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Abstract

In this work, we consider a general fully overdamped Frenkel-Kontorova model. This model
describes the dynamics of a infinite chain of particles, moving in a periodic landscape. Our aim
is to describe the macroscopic behavior of this system. We study a singular limit corresponding
to a high density of particles moving in a vanishing periodic landscape. We identify the limit
equation which is a nonlinear diffusion equation. Our homogenization approach is done in the
framework of viscosity solutions.
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1 Introduction

The aim of this paper is to describe the macroscopic behavior of an infinite chain of particles moving
in a vanishing periodic landscape. At the microscopic level these particles are assumed to solve
a generalized fully overdamped Frenkel-Kontorova (FK) model where the velocity is proportional
to the force acting on the particles. The classical physical model was introduced by Kontorova,
Frenkel in [12] to describe the plasticity at a microscopic level. For a good overview on the FK
model and on its applications, we refer to the recent book [4] of Braun and Kivshar and the article
of Floria and Mazo [7].

In this paper we consider the dynamics of particles on the real line: for each i ∈ Z, we denote
by Ui(τ) ∈ R the position of the i-th particle at time τ . To describe the dynamics corresponding
to the interaction of each particles with the m nearest neighbors on the left and the m nearest
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neighbors on the right we consider the following infinite system of ODEs:

(1.1)


dUi
dτ

(τ) = ε2(α−1)F

([
Ui+j(τ)− Ui(τ)

ε2(α−1)

]m
j

, Ui(τ)

)
for τ ∈ (0,∞) and i ∈ Z

Ui(0) =
1

ε
u0(iε

α) for i ∈ Z,

where ε > 0 is a small parameter and, for m ∈ N∗, we set

[Vj ]
m
j := V = (V−m, V−m+1, . . . , V−1, V1, . . . , Vm−1, Vm) ∈ R2m.

Our goal is to study the macroscopic behaviour of the chain of particles as ε goes to zero.
On the initial data u0, the interactions F and on the exponent α we assume the following.

(H0) (Initial gradient bounded from below and above)

The function u0 is such that (u0)x ∈W 2,∞(R) and there exists δ0 > 0 such that

δ0 ≤ (u0)x ≤
1

δ0
on R.

(H1) (i) (Regularity)

F ∈ C1(R2m × R) and is globally Lipschitz continuous on R2m × R.

(ii) (Periodicity)

For all (V, V0) ∈ R2m × R, F (V, V0 + 1) = F (V, V0).

(iii) (Monotonicity)

For all 1 ≤ |i| ≤ m, Fi :=
∂F

∂Vi
≥ 0 on R2m × R.

(iv) (Invariance by linear additions)

For all (V, V0, q) ∈ R2m × R× R, F ([Vj + jq]mj , V0) = F ([Vj ]
m
j , V0).

(v) (Non-degeneracy w.r.t. quadratic displacements)

For all (V0, q) ∈ R× R,
d

dq
F

([
j2

2
q

]m
j

, V0

)
≥ ν,

for some positive constant ν.

(vi) (Zero mean value of f)

For all h ∈ R, define f(h) as the unique real number such that

(1.2) F

([
−j

2

2
f(h)

]m
j

, h

)
= 0;

the 1-periodic function f : R→ R thus defined is assumed to satisfy∫ 1

0
f(h)dh = 0.
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(H2) (The exponent α) We suppose α > 2.

Let us make some comments on these assumptions.
(H0) We ask for (u0)x in W 2,∞(R) for the sake of simplicity in the proof of our main result

(Theorem 1.1). The regularity of u0 can be indeed weakened to Lipschitz continuous by standard
approximation arguments. Thus important information in (H0) is the boundedness of the gradient.

(H1)
(i) The Hamiltonian F is needed to be only C1 but we decided to assume F globally Lipschitz
continuous always for the sake of simplicity in the proof of Theorem 1.1.
(ii) This assumption takes into account the existence of the periodic landscape.
(iii) This monotonicity assumption will play a crucial role in our analysis because it will guarantee
the existence of a comparison principle for our system of particles.
(vi) This assumption is always satisfied for F replaced by a+F for a suitable constant a ∈ R. The
zero mean value property of the function f means that the periodic landscape is balanced and does
not induce any drift in the motion of the particles.
(iv) This is our most striking condition and it is technically used to remove the contribution of
linear displacements of the particles and to focus on quadratic displacements. However, we remark
that (iv) is satisfied if, for instance, F (V, V0) is a function depending only on the symmetric part
V−j + Vj for each j = 1, ...,m and on V0. Moreover, it is also satisfied if F (V, V0) is linear in V ,
with suitable coefficients vanishing the linear contributions [jq]mj .

(v) This non-degeneracy assumption w.r.t. the quadratic contributions
[
j2

2 q
]m
j

is used to ensure

the existence of the periodic potential f by the inverse function theorem. In particular, our analysis
would remain true if ν depends on (V0, q) and if we are sure that equation (1.2) admits at least one
solution.

(H2) Let us stress here that the limit α > 2 is not due to regularity assumptions. Indeed, we
will prove in Theorem 1.6 that if we take α = 2 the homogenized equation is, in general, different
from the one given by our main result Theorem 1.1. This seems to be a remarkable feature because
this phenomenon is not present in the homogeneisation for the corresponding continuous PDEs.
(See equation (1.14) and discussion below.) Note that the case α < 2 remains open.

The classical (and simplest) example of the fully overdamped Frenkel Kontorova model is

dUi
dτ

= Ui+1 + Ui−1 − 2Ui + ε2(α−1) sin(2πUi)

corresponding to interactions with the first nearest neighbors (m = 1) and

(1.3) F (V−1, V1, V0) = V−1 + V1 + f(V0)

with f(V0) = sin(2πV0).

Remark that for our initial datum Ui(0) = 1
εu0(iε

α), we can see that the high density of
particles behaves like ε1−α 1

(u0)x
. This shows that our scaling corresponds to the case where the

small amplitude ε2(α−1) of the periodic potential behaves exactly as the square of the inverse of the
particle density. This can be rephrased, saying that we are interested in a distinguished limit with
a weak periodic landscape and height density particles.
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To study the macroscopic behavior of the system in the limit as ε goes to zero, it is convenient
to introduce a parabolic rescaling, defining the function

(1.4) U ε(t, x) := εUb x
εα
c

(
t

ε2α

)
where b·c denotes the floor integer part. Note that if U is a solution of system (1.1) then U ε has
to solve the following equation:

(1.5)

 U εt (t, x) =
1

ε
F

([
U ε(t, x+ jεα)− U ε(t, x)

ε2α−1

]m
j

,
U ε(t, x)

ε

)
for (t, x) ∈ (0,∞)× R

U ε(0, x) = u0(b xεα cε
α) for x ∈ R,

which will be understood in the viscosity sense.

Our main result, which studies the singular limit as ε goes to zero (α > 2), is the following.

Theorem 1.1. (Diffusive limit by homogenization (α > 2))
Assume (H0), (H1) and (H2). There exist a unique viscosity solution U ε of (1.5), and a function
G : (0,∞)→ R that does not depend on u0 and such that

(1.6) G ∈ C0(0,∞) is positive, lim
p→0

G(p) = 0 and lim
p→∞

G(p) = l > 0.

Moreover, as ε→ 0, the function U ε converges to u0 locally uniformly on compact sets of [0,∞)×
R,where u0 is the unique viscosity solution of

(1.7)

{
u0t = G(u0x)u0xx for (t, x) ∈ (0,∞)× R
u0(0, x) = u0(x) for x ∈ R.

Remark 1.2. Recall that for discontinuous viscosity solutions the uniqueness of solutions means
the uniqueness of the semicontinuous envelopes of the solution (for further details see the proof of
Theorem 2.6).

Remark that if we introduce the inverse g of u0, defined by u0(t, g(t, y)) = y, then the rescaled
particle density ρ(t, y) = gy(t, y) solves formally the following nonlinear diffusion equation ρt =(

1
ρ2
G
(
1
ρ

)
ρy

)
y
. This shows a very small diffusion coefficient for large densities of particles, and a

huge diffusion coefficient for small rescaled densities.
Theorem 1.1 is an homogenization result and is obtained in the framework of viscosity solutions.

Let us mention the pioneering work of Lions, Papanicolau and Varadan [13] where homogenization
of Hamilton-Jacobi equations has been done for the first time.

In Theorem 1.1, the effective equation satisfied by the limit is parabolic and is naturally associ-
ated to the parabolic rescaling (1.4). This result has to be compared to the homogenization result
given in Forcadel, Imbert, Monneau [8] for an hyperbolic scaling (in the case α = 1), where the
limit equation is a first order Hamilton-Jacobi equation. We can also refer the interested reader
to [9], where a study of an overdamped dynamics of particles with two-body interactions is done,
with particular applications to dislocation dynamics.
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The proof Theorem 1.1 is based on the idea that the solution U ε is locally - close to a point
(t0, x0) - well approximated by the following ansatz

(1.8) U ε(t, x) = εh

(
Ũ ε(t, x)

ε
, u0x(t, x)

)
with Ũ ε(t, x) := u0(t, x) + ε2v

(
u0(t, x)

ε

)
,

where u0 is the limit solution, h is a hull function and v is a corrector. Based on this ansatz, our
proof follows the lines of the “perturbed test function” method introduced by Evans in [6].

The functions h and v are defined by the following proposition:

Proposition 1.3. (Hull function, corrector and diffusion coefficient)
Assume (H1).

(a) The hull function h

There exists a unique function h : R × (0,∞) → R such that h is C2 w.r.t. its first variable and
satisfies for all (z, p) ∈ R× (0,∞),

(1.9)


F

([
j2

2 p2hzz(z, p)
]m
j
, h(z, p)

)
= 0,

h(z + 1, p) = h(z, p) + 1,

hz(z, p) > 0,

h(0, p) = 0.

Moreover, we have h ∈ C3(R× (0,∞)).

(b) The corrector v

For all (z, p) ∈ R× (0,∞), define

(1.10) A(z, p) :=
1

2
+ p

hpz(z, p)

hz(z, p)
and K(z, p) :=

∑
1≤|i|≤m

i2 Fi

([
j2

2
p2hzz(z, p)

]m
j

, h(z, p)

)
.

Then, for all p0 > 0 and M0 ∈ R there exists a unique λ ∈ R such that there exists v ∈ C2(R)
satisfying

(1.11)

 λ = K(z, p0)A(z, p0)M0 +K(z, p0)p
2
0

(
vzz(z)

2
+
hzz(z, p0)

hz(z, p0)
vz(z)

)
for z ∈ R

v(z + 1) = v(z) for z ∈ R.

