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Abstract We consider deformations in R
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the positions of the particles satisfy an Euler-Lagrange equation. For large
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d ≥ 1, deformations of an infinite chain of atoms which are initially aligned
with constant inter-atomic spacing.

The Cauchy-Born rule states that, when submitted to a small strain, the
positions of the atoms follow the displacement of the material at macroscopic
level. Our main result, see Theorem 1, is that the Cauchy-Born rule applies,
up to a small error that we estimate in terms of the two-body potential of
interaction.

From a mathematical point of view, the key tool is an estimate of Harnack

type, which constitutes our second main result. This estimate is of its own
interest for the understanding of thermodynamical limits, which correspond
here to the case when the number of atoms in the chain per unit length tends
to infinity.

1.1 Setting of the problem

Denote by V0 the two–body potential as a function of the distance between
the atoms, and define

V (L) = V0(|L|) for every L ∈ R
d .

For any vector L ∈ R
d, we define the energy per atom of the perfect lattice

{k L}k∈Z
by

W (L) = W0(|L|) where W0(r) =
∑

k∈N\{0}

V0(|k| r) .

By perfect lattice, we mean a lattice for which, for some L∗ ∈ R
d, X∗

k = k L∗

for any k ∈ Z. Since it is one-dimensional, we shall also call it a perfect chain
of atoms. We assume that the two–body potential V0 decays sufficiently fast
to zero at infinity in order that the series converges.

The macroscopic description

Let us now consider a map Φ : R 7−→ R
d satisfying the following macroscopic

“linear + periodic” condition

Φ(x + k) = Φ(x) + k L0 for any k ∈ Z , x ∈ R , (1.1)

for some given vector L0 ∈ R
d. This periodicity condition provides us with

some suitable compactness properties, which simplify the presentation and
the proof of the results. We are interested in the following macroscopic equa-
tion of the equilibrium of the material in nonlinear elasticity

(
∇W (Φ′)

)′
= f on R , (1.2)

for some force f : R → R
d which is 1-periodic,

f(x + k) = f(x) for any k ∈ Z , x ∈ R ,

and satisfies the compatibility assumption
∫

R/Z

f dx = 0 .
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The microscopic description

The heuristic idea is that the sequence
(
Φ(k ε)

)
k∈Z

is a good approximation
of the positions Xε

k of the atoms of the chain, with interdistances of the order
of ε, small. After the rescaling

Xk =
1

ε
Xε

k ,

the positions of the atoms of the chain are described by the map

X : Z → R
d,

k 7−→ Xk .

We introduce the formal, infinite energy

E(X) =
1

2

∑

j, k ∈ Z,
j 6= k

V (Xj − Xk) +
∑

j∈Z

Xj · fj ,

where each fk ∈ R
d represents the force acting on the atom at position Xk.

Although the energy is not well–defined, the Euler–Lagrange equation makes
sense under suitable assumptions on the two–body potential V and on the
lattice X . We get

fj +
∑

k∈Z\{j}

∇V (Xj − Xk) = 0 for all j ∈ Z . (1.3)

We now consider any integer Nε large enough, assume that ε = 1/Nε, and re-
quire that the positions of the atoms satisfy the following microscopic “linear
+ periodic” condition

Xk+Nε j = Xk + Nε j L0 for any j, k ∈ Z . (1.4)

We shall assume that the force acting on the kth atom is given by

fk =

∫ ε(k+ 1
2
)

ε(k− 1
2
)

f(x) dx for any k ∈ Z , (1.5)

which satisfies in particular the microscopic periodicity condition

fk+Nε j = fk for any j, k ∈ Z

and the compatibility condition

Nε∑

i=1

fi = 0 .

Our goal is to give an error estimate between the interdistance of the
atoms Xk+1−Xk corresponding to (1.3)-(1.4) and the macroscopic deforma-
tion Φ′(k ε) of the continuous solution to the equations of nonlinear elasticity,
(1.1)-(1.2). To this end we need some natural assumptions on the potentials.
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1.2 Invertibility assumptions

Invertibility assumption at macroscopic level

First we assume that there exists L∗ ∈ R
d with L∗ 6= 0, such that

Aij :=
∂2W

∂Li ∂Lj(L∗)
for any i, j = 1, 2, . . . d

satisfies the following non-degeneracy assumption.

Assumption (A1)

The matrix A = (Aij) is invertible.

Let us remark that by construction we have for the potential W0:

W (L) = W0(|L|) for any L ∈ R
d .

In particular, this implies that for d ≥ 2

A = W ′′
0 (|L∗|)

L∗

|L∗|
⊗

L∗

|L∗|
+

W ′
0(|L

∗|)

|L∗|

(
Id −

L∗

|L∗|
⊗

L∗

|L∗|

)
,

while for d = 1, we only have

A = W ′′
0 (|L∗|) .

Invertibility assumption at microscopic level

To establish the stability of the lattice generated by the vector L∗, we consider
the formal Hessian of the energy, which for X∗

k = k L∗ is defined by

E′′(X∗) · (Y, Y ) :=
∑

i∈Z

Yi · (B ∗ Y )i ,

with

(B ∗ Y )i :=
∑

j∈Z

Bi−j · Yj where Bl =





∑

k∈Z\{0}

H∗
k if l = 0 ,

−H∗
l if l 6= 0 ,

(1.6)

and
H∗

k := D2V (k L∗) . (1.7)

By construction, we see that the perfect chains, that is Y = (Yk)k∈Z with
Yk = Y0 for any k ∈ Z, are in the kernel of B, which is natural because of the
invariance under translations of the problem. Let us call E0 the energy E in
the special case of zero forces, fk = 0 for any k ∈ Z, and set

(
E′

0(X)
)
j

=
∑

k∈Z\{j}

∇V (Xj − Xk) .
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Let X∗ be a perfect lattice. We see that for any M ∈ R
d×d, the lattice

(Id + t M)X∗ is also a perfect lattice, and then satisfies the equation of
equilibrium (1.3) with zero forces:

E′
0

(
(Id + t M)X∗

)
= 0 .

