . In particular V becomes

V = {v ∈ L2(0, x̄); x∂xv ∈ L2(0, x̄); v(x̄) = 0}.

If γ0 ∈ (0, K) is known, one can even focus on [x, x̄], with 0 ≤ x < γ0:

find u ∈ L2(0, T,K) ∩ C0([0, T ]; L2(Ω)), with ∂xu ∈ L2(0, T ; V ′), s.t.

u(t = 0) = u◦ and 〈∂tu + A(t)u, v − u〉 ≥ 0, ∀v ∈ K,

with the new closed set K:

K = {v ∈ V, v ≥ u◦ in (0, x̄], u = u◦ in (0, x]}.
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A Finite Element Method

Partition [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ N , with
∆ti = ti − ti−1, ∆t = maxi ∆ti.

Partition [0, x̄] into subintervals ωi = [xi−1, xi], 1 ≤ i ≤ Nh + 1, such
that 0 = x0 < x1 < . . . < xNh

< xNh+1 = x̄.

Assume that both K and x coincide with nodes of Th: ∃α < κ,
0 ≤ α < κ < Nh + 1 s.t. xκ = K and xα−1 = x.

Vh =
{

vh ∈ V, ∀ω ∈ Th, vh|ω ∈ P1(ω)
}

.

Since K and x are nodes of Th, u◦ ∈ Vh and we can define Kh ⊂ Vh by

Kh = {v ∈ Vh, v ≥ u◦ in [0, x̄), v = u◦ in [0, x]}
= {v ∈ Vh, v(xi) ≥ u◦(xi), i = 0, . . . , Nh + 1, v(xi) = u◦(xi), i < α}.
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Discrete problem

The discrete problem arising from an implicit Euler scheme is: find
(un)0≤n≤N ∈ Kh satisfying u0 = u◦, and for all n, 1 ≤ n ≤ N ,

∀v ∈ Kh,
(

un − un−1, v − un
)

+ ∆tn〈A(tn)un, v − un〉 ≥ 0.

Let (wi)i=0,...Nh
be the nodal basis of Vh, and let M and A

m in
(Nh+1)×(Nh+1) be the mass and stiffness matrices defined by

Mi,j = (wi, wj), A
m
i,j = 〈A(tm)wj , wi〉, 0 ≤ i, j ≤ Nh.

the discrete problem reads, in matrix form


























(M(Un − Un−1) + ∆tnA
nUn)i ≥ 0, for i ≥ α,

Un
i = U0

i for i < α,

Un ≥ U0,

(Un − U0)T (M(Un − Un−1) + ∆tnA
nUn) = 0.
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Results

With Assumption I and if ∆t small enough, the discrete problem has a
unique solution.

Stability : calling u∆t the piecewise affine function in time such that
u∆t(tn) = un, if ∆t is small enough,

sup
0≤t≤T

‖u∆t(t)‖2 +

∫ T

0

|u∆t(t)|2V dt ≤ C‖u◦‖2
V .

Convergence: Assume that the coefficients σ and r are smooth
enough so that

lim
∆t→0

sup
n=1,...,N

sup
t∈[tn−1,tn]

sup
v,w∈V

|((A(tn) − A(t))v, w)|
‖v‖V ‖w‖V

= 0,

then

lim
h,∆t→0

(

‖u − u∆t‖L2(0,T ;V ) + ‖u − u∆t‖L∞(0,T ;L2(0,x̄))

)

= 0.
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The discrete exercise boundary

Question : is there is a well defined exercise boundary t → γh(t) in the
discrete problem too?

Jaillet, Lamberton Lapeyre : Yes if the volatility is constant.
Main reason: the solution to the discrete problem is nondecreasing
w.r.t. t.

In the general case, this may not hold.

