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Abstract

We consider an evolution non local free boundary problem that arises in the modeling of spec-

ulative bubbles. The solution of the model is the speculative component in the price of an asset.

In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We

also show that the solution is convex in space, and establish several monotonicity properties of the

solution and of the free boundary with respect to parameters of the problem. To study the free

boundary, we use, in particular, the fact that the odd part of the solution solves a more standard

obstacle problem. We show that the free boundary is C∞ and describe the asymptotics of the free

boundary as c, the cost of transacting the asset, goes to zero.
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1 Introduction

1.1 Main results

The goal of this paper is to study an evolution problem that arises in a model of bubbles
that result from volatile differences in beliefs among speculators in a financial market. This
financial model is briefly presented in Subsection 1.3, and a more precise derivation can be
found in [7]. The stationary version of this model (i.e. for infinite horizon) was introduced
and solved by Scheinkman and Xiong [25]. The article [25] uses a different approach from the
one presented here and provides an explicit stationary solution, based on Kummer functions.
Chen and Kohn [11, 12] study a stationary model that is related to the one in [25], and
construct an explicit solution in terms of Weber-Hermite functions. A natural motivation
for the evolution problem treated in the present paper is that a finite horizon model is
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necessary to deal with finite-horizon assets, such as many fixed-income securities. As will be
seen, this leads to more involved mathematical problems.

In what follows we let

(1.1) r, c > 0, λ+ r > 0, and σ, ρ ≥ 0

denote given constants. The parameter σ is the volatility, r is the rate of interest, c repre-
sents the transaction cost, and ρ and λ are relaxation parameters. We define the following
parabolic operator (possibly degenerate when σ = 0)

Lu = ut +Mu with Mu = −1

2
σ2uxx + ρxux + ru

and the obstacle

ψ(x, t) = xα(t)− c with α(t) =
1− e−(r+λ)t

r + λ
.

We consider the following (non local) obstacle problem:

(1.2)


min (Lu, u(x, t)− u(−x, t)− ψ(x, t)) = 0 for (x, t) ∈ R× (0,+∞)

u(x, 0) = 0 for x ∈ R.

In the economic interpretation, the (indeed non negative) quantity u can be seen as the
speculative component of the price of an asset, due to disagreement among investors. The
larger is u, the larger is the financial bubble.

We also introduce the stationary problem (formally for t = +∞) with ψ∞(x) :=

ψ(x,+∞) =
x

r + λ
− c:

(1.3) min (Mu∞, u∞(x)− u∞(−x)− ψ∞(x)) = 0 for x ∈ R.

This is the problem which was studied in [25]. The present paper deals with resolution and
qualitative properties of problems (1.2) and (1.3). We establish here rigorous results in the
framework of viscosity solutions. A precise definition of viscosity solutions in our framework
is given in Section 2.

Our first main result is:

Theorem 1.1 (Existence and uniqueness of a solution) Assume (1.1).
i) Evolution equation. There exists a unique viscosity solution u of (1.2) satisfying

|u−max(0, ψ)| ≤ C on R× [0,+∞).

ii) Stationary equation. Moreover, there exists a unique viscosity solution u∞ of (1.3)
satisfying

|u∞ −max(0, ψ∞)| ≤ C on R.

It is easy to see that if σ = 0, then u = max(0, ψ) and u∞ = max(0, ψ∞). In the general
case, we only have inequalities as in the next result. We also list a series of qualitative
properties such as monotonicity, convexity, asymptotics, and large time behavior that are
related to the economic motivation of the problem. A precise derivation of the model from
assumptions on the behavior of investors, as well as a discussion of the economic significance
of these qualitative properties will be provided in our forthcoming work [7]).
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Theorem 1.2 (Properties of the solution)
Assume (1.1) and let u be the solution given in Theorem 1.1. Then u is continuous. In
addition,
i) Asymptotics. There exists a function φ such that

φ(y) ≥ max(0, y), lim
|y|→+∞

|φ(y)−max(0, y)| = 0, and such that

(1.4) max(0, ψ(x, t)) = α(t) max(0, x− d(t)) ≤ u(x, t) ≤ α(t)φ(x− d(t)), with d(t) =
c

α(t)
.

ii) Monotonicity and convexity1: ut ≥ 0, 0 ≤ ux ≤ α(t), uxx ≥ 0.
iii) Convergence in long time: u(x, t)→ u∞(x) as t→ +∞ locally uniformly in x.
iv) Monotonicity with respect to the parameters r, c, λ, σ. The following properties
hold for r, c > 0, r + λ > 0, σ ≥ 0: ∂u

∂c
≤ 0, ∂u

∂r
≤ 0, ∂u

∂λ
≤ 0 and ∂u

∂σ
≥ 0.

v) The limit c → 0: When c → 0, u → u0, where u0 is the minimal solution of (1.2) for
c = 0 satisfying |u0(x, t)−max(0, xα(t))| ≤ C on R× [0,+∞), for some constant C > 0.
vi) The w-problem. Set

(1.5) w(x, t) = u(x, t)− u(−x, t).

Then w is a viscosity solution2:

(1.6)


min (Lw, w − ψ) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w(0, t) = 0 for t ∈ [0,+∞),
w(x, 0) = 0 for x ∈ [0,+∞).

As we will see (Proposition 10.1), for c = 0 the solutions of (1.2) are not unique. This is
why the limit u0 of solutions u as c→ 0 is only characterized as the minimal solution.

We also show that w defined in (1.5) satisfies properties similar to those in Theorem 1.2.
They will be stated in Section 7. Clearly, problem (1.6) is a free boundary problem where
the exercise region is defined as the set {w = ψ}. We now make this precise and list some
properties.

Theorem 1.3 (Properties of the free boundary)
Assume (1.1) and let u be the solution given in Theorem 1.1. There exists a lower semi-
continuous function a : (0,+∞)→ [0,+∞) such that for all t > 0:

{x ∈ [0,+∞), u(x, t)− u(−x, t) = ψ(x, t)} = {x ≥ a(t)} .

The following properties hold:
i) Bounds on the free boundary. For σ ≥ 0, we have

(1.7)
c

α(t)
≤ a(t) ≤ c

α(t)
+

σ

2
√
r

√√√√3 +

(
1 + ρ

r

)2(
1 + 2ρ

r

) .
1Monotonicity and convexity inequalities in this paper should be understood in either the viscosity sense

or distributional sense.
2For a precise definition of viscosity solution to this problem see the appendix
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ii) Lipschitz regularity of the free boundary. The lower semi-continuous function a
satisfies:

−aα
′

α
≤ a′.

Moreover if ρ ≥ λ, then a ∈ W 1,∞
loc (0,+∞) and the function a is nonincreasing: a′(t) ≤ 0.

iii) Monotonicity with respect to the parameters ρ, c, r, λ, σ. The following properties

hold:
∂a

∂ρ
≤ 0,

∂a

∂c
≥ 0, and

∂a

∂σ
≥ 0.

Moreover, if ρ ≥ λ, then

(1.8)
∂a

∂r
≥ 0,

∂a

∂λ
≥ 0.

iv) Convergence of the rescaled free boundary when c→ 0. Assume that σ > 0 and
λ ≤ 3r + 4ρ. Then the following convergence of the rescaled free boundary holds true when
c→ 0:

ā ≤ a

c
1
3

−→ ā locally uniformly on any compact sets of (0,+∞), as c→ 0

where

(1.9) ā(t) =

(
3σ2

2(1 + (ρ− λ)α(t))

) 1
3

.