(c) The diffusion coefficient G

Finally, we have λ = G(p0)M0 where G is the function in (1.7) and is defined for p > 0 by

(1.12) G(p) :=

∫ 1

0
A(z, p)h2z(z, p)dz∫ 1

0

h2z(z, p)

K(z, p)
dz

.
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Note that in the anzatz (1.8) the corrector v is defined by Proposition 1.3 with the choice
p0 := u0x(t0, x0) and M0 := u0xx(t0, x0). Remark also that the expression of the diffusion coefficient
G in (1.12) is explicit, which has to be underlined, in comparison to general homogenization results,
where usually the effective Hamiltonian is not explicit.

Let us now list the main properties of G.

Proposition 1.4. (Qualitative properties of G)
Assume (H1). Then, the function G defined by (1.12) fulfills (1.6). Moreover G satisfies:

(a) The limit l can be computed explicitly as follows:

(1.13) l :=
1

2


∫ 1

0

 ∑
1≤|i|≤m

i2 Fi

(
−
[
j2

2
f(z)

]m
j

, z

) −1 dz

−1

(f being the 1-periodic function in (1.2)).

(b) For each k ∈ N, if F ∈ Ck+1(R2m × R) then G ∈ Ck(0,∞).

In general, we do not know if G is a monotone function of p. Nevertheless, for instance in the
special case of the classical FK model, we have the following additional result:

Proposition 1.5. (Monotonicity of G for the classical FK)
For the classical FK model given in (1.3) with f ∈ C1(R), 1-periodic and with zero mean value, the
function G defined in (1.12) is analytic on (0,∞) and non-decreasing.

After finishing this work, we were aware of the work of Jerrard [11], where, in particular, he
studies the homogenization of the continuous analogue of the classical FK model (1.3). More
precisely, equation

(1.14) uεt (t, x) = uεxx(t, x) +
1

ε
f

(
uε

ε

)
for (t, x) ∈ (0,∞)× R,

with f periodic with zero mean value. It turns out that the hull function and the corrector found
by Jerrard are very similar to ours (compare equations (2.1)-(2.5) in [11] with (1.9)-(1.11) with F
given by (1.3)). Moreover, by the implicit function theorem we lead our study of the hull function
h to the study of the correctors done in [11]. However, or the sake of self-consistency, we decide to
give here the detailed proof of Proposition 1.3.
Naturally, the limit equation found in [11] is the first equation in (1.7) (i.e. u0t = G(u0x)u0xx), where
the function G is proved to fulfill properties (1.6). Therefore, as a byproduct, Proposition 1.5 shows
also that the diffusion coefficient G(p) found in [11] is monotone in p.

Let us now emphasize an interesting difference between the homogenization resut for the contin-
uous PDEs (1.14) and the discrete model (1.1). In the continuous case the homogenized equation
does not change if one takes α ∈ [1, 2] while a new phenomenon is observed for the discrete
model (1.1) when α = 2. Here is the result.

Theorem 1.6. (Homogenization in the limit case α = 2.)
Assume (H0) and (H1) and let α = 2. Let G be defined in (1.12). Then, as ε→ 0, U ε converges
locally uniformly on [0,∞)× R to the unique viscosity solution ũ0 of

(1.15)

{
ũ0t = b(ũ0x)(ũ0x)3 +G(ũ0x)ũ0xx for (t, x) ∈ (0,∞)× R
ũ0(0, x) = u0(x) for x ∈ R,
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where b ∈ C0(0,∞) is given by the following explicit formula:

(1.16) b(p) :=

∫ 1
0
K̃(z,p)
K(z,p) hzzz(z, p)hz(z, p)dz∫ 1

0
h2z(z,p)
K(z,p) dz

where h is the hull function from Proposition (1.3) (a) and

(1.17) K̃(z, p) :=
∑

1≤|i|≤m

i3

6
Fi

([
j2

2
p2 hzz(z, p)

]m
j

, h(z, p)

)
.

Assume, in particular, that m = 2, F (V, V0) :=
∑

1≤|i|≤2 liVi + F0(V0) for a given non-constant 1-

periodic potential F0 ∈ C2(R) with zero-mean value, and given coefficients li verifying

(1.18)

{
min1≤|i|≤2 li ≥ 0 and max1≤|i|≤2 li > 0,

l1 + 2l2 = l−1 + 2l−2 and l1 − l−1 + 8(l2 − l−2) 6= 0.

Then b(p) 6= 0 for all p > 0.

A simple example for which the homogenized limit is different when α = 2 is the following
variant of the FK model:

dUi
dτ

= 2(Ui+1 − Ui) + (Ui−2 − Ui) + ε2(α−1) sin(2πUi).

We remark here that the proof of Theorem1.6 is based on a ansatz of the same form than in (1.8).
However, while the hull function h is the same as in Proposition 1.3 we need to define a new
corrector ṽ (See Proposition A.1 in Appendix A.)

Let us finally remark that we are studying the homogenization of equations with periodic terms
in u/ε, for which only few results exist. In this direction, let us mention the work of Boccardo,
Murat [3] about the homogenization of elliptic equations, and the two recent works of Barles [1]
and Imbert, Monneau [10].
Organization of the paper
The paper is organized as follows. Let us first remark that the proofs of Theorem 1.1 and the
convergence result in 1.6, are completely similar once we have defined h and v (resp. ṽ) and
estimate the error made by replacing the ansatz in our equation. Therefore, we decide to devote
the full text to the detailed proof of Theorem 1.1 (α > 2) and to prove for α = 2 only the
construction of the corrector ṽ and the corresponding new estimate of the error (Appendix A).
More precisely, Section 2 recalls some basic facts concerning viscosity solutions. The anzatz for
Theorem 1.1 is computed in Section 3. Section 4 proves the convergence result of Theorem 1.1. The
proofs of the existence and properties of the hull function, the corrector and the diffusion coefficient
for Theorem 1.1 are postponed in Section 5. Appendix A gives the new computations for the ansatz
and the cell equation for Theorem 1.6. Appendix B proves that b(p) 6= 0 under (1.18).

Notations
Let us introduce the notations that are used throughout.

Integer parts. The floor and the ceiling integer part of a real number a are denoted by bac
and dae, respectively.
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Cylinders of (0,∞)×R. For (t0, x0) ∈ (0,∞)×R and r,R > 0, define Qr,R(t0, x0) := (t0− r, t0 +
r)× (x0 −R, x0 +R). For the sake of simplicity, Qr,R(t0, x0) will be sometimes denoted Qr,R.

Semi-continuous envelopes. Let u : [0,∞) × R → R be a locally bounded function. We
let u∗ : [0,∞) × R → R denote the smallest upper semi-continuous (u.s.c. for short) function
above u. The largest lower semi-continuous (l.s.c. for short) function below u is denoted u∗.

Relaxed semi-limits. Let uε : [0,∞) × R → R be indexed by ε > 0. Assume that the fam-
ily {uε : ε > 0} is uniformly locally bounded. The upper relaxed semi-limit of uε as ε → 0 is the
function lim sup

ε→0

∗uε : [0,∞)× R→ R defined by

lim sup
ε→0

∗uε(t, x) := lim sup
(τ,y)→(t,x), ε→0

uε(τ, y).

The lower relaxed semi-limit is defined by: lim inf
ε→0

∗u
ε := − lim sup

ε→0

∗(−uε).

2 On viscosity solutions

In this section, we list some basic facts concerning viscosity solutions that are needed throughout.
We skip almost all of the proofs, since they are either well-known or straightforward adaptions of
classical ones. For a survey on the classical viscosity solutions theory, we refer to the book of Barles
[2] and to the user’s guide of Crandall, Ishii and Lions [5].
Moreover, let us stress that for ε = 1 our system is a special case of the one sudied by Forcadel,
Imbert and Monneau, therefore, as more related reference, one can see Section 2 in [8].

We need to introduce the definition of viscosity solutions because in order to study the system
of ODEs (1.1) we embed it into a single PDE. Indeed, by considering U(τ, y) := Ubyc(τ) we are led
to the following “finite-difference like” PDE

(2.1)

 Uτ (τ, y) = ε2(α−1)F

(
[U(τ, y + jεα)− U(τ, y)]mj

ε2(α−1)
,U(τ, y)

)
for (τ, y) ∈ (0,∞)× R

U(0, y) = U0(y) for y ∈ R,

where here U0(y) := 1
εu0(bycε

α). Since all the result we will give are valid for each α and ε fixed,
we will not stress the dependence of the functions U and U0 on them.

Becouse of the sublinearity of our initial data (H0), we restrict ourself to the study of sublinear
solutions.

Definition 2.1. (Sublinear functions) A function u : [0,∞) × R → R is sublinear iff for all

T > 0, sup(τ,y)∈[0,T ]×R
|u(τ,y)|
1+|y| <∞.

Let us recall the notion of viscosity solutions.

Definition 2.2. (Viscosity solutions)
Let U : [0,∞)× R→ R be sublinear and U0 : R→ R be sublinear. We say that:

1. The function U is a viscosity subsolution (resp. supersolution) of (2.1) on an open set Ω ⊂
(0,∞)×R if U is u.s.c. (resp. l.s.c.) and for any (τ0, y0) ∈ Ω and any test function φ ∈ C1(Ω)
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such that U − φ attains a strict local maximum (resp. local minimum) at the point (τ0, y0),
we have

φτ (τ0, y0)− ε2(α−1)F
(

[U(τ0, y0 + jεα)− U(τ0, y0)]
m
j

ε2(α−1)
, U(τ0, y0)

)
≤ 0 (resp. ≥ 0).

2. The function U is a viscosity subsolution (resp. supersolution) of (2.1) in [0,∞)×R, if it is
a viscosity subsolution (resp. supersolution) on Ω = (0,∞)× R and if moreover it satisfies

∀y ∈ R, U(0, y) ≤ (U0)∗(y) (resp. U(0, y) ≥ (U0)∗(y)).

3. The function U is a viscosity solution of (2.1) if U∗ is a subsolution and U∗ is a supersolution.

Here is a comparison principle for the Cauchy problem.

Theorem 2.3. (Comparison principle)
Assume (H1). Let u and v be respectively a sub- and a supersolution of (2.1) in (0,∞)×R. Assume
moreover that there exists an uniformly continuous function V0 such that u(0, y) ≤ V0(y) ≤ v(0, y)
for all y ∈ R. Then, we have u ≤ v on all [0,∞)× R.

In the sequel, we shall also need a comparison principle on bounded subdomains. Precisely, let us
consider cylinders Qr,R := Qr,R(t0, x0) and Qr,R+m := Qr,R+m(t0, x0) such that Qr,R ⊂ (0,∞)×R.
Then, we have the following result.