Theorem: Assume that Th is uniform and that x > 0. For h and h2

∆t
small

enough s.t. A
n
α and Mα + ∆tnA

n
α are M-matrices ∀n, there exist N real

numbers γn
h , s.t.

x ≤ γn
h < K,

γn
h is a node of Th,

∀i, 0 ≤ i ≤ Nh, un(xi) = u◦(xi) ⇔ xi ≤ γn
h .
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proof: penalized monotonous problem

Choose Vε(v) = V( v
ε
), V a smooth nonincreasing convex function

with

V(0) = 1, and V(u) = 0, u ≥ 1,

0 ≥ V ′(u) ≥ −2 u ∈ R.

1

ε

Introduce Ṽh = {vh ∈ Vh, vh(xi) = 0, ∀i < α}.
n = 0 . . .N : find un

ε ∈ Vh s.t. un
ε − u◦ ∈ Ṽh, and ∀v ∈ Ṽh,

(un
ε − un−1

ε , v)

∆tn
+ 〈A(tn)un

ε , v〉− rK
∑

α≤i≤κ

|Ω̃i|
2

Vε(u
n
ε (xi)−u◦(xi))v(xi) = 0,

where Ω̃i = supp(wi) ∩ (0, K), so |Ω̃i|
2 =

∫K

0
wi.
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discrete maximum principle for proving that un
ε (xi)−un

ε (xi−1)
h

≥ −1.
(needs a strong assumption on the mesh).

pass to the limit when ε → 0.
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Solution Procedures

A free boundary tracking algorithm
Assume that there is a free boundary in the discrete problem as in the
theorem above. Then at time step n, one just needs to look for γh(tn).

Start from γn
h = γn−1

h ,

solve the discrete problem corresponding to

un−un−1

∆tn
− η(x,tn)x2

2
∂2un

∂x2 − rx∂un

∂x
+ run = 0 for γn

h < x < x̄,

un = u◦ for 0 ≤ x ≤ γn
h ,

and un(x̄) = 0,

if un is solution to the V.I., stop else shift the point γn
h to the next node

on the mesh left/right according to which constraint is violated by un.
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∂2un

∂x2 − rx∂un

∂x
+ run = 0 for γn

h < x < x̄,

un = u◦ for 0 ≤ x ≤ γn
h ,

and un(x̄) = 0,

if un is solution to the V.I., stop else shift the point γn
h to the next node

on the mesh left/right according to which constraint is violated by un.
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Algorithm

choose k such that γn−1
h = xk; set found=false;

while(not found)

.. solve







(M(Un − Un−1) + ∆tnA
nUn)i = 0, for i ≥ k,

Un
i = U0

i for i < k.

.. if ((Un − U0)k+1 < 0 )

.. found=false; k = k + 1;

.. else {

.. compute a = (M(Un − Un−1) + ∆tnA
nUn)k−1;

.. if (a < 0)

.. found=false; k = k − 1;

.. else found=true

.. }
In our tests, the average number of iterations is ∼ 2.
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A Regularized Active Set Strategy

Aim: for pricing, use an algorithm of Ito and Kunish based on active sets.
Semi-discrete problem: find un ∈ K such that

∀v ∈ K,
(

un − un−1, v − un
)

+ ∆tnatn
(un, v − un) ≥ 0.

Primal-dual formulation for c > 0,

∀v ∈ V,
(

un−un−1

∆tn
, v
)

+ atn
(un, v) − 〈µ, v〉 = 0,

µ = max(0, µ − c(un − u0)).

In iterative algorithms, µm may not be a function, whereas µ is generally a
function.
Remedy: one parameter family of regularized problems based on
modifying the equation for µ:

µ = α max(0, µ − c(un − u0)), 0 < α < 1
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Equation for µ equivalent to

µ = max(0,−χ(un − u0)), χ = cα/(1 − α) ∈ (0, +∞),

which can be relaxed:

µ = max(0, µ̄ − χ(un − u0)),

where µ̄ is fixed.

Finally

∀v ∈ V,
(

un−un−1

∆tn
, v
)

+ atn
(un, v) − 〈µ, v〉 = 0,

µ = max(0, µ̄ − χ(un − u0)),

it has a unique solution, with µ a square integrable function.
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Ito-Kunish Algorithm

Choose un,0, set k = 0.