Here by M X∗, we denote the lattice made of the points kML∗, k ∈ Z.
Differentiating the equation with respect to t at t = 0, we get

E′′
0 (X∗) · (MX) = 0 ,

which gives
B · MX∗ = 0 .

We shall assume that the kernel of B is generated by the image of X∗ by all
translations and linear transforms based as above on a matrix in R

d × R
d.

More precisely, we make the following invertibility/stability–type assump-
tion:

Assumption (A2)

There exists a positive constant C such that

(
|Yk+1 + Yk−1 − 2Yk| ≤ C and B · Y = 0

)

=⇒ Y = MX∗ + b for some M ∈ R
d×d, b ∈ R

d .

If there was another element Y ∗ of this type in the kernel of B, this would
mean that there is a deformation of the crystal (different from the above
transforms) which does not change the energy up to the second order. In other
words, the crystal would then have a possible instability in the direction Y ∗.
The true instability property (or possibly the stability) of the crystal should
then be studied by the mean of an analysis of the higher order terms in the
expansion of the energy.

1.3 Main results

In order to state our main results, we need some regularity and decay prop-
erties of the potential.

Assumption (A3)

W0 ∈ C3(0, +∞) , V0 ∈ C2 ∩ W 3,∞
loc (0, +∞) ,

and for some p > 1, we assume that

sup
r≥1

rp
[
|V0(r) + r |V ′

0(r)| + r2 |V ′′
0 (r)| + r3 |V ′′′

0 (r)|
]

< ∞ .
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For a given crystal lattice X , we can define its local distance to the perfect
lattice X∗

k = k L∗ by

Dk(X, L∗) := sup
e∈Q1

|Xk+e − Xk − e L∗| ,

where for n ∈ N \ {0} we set the box

Qn := {e ∈ Z : |e| ≤ n} .

Theorem 1 (Discrete–continuum error estimate)
Assume that (A1)–(A2)–(A3) hold and that f is bounded, periodic. Then
there exists ε0 > 0, such that, if

sup
x∈R

|f(x)| ≤ ε0 , |L0 − L∗| ≤ ε0 , sup
k∈Z

|Dk(X, L∗)| ≤ ε0 ,

then there exists a constant C0 > 0 such that we have the following error esti-
mate between any discrete solution X of (1.3)-(1.4)-(1.5) and the continuous
solution Φ of (1.1)-(1.2),

|Xk+1 − Xk − Φ′(k ε)| ≤ C0 ε
p−1

p+3 ∀ ε ∈ (0, ε0) .

Hence, when considering small perturbations of a stable perfect lattice, the
deformed lattice still satisfies the Cauchy–Born rule with a good approxima-
tion (see for instance [28,11] for interesting related works).

The proof of Theorem 1 is based on a new “Harnack–type” estimate, see
Theorem 2, which is the core of our method. It would be natural and very
interesting to generalize this result for m-dimensional lattices, with m > 1,
under appropriate assumptions on the two-body potential, but this still an
open question.

Remark 1 With our method, it is also possible to get estimates in the case
of potentials with exponential decay at infinity, with a sharp estimate of the
error.

Remark 2 In Theorem 1, we do not assume the uniqueness of the solution X
to (1.3)-(1.4)-(1.5), but only its existence.

1.4 A brief review of the literature

Related to our study is the fundamental question of the periodic or non–
periodic nature of an array of atoms interacting through two–body interac-
tions, when minimizing its energy. In dimension 1, this question has been
addressed in [12] for Lennard-Jones potentials. It has been proved that the
ground state is unique and approaches uniform spacing in the thermodynam-
ical limit. This has also been done in one dimension for other potentials in
[17,19] and generalized to two dimensions for very special potentials in [13,
16]. See the review paper [18]. In [25–27], the authors show that the peri-
odic configuration has the minimal energy per particle for some potentials
which are more general than the Lennard-Jones potential; they actually give
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a necessary condition on the Fourier transform of the potential so that the
property is true, and some counter–examples for particular potentials when
the condition is not satisfied.

In [1,24], continuum mechanics models are derived for systems with two–
body potentials, assuming that the macroscopic displacement is equal to the
microscopic one, that is when the Cauchy-Born rule applies. In [3], similar
results are obtained up to higher order correction terms (and for other molec-
ular models as well). Also see [10]. The problem of identifying the macroscopic
equivalent of a microscopic state, and the conditions which allow to do that,
are very close to the spirit of the Quasi–Continum Method (QCM), as pre-
sented in [20–23]. A particular model with first nearest neighbors interactions
is for instance studied in [2]. Also see [7,8] for studies on the dynamics. In a
stronger regularity framework, E and Ming have recently shown in [9] that
there is a unique local minimizer which satisfies the Cauchy-Born rule using
energy estimates. See references therein for a list of papers in preparation in
this direction. Results based on Γ–convergence have been achieved in [5,6].

In the present paper, we prove that the Cauchy-Born rule applies and give
a uniform error estimate, hence proving that the macroscopic displacement
is equal to the microscopic one up to first order.

1.5 Organization of the paper

In Section 2, we prove a key “Harnack–type” estimate. Section 3 is indepen-
dent of the rest of the paper and devoted to an extended “Harnack–type”
estimate which gives a boundary layer estimate. In Section 4, we prove our
main result, Theorem 1. In Section 5, we show some general properties of
the potentials, which will be used in Section 6 to state some sufficient condi-
tions such that the microscopic invertibility Assumption (A2) is satisfied by
Lennard–Jones potentials, for a chain of atoms under compression.

2 A “Harnack-type” estimate

We shall say that a subset K ⊂ Z of indices is a box, or a discrete interval,
if and only if it is the intersection of Z with an interval. For such a box K,
let us define the semi–norm (inspired by [14,15], also see [4])

NK(X) := sup
k∈K

inf
L∈Rd

Dk(X, L) .