Theorem 2.4. (Comparison principle on bounded sets)
Assume (H1). Let u and v be respectively a sub- and a supersolution of (2.1) in Qr,R such that

(2.2) u ≤ v on Qr,R+m \Qr,R.

Then we have u ≤ v on Qr,R.

Remark 2.5. Let us recall that the PDE in (1.5) is obtained from the one in (2.1), after rescaling
by (1.4). In particular, Theorem 2.4 remains true for (1.5) by replacing condition (2.2) by “u ≤ v
on Qr,R+εαm \Qr,R”.

Let us now give an existence and uniqueness result.

Theorem 2.6. (Existence and uniqueness)
Assume (H1) and that U0 is non-decreasing and satisfies:

(2.3) sup
y∈R
{U0(y + 1)− U0(y)} <∞.

Then, there exists a unique viscosity solution of (2.1).

Proof of existence. To get the existence by the classical Perron’s method we need to construct
barriers. Because of (2.3), the monotonicity of U0 and (H1) (i)-(iii), we see that there exists a
constant C > 0 such that for all h > 0

u+(τ, y) := (U0)∗(y) + Cτ and u−,h(τ, y) := (U0)∗(y − h)− Cτ
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satisfy
u−,h ≤ u+ on [0,∞)× R

and are respectively a super- and a subsolution of (2.1) on [0,∞) × R. By Perron’s method, the
function

u :=
(
sup{v : v ≤ u+, v is a subsolution}

)∗
is a solution of (2.1) on (0,∞)× R and satisfy

(2.4) u−,h ≤ u ≤ (u+)∗.

Moreover, one have

lim inf
h→0

u−,h(τ, y) ≥ (U0)∗(y)− Cτ,

(u+)∗(τ, y) ≤ (U0)∗(y) + Cτ

(actually, by the monotonicity of U0, the lower semi-limit becomes the limit and the inequalities
become equalities). Therefore, letting h→ 0 in (2.4), we obtain

(U0)∗(y)− Cτ ≤ u(τ, y) ≤ (U0)∗(y) + Cτ,

which implies
u∗(0, y) ≤ (U0)∗(y) and u∗(0, y) ≥ (U0)∗(y),

thus u is a viscosity solution of (2.1) on [0,∞)× R.

Proof of uniqueness. Let u and v be two viscosity solution of (2.1) on [0,∞)× R. We want to
show the uniqueness in the following sense:

(2.5) u∗ = v∗ and u∗ = v∗.

For h > 0, define uh(τ, y) := u(τ, y − h). By the invariance of the equation w.r.t. translations in
space, uh is a viscosity solution of (2.1) on [0,∞)×R. We plan to compare (uh)∗ = (u∗)h and v∗ by
using the comparison principle. To do so, we have to find a good uniformly continuous function V0
between the respective initial data (see Theorem 2.3). Define

V0(y) :=
1

h

∫ y

y−h
U0(z)dz

(notice that U0 is measurable as a monotone function). By the monotonicity of U0, it is clear that
for all y1 < y2 < y3, (U0)∗ (y1) ≤ U0(y2) ≤ (U0)∗ (y3). Hence, we have

V0(y) ≤ 1

h

∫ y

y−h
(U0)∗(y)dz = (U0)∗(y),

for all y ∈ R. The same way, one prove that

((U0)∗)h (y) = (U0)∗(y − h) ≤ V0(y)

and conclude that

(2.6) ((U0)∗)h ≤ V0 ≤ (U0)∗ on R.
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Moreover, easy computations show that

(V0)y (y) =
U0(y)− U0(y − h)

h
for a.e. y ∈ R,

which shows under (2.3) and the monotonicity of U0 that V0 is Lipschitz-continuous on R. Since,
by the monotonocity of the initial data, we have

(uh)∗(0, y) = (u∗)h(0, y) ≤ ((U0)∗)h (y) = (U0)∗(y − h) ≤ (U0)∗(y) ≤ v∗(0, y) ∀y ∈ R,

we deduce that (uh)∗(0, y) ≤ V0(y) ≤ v∗(0, y) and the comparison principle (Theorem 2.3) applies
to get

(uh)∗ ≤ v∗ on [0,∞)× R.
Therefore, letting h→ 0, we obtain

(2.7) u∗ ≤ lim inf
h→0

uh ≤ lim inf
h→0

(uh)∗ ≤ v∗ on [0,∞)× R.

Similarly, we can exchange the role of u and v from the beginning and obtain

v∗ ≤ u∗ on [0,∞)× R.

We thus have proved the equality for the lower enveloppes: v∗ = u∗ on [0,∞) × R. The proof of
the equality for the upper enveloppes being completely similar will be omitted. �

Remark 2.7. Actually, we have more information than (2.7); indeed, one have:

v∗ ≥ lim inf
h→0

(uh)∗ = lim inf
h→0

(u∗)h ≥ (u∗)∗.

Taking v = u, one conclude that (u∗)∗ = u∗ and similarly that (u∗)
∗ = u∗.

To prove the homogeneization result (Theorem 1.1) we will consider the relaxed semilimits of
the sequence of solutions uε and we will need to prove that those are solutions of the limit equation
in the viscosity sense. For the sake of completeness let us recall the definition of viscosity solution in
this case and the comparison result we will need in the proof (the proof of the lattest is completely
classical and can be found in [5, Theorem 8.2]).

Definition 2.8. (Viscosity solution: second order)
Let u : [0,∞)× R→ R be sublinear and u0 : R→ R be sublinear and continuous. We say that:

1. The function u is a viscosity subsolution (resp. supersolution) to (1.7) in [0,∞) × R if u is
u.s.c. (resp. l.s.c.) and for any (t0, x0) ∈ (0,∞)×R and any test function φ ∈ C∞((0,∞)×R)
such that u − φ attains a strict local maximum (resp. local minimum) at the point (t0, x0),
we have

φt(t0, x0)−G(φx(t0, x0))φxx(t0, x0) ≤ 0 (resp. ≥ 0),

and if at time zero we have: ∀x ∈ R, u(0, x) ≤ u0(x) (resp. u(0, x) ≥ u0(x)).

2. The function u is a continuous viscosity solution of (1.7) if it is both viscosity sub- and
supersolution.

Theorem 2.9. (Comparison principle) Assume (H0) and (1.6). Let u and v be a viscosity
sub- and supersolution of (1.7) in [0,∞) × R, respectively. Then u(t, x) ≤ v(t, x) for all (t, x) ∈
[0,∞)× R.
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3 The ansatz

The aim of this Section is to verify that our ansatz (1.8) is a ”good guess” for the behavior of U ε

around a fixed point (t0, x0). Roughly speaking we have to answer the following two questions:

Question 1. Does this ansatz almost satisfy the PDE in (1.5) around (t0, x0)?

Question 2. Does this ansatz converge toward u0 as ε goes to zero, around (t0, x0)?

Question 1 and 2 will be answered in Lemma 3.2 and Lemma 3.3, respectively (see also Remark
3.4). Note that in both lemmata below we replace u0 in (1.8) by general test functions φ (see (3.3)).
This is indeed, the test function that will be used in Definition 2.8 to prove the homogeneization
result by the perturbed test function method. (Proof of Theorem 1.1.)

Let us first enumerate some required properties on h and v that easily follow from the fact that
h (resp. v) is regular and linear plus periodic (resp. periodic).

Lemma 3.1. (Hull function and corrector properties)
Assume (H1). For each δ > 0, the hull function satisfies:

(a) C0(δ) := maxR×[δ, 1δ ]
|h(z, p)− z| <∞.

(b) C1(δ) := ‖hz‖C2
b (R×[δ, 1δ ])

+ ‖hp‖C2
b (R×[δ, 1δ ])

<∞.

(c) m(δ) := minR×[δ, 1δ ]
hz > 0.

The functions A and K defined in (1.10) satisfy:

(d) A and K are bounded and uniformly continuous on R×
[
δ, 1δ
]
.

Moreover, all corrector (associated to fixed p0 > 0 and M0 ∈ R) satisfies

(e) C2 := ‖v‖C2
b (R)

<∞ and vzz is uniformly continuous on R.

For the sake of clarity, we introduce the following notation for the PDE operator in (1.5): for
all ε > 0, φ ∈ C∞((0,∞)× R) and (t, x) ∈ (0,∞)× R, define

(3.1) Lε[φ](t, x) := φt(t, x)− 1

ε
F

([
φ(t, x+ jεα)− φ(t, x)

ε2α−1

]m
j

,
φ(t, x)

ε

)
.

With this notation in hand, the PDE in (1.5) can be rewritten as Lε [U ε] = 0.

Lemma 3.2. (Local error estimate)
(Settings) Assume (H1) and (H2). Let φ ∈ C∞((0,∞)× R) be such that

(3.2) φx(t0, x0) > 0 for some fixed (t0, x0) ∈ (0,∞)× R.

Let λ be defined by Proposition 1.3 item (b) with (p0,M0) := (φx(t0, x0), φxx(t0, x0)) , and let v be
an associated corrector. Let h be the hull function of Proposition 1.3 and for ε > 0, define

(3.3) φε(t, x) := εh

(
φ̃ε(t, x)

ε
, φx(t, x)

)
with φ̃ε(t, x) := φ(t, x) + ε2v

(
φ(t, x)

ε

)
.
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(Result) Then, φε(t, x) and Lε [φε] (t, x) are well-defined for (t, x, ε) sufficiently close to (t0, x0, 0).
Moreover, we have

(3.4) Lε [φε] (t, x) = (φt(t, x)− λ+ E(t, x, ε))hz̃ with lim
(t,x,ε)→(t0,x0,0)

|E(t, x, ε)| = 0,

where we set hz̃ = hz̃ (z̃, φx(t, x)) with z̃ = φ̃ε(t,x)
ε .

Lemma 3.3. (Convergence toward u0)
Assume (H1) and (H2) and let φε be defined by (3.3). Then, there exists r > 0 such that for
all ε > 0, φε is well-defined on Qr,r = Qr,r(t0, x0) and converges toward φ, as ε → 0, uniformly
on Qr,r.

Proof of Lemma 3.3. The thesis easily follows from Lemma 3.1 items (a) and (e). �

Remark 3.4. Taking φ = u0, our ansatz in (1.8) writes U ε ≈ (u0)ε around (t0, x0). These lemmata
then mean formally that we indeed have Lε[(u0)ε] ≈ 0 and (u0)ε ≈ u0 around (t0, x0).

