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American option

» A contract on one or several underlying assets that can
be exercised during some predetermined period [t, T].
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American option

» A contract on one or several underlying assets that can
be exercised during some predetermined period [t, T].

> Payoff g : R” — R at exercise 7 € 7|1 7).
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Example: American put option

Gives you the right, but not the obligation, to sell the
underlying stock X for a predetermined price K any time
set, T
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Example: American put option

Gives you the right, but not the obligation, to sell the
underlying stock X for a predetermined price K any time
set, T

At exercise T the payoff is g(X;) = max(K — X;,0).
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The market consists of oSy 1

American options

» non-risky asset

dBs = pBsds
Bt - B

» traded asset

dXs = pXsds + o XsdWs
Xt- = X

Ws is Brownian motion.
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The price h of an American option with payoff g is given by

Theorem (Risk-neutral valuation formula)

hx.6) = sup E(e "7 g (X,)|X: = x).
TE|t,




Free boundary
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h solves the following linear variational inequality

1
min ( — ht —_ 70—2X2hXX — thX _|_ ph’ American options

2
h(x, t) — g(x)) = 0 inRxI[0,T)
h(x, T) g(x) in[0,T)




Variational inequality

h solves the following linear variational inequality

1
min ( — he = 50°5 hoc — pxh + ph,
h(x, t) — g(x)) = 0 inRxI[0,T)

h(x,T) = g(x) in[0,T)

A free boundary T separates the sets

1
¢ = {—h— 2<7x2h — pxhy, + ph = 0}
{h—g =0}

™
|
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History

Results for the American put.

> Kuske & Keller (1998)
» Bunch & Johnsson (2000)
» Stamicar, Sevcovic & Chadam (1999)
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In dimensionless variables the price function h(x, t) solves Histary and
ackground

he — ho — (k—1)he+kh = 0 for x > f3(t)
h = 1-¢* for x < f(t)
h(0,x) = (1—-e9*,

where x = (3(t) is a parameterization of the free boundary T




Fundamental solution

Find the fundamental solution for the PDE

(x + (k — 1)t)? }

4t

d(x,t) = 2\}7;exp{—

and get the following integral representation

0
h(x,t) = /_ (1—¢e)P(x—y,t)dy

t rB(t—0)
—l—k/ / d(x — y,0)dydo.
0 J—oo
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Derive an ODE for the free boundary

20,(6(t), t)
k

History and
background

B=-— —2/0t¢x(5(t)—ﬂ(t—@),@)ﬁ(t—@)d@.
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Derive an ODE for the free boundary

History and
background

j= 200 5 Mo e - At - 0). 00 - o).
0
Asymptotic expansion

g_ 5 i_‘_i_‘_i%_
4t 26 8€2 T 2483 T

where & = V4mk?2t.




Summary of the expansion method

Advantage
» Good precision
Drawback

» One-dimensional, linear setting.
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A general obstacle proble

m

Obstacle problem with a non-linear, n 4+ 1-dimensional,

parabolic operator

min(Dsu — F(Dzu, Du, u, x, t)

where Bj is the unit ball in R”.

,U—g)

u(x,0)

0
g(x)

in B x (0,1)

in By
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Scaling in the point (0, 0)

For simplicity assume: u(0,0) = g(0) = 0.
Scaled function

u(rx, r’t)

ur(x,t) = "
,

Scaled operator

F,(D2u, Du,u,x,t) = F(D2u, rDu, r’u, rx, r2t).
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For simplicity assume: u(0,0) = g(0) = 0.
Scaled function

The blow-u
U(rX, r2t) technique P

ur(x,t) = -
,

Scaled operator
F.(D?u, Du,u,x,t) = F(D?u, rDu, r’u, rx, r’t).

Choose «, so that 0 < lim,_gu, < o0 .
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Under standard assumptions on F the scaled function u,
solves

The blow-up
technique

min(D;u, — F,(D?u,, Duy,, uy, x, t),
r — 8r = in B r y T
ur — &) 0 in By, x (0 p )
ur(x,0) = gi(x) in By,
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Take the so called blow-up limit by letting r — O.