Remark 1.4 In the models of equilibrium asset-pricing derived in [25] or [7] starting from
assumptions on the the behavior of investors, the condition ρ ≥ λ is always satisfied. Note
that the expression of ā(t) in (1.9) shows that for c << 1, the free boundary a(t) can
not be non-increasing in time when ρ < λ. Therefore the argument proving that a(t) is
nonincreasing in time when ρ ≥ λ is optimal. Similarly, it is possible to see from (1.9) that
the monotonicity results in (1.8) do not hold for ρ < λ and c << 1.

1.2 Comments on an alternative approach

As we have seen, the non-local problem we study here, (1.2), is closely related to a somewhat
classical local obstacle problem (1.6). This problem is not straightforward either. Indeed, it
is set on the whole real line and it will be seen that the free boundary starts from infinity
at t = 0. Nevertheless, it is tempting to approach the non-local u-problem by first solving
the local w-problem (1.6). As a matter of fact, to derive further qualitative properties,
we will study this w-problem in Section 7. However, the w-problem does not yield the
solution of the u-problem that is of interest in a straightforward fashion. By solving the
w-problem, we indeed get the free boundary but we then need to show that it is of the form
{x = a(t)} = ∂ {w > ψ}. We further need to recover u from w and this does not follow
immediately from the local obstacle problem. Indeed, we have to solve the equation for u in
the domain {x < a(t)} with a(t) > 0, and this equation reads:

(1.10)


Lu = 0 on {(x, t) ∈ R× (0,+∞), x < a(t)} ,
u(a(t), t) = u(−a(t), t) + ψ(a(t), t) for t ∈ (0,+∞),
u(x, 0) = 0 for x ∈ R
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This equation too is non local because of the boundary condition. One way to solve the
u-problem then is to rewrite problem (1.10) with the coordinates y = x− a(t). For this, we
need to first prove regularity of the free boundary a(t), what is not known in general. But
we actually derive such a property here, for ρ ≥ λ. Then, we could solve this problem by
using a fixed point procedure. Furthermore, to reconstruct u from w in the region x > a(t),
we can use the obstacle condition u(x, t)− u(−x, t) = ψ(x, t) for x > a(t).

However, even if we succeed with this procedure, the best we can get is the existence of
one solution u to the u-problem. It does not solve the question of uniqueness of the solution
(and more generally the question of the comparison principle). In particular, if equality were
to hold in the obstacle condition for some x < 0, that is u(x, t) − u(−x, t) = ψ(x, t), then,
w(x, t) = u(x, t)−u(−x, t) would not satisfy the local obstacle problem (1.6). Rather, in this
case, at least formally, it would satisfy a double obstacle problem with ψ(x, t) ≤ w(x, t) ≤
−ψ(−x, t)). Such a situation therefore has to be ruled out.

Lastly, our aim here is to establish several qualitative properties of the solution u related
to the economic motivation of the problem (see the forthcoming paper [7]). We will also
derive some properties of w but the properties for u do not follow immediately from w. Our
direct approach of proving a comparison principle for the u-problem, in the framework of
viscosity solutions, allows us to prove the properties of u (uniqueness, comparison, convexity
in x, monotonicity in t) that are of interest.

1.3 A brief description of the economic model

We refer the reader to [25] and [7] for a detailed derivation of the model, starting with
postulates on the behavior of investors. Here we present a self-contained and heuristic
introduction to the evolution model.

We consider a market with a single risky asset, which provides dividends up to a maturity
T > 0. There are two groups of investors A and B, who disagree about the future evolution of
the cumulative dividends Dt. Under the belief of investors in group C ∈ {A,B} the process
of dividends is given by the following pair of diffusions:

dDt = f̂Ct dt+ σDdW
C,D
t(1.11)

df̂Ct = −λ(f̂Ct − f̄)dt+ σf̂dW
C,f̂
t(1.12)

where for each C ∈ {A,B}, WC,D and WC,f̂ are Brownian motions (under C ′s beliefs)
that are possibly contemporaneously correlated, λ is a rate of mean reversion and f̄ is the
(common) long run mean value of f̄C . When f̂At > f̂Bt , investors in group A are relatively
optimistic about the future growth of dividends.

To complete the model we need to consider the views that investors in group C ∈ {A,B}
have of the evolution of beliefs of the investors in the complementary group. We write C̄
the complementary group of investors (i.e. C̄ = B if C = A, and C̄ = A if C = B), and
gC = f̂ C̄ − f̂C . We assume that from the viewpoint of agents in group C, gC satisfies:

(1.13) dgCt = −ρgCt dt+ σdW g
t

where ρ > λ, σ > 0, and W g is a Brownian from the point of view of both groups of investors.
Assuming that investors agree on the evolution of differences in beliefs amounts to assuming
that investors in each group know the model used by the other group and agree to disagree.
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The model developed in [25] postulates a particular information structure and derives
equations (1.11) -(1.13) using results on optimal filtering (see also [17]).

All investors are risk-neutral - that is they value payoffs according to their expected value
- and discount the future at a continuously compounded rate r. Short-sales are not allowed,
that is every investor must hold a non-negative amount of the asset. We assume that the
supply of the asset is finite and that each group of investors is large. Competition guarantees
that buyers must pay their reservation price; the maximum price they are willing to pay.

Write pCt for the price that investors in C are willing to pay for the asset at t. Assets
are traded ex-dividend, that is a buyer of the asset at time s gains the right to the flow of
dividends after time s. Since there are no dividends after time T, pCT = 0. We assume that
there is a cost c > 0 per unit for any transaction. We also assume that if an investor holds
the asset to T, he can dispose of the (worthless) asset for free. Note that since transaction
costs are positive, every transaction must involve a seller in a group and a buyer in the
complementary group which values the asset more.

Write EC for the expected value calculated using the beliefs of agents in group C. Then

(1.14) pCt = sup
τ∈[t,T ]

ECt
{
e−r(τ−t)(pC̄τ − c1{τ<T}) +

∫ τ

t

e−r(s−t)dDs

}
The first term represents the discounted payoff of a sale at time τ ; the second term the
discounted cumulative dividends over the period (t, τ ]. The price is computed by maximizing
the expected value of the buyer over random selling times.

Given the assumptions concerning the laws of motion (1.11)–(1.13) one can rigorously
show that there is a solution to (1.14) given by

pCt = ECt
{∫ T

t

e−r(s−t)dDs

}
+ q(gCt , t).

Furthermore, the function q(gCt , t) satisfies

(1.15) q(gCt , t) = sup
τ∈[t,T ]

ECt
{
e−r(τ−t)

[(
1− e−(λ+r)(T−τ)

λ+ r

)
gCτ + q(−gCτ , τ)− c1{τ<T})

]}
(See [25] or [7] for a derivation.)

Note that equation (1.15) is similar to the equation for an American option, except that
the exercise price is related to the value of the option. Standard dynamic programming
arguments suggest that if q solves (1.15) then u(·, t) := q(·, T − t) satisfies (1.2). In [7] we
establish that if q solves (1.15) then u is a viscosity solution to (1.2).

The quantity q(gCt , t) is the amount that an investor in group C is willing to pay for the
asset, in addition to her valuation of future dividends. This amount reflects the option value
of resale and is a result of fluctuating differences in beliefs among investors. Since a buyer
of the asset is a member of the most optimistic group, the amount by which the purchase
price exceeds his valuation, q, can be legitimately called a bubble.