Proof of Lemma 3.2. Let us first remark that without loss of generality we can replace the
assumption φ ∈ C∞((0,∞)× R) by the following:

(3.5)


φ is Lipschitz-continuous on (0,∞)× R with δ ≤ φx ≤ 1

δ for some δ > 0.

|φx|+ |φxx|+ |φxxx| ≤ Cφ on (0,∞)× R for some constant Cφ.

|φt|+ |φxt| ≤ C ′φ on (0,∞)× R for some constant C ′φ .

Indeed, it is clear from (3.2) that δ ≤ φx ≤ 1
δ on Qr,2r = Qr,2r(t0, x0), for some δ > 0 and r > 0. It

follows that φε is well-defined on Qr,2r, since the second argument of h in (3.3) is positive. By (3.1),

it is also obvious that for all ε ≤
(
r
m

) 1
α , Lε[φε] is well-defined on Qr,r and only depends on the

values of φ on Qr,r+εαm ⊆ Qr,2r. In particular, it is easy to modify φ outside Qr,2r in order to
verify (3.5), without changing the value of Lε[φε](t, x) for (t, x, ε) close to (t0, x0, 0).

Therefore we will prove (3.4) under the additional assumption (3.5). Our strategy is the follow-
ing. First, we develop Lε[φε] w.r.t. ε by using Taylor’s formula. This will give an expression of the
form:

(3.6) Lε[φε](t, x) =
1

ε
(. . . ) + ε0 (. . . ) + o(1),

where o(1) denotes an error that vanishes as ε → 0. Second, we use the cell equations (1.9)
and (1.11), in order to vanish respectively the terms of order 1

ε and ε0.

The rest of the proof is organized in six steps. In the first step we introduce some notations
that shall be used throughout, in steps 2-5 we dettail the successive Taylor’s expansions used to
get (3.6) and in Step 6 we conclude.

Step 1: slow and fast variables. Define

z̃ :=
φ̃ε(t, x)

ε
, z :=

φ(t, x)

ε
and p := φx(t, x).
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Without any more precision, the functions φε and φ̃ε will be then expressed in the following vari-
ables:

(3.7) φε(t, x) = εh(z̃, p) and φ̃ε(t, x) = φ(t, x) + ε2v(z).

Step 2: first equation in φε. We have

φεt = hz̃φ̃
ε
t + εhpφxt = hz̃φt + ε(hz̃vzφt + hpφxt).

Consequently, we get:

(3.8) Lε[φε] = hz̃φt + ε(hz̃vzφt + hpφxt)−
1

ε
F

(
1

ε2α−2
V, h

)
,

where we set:

(3.9) V := [Vj ]
m
j =

[
h

(
φ̃ε(t, x+ jεα)

ε
, φx(t, x+ jεα)

)
− h(z̃, p)

]m
j

.

Step 3: expansion of V . In this step, we develop the first argument 1
ε2α−2 V of F . Let us begin

by developing φx and φ̃ε around (t, x).

We claim that for all 1 ≤ |j| ≤ m, (t, x) ∈ (0,∞)× R and ε > 0 we have

(3.10)


φ̃ε(t, x+ jεα) = φ̃ε + jεαφ̃εx +

j2

2
ε2αφ̃εxx + R̃(t, x, j, ε),

with
|R̃(t, x, j, ε)|

ε2α
as ε→ 0 uniformly in (t, x, j).

By the classical Taylor’s formula, we have:

(3.11) |R̃(t, x, j, ε)| ≤ j2ε2α ωε(|j|ε
α)

2
,

where ωε(·) is the modulus of continuity in x of φ̃εxx = φxx + vzzφ
2
x + εvzφxx (by Definition (3.3)).

Let us estimate the modulus of continuity of these three terms. The most difficult is the middle
term vzzφ

2
x. Let (x, x′) ∈ R be such that |x− x′| ≤ β. We have

I :=

∣∣∣∣vzz (φ(t, x)

ε

)
φ2x(t, x)− vzz

(
φ(t, x′)

ε

)
φ2x(t, x′)

∣∣∣∣
≤ C2Cφβ + C2

φ

∣∣∣∣vzz (φ(t, x)

ε

)
− vzz

(
φ(t, x′)

ε

)∣∣∣∣ ,
where C2 is the bound on vzz in Lemma 3.1 (e) and Cφ is the bound in (3.5). We have∣∣∣∣vzz (φ(t, x)

ε

)
− vzz

(
φ(t, x′)

ε

)∣∣∣∣ ≤ ωv (φ(t, x)− φ(t, x′)

ε

)
≤ ωv

(
Cφ
ε
β

)
,
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where ωv(·) is the modulus of continuity of vzz on R from Lemma 3.1 (e). It follows that I ≤
C2Cφβ + C2

φωv

(
Cφ
ε β
)

, which proves that the modulus of continuity ω(·) of vzzφ
2
x satisfies

ω(β) ≤ C2Cφβ + C2
φωv

(
Cφ
ε
β

)
for all β > 0.

Since (3.5) and Lemma 3.1 (e) imply that φxx+εvzφxx is Lipschitz-continuous in x with a Lipschitz-
constant Lφ independent on small ε, we get

ωε(β) ≤ Lφβ + C2Cφβ + C2
φωv

(
Cφ
ε
β

)
.

Thus (3.11) and α > 0 imply R̃(t, x, j, ε) = o(ε2α) and the proof of (3.10) is complete.

Recall that φ̃εx = p+ εvzp and φ̃εxx = φxx + vzzp
2 + εvzφxx. Dividing (3.10) by ε, we get

φ̃ε(t, x+ jεα)

ε
=

φ̃ε

ε
+ jεα−1φ̃εx +

j2

2
ε2α−1φ̃εxx + o(ε2α−1)

= z̃ + jεα−1p+ jεαvzp+
j2

2
ε2α−1

(
φxx + vzzp

2
)

+ o(ε2α−1)(3.12)

:= z̃ + E1.

Next, from (3.5) we deduce that

φx(t, x+ jεα) = p+ jεαφxx + o(εα) := p+ E2.(3.13)

We can now develop the term h (. . . , . . . ) in (3.9) around (z̃, p). We get the following expansion

(3.14) h

(
φ̃ε(t, x+ jεα)

ε
, φx(t, x+ jεα)

)
− h(z̃, p) = h (z̃ + E1, p+ E2)− h(z̃, p)

= hz̃E1 + hpE2 +
hz̃z̃
2
E21 +

hpp
2
E22 + hz̃pE1E2 +R,

for some rest R = R(t, x, j, ε). Since h is C3, Taylor’s Young formula implies that

|R| ≤ (|E1|+ |E2|)3
1

3!
sup
D
|D3h|,

where D is the segment of extremities (z̃, p) and
(
φ̃ε(t,x+jεα)

ε , φx(t, x+ jεα)
)

. But, both these points

belong to R×
[
δ, 1δ
]

by (3.5). Hence, Lemma 3.1 implies that

|R| ≤ (|E1|+ |E2|)3
C1(δ)

3!
.

Since the term of lowest order in |E1| + |E2| is jεα−1p, the better estimate we can have for R
is |R| ≤ Cε3(α−1) (the constant C does not depend on ε sufficiently small, (t, x) ∈ (0,∞) × R
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and 1 ≤ |j| ≤ m, since the other terms of |E1|+ |E2| are controlled by (3.5) and Lemma 3.1). Since
by (H2) α is assumed greater than 2, we get a fortiori

(3.15) R = o
(
ε2α−1

)
.

Let us stress the fact that this is the only point in which (H2) is used. All the other estimates in
the paper are valid for α > 1.

Let us now develop all the terms in (3.14). In order to control all the negligible terms, we
use (3.5) and Lemma 3.1. We get:

hz̃E1 = jhz̃
(
εα−1p+ εαvzp

)
+ ε2α−1

j2

2
hz̃
(
φxx + vzzp

2
)

+ o
(
ε2α−1

)
.

hpE2 = jεαhpφxx + o(εα).

hz̃z̃
2
E21 = ε2α−2

j2

2
hz̃z̃p

2 + ε2α−1 j2 hz̃z̃vzp
2 + o

(
ε2α−1

)
.

hpp
2
E22 = o

(
ε2α−1

)
.

hz̃p E1E1 = ε2α−1 j2 hz̃p p φxx + o
(
ε2α−1

)
.

Plugging this into (3.14), we get the following expansion:

(3.16) h

(
φ̃ε(t, x+ jεα)

ε
, φx(t, x+ jεα)

)
− h(z̃, p) =

= j
{
hz̃
(
εα−1p+ εαvzp

)
+ εαhpφxx

}
+ ε2α−2

{
j2

2
hz̃z̃p

2

}
+ ε2α−1

{
j2

2

(
hz̃
(
φxx + vzzp

2
)

+ 2hz̃z̃vzp
2 + 2hz̃p p φxx

)}
+ o

(
ε2α−1

)
.

Dividing (3.16) by ε2α−2, we get the following expansion of V in (3.9):

(3.17)
1

ε2α−2
Vj =

1

ε2α−2

{
h

(
φ̃ε(t, x+ jεα)

ε
, φx(t, x+ jεα)

)
− h(z̃, p)

}

= jq +
j2

2
hz̃z̃p

2 + εj2 hz̃

{
Aφxx + p2

(
vzz
2

+
hz̃z̃
hz̃

vz

)}
+ o (ε) ,

where A = A(z̃, p) is defined in (1.10) and q := 1
ε2α−2

{
hz̃
(
εα−1p+ εαvzp

)
+ εαhpφxx

}
is a linear

displacement.

Step 4: removing linear displacement. This step is crucial, since q contains terms of order ε−α+1

and ε−α+2 that can not be controlled. We thus use (H1) (iv) to see from (3.17) that

(3.18) F

(
1

ε2α−2
V, h

)
= F

([
jq +

j2

2
hz̃z̃p

2 + εj2 hz̃

{
Aφxx + p2

(
vzz
2

+
hz̃z̃
hz̃

vz

)}
+ o (ε)

]m
j

, h

)

= F

([
j2

2
hz̃z̃p

2

]m
j

+ ε

[
j2 hz̃

{
Aφxx + p2

(
vzz
2

+
hz̃z̃
hz̃

vz

)}]m
j

+ o (ε) , h

)
.
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Step 5: expansion of F . We develop F around

([
j2

2 hz̃z̃p
2
]m
j
, h

)
.