Loop

Set







A−,k+1 = {x : µ̄k(x) − χ(un,k(x) − u0(x)) > 0}
A+,k+1 = (0, x̄)\A−,k+1.

Solve for un,k+1 ∈ V s.t. ∀v ∈ V,

(

un,k+1 − un−1

∆tn
, v

)

+atn
(un,k+1, v)−(µ̄−χ(un,k+1−u0), 1A−,k+1v) = 0.

set µk+1 =







0 on A+,k+1,

µ̄ − χ(un,k+1 − u0) on A−,k+1
and k = k + 1
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Calling An the operator: 〈Anv, w〉 =
(

v
∆tn

, w
)

+ atn
(v, w) and

F (v, µ) =





Anv + µ − un−1

∆tn

µ − max(0, µ̄ − χ(v − u0))



 ,

it is proved that G(v, µ) defined by

G(v, µ)h =





Anh1 + h2

h2 − χ1{µ̄−χ(v−u0)>0}h1





is a generalized derivative in V × L2 of F in the sense that

lim
‖h‖→0

‖F (v + h1, µ + h2) − F (v, µ) − G(v + h1, µ + h2)h‖
‖h‖ = 0.
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Semi-smooth Newton

Note that in the algorithm above,

G(un,k, µk)h =





Anh1 + h2

h2 − χ1A−,k+1h1



 .

Thus the primal-dual active set algorithm above can be seen as a
semi-smooth Newton method applied to F , i.e.

(un,k+1, µk+1) = (un,k, µk) + G−1(un,k, µk)F (un,k, µk).
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Convergence

Ito and Kunish have proved that the convergence is superlinear, if the
initial guess is not too far from the solution.
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Convergence for one time step in the pricing of an American put on a
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A two-dimensional example

Mesh adaption and active set strategy
A put on a basket of two assets: u◦(x1, x2) = min((K − x1)+, (K − x2)+)

mesh and price at t = 1 month and t = 1 year to maturity
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the active set

The exercise region one year to maturity (zoom)
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Another example

Mesh adaption and active set strategy

u◦(x1, x2) = min((K−x1)+, (K−x2)+)+(K min((x1 − K)+, (x2 − K)+))
1
2
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mesh and price at t = 11 months to maturity
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A posteriori error indicators

Aim Use a posteriori error indicators to adaptively refine the
time-price mesh. The error indicators are computed from the discrete
approximation to the solution.

Strategy Refine the mesh independently in time and price with
different error indicators. (C. Bernardi et al)

For that, it is necessary to change the discretization, to allow time
dependent x-mesh: ⇒ discontinuous functions w.r.t. time.

Let us first consider the semi-discrete problem for European options with
a non uniform time grid s.t. ∆tn ≤ ρ∆t∆tn±1:
find (un)0≤n≤N ∈ L2(Ω) × V N

0 satisfying

u0 = u0,

∀n, 1 ≤ n ≤ N, ∀v ∈ V0,
(

un − un−1, v
)

+ ∆tnatn
(un, v) = 0.
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Stability

Under assumptions I, Gårding’s inequality

∀t ∈ [0, T ], ∀v ∈ V0, at(v, v) ≥ 1

4
σ2

min|v|2V − λ‖v‖2.

Assume 2λ∆t < 1. Introduce the norm for the sequence (vm)1≤m≤n:

[[(vm)]]n

=

((

n
∏

i=1

(1 − 2λ∆ti)

)

‖vn‖2 +
1

2
σ2

min

n
∑

m=1

∆tm

(

m−1
∏

i=1

(1 − 2λ∆ti)

)

|vm|2V

)
1
2

,

we have

[[(um)]]n ≤ ‖u0‖.
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The Fully Discrete Problem

∀0 ≤ n ≤ N , let (Tnh) be a family of grids of Ω = (0, x̄). The grids Tnh

for different values of n are not independent: indeed, each Tnh is
obained from Tn−1,h by cutting some elements of Tn−1,h or by gluing
together elements of Tn−1,h.