1.4 Organization of the paper

In Section 2, we recall the definition of viscosity solutions and the stability properties of
these solutions for the evolution problem, the stationary problem and the w-problem. In
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Section 3, we prove the comparison principle for the u-problem. Section 4 is devoted to the
proof of Theorem 1.1 which states existence and uniqueness of the solution u. In Section
5, we prove some properties of the solution u, and we establish further properties of u in
Section 6, by introducing a modified problem (problem (6.3)) which allows us to show that
w solves an obstacle problem. As a consequence, we give the proof of Theorem 1.2 at the
beginning of Section 6. In Section 7, we study the w-problem, following the lines of proof
used previously for the u-problem. In Section 8, we establish a Lipschitz estimate for the free
boundary whence we derive that it is C∞. We study the asymptotics of the free boundary
in the limit c → 0 in Section 9. As a consequence, we obtain the proof of Theorem 1.3. In
Section 10 we show that the comparison principle does not hold for c = 0 (and σ > 0).

We present some additional material in the Appendix. In Section A.1 of the Appendix,
we give precise definitions of viscosity solutions for equations (1.3) and (1.6). In Section A.2,
we provide a more elaborate statement, Lemma A.3, and a proof of the Jensen-Ishii lemma
for our obstacle problem. We show in Section A.3 that the antisymmetric part of u is
a viscosity solution to the w-problem. Section A.4 establishes a comparison principle for
the w problem and in Section A.5 we construct subsolutions and supersolutions for the w-
problem. Sections A.6 and A.7 contain proofs of the convexity and monotonicity properties
of solutions to the w-problem, as well as the proof of Corollary 7.4. We complete the proof
of our claim that the free boundary is C∞ in Section A.8. This is an adaptation of a proof
in [22], and we actually provide an argument for a more general problem, because this result
may be of interest in other applications. The last section of the Appendix provides the proof
for Lemma 9.4, which is used to establish the asymptotics of the free boundary.

2 Definition of viscosity solutions

2.1 Viscosity solutions for the u-problem

2.1.1 The evolution problem

Definition 2.1 (Viscosity sub/super/solution of equation (1.2)) Let T ∈ (0,+∞].
i) Viscosity sub/supersolution on R× (0, T )
A function u : R × [0, T ) → R is a viscosity subsolution (resp. supersolution) of (1.2) on
R× (0, T ), (that is, of the first equation in (1.2)), if u is upper semi-continuous (resp. lower
semi-continuous), and if for any function ϕ ∈ C2,1(R× (0, T )) and any point P0 = (x0, t0) ∈
R× (0, T ) such that u(P0) = ϕ(P0) and

u ≤ ϕ on R× (0, T ) (resp. u ≥ ϕ on R× (0, T ))

then
min {(Lϕ)(x0, t0), u(x0, t0)− u(−x0, t0)− ψ(x0, t0)} ≤ 0,

(resp. min {(Lϕ)(x0, t0), u(x0, t0)− u(−x0, t0)− ψ(x0, t0)} ≥ 0).

ii) Viscosity sub/supersolution on R× [0, T )
A function u : R × [0, T ) → R is a viscosity subsolution (resp. supersolution) of (1.2)
on R × [0, T ), (that is, of the initial value problem), if u is a viscosity subsolution (resp.
supersolution) of (1.2) on R× (0, T ) and satisfies moreover u(x, 0) ≤ 0 (resp. u(x, 0) ≥ 0)

for all x ∈ R.
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iii) Viscosity solution on R× [0, T )
A function u : R× [0, T )→ R is a viscosity solution of (1.2) on R× [0, T ), if and only if u∗

is a viscosity subsolution and u∗ is a viscosity supersolution on R× [0, T ) where3

u∗(x, t) = lim sup
(y,s)→(x,t)

u(y, s) and u∗(x, t) = lim inf
(y,s)→(x,t)

u(y, s).

The notion of discontinuous viscosity solution using the upper/lower semi-continuous
envelopes was introduced by Barles and Perthame in [3]. Our definition is in the same spirit.
A key property of the viscosity sub/supersolutions is their stability:

Proposition 2.2 (Stability of sub/supersolutions)
For any ε ∈ (0, 1), let Fε be a non empty family of subsolutions (resp. supersolutions) of
(1.2) on R× (0, T ). Let

u(x, t) = lim sup
(y,s,ε)→(x,t,0)

(
sup
v∈Fε

v(y, s)

)
,

(
resp. u(x, t) = lim inf

(y,s,ε)→(x,t,0)

(
inf
v∈Fε

v(y, s)

))
.

If |u| < +∞ (resp. |u| < +∞), then u is a subsolution (resp. u is a supersolution) of (1.2)
on R× (0, T ).

Proof of Proposition 2.2
The proof of Proposition 2.2 is classical, except for the new term u(x, t)− u(−x, t). In fact,
Barles and Imbert give a related definition of viscosity solution and established stability
results for a general class of non local operators in [2]. Here, we simply check this property,
proving that if for all functions v ∈ Fε, we have

(2.1) v(x, t)− v(−x, t)− ψ(x, t) ≤ 0

in the viscosity sense, then u still satisfies (2.1) (the proof beeing similar for u).
Indeed, by definition of u, there exists (yε, sε, ε) → (x, t, 0) and vε ∈ Fε such that u(x, t) =
limε→0 vε(yε, sε) and vε(yε, sε)− vε(−yε, sε)− ψ(yε, sε) ≤ 0. Since ψ is continuous,

u(x, t)− ψ(x, t) ≤ lim sup
ε→0

vε(−yε, sε) ≤ u(−x, t)

which ends the proof.

In parallel to the definition above, we may define viscosity sub/super-solutions for the
stationary problem, and for the w problem. (For a precise definition see Appendix.)

3 Comparison principle for the u-problem

3.1 Comparison principle for the original u-problem

We consider the following nonlocal obstacle problem (see equation (1.2) above):

(3.1)

{
min (Lu, u(x, t)− u(−x, t)− ψ(x, t)) = 0 for (x, t) ∈ R× (0,+∞),
u(x, 0) = 0 for x ∈ R.

3In this paper, we reserve the notations f∗ and f∗ for the sup and inf–envelopes of a function f .
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Theorem 3.1 (Comparison principle for the evolution problem)
Assume (1.1), in particular that c > 0. Let u (resp. v) be a subsolution (resp. supersolution)
of (3.1) on R× [0, T ) for some T > 0, satisfying for some constant CT > 0:

u(x, t) ≤ CT (1+max(0, x)) and v(x, t) ≥ −CT (1+max(0, x)) for all (x, t) ∈ R×[0, T ).

Then u ≤ v on R× [0, T ).

We show in section 10 that the comparison principle does not hold when c = 0. We start by
explaining the heuristic idea that underlies the proof.

Quick heuristic proof of the comparison principle
Let u be a subsolution and v a supersolution of (3.1). If

M = sup(u− v) = (u− v)(x0, t0) > 0

then, formally, at the point (x0, t0):

(3.2) Lu ≤ 0 or u(x0, t0)− u(−x0, t0)− ψ(x0, t0) ≤ 0

and

(3.3) Lv ≥ 0 and v(x0, t0)− v(−x0, t0)− ψ(x0, t0) ≥ 0

i) case Lu ≤ 0. We get the usual comparison principle using Lv ≥ 0.
ii) case Lu > 0. In this case, we have

(3.4) u(x0, t0)− u(−x0, t0)− ψ(x0, t0) ≤ 0.

Subtracting the second line of (3.3) from this inequality, we deduce that M = (u−v)(x0, t0) ≤
(u−v)(−x0, t0) = M and we can apply the same reasoning at the point (−x0, t0). Again, case
i) for (−x0, t0) is excluded, and it remains case ii) for (−x0, t0), i.e. u(−x0, t0)− u(x0, t0)−
ψ(−x0, t0) ≤ 0. Summing this inequality to (3.4), we get:

2c = −ψ(x0, t0)− ψ(−x0, t0) ≤ 0

which yields a contradiction.