We claim that there exists a constant Rφ such that for all ε small enough and all (t, x) ∈ (0,∞)×R,
the first argument of F in the third line of (3.18) is bounded by the constant Rφ. To see this, we
simply use one more time (3.5) and Lemma 3.1. With these observations in hands, it is clear from
Taylor’s formula that

F

(
1

ε2α−2
V, h

)
= F

([
j2

2
hz̃z̃p

2

]m
j

, h

)

+ ε

 ∑
1≤|i|≤m

i2 Fi

([
j2

2
hz̃z̃p

2

]m
j

, h

) hz̃

{
Aφxx + p2

(
vzz
2

+
hz̃z̃
hz̃

vz

)}
+ o(ε),

where o(ε) depends only on Rφ, and on the modulus of continuity and the L∞-norms of the first-
order derivatives of F on BRφ × R. Notice that this modulus is finite, thanks to (H1) (i)-(ii).
Dividing this equation by ε, we get:

(3.19)
1

ε
F

(
1

ε2α−2
V, h

)
=

1

ε
F

([
j2

2
hz̃z̃p

2

]m
j

, h

)

+

 ∑
1≤|i|≤m

i2 Fi

([
j2

2
hz̃z̃p

2

]m
j

, h

) hz̃

{
Aφxx + p2

(
vzz
2

+
hz̃z̃
hz̃

vz

)}
+ o(1)

=
1

ε
F

([
j2

2
hz̃z̃p

2

]m
j

, h

)
+ hz̃

{
KAφxx +K p2

(
vzz
2

+
hz̃z̃
hz̃

vz

)}
+ o(1),

where K = K(z̃, p) is defined in (1.10).

Step 6: conclusion. By (3.19), equation (3.8) becomes:

(3.20) Lε[φε] = hz̃φt + ε(hz̃vzφt + hpφxt)

− 1

ε
F

([
j2

2
hz̃z̃p

2

]m
j

, h

)
− hz̃

{
KAφxx +K p2

(
vzz
2

+
hz̃z̃
hz̃

vz

)}
+ o(1).

Our aim is now to use the cell systems (1.9) and (1.11) to control the terms of order 1
ε and ε0.

First, we see from (1.9) that

1

ε
F

([
j2

2
hz̃z̃

]m
j

, h

)
=

1

ε
F

([
j2

2
hz̃z̃(z̃, p)

]m
j

, h(z̃, p)

)
= 0.

Moreover, by (3.5) and Lemma 3.1, we have

(3.21) |hz̃vzφt + hpφxt| ≤ C1(δ)C
′
φ(C2 + 1).

Hence, the ε-term in (3.20) can be included in the o(1). Therefore, we obtain:

(3.22) Lε[φε](t, x) = hz̃(z̃, p) [φt(t, x)− G(z, z̃, p,M)] + o(1),
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where we set

G(z, z̃, p,M) := K(z̃, p)A(z̃, p)M +K(z̃, p) p2
(
vzz(z)

2
+
hz̃z̃(z̃, p)

hz̃(z̃, p)
vz(z)

)
with M := φxx(t, x). By (1.11), we have λ = G(z, z, p0,M0) and thus

(3.23) Lε[φε](t, x) = hz̃(z̃, p) (φt(t, x)− λ+ G(z, z, p0,M0)− G(z, z̃, p,M)) + o(1).

The thesis follows now from the regularity of φ, the estimate (3.5) and the uniform continuity of G
on R× (0,∞)×

[
δ, 1δ
]
× [−Cφ, Cφ], thanks to Lemma 3.1 (b)-(e). �

4 Proof of the homogenization result

Proof of Theorem 1.1. We first notice that for each ε > 0 fixed, the general Theorem 2.6 applies
and we have the existence and uniqueness of the solution of (1.5). Moreover, Proposition 1.4 states
the existence and the regularity of the function G required in (1.6). This regularity allows us to
apply the now classical results on viscosity solution to obtain the existence and uniqueness of a
viscosity solution of the limit equation (1.7) (See for instance [5]).

We consider now equation (1.5) with the continuous initial datum u0, more precisely:

(4.1)

 uεt (t, x) =
1

ε
F

(
1

ε2α−1
[uε(t, x+ jεα)− uε(t, x)]mj ,

uε(t, x)

ε

)
for (t, x) ∈ (0,∞)× R

uε(0, x) = u0(x) for x ∈ R.

We claim that if we prove that the sequence of solutions uε of (4.1) converges to u0, as ε goes to
zero, then our convergence result on the sequence U ε follows (remark that Theorem 2.6 in particular
implies the existence and the uniqueness of a continuous viscosity solution uε of (4.1)).

Let us justify our claim. By the 1-periodicity of F in (H1) (ii), the PDE in (1.5) is invariant
w.r.t. ε× integer additions (that is to say, if uε is solution of (4.1), then u + εn would satisfy the

PDE in (1.5) for all n ∈ Z). Therefore uε(t, x)− ε
⌈
εα

εδ0

⌉
is a viscosity solution of (4.1) with initial

condition u0(x)− ε
⌈
εα

εδ0

⌉
. Moreover, since at initial time we have

u0(x)− ε
⌈
εα

εδ0

⌉
≤ u0(

⌊ x
εα

⌋
εα) ≤ u0(x) ∀x ∈ R,

the function U ε is a viscosity subsolution (resp. supersolution) of (4.1) with a uniformly continuous

initial datum u0 (resp. u0 − ε
⌈
εα

εδ0

⌉
). Thus the comparison principle (Theorem 2.3) implies that

uε(t, x)− ε
⌈
εα

εδ0

⌉
≤ U ε(t, x) ≤ uε(t, x) ∀(t, x) ∈ [0,∞)× R.

Hence, if uε converges toward u0, as ε→ 0, then U ε would also converge toward u0.

Let us now prove the convergence result for uε solution of (4.1). The proof will follow the
classical method of building suitable perturbed test functions. Let us denote the relaxed semi-
limits of the sequence uε by:

u(t, x) = lim sup
ε→0

∗uε(t, x), u(t, x) = lim inf
ε→0

∗u
ε(t, x).
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Our aim is to prove that u and u are respectively viscosity sub- and super solution of the limit
problem (1.7) in [0,∞)× R. Indeed, if this is true by the comparison result for the limit equation
(Theorem 2.9), we have u(t, x) ≤ u(t, x) for all (t, x) in (0,∞) × R. By construction we have the
reverse inequality, thus, as ε tends to 0 we will have

uε(t, x)→ u(t, x) = u(t, x) := u0(t, x) uniformly on compact set of [0,∞)× R,

which will be the unique solution of (1.7) and this will give us the thesis.

We will proceed in three steps. First, we will construct ε-uniform barriers on uε to be sure that
the relaxed semi-limit are well defined. Secondly, we will prove a uniform bound on the gradients
of u and u in order to be allowed to choose p = φx = ux > 0 (or p = φx = ux > 0) in the third
step. Finally, we will prove that u is a subsolution of (1.7) (the proof of u being a supersolution
being completely similar will be not detailed).

Step 1. Barriers on uε. The idea is to construct a sub- and a supersolution of (4.1) not
depending on ε, or at least locally bounded uniformly in ε. To do this, we look for semi-solutions
in the form of the ansatz (1.8). Precisely, for (t, x) ∈ [0,∞)× R and ε > 0, define

u±,ε(t, x) := εh

(
u0(x)± Ct

ε
, (u0)x(x)

)
± εdC0(δ0)e,

where C is a positive constant that will be appropriately chosen later. Let us recall that these
functions are well-defined, since (u0)x ≥ δ0 > 0 on R.

Proof of u+,ε is a supersolution of (1.5). We begin by verifying the initial condition. By
Lemma 3.1 item (a), we have for all x ∈ R,

u+,ε(0, x) = εh

(
u0(x)

ε
, (u0)x(x)

)
+ εdC0(δ0)e ≥ ε

(
u0(x)

ε
− C0(δ0)

)
+ εdC0(δ0)e ≥ u0(x).

Let us now verify the equation. Since the equation is invariant w.r.t. ε× integer additions we only
need to prove that

φε(t, x) := εh

(
φ(t, x)

ε
, (u0)x(x)

)
with φ(t, x) := u0(x) + Ct

is a supersolution of (1.5). Actually, all the computations have already been made during the
proof of Lemma 3.2. We see that φε is of the form (3.3) with v ≡ 0. Moreover, φ satisfies (3.5)
with δ := δ0 and

Cφ := ‖(u0)x‖∞ + ‖(u0)xx‖∞ + ‖(u0)xxx‖∞, φt = C and φxt = 0.

We then argue exactly as in the proof of Lemma 3.2 to show (3.20), which in this case is:

Lε[φε] = hz̃C − hz̃KAφxx + o(1)

(since vz also equals zero). Therefore, we have

Lε[φε] = hz̃(z̃, φx(t, x))C − hz̃(z̃, φx(t, x))K(z̃, φx(t, x))A(z̃, φx(t, x))φxx(t, x) + o(1).
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where limε→0 o(1) = 0 uniformly in (t, x) ∈ (0,∞) × R. By Lemma 3.1, it is clear that there
exists a constant M (not depending on C) such that for all ε small enough, Lε[φε] ≥ m(δ0)C −M
on (0,∞)× R. We conclude that u+,ε is a supersolution of (4.1) for C ≥ M

m(δ0)
.

The same way, we prove that u−,ε is a subsolution of (4.1). By the comparison principle, we
deduce that u−,ε ≤ uε ≤ u+,ε. Moreover, it is easy to show from Lemma 3.1 item (a) that∣∣∣∣εh(u0(x)± Ct

ε
, (u0)x(x)

)
− (u0(x)± Ct)

∣∣∣∣ ≤ εC0(δ0),

for all (t, x) ∈ (0,∞)× R and ε > 0. It follows that |u±,ε(t, x)− (u0(x)± Ct)| ≤ 2εdC0(δ0)e.

To conclude, we have proved that there exists a positive constant C such that for all ε small
enough and all (t, x) ∈ (0,∞)× R,

(4.2) |uε(t, x)− u0(x)| ≤ Ct+ 2ε dC0(δ0)e ,

where δ0 is the bound in (H0) and C0(δ0) the bound in Lemma 3.1 (a), and this guarantees us
the existence of the desired ε-uniform barriers on uε.

Step 2. Uniform bounds on the gradients. Using again the invariance of the PDE in (4.1)

w.r.t. ε× integer additions, we see that (for fixed a > 0 and ε > 0) the functions uε(t, x) + ε
⌊
δ0a
ε

⌋
and uε(t, x)+ε

⌈
a
δ0ε

⌉
are solutions of (4.1) in (0,∞)×R. But, hypothesis (H0) implies for all x ∈ R,

u0(x) + ε

⌊
δ0a

ε

⌋
≤ u0(x+ a) ≤ u0(x) + ε

⌈
a

δ0ε

⌉
at the initial time. By the comparison principle, we deduce that for all (t, x) ∈ [0,∞)× R,

uε(t, x) + ε

⌊
δ0a

ε

⌋
≤ uε(t, x) ≤ uε(t, x) + ε

⌈
a

δ0ε

⌉
.