For a given ρ ∈ R\ {0}, let us set

Kρ := K + Qρ ,

where Qρ := {e ∈ Z, such that |e| ≤ ρ}. Then we have the following gener-
alization of Harnack–type estimates to discrete equations.
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Theorem 2 (“Harnack-type” estimate)
Under Assumptions (A2)–(A3), there exists δ0 > 0, µ ∈ (0, 1), C1, C2 > 0
such that, for every solution X of (1.3) satisfying

sup
k∈Z

Dk(X, L∗) ≤ δ0 (2.1)

and for any box K ⊂ Z, we have

NK(X) ≤ µ NKρ(X) + C1 sup
k∈Kρ

|fk| (2.2)

with

ρp =
C2

NK(X)
. (2.3)

Remark 3 In Theorem 2, we do not assume that (fk)k∈Z is uniformly boun-
ded. Indeed in the proof of the Theorem, we only use the fact that fk is finite
for each k ∈ Z.

Remark 4 Intuitively, the Euler–Lagrange equation satisfied by X in case
fk = 0 for any k ∈ Z can be thought of as an equation of the type

∂2X

∂x2
= 0 for any x ∈ R . (2.4)

More generally, if we take k ∈ Z
m with m > 1, the equation for X becomes

a system, which is similar to

∆X = 0 for any x ∈ R
m .

The set of harmonic polynomial solutions is much larger than the set of
solutions of Equation (2.4). This is one of the difficulties that one would
have to tackle for extending the results of this paper to dimensions m > 1.

By applying Theorem 2 with K = Z, we get the following result.

Corollary 1 (Liouville result)
Under Assumptions (A2)–(A3), there exists δ0 > 0 such that, if X = (Xk)k∈Z

is a solution of (1.3) with zero forces, i.e., fk = 0 for any k ∈ Z, and satisfies

sup
k∈Z

Dk(X, L∗) ≤ δ0 ,

then there exists L ∈ R
d such that

Xk = X0 + k L for any k ∈ Z .

Proof of Theorem 2.

Let us assume that the estimate is false. By taking appropriate sequences
and passing to the limit, we are going to find a non perfect lattice Y such
that B ∗ Y = 0, a contradiction with (A2).
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Step 1: Construction of sequences

Theorem 2 claims the existence of δ0 > 0, µ ∈ (0, 1), C1, C2 > 0 such that
for every X satisfying (2.1) and for any box K, then (2.2) holds with the
definition (2.3) of ρ and for (fk)k∈Z related to X by equation (1.3).

Assume by contradiction that the statement of Theorem 2 is false. This
means that for every δ0 > 0, µ ∈ (0, 1), C1, C2 > 0, there exists X satis-
fying (1.3) with forces (fk)k∈Z and (2.1), and there exists a box K such
that (2.2) is false with the definition (2.3) of ρ. Because we can choose δ0 > 0,
µ ∈ (0, 1), C1, C2 > 0 as we want, we can take sequences (δn

0 )n∈N, (µn)n∈N,
(Cn

1 )n∈N, (Cn
2 )n∈N, such that





δn
0 → 0 ,

µn → 1 ,

Cn
1 , Cn

2 → +∞ ,

and assume the existence of corresponding sequences (Xn)n∈N, (Kn)n∈N,
(ρn)n∈N, (fn)n∈N such that





sup
k∈Z

Dk(Xn, L∗) ≤ δn
0 → 0 ,

(ρn)p =
Cn

2

NKn(Xn)
→ +∞ ,

NKn(Xn) > µn NKn
ρn

(Xn) + Cn
1 sup

k∈Kn
ρn

|fn
k | ,

Xn satisfies (1.3) with forces fn .

(2.5)

Then we set
εn := NKn(Xn) ,

which goes to zero because NKn(Xn) ≤ sup
k∈Z

Dk(Xn, L∗) ≤ δn
0 → 0.

When Kn is bounded, we can define kn ∈ Kn and Ln ∈ R
d such that

NKn(Xn) = inf
L∈Rd

Dkn(Xn, L) = Dkn(Xn, Ln) . (2.6)

If Kn is unbounded, it may happen that the infimum is not reached. In that
case we can choose an approximate minimizer kn and some associated Ln

such that we still have infL∈Rd Dkn(Xn, L) = Dkn(Xn, Ln) and moreover

NKn(Xn) − infL∈Rd Dkn(Xn, L)

εn
→ 0 .

The proof can be easily adapted in that case. To simplify the presentation
we will only do the proof when (2.6) holds.

There exists en ∈ Q1\ {0} = {±1} such that

|Xn
kn+en − Xn

kn − enLn| = εn .
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On the other hand we have

|Xn
kn+en − Xn

kn − enL∗| ≤ δn
0 ,

from which we get
|Ln − L∗| ≤ εn + δn

0 . (2.7)

Let us define

Y n
k :=

Xn
kn+k − Xn

kn − k Ln

εn

and observe that, with e = ±1,

εn |Y n
k+e − Y n

k − e L| = |Xn
kn+k+e − Xn

kn+k − e L| ,

Dk(Y n, L) =
1

εn
Dk+kn(Xn, L) .

Hence we obtain

1

µn
≥ sup

k∈Kn
ρn−kn

inf
L∈Rd

Dk(Y n, L) ≥ 1 = inf
L∈Rd

D0(Y
n, L) and Y n

0 = 0 .

(2.8)
We will get some a priori bounds on the Y n

k . To this end, we first need to
control the variations of the lattice spacing.

Step 2: Control on the variations of the lattice spacing

We choose L
n

k ∈ R
d such that for k ∈ Kn

ρn− kn we have

inf
L∈Rd

Dk(Y n, L) = Dk(Y n, L
n

k ) .

In particular, we can take L
n

0 = 0. By definition of L
n

k , we deduce that

|Y n
k+1−Y n

k −L
n

k | ≤ Dk(Y n, L
n

k ) and |Y n
k −Y n

k+1+L
n

k+1| ≤ Dk+1(Y
n, L

n

k+1) .