We now turn to the rigorous proof of the comparison principle. In this proof we use the
following adaptation of the (parabolic) Jensen-Ishii Lemma.

Lemma 3.2 (Jensen-Ishii lemma for the obstacle problem)
Let u (resp. v) be a subsolution (resp. a supersolution) of (3.1) on R× [0, T ) for some T > 0,
satisfying

u(x, t) ≤ CT (1+max(0, x)) and v(x, t) ≥ −CT (1+max(0, x)) for all (x, t) ∈ R×[0, T ).

Let for (z0, s0) ∈ R× (0, T ) and ε, β, η > 0 and δ ≥ 0:

ũ(x, t) = u(x, t)− βx
2

2
− δ

4
|x− z0|2 , ϕδ(x, y, t) =

(x− y)2

2ε
+

η

T − t
+
δ

2
|t− s0|2
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and
Φδ(x, y, t) = ũ(x, t)− v(y, t)− ϕδ(x, y, t).

Assume that there exists a point (x̄, ȳ, t̄) ∈ R2 × (0, T ) such that

sup
(x,y,t)∈R2×[0,T )

Φδ(x, y, t) = Φδ(x̄, ȳ, t̄).

Then, we have

(3.5) A0 ≤ 0 or {B ≤ 0 and B1 ≤ 0}

where

(3.6)



A0 =
η

(T − t̄)2
+ δ(t̄− s0)− 1

2
σ2(β + 3δ|x̄− z0|2)

+ρ

(
(x̄− ȳ)2

ε
+ βx̄2 + δx̄(x̄− z0)3

)
+ r (u(x̄, t̄)− v(ȳ, t̄)) ,

B1 = u(x̄, t̄)− u(−x̄, t̄)− ψ(x̄, t̄),
B = u(x̄, t̄)− v(ȳ, t̄)− (u(−x̄, t̄)− v(−ȳ, t̄))− (ψ(x̄, t̄)− ψ(ȳ, t̄)) .

The proof of this Lemma is technical and rests on an adaptation of the doubling variable
techniques (see Lemma 8 in [15]). We provide it in the Appendix where we actually state
and prove a more precise version of the Jensen-Ishii lemma.

Proof of Theorem 3.1
We use the doubling of variables technique in the proof.
Step 1: preliminaries
Let

(3.7) M = sup
(x,t)∈R×[0,T )

u(x, t)− v(x, t)

and let us assume by contradiction that M > 0. Then for small parameters ε, β, η > 0 and
δ ≥ 0, let us consider

Mε,β,η,δ = sup
x,y∈R, t∈[0,T )

Φδ(x, y, t)

with

Φδ(x, y, t) := u(x, t)− v(y, t)− (x− y)2

2ε
− βx

2

2
− η

T − t
− δ

(
1

4
|x− z0|4 +

1

2
|t− s0|2

)
for a point (z0, s0) ∈ R× [0, T ) to be fixed later. Clearly, Φδ satisfies:

Φδ(x, y, t) ≤ 2CT + 2CT |x|+ CT |x− y| −
(x− y)2

2ε
− βx

2

2
− η

T − t

≤ 2CT + 4
(CT )2

β
+ ε(CT )2 − (x− y)2

4ε
− βx

2

4
− η

T − t

10



which shows that the supremum in Mε,β,η,δ is reached at some point (x̄, ȳ, t̄) ∈ R2 × [0, T ).
Because of the zero initial data, it must be the case that t̄ > 0. Moreover, for β, η, δ small
enough, we have

Φδ(x̄, ȳ, t̄) = Mε,β,η,δ ≥M/2 > 0

and we see, in particular, that the following penalization terms are bounded:

(x̄− ȳ)2

4ε
+ β

x̄2

4
+

η

T − t̄
≤ 2CT + 4

(CT )2

β
+ ε(CT )2 −M/2.

Step 2: viscosity inequalities
Let ũ, ϕδ and Φδ be as defined above and in Lemma 3.2. We now analyze the various
possibilities in the lemma.
Case A0 ≤ 0 and δ ≥ 0
From (3.6) and the fact that u(x̄, t̄)− v(ȳ, t̄) ≥Mε,α,η ≥M/2 > 0, we deduce that

η

T 2
+ r

M

2
≤ 1

2
σ2β + δ

(
3

2
σ2|x̄− z0|2 − ρx̄(x̄− z0)3 − (t̄− s0)

)
which gives a contradiction for β > 0 small enough and δ ≥ 0 small enough with δ ≤ δ0(β, z0).

Case B ≤ 0, B1 ≤ 0 and δ ≥ 0
In this case, we have

(3.8)

{
u(x̄, t̄)− v(ȳ, t̄)− (u(−x̄, t̄)− v(−ȳ, t̄)) ≤ ψ(x̄, t̄)− ψ(ȳ, t̄) = α(t̄)(x̄− ȳ),
u(x̄, t̄)− ψ(x̄, t̄) ≤ u(−x̄, t̄).

In the limit ε→ 0 and up to extracting a subsequence, we have for (x̄ε,δ, ȳε,δ, t̄ε,δ) := (x̄, ȳ, t̄)

(x̄ε,δ, ȳε,δ, t̄ε,δ)→ (x̄δ, ȳδ, t̄δ) with x̄δ = ȳδ.

It is also classical that

(3.9)


lim
ε→0

u(x̄ε,δ, t̄ε,δ) = u(x̄δ, t̄δ),

lim
ε→0

v(ȳε,δ, t̄ε,δ) = v(x̄δ, t̄δ),

M0,β,η,δ := sup
x∈R, t∈[0,T )

Φδ(x, x, t) = Φδ(x̄δ, x̄δ, t̄δ).

Passing to the limit in (3.8), using (3.9) and the semi-continuities of u and v, we get

(3.10)

{
u(x̄δ, t̄δ)− ψ(x̄δ, t̄δ) ≤ u(−x̄δ, t̄δ),
u(x̄δ, t̄δ)− v(x̄δ, t̄δ) ≤ u(−x̄δ, t̄δ)− v(−x̄δ, t̄δ).

For the special case δ = 0, and from the fact that

Φ0(x̄0, x̄0, t̄0) ≥ Φ0(−x̄0,−x̄0, t̄0)

we deduce that
u(x̄0, t̄0)− v(x̄0, t̄0) = u(−x̄0, t̄0)− v(−x̄0, t̄0)

i.e.
Φ0(x̄0, x̄0, t̄0) = Φ0(−x̄0,−x̄0, t̄0).
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We also recall (from (3.10)) that

(3.11) u(x̄0, t̄0)− u(−x̄0, t̄0)− ψ(x̄0, t̄0) ≤ 0

Case B ≤ 0, B1 ≤ 0 and δ > 0 with the choice (z0, s0) = (−x̄0, t̄0)
Notice that

Φ0(−x̄0,−x̄0, t̄0) = Φδ(−x̄0,−x̄0, t̄0) ≤ Φδ(x̄δ, x̄δ, t̄δ)

= −δ
(

1

4
|x̄δ − z0|4 +

1

2
|t̄δ − s0|2

)
+ Φ0(x̄δ, x̄δ, t̄δ)

≤ −δ
(

1

4
|x̄δ − z0|4 +

1

2
|t̄δ − s0|2

)
+ Φ0(−x̄0,−x̄0, t̄0)

which shows that x̄δ = z0 = −x̄0 and t̄δ = s0 = t̄0. Then from (3.10), we get

u(−x̄0, t̄0)− u(x̄0, t̄0)− ψ(−x̄0, t̄0) ≤ 0

and from (3.11), we get

u(x̄0, t̄0)− u(−x̄0, t̄0)− ψ(x̄0, t̄0) ≤ 0.