Thus, letting ε → 0 we obtain the bound on the gradient for the limits, i.e. 1
δ ≥ (u)x ≥ δ and

1
δ ≥ (u)x ≥ δ.

Step 3. Proof that u is a subsolution of (1.7). First note that the initial condition is trivially
satisfied because of (4.2). We will argue now by contradiction. So let us assume that there exists
φ ∈ C∞((0,∞)× R) such that u− φ has a strict local maximum at (t0, x0) with

(4.3) φt(t0, x0) = φxx(t0, x0)G(φx(t0, x0)) + η

for some η > 0. Adding a constant to φ if necessary, one can assume that

(4.4) u0(t0, x0) = φ(t0, x0),

so that

(4.5) u0(t, x) < φ(t, x) for all (t, x) 6= (t0, x0) sufficiently close to (t0, x0).

In order to construct our perturbed test function, we choose p0 = φx(t0, x0) and M0 = φxx(t0, x0)
in Proposition 1.3 and thus obtain the existence of h, v and a unique real number λ fulfilling (1.11).
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Notice that Step 2 ensures that p0 > 0. Next, we define φε as in (3.3); by Lemma 3.2, φε(t, x) is
well-defined for (t, x, ε) sufficiently closed to (t0, x0, ε). Our aim is to prove now that for ε and r > 0
small enough, φε is a supersolution of (4.1) in a open set Qr,r := Qr,r(t0, x0) with r independent of
ε. By estimate (3.4) of Lemma 3.2, our thesis will be

0 ≤ Lε[φε](t, x) = hz̃(z̃, p)[φt(t, x)− λ+ E(t, x, ε)] ∀(t, x) ∈ Qr,r,

where z̃ = φ̃ε(t,x)
ε , p = φx(t0, x0) and z = φ(t,x)

ε . Since by (1.9) hz̃ > 0, we are left to prove

(4.6) φt(t, x)− λ+ E(t, x, ε) ≥ 0 ∀(t, x) ∈ Qr,r with r independent of ε.

We observe now that by the choice we made in Proposition 1.3, the real number λ verifies λ =
G(φx(t0, x0))φxx(t0, x0). Therefore

φt(t, x)− λ+ E(t, x, ε)

= φt(t, x)− φt(t0, x0) + φt(t0, x0)− φxx(t0, x0)G(φx(t0, x0)) + E(t, x, ε)

= φt(t, x)− φt(t0, x0) + η + E(t, x, ε),

where we used also (4.3). Since φt is continuous and lim(t,x,ε)→(t0,x0,0) E(t, x, ε) = 0, (4.6) follows.
At this stage, we have proved that there exists r > 0 such that for all ε small enough, φε is a
supersolution of (4.1) in Qr,r.

By Lemma 3.3, one can take a smaller r > 0 if necessary to get the uniform convergence of φε

toward u0 on Qr,r. The same way, by (4.5), one can assume that

u(t, x) ≤ φ(t, x)− 2θ on Qr,2r \Qr,r for some θ > 0;

hence, for ε small enough we have

(4.7) φε(t, x) ≥ uε(t, x) + ε

⌊
θ

ε

⌋
on Qr,2r \Qr,r

where we used also the definition of u. Since uε is a solution of (4.1) in particular in the open set Qr,r
and thanks to the invariance w.r.t. ε×integer translation, uε(t, x) + εb θεc is still a solution in Qr,r.
Our aim is to apply now the comparison result on bounded sets (Theorem 2.4). By Remark 2.5

and (4.7), this can be done for ε ≤
(
r
m

) 1
α (i.e. 2r ≥ r + εαm). Thus

φε(t, x) ≥ uε(t, x) + ε

⌊
θ

ε

⌋
in all Qr,r.

Letting ε going to 0 we are led to φ(t, x) ≥ u(t, x) + θ in Qr,r = Qr,r(t0, x0) which evaluated at
(t0, x0) is in contradiction with (4.4). Therefore u is a subsolution of (1.7). �

5 Existence and main properties of h, v,G

Let us now prove Proposition 1.3 and Proposition 1.4 that have been admitted before. We also
prove the monotonicity of G for the classical FK model. Proposition 1.3 is proved in Subsection 5.2
just after the proof of some preliminaries in Subsection 5.1. Propositions 1.4-1.5 are proved in
Subsection 5.3. The last subsection is devoted to the proofs of some technical facts.
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5.1 Preliminaries on f

The following result establishes the well-definition of f defined by (1.2). This function is introduced
in order to study problem (1.9) that defines the hull function h. Indeed, as we shall see in the next
subsection, this will allow to rewrite (1.9) in the “more readable” form (5.5) which can be solved
by the classical separation variable method.

Lemma 5.1. (Well-definition and main properties of f)
Assume (H1) (i)-(v). Then, for each h ∈ R, there exists a unique real f(h) such that

F

([
−j

2

2
f(h)

]m
j

, h

)
= 0.

Moreover, the function f : R→ R thus defined is C1 and 1-periodic.

Proof. Step 1: well-definition of f . Let us define the function H = H(r, h) by

H(r, h) := F

([
−j

2

2
r

]m
j

, h

)
for (r, h) ∈ R2.

For fixed h ∈ R, consider the equation in r:

(5.1) H(r, h) = F

([
−j

2

2
r

]m
j

, h

)
= 0.

By (H1) (i) and (v), H ∈ C1(R2) and satisfies:

(5.2)
∂H

∂r
(r, h) = −

∑
1≤|i|≤m

i2

2
Fi

([
j2

2
r

]m
j

, h

)
≤ −ν < 0 for all (r, h) ∈ R2.

Equation (5.1) thus admits a unique solution r := f(h).

Step 2: 1-periodicity. The function H is in fact 1-periodic w.r.t. the h-variable, thanks to the
periodicity of F in (H1) (ii). It follows that for all h ∈ R, we have

H(f(h+ 1), h+ 1) = 0 = H(f(h), h) = H(f(h), h+ 1)

and the uniqueness of the solution to (5.1) implies that f(h+ 1) = f(h).

Step 3: regularity. By (5.2), the regularity result of the implicit function theorem implies
that f defined by (5.1) has (at least) the same regularity than H. We conclude that f ∈ C1(R)
and complete the proof. �

Let us remark that, as a consequence of Lemma 5.1, the hull function solving (1.9), satisfies in

particular: hzz +
1

p2
f(h) = 0. In order to solve this equation by the separation variable method,

we have to introduce the function K = K(p) defined by the lemma below. This result also states
the main properties of K that will be needed for the qualitative study of G in Subsection 5.3.
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Lemma 5.2. (Definition of F and K and main properties of K)
Assume (H1) and let F be the 1-periodic primitive of f with null mean. Then, for each p > 0,
there exists a unique real K(p) > maxF such that

(5.3)

∫ 1

0

dh√
2(K(p)− F(h))

=
1

p
.

Moreover, the function K : (0,∞)→ (maxF,∞) thus defined is analytic and satisfies:

(5.4) K(p) ∼p→∞
p2

2
.

We skip the details of the proof of Lemma 5.2 which is an elementary result.

5.2 Proof of Proposition 1.3

We are now able to prove Proposition 1.3.

Proof of item (a). By Lemma 5.1, Problem (1.9) is equivalent to the following one: for all (z, p) ∈
R× (0,∞),

(5.5)


hzz(z, p) + 1

p2
f(h(z, p)) = 0,

h(z + 1, p) = h(z, p) + 1,

hz(z, p) > 0,

h(0, p) = 0,

where f ∈ C1(R) is 1-periodic with null mean. Let us solve this equation by the help of the
separation variable method.

Step 1: existence of the hull function. For (h, p) ∈ R× (0,∞), define

(5.6) φ(h, p) := p

∫ h

0

dτ√
2(K(p)− F(τ))

,

where K and F are defined in Lemma 5.2. Since K : (0,∞)→ (maxF,∞) is analytic and F ∈ C2(R),
we have φ ∈ C3(R× (0,∞)) with

(5.7)
∂φ

∂h
(h, p) =

p√
2(K(p)− F(h))

≥ p√
2(K(p)−minF)

> 0.

For fixed p > 0, the function φ(·, p) : R→ R is thus invertible, C3 and its inverse is also C3, thanks
to the regularity result of the inverse function theorem. Let us denote this inverse by

(5.8) h(z, p) := (φ(·, p))−1(z),

for each z ∈ R, and let us prove that this function is solution to (5.5).
First, we have

(5.9) hz =

(
∂φ

∂h

)−1
=

√
2(K(p)− F(h))

p
;
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in particular, h2z
2 p

2 = K(p) − F(h) and derivating one time w.r.t. z, we get hzzhzp
2 + f(h)hz = 0.

Since (5.9) implies that hz is positive, we can divide this equation by hz to conclude that h satisfies
the ODE of (5.5).

Moreover, the 1-periodicity of F and (5.3) imply obviously that φ(h+ 1, p) = φ(h, p) + 1 for all
real h. Taking the inverse, the function h defined in (5.8) satisfies:

h(z + 1, p) = (φ(·, p))−1(z + 1) = (φ(·, p))−1(z) + 1 = h(z, p) + 1

for all z ∈ R, p > 0. Finally, we have already seen that hz > 0 and it is clear that h(0, p) = 0 for
all p > 0. Indeed, φ(0, p) = 0 and it follows that h(0, p) = (φ(·, p))−1(0) = 0. We conclude that h
is solution to (5.5) and a fortiori to (1.9).

Step 2: uniqueness of the hull function. Assume that h̃ is another solution. Then multiplying

the first equation (1.9) by h̃z and integrating, we see that
1

2
(h̃z)

2 +
1

p2
F(h̃) =

C

p2
and then

∫ 1

0

dh̃√
2(C − F(h̃))

=

∫ 1

0

dz

p

which implies that C = K(p) and then h̃ = h.

Step 3: regularity of the hull function. For (h, p, z) ∈ R × (0,∞) × R, define ψ(h, p, z) :=
φ(h, p)− z. By (5.8), h(z, p) is the unique real that satisfies the equation

ψ(h(z, p), p, z) = 0.

Moreover, ψ ∈ C3(R× (0,∞)×R) since φ is C3, and (5.7) implies that ∂ψ
∂h (h, p, z) = ∂φ

∂h(h, p) > 0.
By the regularity result of the implicit function theorem, we deduce that h ∈ C3(R× (0,∞)). The
proof of the item (a) of Proposition 1.3 is now complete. �

Proof of items (b) and (c). Let p0 > 0 and M0 ∈ R be fixed. We begin by rewriting equa-
tion (1.11) in the more “readable” form (5.10) below. To do this, observe that K defined by (1.10)
is positive, thanks to (H1) (v); since h2z is also positive, the ODE in (1.11) is equivalent to

λ
h2z
K

= M0Ah
2
z + p20

(
h2z
2
vzz + hzzhzvz

)
.