Therefore, if k, k + 1 ∈ Kn
ρn− kn, we get

|L
n

k − L
n

k+1| ≤ Dk(Y n, L
n

k ) + Dk+1(Y
n, L

n

k+1) ≤
2

µn

and then, if k, k′ ∈ Kn
ρn− kn, we deduce the following estimate

|L
n

k − L
n

k′ | ≤ 2
|k − k′|

µn
. (2.9)

Similarly, from the fact that

max
(
|Y n

k+1 − Y n
k − L

n

k |, |Y n
k−1 − Y n

k + L
n

k |
)
≤ Dk(Y n, L

n

k ) ≤
1

µn
, (2.10)

we deduce that

|Y n
k+1 + Y n

k−1 − 2Y n
k | ≤

2

µn
for every k ∈ Kn

ρn− kn . (2.11)
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Step 3: Quadratic bound on Y n
k

Assume that k ∈ Kn
ρn − kn and let us assume to simplify that k > 0 (the

other case k < 0 is similar). Then we have

|Y n
j+1 − Y n

j − L
n

j | ≤ Dj(Y
n, L

n

j ) ≤
1

µn
.

Using the fact that L
n

0 = 0, we get

|Y n
k | =

∣∣∣∣∣∣

k−1∑

j=0

{
Y n

j+1 − Y n
j − L

n

j − (L
n

0 − L
n

j )

} ∣∣∣∣∣∣

≤
k−1∑

j=0

{
Dj(Y

n, L
n

j ) +
∣∣∣Ln

j − L
n

0

∣∣∣
}

≤
k

µn
+

2

µn

k−1∑

j=0

j

≤
k2

µn

and from Qρn ⊂ Kn
ρn− kn, we deduce that

|Y n
k | ≤

k2

µn
for all k ∈ Qρn . (2.12)

Step 4: Passing to the limit and getting a contradiction

Let us define

gn
k :=

fn
kn+k

εn
∀ k ∈ Kn

ρn− kn .

Then gn
k satisfies

|gn
k | ≤

1

Cn
1

→ 0 as n → +∞ (2.13)

because of (2.5). From (1.3) we deduce for all j ∈ Z

εngn
j +

∑

k∈Z\{j}

∇V
(
(j − k)Ln + εn(Y n

j − Y n
k )
)

= 0 ,

i.e.,

gn
j +

∑

k∈Z\{j}

∫ 1

0

dt (Y n
j − Y n

k ) · Bn
jk(t) = 0 , (2.14)

with
Bn

jk(t) = D2V
(
(j − k)Ln + t εn(Y n

j − Y n
k )
)
.
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Up to extraction of convergent subsequences, by (2.6), (2.12) and (2.13), we
can assume that






Y n
k → Y ∞

k ,

gn
k → 0 ,

Ln → L∗ ,

Bn
jk(t) → B∞

jk = D2V
(
L∗(j − k)

)
= H∗

j−k .

Passing to the limit in (2.8) and (2.11), we get in particular

inf
L∈Rd

D0(Y
∞, L) = 1 (2.15)

and
|Y ∞

k+1 + Y ∞
k−1 − 2Y ∞

k | ≤ 2 for every k ∈ Z . (2.16)

We now want to pass to the limit in (2.14). To this end, we will estimate for
any fixed j ∈ Qρn/2 separately

Sn
j =

∑

k∈(j+Qρn/2)\{j}

∫ 1

0

dt (Y n
j − Y n

k ) · Bn
jk(t)

and

Fn
j =

∑

k∈Z\(j+Qρn/2)

∫ 1

0

dt (Y n
j − Y n

k ) · Bn
jk(t)

with S for the “short” distance contribution and F for the “far” away con-
tribution.

For the short distances contribution, using (2.9)–(2.10), we get

|Y n
j − Y n

k | ≤ C3 (1 + |j − k|2) for every k ∈ j + Qρn/2 (2.17)

with some constant C3 = C3(j) > 0. For the far away contribution, we have

|Y n
j − Y n

k | =
1

εn

∣∣Xn
kn+j − Xn

kn+k − Ln(j − k)
∣∣ ≤ C4

|j − k|

εn
(2.18)

for some constant C4 > 0, where we have used the fact that

sup
k∈Z

Dk(Xn, L∗) ≤ δn
0 with δn

0 small enough . (2.19)

We claim that there exists a constant C5 > 0 such that for n large enough,
we have

|Bn
jk(t)| ≤

C5

(1 + |j − k|)p+2
for all j, k ∈ Z . (2.20)

This will be proven in Step 5. On the one hand, from (2.20), (2.17) and the
dominated convergence theorem, we deduce that

Sn
j → S∞

j = (B∞ · Y ∞)j .
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On the other hand, from (2.20), (2.18) and

εn (ρn)p = Cn
2 → +∞ , (2.21)

we deduce that there exists a constant C6 > 0 such that

|Fn
j | ≤

C6

εn (ρn)p
=

C6

Cn
2

→ 0 .

Therefore, we can pass to the limit in (2.14), and get that S∞
j = 0 for

any j ∈ Z, i.e.,
B∞ · Y ∞ = 0 .

Applying Assumption (A2) with estimate (2.16), we deduce that there ex-
ists L ∈ R

d such that
Y ∞

k = Y ∞
0 + k L ,

which gives a contradiction with (2.15).

Step 5: Proof of (2.20)

We can write

Bn
jk(t) = D2V

(
Zn

j (t) − Zn
k (t)

)
with Zn

k (t) := (1 − t) k Ln + t Xn
kn+k .

We observe that

Zn
j (t) − Zn

k (t) − (j − k)L∗

= (1 − t)(j − k)(Ln − L∗) + t

j−1∑

l=k

(
Xn

kn+l+1 − Xn
kn+l − L∗

)
.

Since t ∈ [0, 1], from (2.7) and (2.19) we deduce that

|Zn
j (t) − Zn

k (t)| ≥ |j − k|
(
|L∗| − (εn + δn

0 )
)

for every j, k ∈ Z .

Finally Assumption (A3) on the decay at infinity on the potential V im-
plies (2.20). This ends the proof of Theorem 2. �

Remark 5 As can be checked from the proof, Theorem 2 is still true with ρ
chosen such that

ρp =
C2

NKρ(X)
.