Summing these two inequalities, we get

0 < 2c = −ψ(x̄0, t̄0)− ψ(−x̄0, t̄0) ≤ 0

which gives the desired contradiction. The proof of Theorem 3.1 is thereby complete.

A similar proof yields:

Theorem 3.3 (Comparison principle for the stationary problem)
Assume (1.1). Let u (resp. v) be a subsolution (resp. supersolution) of (1.3) satisfying for
some constant C > 0:

u(x) ≤ C(1 + max(0, x)) and v(x) ≥ −C(1 + max(0, x)) for all x ∈ R.

Then u ≤ v on R.

3.2 Comparison principle for a modified u-problem

We now consider the following modified problem for some positive constant ε0 > 0:

(3.12)


Lu = 0 for (x, t) ∈ (−∞, ε0)× (0,+∞),
min (Lu, u(x, t)− u(−x, t)− ψ(x, t)) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
u(x, 0) = 0 for x ∈ R.

Similarly to Section 2, we can introduce the notion of viscosity sub and supersolutions.
Then, adapting the proof of Theorem 3.1, we get easily the following result:

Theorem 3.4 (Comparison principle for the modified evolution problem)
Assume (1.1) and ε0 > 0. Let u (resp. v) be a subsolution (resp. supersolution) of (3.12)
on R× [0, T ) for some T > 0, satisfying for some constant CT > 0:

u(x, t) ≤ CT (1+max(0, x)) and v(x, t) ≥ −CT (1+max(0, x)) for all (x, t) ∈ R×[0, T ).

Then u ≤ v on R× [0, T ).
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4 Existence by sub/supersolutions

The goal of this section is to prove Theorem 1.1 on existence and uniqueness of the solution
to the u-problem. This result will be proven by the method of sub and supersolutions. We
start with two lemmata.

Lemma 4.1 (Subsolution)
The function u = max(0, ψ) is a subsolution of (1.2).

Proof:
We have Lu = 0 in the region {ψ < 0} and u(x, t)−u(−x, t)−ψ(x, t) = 0 in the region {ψ ≥ 0} .

Remark 4.2 Note that max(0, ψ) is the solution of the problem for σ = 0.

The obstacle ψ depends on t, and for this reason, the function u∞(x) = u(x,+∞) is not
a natural supersolution of the evolution problem (indeed u∞(x) is not a supersolution for
x < 0, because ψ(x, t) has the wrong monotonicity in time for x < 0). Actually, a direct
computation shows that the function

α(t)

α(+∞)
u∞(x)

is a supersolution of the evolution problem (1.2), where u∞ is the stationary solution of (1.3).
We could thus use the result of [25] which proves existence of u∞. In order to keep a self-
contained proof, we indicate in the following lemma a direct construction of a supersolution
u (see Figure 1). We also use this explicit supersolution in the proof of Lemma A.8 in the
Appendix to derive the initial bound (7.4) on the free boundary. This bound allows us to
establish properties of the free boundary in Theorem 7.2.

y

(y)

A−A B

h
b

−B

φ

Figure 1: Graph of φ defined in Lemma 4.3, with supersolution u(x, t) = α(t)φ

(
x− c

α(t)

)

Lemma 4.3 (Supersolution)
Set

u(x, t) = α(t)φ(x− d(t)) with d(t) =
c

α(t)
and φ(y) = ζ(y) +

y

2
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where for A > 0:

ζ(y) = ζ(−y) =


y2

4A
+ b for |y| < A,

|y|
2

+ h ·min

(
1,
Bq

|y|q

)
for |y| ≥ A, with h := b− A

4
≥ 0.

Choose the positive constants b, B and q to satisfy the following inequalities:

(4.1) b ≥ σ2

4rA
+
A

4

(
1 +

ρ

r

)2

(
1 + 2

ρ

r

)
(4.2) B ≥ A, B ≥ qh,

(4.3) B ≥

 σ2q(q + 1)

2r
(

1− qρ
r

)
 1

2

with 0 < q <
r

ρ
,

and

(4.4) B ≥

σ2hq(q + 1)

2r
(

1 +
ρ

r

)
 1

3

.

Then, for σ ≥ 0 the function u is a supersolution of (1.2).

Proof of Lemma 4.3
We first notice that φ ∈ Lip(R) and φ is C1 except for |y| = B, and C2 except for |y| = B,A.
We also check that condition (4.2) implies that φ is non decreasing, which also implies that
φ ≥ 0, because φ(−∞) = 0.
On the one hand, we have with y = x− d(t)

u(x, t)− u(−x, t) = α(t) (φ(x− d(t))− φ(−x− d(t))) =
α(t) (φ(y)− φ(−y − 2d(t))) ≥ α(t) (φ(y)− φ(−y)) ≥ α(t)y = ψ(x, t)

where we have used in the second line the fact that φ is non decreasing.
On the other hand, we want to check that

(4.5) ut +Mu ≥ 0.

Notice that this inequality is automatically satisfied in the viscosity sense at points corre-
sponding to |y| = B (because there is no test functions from below at those points). Outside
that set, we have

ut = −d′(t)α(t)φ′(y) + α′(t)φ(y) ≥ 0

14



because φ ≥ 0, φ′ ≥ 0 and

−d′(t) =
cα′(t)

α2(t)
≥ 0.

Therefore it is enough to show that Mu ≥ 0 which means

ru ≥ 1

2
σ2uxx − ρxux

i.e.

ρd(t)ux + ru ≥ 1

2
σ2uxx − ρ(x− d(t))ux.

Using the fact that ux ≥ 0, it is enough to show that u ≥ σ2

2r
uxx − ρ

r
yux i.e.

(4.6) φ ≥ σ2

2r
φ′′ − ρ

r
yφ′.

Case 1: |y| < A
Then (4.6) means

y

2
+
y2

4A
+ b ≥ σ2

2r

1

2A
− ρ

r

(
y

2
+
y2

2A

)
i.e.

(4.7) f(y) ≥ 0 for f(y) :=
y2

4A

(
1 + 2

ρ

r

)
+
y

2

(
1 +

ρ

r

)
+ b− σ2

4rA
.

The minimum of f is reached for

y0 = −A

(
1 +

ρ

r

)
(

1 + 2
ρ

r

) ∈ [−A,A], with f(y0) = −A
4

(
1 +

ρ

r

)2

(
1 + 2

ρ

r

) + b− σ2

4rA

and then (4.7) is satisfied if and only if (4.1) holds true, which also implies h = b− A

4
≥ 0.

Case 2: A < |y| < B
Then (4.6) means

h ≥ 0, for −B < y < −A

and
h+ y ≥ −ρ

r
y, for A < y < B

which are obviously true.

Case 3: B < |y|
Case 3.1: y < −B
Then (4.6) means (

1− qρ
r

) 1

|y|q
≥ q(q + 1)

σ2

2r

1

|y|q+2

which is true if (4.3) holds true.
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Case 3.2: y > B
Then (4.6) means

y + h
Bq

yq
≥ σ2

2r
hq(q + 1)

Bq

yq+2
− ρ

r
y

(
1− hq B

q

yq+1

)
i.e.

y
(

1 +
ρ

r

)
≥ σ2

2r
hq(q + 1)

Bq

yq+2
+ h

Bq

yq

(
q
ρ

r
− 1
)

which is implied by (because q < r/ρ)

y
(

1 +
ρ

r

)
≥ σ2

2r
hq(q + 1)

Bq

yq+2

which is true if

y3
(

1 +
ρ

r

)
≥ σ2

2r
hq(q + 1)

i.e. if (4.4) holds true.