If we have the right growth and continuity of u the limit
function ug = lim,_g u, will solve technique

The blow-up

min(D¢up — Fo(D?uo, Dug, uo, X, t),
u—g) = 0 inRxR
UO(X7 0)

go(x) inR.




- - Free boundary
BlOW— u p I m It regularity close to

initial state and
applications to
finance

Teitur /
KTH, S

Take the so called blow-up limit by letting r — O.

If we have the right growth and continuity of u the limit
function ug = lim,_g u, will solve technique

The blow-up

min(Dtuo — F(D2U070707 0, 0)’
ug — go) =0 in R x R+
UO(Xa 0) = go(X) in R.




Free boundary regularity

Assume we have a free boundary.

At

Diu— Fu=0
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t = cx?
_ At
u= Dtu —Fu=0 The blow-up
r technique
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Pick a sequence X1, Xz ... € {t = cx?},where X; = (x;, t;). KTH. Stockholm
t = cx?
_ At
u= Dtu — FU = O The blow-up
X1 r technique
X
X3
Xi
>
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Free boundary regularity

...and scale the problem by r;. X; = (x;/rj, tj/rjz).

At D, —Fou, =0

Bl X (07 1)
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Free boundary regularity

Take the limit as j — co. Note |X,o| = 1.

At

DtUO - FoUo =0

Bl X (07 1)
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The blow-up limit problem

» For the limit problem no lower order terms occur in the
PDE.

» The limit obstacle gp is possibly simpler than the
original g.
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The blow-up limit problem

» For the limit problem no lower order terms occur in the
PDE.

» The limit obstacle gp is possibly simpler than the
original g.

4

When analysing the limit problem we might arrive at
different conclusios:

» We might find an analytic solution.
» We might be able to contradict the picture above.
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go is a strict subsolution if r—
—F(D?g,0,0,0,0) < 0in By x (0,1).

Diuy — F(up,0,0,0,0) > 0in By x (0,1) and the maximum
principle

The blow-up
technique

4
up > go in By X (0, 1).




The obstacle is a strict subsolution
go is a strict subsolution if
—F(D?g,0,0,0,0) < 0in B; x (0,1).

Diuy — F(up,0,0,0,0) > 0in By x (0,1) and the maximum
principle

4
up > go in By X (0, 1).

4

No free boundary exists for the limit problem, i.e.
Fre{t<x?o(x)}

for some modulus of continuity o(x).
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Incomplete markets: Market components
The market consists of
» non-risky asset (zero interest rate for simplicity)
B. = B.
> traded asset

dXs = pXsds + oXsdWs
Xt = X

» non-traded asset

dYs = b(Ys,s)ds+ a(Ys,s)dW!.
Ye = ¥y

Ws and W/ are correlated with correlation p € (—1,1).
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Aim

Define the indifference price h of a call option written on the
non-traded asset Y.
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Investment alternatives

Alternative 1: Invest in stock Xs and bond Bs

» Allocation in traded stock Xs: s

Allocation in bond: 72

» Wealth: Z; = 772 + 7s.

dZs = mspds + msodWs
Zt- = Z.
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Investment alternatives

Alternative 1: Invest in stock Xs and bond Bs

» Allocation in traded stock Xs: s

Allocation in bond: 72

» Wealth: Z; = 772 + 7s.

dZs = mspds + msodWs
Zt- = Z.

Alternative 2: Invest in stock X, bond Bs and buy a call
option on non-traded asset Y at time t for price h

» American call payoff: g(y) = (y — K)™.
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Terminal wealth: Zt (T, Stockhe!

Value function:

Vi(z,t) = SLT,Irp E(U(Z7)|Z: = 2).

where U(z) = —e™ 7.
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» Alternative 1 (Stock and bond only) CL TS
In|t|a| Wealth V4 Teitur Arnarson

Termlnal Wealth ZT KTH, Stockholm
Value function:

Vi(z,t) = SLT,Irp E(U(Z7)|Z: = 2).

where U(z) = —e™ 7.
» Alternative 2 (Stock, bond and call option) s
Initial wealth: z—h

Wealth at exercise time 71 Z, + g(Y-)
Value function:

Vo(z,y,t) =sup E(VA(Zr + g(Y7), T)|Zr =2, Y: = y)




Indifference pricing

» Alternative 1 (Stock and bond only)
Initial wealth: z
Terminal wealth: Z7
Value function:

Vi(z,t) = SLT,Irp E(U(Z7)|Z: = 2).

where U(z) = —e™ 7.
» Alternative 2 (Stock, bond and call option)
Initial wealth: z—nh

Wealth at exercise time 71 Z, + g(Y-)
Value function:

Vo(z,y,t) =sup E(VA(Zr + g(Y7), T)|Zr =2, Y: = y)

» Definition: The indifference price h satisfies

Vl(Z, t) = V2(z - h7y7 t)
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Variational inequality

min(Hh,h—g) =
hly, T) =

where

1
Hu = Diu— =a*(y, t)D}%u - (b(y, t) — ,oga(y7 t)) Dyu

2

2

1101 - ARy, (D).
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» Parameterization of free boundary: T = (3(t), t) applieations to
» Location at expiry: o = lim:—o 3(t)

> Aly.t) = —Hg E b—pla—Ly(1- )

Lemma 1 If A(y0,0) = 0 and A\
A(yo + 6,0)A(yo — 0,0) < 0 for all
small § then either no free bound-
ary exists or

Application to
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Bo=Yo- e a




Free boundary at expiry

» Parameterization of free boundary: T = ((t), t)
» Location at expiry: o = lim:—o 3(t)

> Aly.t) = —Hg E b—pla—Ly(1- )

Lemma 1 If A(y0,0) = 0 and A\
A(yo + 6,0)A(yo — 0,0) < 0 for all
small § then either no free bound-
ary exists or

Bo = yo.

Lemma 2 If A(y,0) < —e for
some e > 0 and all y € {g > 0}
then

Bo =K.

K A< 0
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Free boundary regularity: Gy # K

Theorem 1 There exists & and r > 0 such that for

§1<§0_2<§23ndt<r

(B(t), 1) € {(y, t) : &1y — Bo)?

<

t < &(y — o)’}
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Theorem 1 There exists & and r > 0 such that for
§1<§0_2<§2 and t < r

(B(t), t) € {(y, 1) : &y — Bo)® < t < &y — Bo)?}

Application to

indifference pricing

&o solve u(&p) — &ou' (&) = 0 where

)
) = €65 (.0+ ) [ ﬂf‘;;j X0232X2 x




Proof

* Rewrite equation
Hu = Ay, t)X{us0}
where T{ = H + (1 — p?)a*g, D, .
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Proof

* Rewrite equation
Hu = Ay, t)X{us0}

where T{ = H + (1 — p?)a*g, D, .
* Scale by r3

u(ry + Bo, r’t
ur(y, t) = (r3)

and take the limit r — 0

1
Diug — 53(2)D§U0 = AO}/X{uo>0}'
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* Rewrite equation P nanee

finance
Hu = Ay, t)X{us0}

where T{ = H + (1 — p?)a*g, D, .
* Scale by r3

u(ry + Bo, r’t
ur(y, t) = (r3)

Application to

and take the ||m|t r — O indifference pricing

1
Diug — 53(2)D§U0 = AOYX{uo>0}-

* Self-similar solution in the variable £ = —y /\/t.

6(¢) = u(y,t).

3
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Theorem 2 There exists a modulus of continuity o(r) such
that

Application to
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(B(), 1) € {(y, 1) s t < (v = K)?a(y = K)}.
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r

and take limit r — 0
1
min(D¢hy — EagD}%hm ho—g) = 0
hO(Yv 0) = go(.y) Application to

indifference pricing




Free boundary
P rOOf regularity close to

initial state and

applications to

* Scale by r finance
h(ry + K, r2 t) Teitur Arnarson
he(y,t) = ———— KTH, Stockholm
r

and take limit r — 0

_ 1
min(D:hy — 5agL)§/7o, ho — go) 0

hO (.y7 0) = go (y) Application to

indifference pricing

* go =y is a strict subsolution to the limit PDE.

4

The limit problem does not have a free boundary.

4
(B(e). 1) € {t < (y = K)?a(y — K)}.
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