Using now that
(
h2z
2 vzz + hzzhzvz

)
=
(
h2z
2 vz

)
z
, we see that (1.11) is equivalent to

(5.10)

{
λh

2
z
K = M0Ah

2
z +

p20
2

(
(hz)

2vz
)
z
,

v(z + 1) = v(z).

We can now prove the existence and uniqueness of λ.

Step 1: uniqueness of λ. Assume that the equation above admits a solution v ∈ C2(R). Then,
we can integrate (5.10) w.r.t. z ∈ [0, 1] and using the 1-periodicity of hz(·, p0) and of v, we get:

(5.11) λ

∫ 1

0

h2z(z, p0)

K(z, p0)
dz = M0

∫ 1

0
A(z, p0)h

2
z(z, p0)dz.
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This shows that there exists at most one λ ∈ R such that (5.10) admits a C2 solution, and this λ
is given by (5.11).

Step 2: existence of λ. Conversely, assume that λ satisfies (5.11) and let us prove that (1.11)
has a solution. Define H = H(z) by

H :=
2

p20

(
λ
h2z
K
−M0Ah

2
z

)
.

By the regularity of h and assumption (H1) (i), A and K are at least C0 w.r.t. z and so is H.
Let H = H(z) be a primitive of H such that

(5.12)

∫ 1

0

H(z)

h2z(z, p0)
dz = 0.

Let v = v(z) be a primitive of
H
h2z

, which is then 1-periodic. Since H is C0, v is C2. Moreover, by

construction, we see that v satisfies the ODE of (5.10).

Step 3: conclusion. To summarize, we have proved that (5.10) admits a solution iff (5.11) holds
true; since (5.11) is equivalent to (1.12), we have completed the proof of both items (b) and (c) of
Proposition 1.3. �

5.3 Qualitative properties of G

Let us now prove the properties of G in Propositions 1.4-1.5.

Proof of Propositions 1.4-1.5. The proof is based on the following decomposition for p > 0:

(5.13) G(p) := G(p)I(p) with G(p) :=

∫ 1
0 2A(z, p)h2z(z, p)dz∫ 1

0 h
2
z(z, p)dz

and I(p) :=
1

2

∫ 1
0 h

2
z(z, p)dz∫ 1

0
h2z(z,p)
K(z,p) dz

.

For the sake of clarity, the main properties of G will be stated and proved in the next subsection
(see Lemma 5.4).

Step 1: positivity and regularity. Recalling that K is positive by (H1) (v), we see that I is
positive. Therefore, Lemma 5.4 implies that G = GI is positive. Moreover, by the item (a) of
Proposition 1.3 and (1.12), it is clear that G ∈ C0(0,∞); notice that G is only C0, since F is
assumed to be only C1 in (H1) (i). But, if F is Ck+1, then G is Ck. Indeed, the regularity result
of the implicit function theorem applied in Step 3 (resp. Step 1) of the proof of Lemma 5.1 (resp.
of the item (a) of Prop. 1.3), would imply that f is Ck+1 (resp. that h is Ck+3). Thus, A and K
would be at least Ck and G also.

Step 2: limit as p→ 0. Because of (H1)(i) we remark that

(5.14) M := sup
R×(0,∞)

K <∞.

It follows that

0 < I ≤ M

2

∫ 1
0 h

2
z(z, p)dz∫ 1

0 h
2
z(z, p)dz

=
M

2
.
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Since limp→0G(p) = 0 by Lemma 5.4, we conclude that limp→0G(p) = 0.

Step 3: limit as p→∞. Let us study the limits, as p→∞, of the different terms that define I.
First, it is clear that hzz(z, p)→ 0 as p→∞, uniformly in z ∈ [0, 1]. Moreover, (5.9) and (5.4)

easily imply that limp→∞ hz(0, p) = 1. The primitives hz of hzz then have to satisfy:

(5.15) hz(z, p)→ 1, as p→∞, uniformly in z ∈ [0, 1].

Next, (5.15) and the initial condition h(0, p) = 0 imply that h(z, p)→ z, as p→∞, uniformly
in z ∈ [0, 1]. Consequently, p2hzz(z, p) = −f(h(z, p)) → −f(z) as p → ∞, uniformly in z ∈ [0, 1].
By the regularity of F and (1.10), it is easy to deduce that

K(z, p)→ K(z,∞) as p→∞, uniformly in z ∈ [0, 1],

where

(5.16) K(z,∞) :=
∑

1≤|i|≤m

i2Fi

([
−j2 f(z)

2

]m
j

, z

)
.

By (H1) (i) and (v), the limit function K(·,∞) is still positive and continuous on R. Then,
min[0,1]K(·,∞) =: γ > 0, which implies that minz∈[0,1]K(z, p) ≥ γ/2 for p sufficiently large; in
particular, we get:

(5.17)
1

K(z, p)
→ 1

K(z,∞)
as p→∞, uniformly in z ∈ [0, 1].

Passing finally to the limit under the integral signs that defines I in (5.13), we deduce from (5.15)-
(5.17) that

lim
p→∞

I(p) =
1

2

{∫ 1

0

1

K(z,∞)
dz

}−1
= l > 0,

where l is defined in (1.13). Since Lemma 5.4 states that limp→∞G(p) = 1, we have proved that
limp→∞G(p) = l.

Step 4: analyticity and monotonicity for the classical FK model. For the classical FK model
(1.3), simple computations show that K(z, p) is constant equal to 2. Hence, I = 1 and G = G. The
proof of the analyticity and monotonicity of G is then an immediate corollary of Lemma 5.4.

�

5.4 Technical results: properties of G

Let us first prove the following technical lemma.

Lemma 5.3. For α ∈ R and p > 0, define Jα(p) :=
∫ 1
0 (2(K(p)− F(h)))α dh, where K(p) is defined

by (5.3). Then, Jα is positive, analytic w.r.t. p > 0 and for i ∈ Z,

(J
i
2 )′ = i K′ J

i−2
2 ,(5.18)

J
i
2 <

√
J
i+2
2 J

i−2
2 if f 6≡ 0,(5.19)

J−
1
2 ≤

(
J−

3
2

) 1
3
.(5.20)
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Proof. By Lemma 5.1, Jα is analytic. Of course Jα is positive, since K > maxF. Moreover,
Equality (5.18) is an immediate consequence of the theorem of derivation under the integral sign.
To prove (5.19), we use Cauchy-Schwartz’s inequality. We have∫ 1

0
(2(K(p)− F(h)))

i
2dh =

∫ 1

0
(2(K(p)− F(h)))

i+2
4 (2(K(p)− F(h)))

i−2
4 dh

≤

√∫ 1

0
(2(K(p)− F(h)))

i+2
2 dh×

∫ 1

0
(2(K(p)− F(h)))

i−2
2 dh,

which proves that J
i
2 ≤

√
J
i+2
2 J−

i−2
2 . But, these terms can not be equaled, because this would

imply that

∀h ∈ [0, 1], (2(K(p)− F(h)))
i+2
4 = C(2(K(p)− F(h)))

i−2
4

for some constant C; since the primitive F of f is non-constant, it is clear that such an equality does
not hold true1. The same way, (5.20) follows by Hölder’s inequality with exponents (p, q) = (3/2, 3)

giving J−
1
2 ≤ (J0)

2
3 (J−

3
2 )

1
3 and the proof is complete. �

Lemma 5.4. Under (H1), G is analytic, positive and increasing on (0,∞). Moreover, we have
limp→0G(p) = 0 and limp→∞G(p) = 1.

Proof. Step 1: new formula for G. By the definitions of G and A in (5.13) and (1.10), simple
computations show that

(5.21) G = G(p) = 1 + p

∫ 1
0 2hzp(z, p)hz(z, p)dz∫ 1

0 h
2
z(z, p)dz

= 1 + p

d
dp

(∫ 1
0 h

2
z(z, p)dz

)
∫ 1
0 h

2
z(z, p)dz

:= 1 + p
I ′(p)

I(p)
,

where we set I := I(p) =
∫ 1
0 h

2
z(z, p)dz.

Note that equation (5.9) implies that I(p) =
∫ 1
0

1
p

√
2(K(p)− F(h(z, p)) hz(z, p)dz = J

1
2 (p)
p ,

where the powers Jα are defined and studied in Lemma 5.3.

Let us compute I ′. By (5.18), it follows that I ′ = K′ J−
1
2

p − J
1
2

p2
= K′ J−

1
2

p − I
p . Equation (5.21)

thus gives

G = 1 + K′
J−

1
2

I
− 1 =

pK′ J−
1
2

J
1
2

.

But (5.3) implies that J−
1
2 = 1

p . Since (J−
1
2 )′ = −K′ J−

3
2 , we deduce that

(5.22) K′ =
1

p2 J−
3
2

=
J−

1
2

p J−
3
2

;

hence, we get the following formula on G:

G =

(
J−

1
2

)2
J

1
2J−

3
2

.(5.23)

1Excepted in the trivial case f ≡ 0, which is not interesting in our settings.
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Step 2: positivity and analyticity of G. By (5.23) and Lemma 5.3 below, it is readily seen that
G is positive and analytic w.r.t. p.

Step 3: monotonicity of G. To compute G′, we simply have to derivate (5.23). Using (5.18),
we leave it to the reader to verify that this leads to the following formula:

(5.24) G′ = K′

3

(
J−

1
2

)2
J−

5
2

J
1
2

(
J−

3
2

)2 −
(
J−

1
2

)3(
J

1
2

)
2J−

3
2

− 2
J−

1
2

J
1
2

 .

On denoting the three terms in brackets by I1, I2 and I3, we get G′ = K′(3I1 − I2 − 2I3). Let us
prove that I1 > I2 and I1 > I3, thus concluding the positivity of G′, since K′ is positive by (5.22)
and Lemma 5.3. To establish that I1 > I2, we have to prove that(

J−
1
2

)3
(
J

1
2

)2
J−

3
2

<

(
J−

1
2

)2
J−

5
2

J
1
2

(
J−

3
2

)2 ,

which is equivalent to J−
1
2 J−

3
2 < J−

5
2 J

1
2 . But (5.19) implies that J−

1
2 <

√
J

1
2 J−

3
2 and J−

3
2 <√

J−
1
2 J−

5
2 . Taking the product, we get the result.

The same way, I1 > I3 is equivalent to
(
J−

3
2

)2
< J−

1
2J−

5
2 , which is already given by (5.19).