Thus (4.5) holds in all the previous cases and then by continuity also for |y| = A. There-
fore (4.5) holds in the viscosity sense everywhere, what concludes the proof of the lemma.

Proof of Theorem 1.1
We only prove the i), (the proof of ii) for the stationary problem being similar, replacing u
and u, respectively by u∞(x) = u(x,+∞) and u∞(x) = u(x,+∞)).
Step 1: definition of S
We easily check that

u ≤ u

with u and u respectively defined in Lemmata 4.1 and 4.3.
Indeed φ ≥ 0, and then it is sufficient to check that φ(y) ≥ y for y ≥ 0. Moreover, for
B > A, φ is C1 and convex on (−B,B) and then it is easy to check that φ(y) is above |y|
on this interval. It is also straightforward to check that this is true on its complement. By
continuity, it stays true in the limit case B = A.
We define the set of functions

S = {w : R× [0,+∞)→ R, w subsolution of (1.2), u ≤ w ≤ u} 6= ∅.

Step 2: existence by Perron’s method
We now define:

u(x, t) = W ∗(x, t) :== lim sup
(y,s)→(x,t)

W (y, s) with W (x, t) = sup
w∈S

w(x, t).

From the stability property (Proposition 2.2), we can deduce that u is automatically a
subsolution. We now check that u∗ is a supersolution. Because

0 = u(x, 0) ≤ u∗(x, 0) ≤ u(x, 0) = 0

we only have to check that if

u∗ ≥ ϕ with u∗ = ϕ at (x0, t0) ∈ R× (0,+∞)
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then
min ((Lϕ)(x0, t0), u∗(x0, t0)− u∗(−x0, t0)− ψ(x0, t0)) ≥ 0.

If (Lϕ)(x0, t0) < 0, we get a contradiction with the optimality of u as usual (see Ishii [21], or
for instance Chen, Giga, Goto [10]). If u∗(x0, t0)− u∗(−x0, t0)− ψ(x0, t0) < 0, we can write
it as follows for some η > 0:

ϕ(x0, t0)− ψ(x0, t0) ≤ u∗(−x0, t0)− η and x0 6= 0.

As usual, up to replacing ϕ by ϕ(x, t)− |(x, t)− (x0, t0)|4, we can assume that

u∗(x, t) > ϕ(x, t) for (x, t) 6= (x0, t0).

We then check that
ũδ = max(u, ϕ+ δ)

satisfies
ũδ = u on (R× (0,+∞))\BRδ(x0, t0)

with Rδ → 0 as δ → 0. And if ũδ = ϕ+ δ at some point (y, s) ∈ BRδ(x0, t0), then we have

ũδ(y, s)− ψ(y, s) ≤ u∗(−x0, t0)− η/2 ≤ u(−y, s) = ũδ(−y, s)

for δ > 0 small enough, where the last equality holds (for δ > 0 small enough) because
x0 6= 0. This implies that ũδ is a subsolution for δ > 0 small enough, i.e. ũδ ∈ S. On the
other hand, it is classical to check that we do not have ũδ ≤ u everywhere, which gives a
contradiction with the optimality of u. This shows that u is a viscosity solution of (1.2).
Step 3: uniqueness
We just apply the comparison principle (Theorem 3.1), which proves the uniqueness of u
among solutions satisfying |u−max(0, ψ)| ≤ C This completes the proof of the theorem.

5 First properties of the solution u

The main result of this section is:

Theorem 5.1 (Properties of the solution)
Assume (1.1) and let u be the solution given in Theorem 1.1. Then u is continuous. There
exists a function φ such that

φ(y) ≥ max(0, y) and lim sup
|y|→+∞

|φ(y)−max(0, y)| = 0

and the following properties hold:
i) asymptotics:

(5.1) max(0, ψ(x, t)) = α(t) max(0, x− d(t)) ≤ u(x, t) ≤ α(t)φ(x− d(t)), with d(t) =
c

α(t)
.

ii) monotonicity and convexity: 0 ≤ ux ≤ α(t), uxx ≥ 0.
iii) convergence in long time: u(x, t)→ u∞(x) as t→ +∞.
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iv) monotonicity with respect to the parameters c, σ: For c > 0, σ ≥ 0, we have
∂u

∂c
≤ 0, and

∂u

∂σ
≥ 0.

v) The limit c → 0: u → u0 as c → 0 where u0 is the minimal solution of (1.2) for c = 0
satisfying |u0(x, t)−max(0, xα(t))| ≤ C on R× [0,+∞), for some constant C > 0.

Proposition 5.2 (Convexity of the solution)
The solution u of (1.2) given by Theorem 1.1 i) is convex in x, for all time t ≥ 0.

This and several of the other results here also hold for more general obstacles ψ, provided
ψ is convex. More general PDEs could also be addressed using the methods proposed by
Imbert in [21].

Proof of Proposition 5.2
In the literature, we find a few proofs of convexity of solutions (see for instance Alvarez,
Lasry, Lions [1], Imbert [20], Giga [19], Rapuch [24]), but none of these approaches seem to
apply directly to our problem. For this reason, we provide a new approach - our proof is
based on a scheme obtained by an implicit discretization in time of the problem. This allows
us to come back (at each time step) to a stationary problem that we can analyze more easily.
Step 1: the implicit scheme
Given a time step ε > 0, consider an approximation un(x) of u(x, nε) defined for n ∈ N as
a solution of the following implicit scheme:
(5.2)

u0 = 0, and, for n ∈ N,

min

(
un+1 − un

ε
+Mun+1, un+1(x)− un+1(−x)− ψ(x, (n+ 1)ε)

)
= 0 for x ∈ R.

Step 2: subsolution un+1

As in the proof of Lemma 4.1, we check that

un+1(x) = max(0, ψ(x, (n+ 1)ε))

is a subsolution of the scheme (5.2), distinguishing for un+1 the regions ψn+1 ≥ 0 and
ψn+1 < 0 with ψn+1(x) = ψ(x, (n + 1)ε) (and using the fact that ψ is non decreasing in
time).
Step 3: supersolution un+1

Set
un+1(x) = u(x, (n+ 1)ε)

and as in the proof of Lemma 4.3, we easily check that un+1 is a supersolution of the scheme
(5.2). To this end, we have in particular to notice that un+1−un ≥ 0 and we already checked
that Mu ≥ 0 which implies

Mun+1 ≥ 0.

Step 4: existence of a unique solution for the scheme
We can then apply Perron’s method as in Step 2 of the proof of Theorem 1.1 and also prove a
comparison principle similar to Theorem 3.1. This shows that there exists a unique solution
(un)n to the scheme. Moreover the comparison principle implies that for each n, the function
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un is continuous.
Step 5: convexity of un+1

We prove by recurrence that un+1 is convex, assuming that un is convex (and noticing that
u0 = 0 is obviously convex).
Substep 5.1: definition of the convex envelope Un+1

Define the convex envelope of un+1 as

Un+1(x) = sup
l∈E

l(x)

with the set E of affine functions below un+1 defined as

E =
{
l = la,b, such that la,b(x) = ax+ b ≤ un+1(x)

}
.

By construction, we have
Un+1 ≤ un+1.