The proof is similar to the one of Theorem 2, if ρn in (2.5) and relation (2.21)
are replaced respectively by

(ρn)p =
Cn

2

NKn
ρn

(Xn)
→ +∞

and
εn (ρn)p > µn Cn

2 → +∞ .
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3 A boundary layer estimate

In this section, we will give a boundary layer estimate. To this end, one has to
consider continuous extensions of the discrete norms and the corresponding
Harnack–type estimate.

Let I be any interval and K = I ∩ Z. Recall that for any j ∈ N, we set

Kj = K + Qj with Qj = {−j,−j + 1, . . . , j} .

We extend the definitions given for integers to real numbers. Let

ÑIr (X) := (1 − α)NKk
(X) + αNKk+1

(X)

for any r = k + α, k ∈ N, α ∈ [0, 1), and

‖f‖L∞(Ir) = (1 − α) sup
j∈Kk

|fj| + α sup
j∈Kk+1

|fj| .

Reciprocally, remark that if K = {k−, k+}, then it is natural to set I =
[k−, k+] and define

Ir := [k− − r, k+ + r] (3.1)

As a consequence, we have the counterpart of Theorem 2 (same proof).

Theorem 3 (Extended “Harnack–type” estimate)
Under Assumptions (A2)–(A3), there exists δ0 > 0, µ ∈ (0, 1), C1, C2 > 0
such that for every solution X of (1.3) satisfying

sup
k∈Z

Dk(X, L∗) ≤ δ0 ,

we have, for any interval I and any r ∈ [0, +∞),

ÑIr (X) ≤ µ ÑIr+ρ(X) + C1 ‖f‖L∞(Ir+ρ)

with

ρp =
C2

ÑIr+ρ(X)
. (3.2)

Remark 6 Theorem 3 is still true with the following choice of ρ:

ρp =
C2

ÑIr (X)
.

An interesting corollary of this extended estimate is the following bound-
ary layer estimate which gives a decay rate for the perturbation of a perfect
chain of atoms.
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Corollary 2 (Discrete boundary layer estimate)
Under Assumptions (A2)–(A3), there exist constants δ0 > 0 and C0 > 0,
such that, if X = (Xk)k∈Z satisfies

sup
k∈Z

Dk(X, L∗) ≤ δ0 (3.3)

and is a solution of (1.3) with forces satisfying

fk = 0 for any k ∈ N ,

then there exists L ∈ R
d and C0 = C0(µ, C2, p) > 0 such that

Dk(X, L) ≤ C0 k−(p−1) for any k ∈ N .

Proof. For any k ∈ N, let us define

Nk := {j ∈ N : j ≥ k} .

For any nonnegative real r = k + β with k ∈ N, β ∈ (0, 1], we have

Ñ[r,+∞)(X) = (1 − β)NNk
(X) + β NNk+1

(X) ,

where we use the fact that [r, +∞) = [k + 1, +∞)1−β. By definition, the

map r 7→ Ñ[r,+∞)(X) is non–increasing. Consider the sequences (Mk)k∈N

and (rk)k∈N such that

M0 := Ñ[0,+∞)(X) = NN(X) and r0 := 0 ,

Mk+1 := µ Mk and rk+1 := inf
{

r ≥ 0 : Ñ[r,+∞)(X) ≤ Mk+1

}

with µ ∈ (0, 1) defined in Theorem 3. We observe that Ñ[rk,+∞)(X) = Mk.
We have nothing to prove if M0 = 0, so we shall assume that M0 > 0.

Step 1: The sequences are well–defined for any k

We only have to show that

Ñ[r,+∞)(X) → 0 as r → +∞ . (3.4)

If (3.4) was not true, then there would exist δ1 > 0 and a sequence of integers
kn → +∞ such that

inf
L∈Rd

Dkn(X, L) ≥ δ1 > 0 .

Let us define Xn by Xn
k := Xk+kn − Xkn . Because of (3.3), we can extract

a subsequence which converges to a limit X∞ which satisfies (1.3) with zero
forces and

inf
L∈Rd

D0(X
∞, L) ≥ δ1 > 0 .

Applying Corollary 1 to X∞, we get a contradiction. This proves (3.4).
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Step 2: We have Ñ[r,+∞)(X) ≤ C̃2

rp for some constant C̃2 = C̃2(µ, C2, p) > 0.

We consider the extended “Harnack–type” estimate of Theorem 3 with the
choice (3.2). Let Ir = [r, +∞) and (Ir)ρ = Ir−ρ = [r − ρ, +∞) with the
notation (3.1). With ρ = ρk and r = rk + ρk, we have

rk+1 − rk ≤ ρk with ρp
k =

C2

Mk
,

By definition of Mk, we have

ρk =

(
C2

Mk

) 1
p

= γk

(
C2

M0

) 1
p

with γ = µ− 1
p

and then

0 ≤ rk ≤

(
C2

M0

) 1
p

k−1∑

i=0

γi ≤ C̃0 γk with C̃0 =
1

γ − 1

(
C2

M0

) 1
p

,

so that

Ñ[rk,+∞)(X) = Mk = µk M0 ≤ M0

(
C̃0

rk

)p

.

Let us define the map h : [0, +∞) → [0, +∞) by

h(r) := Ñ[r,+∞)(X) .

The function h is non-increasing and satisfies

h(rk) = µk M0 ≤
C̃1

rp
k

with C̃1 = M0 C̃p
0 =

C2

(γ − 1)p
.

If r ∈ (rk, rk+1), then we have

h(r) ≤ h(rk) =
h(rk+1)

µ
≤

1

µ

C̃1

rp
k+1

≤
C̃2

rp
with C̃2 =

C̃1

µ
.

This proves that Ñ[r,+∞)(X) ≤ C̃2/rp for any r ≥ 0.

Step 3: Conclusion

For each k ∈ N, let us choose Lk ∈ R
d such that

Dk(X, Lk) = inf
L∈Rd

Dk(X, L) .

From Step 2, we have

Dk(X, Lk) ≤
C̃2

kp
.
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As in Step 2 of the proof of Theorem 2, we have

|Lk+1 − Lk| ≤ Dk(X, Lk) + Dk+1(X, Lk+1) ≤ 2
C̃2

kp
.