Step 4: limits as p→ 0,∞. By (5.4), we see that Jα(p) ∼p→∞ p2α. By (5.23), we deduce that
limp→∞G(p) = 1. To compute the limit as p→ 0, remark first that

J
1
2 ≥

∫ 1

0

√
2(maxF− F(h))dh =: C0 > 0.

Next, recall that (5.3) implies J−
1
2 = 1

p . By (5.20), we get:
(
J−

3
2

) 1
3 ≥ 1

p . Finally, we deduce

from (5.23) that G(p) ≤ p
C0

and thus limp→0G(p) = 0. The proof of Lemma 5.4 is complete. �

A The ansatz and the cell equation for α = 2

Let us give the main lines of the proof of the convergence result in Theorem 1.6. One uses an ansatz
of the same form than in (1.8),

(A.1) U ε(t, x) = εh

(
Ũ ε(t, x)

ε
, ũ0x(t, x)

)
with Ũ ε(t, x) := ũ0(t, x) + ε2ṽ

(
ũ0(t, x)

ε

)
,

where the hull function is as before and the corrector ṽ is defined by the proposition below.

Proposition A.1. (The new corrector and coefficient)
Assume (H1). Let h ∈ C3(R× (0,∞)) be the hull function in Proposition 1.3. Let A,K,G, K̃ be

defined in (1.10), (1.12) and (1.17). Then:
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(a) The new corrector ṽ
For all p0 > 0 and M0 ∈ R there exists a unique λ̃ ∈ R such that there exists ṽ ∈ C2(R) satisfying
for all z ∈ R
(A.2) λ̃ = K̃(z, p0)

hzzz(z, p0)

hz(z, p0)
p30 +K(z, p0)A(z, p0)M0 +K(z, p0)p

2
0

(
ṽzz(z)

2
+
hzz(z, p0)

hz(z, p0)
ṽz(z)

)
,

ṽ(z + 1) = ṽ(z).

(b) The coefficient b
Moreover, we have λ̃ = b(p0)p

3
0 +G(p0)M0 where b defined in (1.16) is continuous.

Proof of Proposition A.1. We follow the lines of the proof of items (b) and (c) of Proposition 1.3

in Subsection 5.2. Multipyling by h2z
K > 0 and using that

(
h2z
2 ṽzz + hzzhz ṽz

)
=
(
h2z
2 ṽz

)
z
, we see

that the ODE in (A.2) is equivalent to

λ̃
h2z
K

=
K̃

K
hzzzhz p

3
0 +M0Ah

2
z +

p20
2

(
(hz)

2ṽz
)
z
.

Integrating w.r.t. z ∈ [0, 1] and using the 1-periodicity of the functions, we see that this equation
admits a 1-periodic solution only if

λ̃

∫ 1

0

h2z(z, p0)

K(z, p0)
dz = p30

∫ 1

0

K̃(z, p0)

K(z, p0)
hzzz(z, p0)hz(z, p0)dz +M0

∫ 1

0
A(z, p0)h

2
z(z, p0)dz.

This condition is equivalent to λ̃ = b(p0)p
3
0 +G(p0)M0 where b is defined in (1.16) and G as before.

Conversely, if this condition holds true, then one takes ṽ = ṽ(z) as a primitive of H = H(z)

such that Hz = H := 2
p20

(
λ̃h

2
z
K −

K̃
Khzzzhz p

3
0 −M0Ah

2
z

)
and

∫ 1
0
H(z)

h2z(z,p0)
dz = 0. It is clear that b is

continuous since F is C1 and h is C3. �

With Proposition A.1 in hands, we have to justify our new ansatz (A.1) by proving that the
key local error estimate in Lemma 3.2 still works.

Lemma A.2. (New local error estimate) Assume (H1) and let α = 2. Then Lemma 3.2 holds
true by replacing (v, λ) by (ṽ, λ̃) from Proposition A.1.

Proof of Lemma A.2. We use the same notations than in the proof of Lemma 3.2. We repeat the
computations by doing a Taylor’s expansion of the hull function of one more order. Let us mention
that we do Taylor’s expansions of the same order for all the other functions. Consequently, the
rests will depend on the same constants than before excepted C1(δ) in Lemma 3.1. This constant
appeared when having applied the Taylor-Young formula of order 2 to the hull function. Now,
one shall use the classical Taylor’s formula of order 3 and the rest will depend on the modulus of
continuity of third-order derivatives of h. Instead of item (b) of Lemma 3.1, we thus shall need
the following property:
(A.3)

For all δ > 0, the third-order partial derivatives of h are uniformly continuous on R×
[
δ, 1δ
]
.

The proof of (A.3) is immediate since h is C3 and 1-periodic plus linear w.r.t. its first variable.
Let us also recall that (3.5) can be assumed without loss of generality, and we do so.
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For the reader’s convenience, let us recall the notations of the different variables: z̃ := φ̃ε(t,x)
ε ,

z := φ(t,x)
ε , p := φx(t, x), φε(t, x) = εh(z̃, p), and φ̃ε(t, x) = φ(t, x) + ε2ṽ(z). Up to (3.13) we do

exactly the same expansions. That is to say, one has (3.12) and (3.13) that we rewrite below:

φ̃ε(t, x+ jεα)

ε
= z̃ + jεα−1p+ jεαṽzp+

j2

2
ε2α−1

(
φxx + ṽzzp

2
)

+ o(ε2α−1) =: z̃ + E1,(A.4)

φx(t, x+ jεα) = p+ jεαφxx + o(εα) =: p+ E2

(where we recall that o(εβ)
εβ
→ 0 as ε → 0 uniformly in (t, x, j); see (3.10)). Now we make an

expansion of order 3 for the hull function. One gets Equation (3.16) with a new term:

h

(
φ̃ε(t, x+ jεα)

ε
, φx(t, x+ jεα)

)
− h(z̃, p) =

= j
{
hz̃
(
εα−1p+ εαṽzp

)
+ εαhpφxx

}
+ ε2α−2

{
j2

2
hz̃z̃p

2

}
+ ε2α−1

{
j2

2

(
hz̃
(
φxx + ṽzzp

2
)

+ 2hz̃z̃ ṽzp
2 + 2hz̃p p φxx

)}
+ ε3α−3

1

3!
j3p3hz̃z̃z̃︸ ︷︷ ︸

new term

+o
(
ε3α−3

)
,

where the rest is controled by (A.3). Indeed, the rest is of order o
(
(|E1|+ |E2|)3

)
; moreover, recall

that the worst term in |E1| + |E2| comes from jεα−1p in (A.4) so that (|E1| + |E2|)3 is at least of
order ε3α−3.

Dividing by ε2α−2, Equation (3.17) becomes:

1

ε2α−2
Vj :=

1

ε2α−2

{
h

(
φ̃ε(t, x+ jεα)

ε
, φx(t, x+ jεα)

)
− h(z̃, p)

}

= jq +
j2

2
hz̃z̃p

2 + εj2 hz̃

{
Aφxx + p2

(
ṽzz
2

+
hz̃z̃
hz̃

ṽz

)}
+ εα−1

1

3!
j3p3hz̃z̃z̃︸ ︷︷ ︸

new term

+o
(
εα−1

)
.

where q := 1
ε2α−2

{
hz̃
(
εα−1p+ εαṽzp

)
+ εαhpφxx

}
is the same linear displacement.

We proceed as in step 4 of the proof of Lemma 3.2 to remove the linear displacement. As in
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step 5, we make a Taylor’s expansion of order 1 of F . Equation (3.19) becomes:

1

ε
F

(
1

ε2α−2
[Vj ]

m
j , h

)
=

=
1

ε
F

([
j2

2
hz̃z̃p

2

]m
j

, h

)
+ hz̃

{
KAφxx +K p2

(
ṽzz
2

+
hz̃z̃
hz̃

ṽz

)}

+ εα−2

 ∑
1≤|i|≤m

i3

3!
Fi

([
j2

2
hz̃z̃p

2

]m
j

, h

)hz̃z̃z̃p
3

︸ ︷︷ ︸
new term

+o(ε0∧(α−2)).

We recognize the function K̃ in (1.17). Equation (3.8) then becomes:

Lε[φε] = hz̃φt + ε(hz̃ ṽzφt + hpφxt)

− 1

ε
F

([
j2

2
hz̃z̃p

2

]m
j

, h

)
−hz̃

ε
α−2K̃

hz̃z̃z̃
hz̃

p3︸ ︷︷ ︸
new term

+KAφxx +K p2
(
ṽzz
2

+
hz̃z̃
hz̃

ṽz

)+o(ε0∧(α−2)).

When α is strictly greater than 2, the new term goes in the rest. Now it is of order εα−2 = 1
and one has to take it into account in the equation of the corrector. To conclude, we proceed as in
step 6 of the proof of Lemma 3.2 by using equation (A.2) to vanish the term of order 1. �

We now leave it to the reader to verify that the convergence result in Theorem 1.6 can be
proved the same way as in Section 4. The only difference is that one has to take into account the
new term in (A.2) to construct the barriers in the first step; the new term that one has to control
is of the form K̃(z̃, φx(t, x))hz̃z̃z̃(z̃, φx(t, x)) where φ(t, x) = u0(x) + Ct. Recalling that F is C1

and h is C3 and linear plus periodic w.r.t. its first variable, it is easy to control this term by (H0).
Moreover, let us notice that the perturbed test function method uses a comparison principle for the
limit equation as in Theorem 2.9. Since b is continuous, it is classical that one has such a principle
for (1.15) (see [5]).

B An example of different limit when α = 2

End of the proof of Theorem 1.6 We show that the new coefficient b in (1.15) never equals
zero. By (1.10) and (1.17), one easily computes that

K̃

K
=

(l1 − l−1) + 8(l2 − l−2)
6(l1 + l−1 + 4(l2 + l−2))

=: B 6= 0

by assumption. By (1.16), one deduces that

b(p) = B

∫ 1
0 hzzz(z, p)hz(z, p) dz∫ 1

0
h2z(z,p)
K(z,p) dz

 = −B

∫ 1
0 h

2
zz(z, p) dz∫ 1

0
h2z(z,p)
K(z,p) dz

 ,
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by integration by parts. Since h is continuous and linear plus periodic and F0 is continuous and
non-constant, the intermediate value theorem implies that F0(h) is non-constant. Hence, by (5.5),
one deduces that h2zz is non-constant and that b(p) 6= 0 for all p > 0.

It remains to verify that (H1) holds true under (1.18). Item (v) is immediate. Let us show
item (iv). By linearity of F w.r.t. its first variable, one has to show that

∑
1≤|i|≤2 ili = 0, which is

given by the condition l1 + 2l2 = l−1 + 2l−2. The proof is complete. �
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