Our goal is to show that Un+1 is a supersolution. Then the comparison principle will imply

Un+1 = un+1

which will show that un+1 is convex.
Substep 5.2: Un+1 is a supersolution
Consider a test function ϕ such that

ϕ ≤ Un+1 with equality at x0 ∈ R

We want to show that
(5.3)

min

(
Un+1(x0)− un(x0)

ε
+ (Mϕ)(x0), Un+1(x0)− Un+1(−x0)− ψ(x0, (n+ 1)ε)

)
≥ 0.

Because un+1 is continuous, we see that the set E is closed, and then the supremum defining
Un+1(x0) is a maximum, i.e. there exists l0 ∈ E such that we have

Un+1(x0) = l0(x0) and l0 ≤ un+1.

Let us write
l0(x) = p(x− x0) + d0 with d0 = Un+1(x0)

and
l±0 (x) = p±(x− x0) + d0 ≤ un+1(x)

the extremal affine functions below un+1 with p+ maximal and p− minimal. Then we have

inf
x≤x0

(un+1 − l−0 ) = 0 and inf
x≥x0

(un+1 − l+0 ) = 0.

If Un+1(x0) = un+1(x0), then ϕ is a test function for un+1 which implies that (5.3) is sat-
isfied. Let us therefore assume that Un+1(x0) < un+1(x0). This implies that p+ = p− =
p and then l+0 = l−0 = l0. Hence,

(5.4) inf
x≤x0

(un+1 − l0) = 0 = (un+1 − l0)(x−) for some x− ∈ [−∞, x0)
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and

(5.5) inf
x≥x0

(un+1 − l0) = 0 = (un+1 − l0)(x+) for some x+ ∈ (x0,+∞]

and moreover

(5.6) Un+1 = l0 in a neighborhood of x0.

Because of the assymptotics given by the inequalities

(5.7) un+1 ≤ un+1 ≤ un+1

we deduce that

(5.8)


p = 0 = d0 if x− = −∞,

p = α((n+ 1)ε) and d0 = px0 − c if x+ = +∞.

We distinguish several cases.
Case 1: x− and x+ finite. Note that l0 is a test function from below for (the supersolution)
un+1 both at x = x− and x = x+. This implies that

(5.9)
l0(x±)− un(x±)

ε
+(Ml0)(x±) ≥ 0 and un+1(x±)−un+1(−x±)−ψ(x±, (n+1)ε) ≥ 0.

We can write x0 = ax−+(1−a)x+ for some a ∈ (0, 1). Using the fact that l0 and ψ(·, (n+1)ε))
are affine, we deduce that

l0(x0)− ψ(x0, (n+ 1)ε)) ≥ aun+1(−x−) + (1− a)un+1(−x+)
≥ aUn+1(−x−) + (1− a)Un+1(−x+)
≥ Un+1(−x0)

where we used the convexity of Un+1 to obtain the last inequality. This implies

Un+1(x0)− Un+1(−x0)− ψ(x0, (n+ 1)ε)) ≥ 0.

We also compute
(Ml0)(x) = ρpx+ rl0(x)

which is affine in x. Using the convexity of un, we then see that (5.9) implies

(5.10)
l0(x0)− un(x0)

ε
+ (Ml0)(x0) ≥ 0.

Finally, we see that this implies (5.3), since

−1

2
σ2ϕ′′(x0) ≥ 0

follows from the fact that ϕ is tangent from below to the affine function l0 (because of (5.6)).
Case 2: x− finite and x+ = +∞. We consider a sequence of points xk+ → +∞. We first
compute for δ > 0

l0(xk+)− un+1(−xk+)− ψ(xk+, (n+ 1)ε) = −un+1(−xk+) ≥ −δ
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for k large enough depending on δ (using the asymptotics (5.7)). This shows that

x0 = akx− + (1− ak)xk+ for some ak ∈ (0, 1).

This implies as in case 1 that

(5.11) Un+1(x0)− Un+1(−x0)− ψ(x0, (n+ 1)ε)) ≥ −δ(1− ak) ≥ −δ.

Similarly we compute (using the asymptotics (5.7) at the level n):

l0(x)− un(x)

ε
+ (Ml0)(x) = Dnx− rc+ ε−1(α(nε)x− c− un(x)) ≥ Dnx− rc− δ

for x large enough with

Dn =
α((n+ 1)ε)− α(nε)

ε
+ (ρ+ r)α((n+ 1)ε) ≥ rα((n+ 1)ε) > 0.

Therefore
l0(xk+)− un(xk+)

ε
+ (Ml0)(xk+) ≥ 0

for k large enough. As in case 1, this implies (5.10). Taking the limit δ → 0 in (5.11), this
implies (5.3) as in case 1.
Case 3: x− = −∞ and x+ finite. This case is similar to case 2 and we omit the details.
Case 4: x− = −∞ and x+ = +∞. This case is excluded by (5.8).
This ends step 5 and shows that Un+1 is a supersolution. We then conclude that un+1 = Un+1

is convex.
Step 6: convergence towards u as ε tends to zero. We set

u(x, t) = lim sup
(y,nε,n)→(x,t,+∞)

un(y) and u(x, t) = lim inf
(y,nε,n)→(x,t,+∞)

un(y).

Using the asymptotics (5.7) and adpating the stability property (Proposition 2.2) to this
framework, it is then standard to show (see Barles, Souganidis [4]) that u is a subsolution

of (1.2) and u is a supersolution of (1.2). The comparison principle then implies that

u = u = u

and u is convex in x as a limit of convex (in x) functions. This concludes the proof of the
proposition.

Proof of Theorem 5.1
The continuity of u follows from the comparison principle.
Proof of i)
Estimate (5.1) follows from inequality

(5.12) u ≤ u ≤ u

with u and u given in Lemmata 4.1 and 4.3.
Proof of ii)
The convexity follows from Proposition 5.2, and the asymptotics (5.12) implies

0 ≤ ux ≤ α(t).
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Proof of iii)
Locally in x, u is uniformly bounded in time (because of the asymptotics (5.12)) and is non
decreasing in time. Therefore we have

u(x, t)→ U(x)

and U is a viscosity solution of the stationary problem (1.3). Moreover, we have

u(x,+∞) ≤ U(x) ≤ u(x,+∞).

Then the comparison for the stationary problem (Theorem 3.3) implies that U = u∞ i.e.

u(x, t)→ u∞(x) as t→ +∞

which shows in particular that u∞ is also convex.
Proof of iv)

We start by showing that
∂u

∂c
≤ 0. Let c2 > c1 > 0 and the corresponding solutions u2, u1.

Notice that u2 is a subsolution for the problem satisfied by u1. The comparison principle
implies that u2 ≤ u1,

Next we show that
∂u

∂σ
≥ 0. Suppose σ2 ≥ σ1 ≥ 0 and let the corresponding solutions u2, u1.

Since u2
xx ≥ 0, u2 is a supersolution for the problem solved by u1 and thus u2 ≥ u1.

Proof of v)
For c > 0, consider the solution u given by Theorem 1.1. Choose any solution u0 of (1.2)
for c = 0 satisfying |u0(x, t) − max(0, xα(t))| ≤ C for some constant C > 0. Then u0

is a supersolution of the equation satisfied by u. The comparison principle implies that
u0 ≥ u ≥ 0. The monotonicity of u with respect to c implies that u has a limit u0 as c goes
to zero, which satisfies

(5.13) 0 ≤ u0 ≤ u0.

Using the stability of viscosity solutions and (5.13), it is straightforward to show that u0 is
a viscosity solution of (1.2) for c = 0. Therefore u0 is the minimal solution.
This completes the proof of the theorem.