Because p > 1, we see that the sequence (Lk)k∈N converges to some limit
L = limk→+∞ Lk such that

|L − Lk| ≤ 2 C̃2

∑

j≥k

1

jp
.

Using the fact that Dk(X, L) ≤ Dk(X, Lk) + |L − Lk|, we get

Dk(X, L) ≤ 2 C̃2


 3

2 kp
+
∑

j≥k+1

1

jp


 ≤ 2 C̃2

(
3

2 kp
+

1

(p − 1)

1

kp−1

)
≤

C0

kp−1
,

with C0 := 2 C̃2

(
3
2 + 1

p−1

)
. �

4 Proof of Theorem 1

Step 1: A priori estimate

We apply the “Harnack–type” estimate of Theorem 2 with K = Z and get

NZ(X) ≤
C1

1 − µ
sup
k∈Z

|fk| ≤ C7 ε (4.1)

for some constant C7 > 0, where we have used the relation (1.5) and the L∞

bound on the force f(x). Let us define

Lk := Xk+1 − Xk .

There exists L̃k ∈ R
d such that

max
(
|Xk+1 − Xk − L̃k| , |Xk−1 − Xk + L̃k|

)
≤ Dk(X, L̃k) = inf

L∈Rd
Dk(X, L) .

This implies that
|Lk+1 − Lk| ≤ 2NZ(X) .

As a consequence, for any ρ ≥ 1 we have

sup
k∈Qρ

Dk(X, L0) ≤ (1 + 2ρ)NZ(X) ,

and for any k ∈ Qρ,

|Xk − X0 − k L0| ≤ ρ (1 + 2ρ)NZ(X) .

Therefore, and more generally for any i ∈ Z, we get, for any ρ ≥ 1,

|Xk − Xj − (k − j)Li| ≤ C8 ε ρ2 for any j, k ∈ i + Qρ , (4.2)

for some constant C8 > 0.
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Step 2: The line tension formulation

Let us define the line tension of the chain by

Ti :=
∑

j, k≥0

∇V (Xi+1+j − Xi−k) .

Using the fact that ∇V (−L) = −∇V (L), we can easily check that

Ti − Ti−1 = −
∑

k∈Z\{i}

∇V (Xi − Xk) . (4.3)

By (1.3), this means Ti − Ti−1 = fi and thus

Ti = T0 +

i∑

j=1

fj ∀ i ≥ 1 . (4.4)

Step 3: Error estimate on the line tension

As in Step 4 of the proof of Theorem 2, we can split the term Ti in a “short
distance” contribution

Si =
∑

(j, k)∈Λρ

∇V (Xi+1+j − Xi−k) ,

with

Λρ =
{
(j, k) ∈ N

2 : k ≤ ρ and j ≤ ρ − 1
}

,

and a “far away” contribution

Fi =
∑

(j, k)∈N2\Λρ

∇V (Xi+1+j − Xi−k) .

We deduce from Assumption (A3) that there exists a positive constant C9

such that

|Fi| ≤ C9 ρ−(p−1) , (4.5)

and similarly

∣∣∣∣∣∣

∑

(j, k)∈N2\Λρ

∇V
(
(1 + j + k)Li

)
∣∣∣∣∣∣
≤ C9 ρ−(p−1) . (4.6)

On the other hand, we have

∣∣∣∣∣∣
Si −

∑

(j, k)∈Λρ

∇V
(
(1 + j + k)Li

)
∣∣∣∣∣∣
≤ C10

∑

(j, k)∈Λρ

|Xi+1+j −Xi−k− (1+ j+k)Li| ,
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for some constant C10 which bounds the second derivatives of the potential
V (L) for |L| ≥ |L∗| − δ0. Using (4.2), (4.3), (4.5) and (4.6), this implies that

∣∣∣∣∣∣
Ti −

∑

j, k≥0

∇V
(
(1 + j + k)Li

)
∣∣∣∣∣∣
≤ C11

(
ε ρ4 + ρ−(p−1)

)

for some constant C11 > 0. With the choice ε ρp+3 = 1, which is optimal up

to a numerical constant, the right hand side becomes 2 C11 ε
p−1

p+3 and we get

|Ti −∇W (Li)| ≤ C12 ε
p−1

p+3 (4.7)

for some constant C12 > 0.

Step 4: Existence of the solution Φ

Let us recall the continuous Euler-Lagrange equation (1.2), namely

(
∇W (Φ′)

)′
= f on R . (4.8)

Without loss of generality, we can moreover assume that

Φ(0) = 0 .

Then let us define

V1 :=
{
Φ ∈ W 2,∞(R; Rd) : Φ(x + 1) − Φ(x) = L0 and Φ(0) = 0

}
,

V2 :=

{
f ∈ L∞(R; Rd) : f(x + 1) = f(x) and

∫

R/Z

f = 0

}
,

and consider the map

Ψ : V1 −→ V2

Φ 7−→
(
∇W (Φ′)

)′
.

Let us remark that Ψ is C1. Moreover, because of Assumption (A1), we
know that A = D2W (L∗) is invertible, and then D2W (L0) is also invertible
for |L0 − L∗| ≤ ε0 with ε0 small enough. It is easy to check that DΨ(Φ0)
is invertible for Φ0(x) = xL0. From the Inverse Function Theorem, we de-
duce that there exists ε0 small enough such that for any f ∈ V2 satisfying
‖f‖L∞(R) ≤ ε0, there exists a unique solution Φ ∈ V1 solution of (4.8), with Φ
in a neighborhood of Φ0 in V1.
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Step 5: Conclusion

From (4.8), we see that there exists a constant σ0 ∈ R
d such that

∇W (Φ′(x)) = σ0 +

∫ x

0

f(y) dy .