Assume that for two adjacent elements ω and ω′ of (Tnh), hω ≤ ρhhω′ .

Define for 0 ≤ n ≤ N ,

Vnh =
{

vh ∈ V, ∀ω ∈ Tnh, vh|ω ∈ P1

}

, V 0
nh = Vnh ∩ V0.

Assuming that u0 ∈ V0h, the fully discrete problem reads:

find (un
h)0≤n≤N , un

h ∈ V 0
nh s.t. u0

h = u0 and

∀1 ≤ n ≤ N, ∀vh ∈ V 0
nh,

(

un
h − un−1

h , vh

)

+ ∆tnatn
(un

h, vh) = 0.
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Error indicators for adapting the time grid

Assume that the function u0 belong to V1h. Then, there exists a constant
α ≤ 1

2 such that if ∆t ≤ α
λ

:

[[u − u∆t]](tn)

≤ c

(

L

σ2
min

c(u0)∆t +
µ

σ2
min

(1 + ρ∆t)[[u∆t − uh,∆t]](tn) +
µ

σ2
min

(
n
∑

m=1

η2
m)

1
2

)

,

where

η2
m = ∆tme−2λtm−1

σ2
min

2
|um

h − um−1
h |2V ,

and c, c(u0) and L are positive constants which can be computed.
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Error indicators for adapting the price grid

Assume that u0 ∈ V1h. Then the following a posteriori error estimate holds
between (un)0≤n≤N and (un

h)0≤n≤N : for all tn, 1 ≤ n ≤ N ,

[[(u∆t − uh,∆t)]]
2(tn)

≤ c

σ2
min

max(2, 1 + ρ∆t)

n
∑

m=1

∆tm

m−1
∏

i=1

(1 − 2λ∆ti)
∑

ω∈Tmh

η2
m,ω,

where

ηm,ω =
hω

xmax(ω)
‖um

h − um−1
h

∆tm
− rx

∂um
h

∂x
+ rum

h ‖L2(ω) .

Remark no jump terms, because dimension = 1.
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Upper Bounds for the Error Indicators

For that, we introduce the notation |||vn|||, for (vn)1≤n≤N , vn ∈ V0:

|||vn|||2 =
σ2

min

2
∆tn

n−1
∏

i=1

(1 − 2λ∆ti)|vn|2V .

ηn ≤ c











|||un − un
h||| +

√
ρ∆t|||un−1 − un−1

h |||

+
e−λtn−1

σmin
(‖ ∂

∂t
(u − u∆t)‖L2(tn−1,tn;V ′

0
) + ‖u − u∆t‖L2(tn−1,tn;V0))

+( L
σ2
min

(max(1, ρ∆t))
1
2 + λµ

σ2
min

)∆tn||u0||











and

ηn,ω ≤ C

(

‖un−1 − un−1
h − un + un

h

∆tn
‖V ′

0
(Kω) + µ‖S ∂(un − un

h)

∂S
‖L2(Kω)

)

.

For European options, the indicators are reliable and efficient.
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What about the American options?

The same bounds hold, i.e. error . indicators hold for American options.
Therefore the indicators can be used.

On the contrary, the opposite bounds are not proved. Efficiency is not
guaranteed.
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Error vs. Indicators

European option with Constant volatility

error 5.67 5.66 5.67 4.66 3.73 3.25 3.26 2.53 2.53 1.95 1.45 1.06

estim. err. 12.27 8.56 6.62 5.38 4.58 4.19 3.39 2.95 2.56 2.21 1.85 1.59

error 1.06 0.77 0.77 0.57 0.57 0.41 0.41 0.30

estim. err. 1.48 1.29 1.03 0.90 0.77 0.67 0.52 0.44

σ‖u − uh,∆t‖L2((0,T );V ) and
(
∑

m(η2
m + ∆tm

σ2

∑

ω η2
m,ω)

)
1
2 for the different

meshes
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Adaptive mesh refinement
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The exercise boundary
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Non uniform volatility

"volatility"
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Non uniform volatility
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