From (1.5), (4.4) and (4.7), we deduce that
∣∣∣∣∣T0 +

∫ (i+ 1
2
)ε

ε
2

f(y) dy −∇W (Li)

∣∣∣∣∣ ≤ C12 ε
p−1

p+3 . (4.9)

Let us introduce an approximation of Φ by setting

Φ̃′(x) := (1 − t)Li + t Li+1

with t = (x − i ε)/ε if i ε ≤ x ≤ (i + 1) ε. Recall that |Li+1 − Li| ≤ 2 C7 ε
by (4.1). Now, using the L∞ bound on the force f , we deduce from (4.9) that

∣∣∣Σ0 + ∇W (Φ′(x)) −∇W (Φ̃′(x))
∣∣∣ ≤ C13 ε

p−1

p+3 (4.10)

with Σ0 = T0 − σ0. On the other hand, because of the Nε-periodicity of the
Li, we have

∫ 1

0

Φ̃′(x) dx = ε

Nε−1∑

i=0

(
Li +

1

2
(Li+1 − Li)

)

=
ε

2

Nε−1∑

i=0

(Li+1 + Li) = L0 ,

where we have used the fact that Li = Xi+1 − Xi and (1.4). By (1.1), we
have therefore ∫ 1

0

Φ̃′(x) dx =

∫ 1

0

Φ′(x) dx . (4.11)

Our goal is to use (4.11) to control Σ0 in (4.10). To this end, we consider the
Taylor expansion

∇W (Φ̃′) = ∇W (Φ′) + D2W (Φ′) · (Φ̃′ − Φ′) + O
(
|Φ̃′ − Φ′|2

)
.

Taking into account the invertibility of D2(Φ′), which follows from Assump-
tion (A1) and the construction of Step 4, we deduce that
∣∣∣Φ̃′(x) − Φ′(x) −

(
D2(Φ′(x))

)−1
(Σ0)

∣∣∣ ≤ C14 ε
p−1

p+3 + O
(
|Φ̃′(x) − Φ′(x)|2

)

(4.12)
and, as a consequence,

∣∣∣Φ̃′(x) − Φ′(x) −
(
D2(L0)

)−1
(Σ0)

∣∣∣

≤ C15

(
ε

p−1

p+3 + ‖Φ̃′ − Φ′‖2
L∞(R) + |Σ0| ‖φ

′ − L0‖L∞(R)

)
.
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Now integrating on the interval (0, 1) and using (4.11), we get that

∣∣∣
(
D2(L0)

)−1
(Σ0)

∣∣∣ ≤ C15

(
ε

p−1

p+3 + ‖Φ̃′ − Φ′‖2
L∞(R) + |Σ0| ‖φ

′ − L0‖L∞(R)

)

and then

|Σ0| ≤ C16

(
ε

p−1

p+3 + ‖Φ̃′ − Φ′‖2
L∞(R)

)
.

Hence (4.12) implies

‖Φ̃′ − Φ′‖L∞(R) ≤ C17 ε
p−1

p+3 .

where we have used the fact that ‖Φ̃′ − Φ′‖L∞(R) is small because Φ′ and Φ̃′

are both close to L0. For any i ∈ Z, we have

|Li − Φ′(i ε)| ≤ C17 ε
p−1

p+3 ,

which gives the result with Li = Xi+1 − Xi. This ends the proof of the
Theorem. �

Remark 7 With suitable assumptions, we could also consider the equilibrium
of a ring with a large number of atoms instead of a chain of aligned atoms
with “linear + periodic” conditions.

5 Further general results on the potentials

Inspired by the line tension argument as of Step 2 of the proof of Theorem 1,
let us state first a general result.

Proposition 1 (Sufficient conditions for Assumption (A2))
Let

Pj :=
∑

k≥1

k D2V
(
(k + |j|)L∗

)
.

If we decompose Pj into P 1
j and P 2

j such that

Pj = P 1
j

L∗

|L∗|
⊗

L∗

|L∗|
+ P 2

j

(
Id −

L∗

|L∗|
⊗

L∗

|L∗|

)

and if 



P 1
j ≤ 0 for any j ∈ Z\ {0} and

∑

j∈Z

P 1
j > 0 ,

−P 2
j ≤ 0 for any j ∈ Z\ {0} and

∑

j∈Z

−P 2
j > 0 ,

(5.1)

then Assumption (A2) is satisfied.
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Proof. For any Y satisfying |Yk+1 + Yk−1 − 2Yk| ≤ C, let us set

(P ∗ L)i =
∑

j∈Z

Pi−j Lj with Lj = Yj+1 − Yj .

With Jl := Pl+1 − Pl, we get

(P ∗ L)i+1 − (P ∗ L)i =
∑

j∈Z

Ji−j Lj = (J ∗ L)i ,

where

Jl =
∑

m≥1

m
{
D2V

(
(m + |l + 1|)L∗

)
− D2V

(
(m + |l|)L∗

)}

=





−
∑

h≥l+1

D2V (h L∗) if l ≥ 0 ,

∑

h≥|l+1|+1

D2V (h L∗) if l ≤ −1 .

Hence, with the notations introduced in (1.6)-(1.7) and using D2V (−h L∗) =
D2V (h L∗) for any h ≥ 0, we get

(J ∗ L)i =
∑

j∈Z

Yj (−Ji−j + Ji−j+1) = −
∑

j∈Z

Yj Bi−j+1 = − (B ∗ Y )i−1 = 0 .

Consequently, if we assume that B ∗Y = 0, then 0 = (J ∗L)i = (P ∗L)i+1 −
(P ∗ L)i means that

(P ∗ L)i = (P ∗ L)0 for any i ∈ Z ,

and then Gk = Lk+1 − Lk satisfies

P ∗ G = 0 .

We can project this equality along
L∗

|L∗|
or

(
L∗

|L∗|

)⊥

, and get

P 1 ∗ G1 = 0 with G1
k =

L∗

|L∗|
· Gk , (5.2)

P 2 ∗ G2 = 0 with G2
k =

(
Id −

L∗

|L∗|
⊗

L∗

|L∗|

)
· Gk ∈

(
L∗

|L∗|

)⊥

.

Consider the maximum of (G1
k)k∈Z. If it is achieved at some k1, we get

from (5.2) that

P 1
0 G1

k1 = −
∑

k∈Z\{0}

P 1
k G1

k1−k ≤ −




∑

k∈Z\{0}

P 1
k


G1

k1 .
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Then (5.1) implies
sup
k∈Z

G1
k ≤ 0 .

When the suppremum is reached at infinity, it is possible (up to translations
at infinity) to see that the result is still true. Similarly, we get that

inf
k∈Z

G1
k ≥ 0 ,

and then
G1 = 0 .

Now for any constant vector ξ ∈ (L∗)⊥, let us set Gξ = ξ ·G2. Then we have

P 2 ∗ Gξ = 0 ,

which, as above, implies Gξ = 0. Because this is true for any ξ ∈ (L∗)⊥, this
implies that

G2 = 0 .

Finally this gives that G = 0 and then

Lk = L0 for any k ∈ Z ,

which proves that (Yk)k∈Z is a perfect chain. �

From (1.7), we have

H∗
k = V ′′

0 (|k L∗|)
L∗

|L∗|
⊗

L∗

|L∗|
+

V ′
0(|k L∗|)

|k L∗|

(
Id −

L∗

|L∗|
⊗

L∗

|L∗|

)
,

and by definition of P 1
j and P 2

j (see Proposition 1), we obtain

P 1
j (r) =

∑

k≥1

k V ′′
0

(
(k + |j|) r

)
and P 2

j (r) =
∑

k≥1

k
V ′

0

(
(k + |j|) r

)

(k + |j|) r
.

In Section 6 and under some assumptions on the potentials and on the range
of r, we will check that the operators P 1 and P 2 satisfy Assumption (5.1).

Lemma 1 With the notations of Proposition 1,
∑

j∈Z

P 1
j (r) = W ′′

0 (r) and r
∑

j∈Z

P 2
j (r) = W ′

0(r) .

Proof. The result relies on the following computation.

∑

j∈Z

P 1
j (r) =

∑

j∈Z

∑

k≥1

k V ′′
0

(
(k + |j|) r

)

=
∑

k≥1

k V ′′
0 (k r) + 2

∑

j≥1

∑

k≥1

k V ′′
0

(
(k + j) r

)

=
∑

h≥1

h2 V ′′
0 (h r) = W ′′

0 (r) .
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The result for P 2(r) follows from a similar computation which gives

∑

j∈Z

P 2
j (r) =

∑

h≥1

h2 V ′
0(h r)

h r
=

1

r

∑

h≥1

h V ′
0(h r) =

1

r
W ′

0(r) .

�

6 Applications to Lennard–Jones type potentials

Let us now consider potentials of Lennard–Jones type, i.e., for r > 0

V0(r) = r−q − r−p with 1 < p < q

and

W0(r) = sq r−q − sp r−p with sq =
∑

k∈N\{0}

|k|−q = ζ(q) < sp = ζ(p) ,

where ζ denotes the Rieman Zeta function. Then we define r1, r2, r1, r2 > 0
such that

0 = V ′
0(r1) = V ′′

0 (r2) = W ′
0(r1) = W ′′

0 (r2)

and find

r1 :=

(
q

p

) 1
q−p

and r2 :=

(
q(q + 1)

p(p + 1)

) 1
q−p

> r1 ,

r1 :=

(
sqq

spp

) 1
q−p

< r1 and r2 :=

(
sqq(q + 1)

spp(p + 1)

) 1
q−p

∈ (r1, r2) .

V0(r)

W0(r)

r2r̄1 r̄2 r1 r

Fig. 1 Van der Waals forces: plot of V0 and W0 with p = 2.25 and q = 3.5.
Condition (6.2) (see below) is satisfied since r2/2 ≈ 0.923723 < r̄1 ≈ 1.15726.
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Lemma 2 (Sufficient conditions for Lennard-Jones type potentials)

i) The operator P 1(r) satisfies Assumption (5.1) if r ∈ (r2/2, r2), which is
possible if

(
sq

sp

) 1
q−p

>
1

2
. (6.1)

ii) The operator P 2(r) satisfies Assumption (5.1) if r ∈ (r1/2, r1), which is
possible if (6.1) is satisfied.

iii) P 1(r) and P 2(r) satisfy Assumption (5.1) simultaneously if r ∈ (r2/2, r1)
which is possible if

(
sq

sp

) 1
q−p

>
1

2

(
q + 1

p + 1

) 1
q−p

. (6.2)

Proof. If r ≥ r2/2, then P 1
j (r) < 0 if j 6= 0. Similarly, if r ≥ r1/2, then

P 2
j (r) > 0 if j 6= 0. The result follows from Lemma 1. �

0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

(

sq

sp

)

1

q−p

=
1

2

(

sq

sp

) 1

q−p

=
1

2

(

q + 1

p + 1

) 1
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Fig. 2 Van der Waals forces: regions for which Conditions (6.1) and (6.2) are
satisfied. The point P0 := (2.25, 3.5) corresponding to Fig. 1 is shown. In the gray
area, Condition (5.1) is satisfied by P 1(r) and P 2(r).

Conditions (6.1) and (6.2) could easily be improved, for instance by re-
fining the estimates for which P 1

j ≤ 0 and −P 2
j ≤ 0.

A straightforward consequence of Lemma 2 and Proposition 1 is the fol-
lowing result of stability under compression. This is the main result of this
section.

Corollary 3 (Sufficient conditions for Lennard-Jones type poten-
tials to have (A2)). If (6.2) is satisfied, then Assumption (A2) is satisfied
if |L∗| ∈ (r2/2, r1).
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Remark 8 In dimension d ≥ 2, intuitively we expect stability of the chain of
atoms when we pull the chain in the range where W ′

0(r) > 0 and W ′′
0 (r) > 0.

Nevertheless, we were not able to prove it, because it is more difficult to
check Assumption (A2) in such a case.

On the contrary, in the case of compression of a straight chain, i.e., with
W ′

0(r) < 0 and W ′′
0 (r) > 0, one atom may decrease the total energy by mov-

ing far enough, perpendicularly to the chain. What is stated in Corollary 3
and Theorem 1 shows that the chain of atoms under compression is stable
at microscopic level, if the atoms do not move too far perpendicularly to the
chain, i.e., if Dk(X, L∗) ≤ δ0 with δ0 small enough.
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