6 Further properties of the solution u

The main result of this section is:

Theorem 6.1 Assume (1.1) and let u be the solution given in Theorem 1.1. Then, in the
standard viscosity sense,

(6.1) Lu = 0 in

{
(x, t) ∈ R× (0,+∞), x <

c

α(t)

}
.

Moreover, ut ≥ 0 and the following monotonicities with respect to the parameters r > 0 and

λ > −r hold:
∂u

∂r
≤ 0 and

∂u

∂λ
≤ 0. Set w(x, t) := u(x, t) − u(−x, t). Then, in the viscosity

sense w solves:

(6.2)


min (Lw, w − ψ) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w(0, t) = 0 for t ∈ [0,+∞),
w(x, 0) = 0 for x ∈ [0,+∞).
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Proof of Theorem 1.2
Theorem 1.2 just combines Theorems 5.1 and 6.1.

To obtain further properties of the solution u stated in Theorem 6.1 (including the
monotonicity with respect to the parameter r), it is convenient to consider the following
modified equation:

(6.3)


min (Lu, u(x, t)− u(−x, t)− ψ(x, t)) = 0 for (x, t) ∈ R× (0,+∞),

(Lu)(x, t) ≤ 0 for x <
c

α(t)
and t > 0,

u(x, 0) = 0 for x ∈ R.

Similarly to Definition 2.1, we can introduce a notion of viscosity solution for this equa-
tion. The only difference, is that for a viscosity subsolution u such that

u ≤ ϕ with equality at (x0, t0) ∈ R× (0, T )

we require both

min {(Lϕ)(x0, t0), u(x0, t0)− u(−x0, t0)− ψ(x0, t0)} ≤ 0

and
(Lϕ)(x0, t0) ≤ 0 if x0 <

c

α(t0)
.

Proposition 6.2 (Existence and uniqueness for the modified equation)
Assume (1.1). Then, there exists a unique solution u of (6.3). Moreover this solution u is
the same as the one given by Theorem 1.1.

Proof of Proposition 6.2
We can check that the notion of viscosity solution for (6.3) is stable (as in Proposition 2.2). It
is straightforward to verify that the function u given in Lemma 4.1 is a subsolution of (6.3).
Since the definition of a supersolution is unchanged for (6.3) in comparison to (1.2), the
function u given in Lemma 4.3 is still a supersolution of (6.3). Thus we can apply Perron’s
method that shows the existence of a solution ũ of (6.3). Finally, notice that any viscosity
solution of (6.3) is also a viscosity solution of (1.2). Therefore we can apply the comparison
principle for equation (1.2) which shows that the solution ũ is the same as the one given by
Theorem 1.1. This ends the proof of the proposition.

Proof of Theorem 6.1
The first part of the Theorem, viz. (6.1), follows from Proposition 6.2. To show the mono-
tonicity in time of u, we simply check that uh(x, t) := u(x, t+ h) is a supersolution of (3.12)
for h > 0, because uh(x, 0) ≥ 0 = u(x, 0) and the obstacle satisfies ψt ≥ 0 for x > 0. Then
the comparison principle (Theorem 3.4) yields uh ≥ u for any h > 0. This implies that
ut ≥ 0.

Proof of monotonicity with respect to parameters r and λ
For r > 0, define the set

Er =

{
(x, t) ∈ R× (0,+∞), x ≥ c

α(r + λ, t)

}
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where the notation is explicit of the dependence on r:

α(r + λ, t) =
1− e−(r+λ)t

r + λ

and set
ψr(x, t) := xα(r + λ, t)− c

and note the dependence in r by writing

Lru := ut −
1

2
σ2uxx + ρxux + ru.

We have

(6.4)
∂α

∂r
(r + λ, t) =

e−(r+λ)t

(r + λ)2

(
1 + (r + λ)t− e(r+λ)t

)
≤ 0.

Let r2 > r1 > 0 and the corresponding solutions u2 and u1 of (1.2) (or equivalently (6.3)).
Because of (6.4),

Er2 ⊂ Er1

and
u2(x, t)− u2(−x, t)− ψr2(x, t) ≥ u2(x, t)− u2(−x, t)− ψr1(x, t) on Er2 .

On the other hand,
Lr2u2 ≥ Lr1u2

because u2 ≥ 0. Since u2 is a solution of (6.3) for r = r2, for any test point (x, t) (tested
from above), either

(Lr2u2)(x, t) ≤ 0

or

(Lr2u2)(x, t) > 0 and u2(x, t)− u2(−x, t)− ψr2(x, t) ≤ 0 and (x, t) ∈ Er2 .

This implies that

min((Lr1u2)(x, t), u2(x, t)− u2(−x, t)− ψr1(x, t)) ≤ 0

which shows that u2 is a subsolution for the equation satisfied by u1. Therefore u2 ≤ u1

which implies the expected monotonicity in r of the solution. The proof of monotonicity
with respect to the parameter λ is similar.

Equation satisfied by w
Set

w(x, t) = u(x, t)− u(−x, t) for (x, t) ∈ [0,+∞)× [0,+∞)

The fact that w solves (6.2) in the viscosity sense follows from Lemma A.3 in the Appendix.
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7 The obstacle problem satisfied by w

Recall that
w(x, t) = u(x, t)− u(−x, t)

solves the problem:

(7.1)


min(Lw,w − ψ) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w(0, t) = 0 for t ∈ (0,+∞),
w(x, 0) = 0 for x ∈ (0,+∞)

and define the stationary problem (for t = +∞) with ψ∞(x) = ψ(x,+∞):

(7.2)

{
min(Mw∞, w∞ − ψ∞) = 0 for x ∈ (0,+∞),
w∞(0) = 0.

We now state the main results for the solution of the w–obstacle problem. The proof of
these results, including the relevant comparison principle, are detailed in the Appendix.

Theorem 7.1 (Properties of the solution w)
Assume (1.1). Then there exists a unique solution w to equation (7.1) satisfying

|w(x, t)| ≤ C(1 + |x|) on [0,+∞)× [0,+∞).

Moreover w is continuous and there exists a function φ̃ satisfying

φ̃(y) ≥ max(0, y) and lim sup
|y|→+∞

|φ̃(y)−max(0, y)| = 0

such that the following properties hold:
i) asymptotics: If d(t) := c

α(t)

(7.3) max(0, ψ(x, t)) = α(t) max(0, x− d(t)) ≤ w(x, t) ≤ α(t) min(x, φ̃(x− d(t))).

ii) monotonicity and convexity: wt ≥ 0, 0 ≤ wx ≤ α(t), wxx ≥ 0.
iii) convergence in long time: w(x, t) → w∞(x) as t → +∞, where w∞ is the unique
solution of (7.2) satisfying |w∞(x)| ≤ C(1 + |x|) on [0,+∞).
iv) monotonicity with respect to the parameters c, ρ, r, λ, σ : ∂w

∂c
≤ 0, ∂w

∂ρ
≤ 0, ∂w

∂r
≤

0, ∂w
∂λ
≤ 0, and ∂w

∂σ
≥ 0.

Notice that w = max(0, ψ) if σ = 0.

Theorem 7.2 (Properties of a and w̃)
Assume (1.1) and let w be the solution given in Theorem 7.1. Then there exists a lower
semi-continuous function a : (0,+∞)→ [0,+∞) such that for all t > 0:

{x ∈ [0,+∞), w(x, t) = ψ(x, t)} = {x ≥ a(t)} .

Let
w̃(x, t) = w(x, t)− ψ(x, t).
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Then the following properties hold:
i) bounds when σ ≥ 0

(7.4)
c

α(t)
≤ a(t) ≤ c

α(t)
+

σ

2
√
r

√√√√3 +

(
1 + ρ

r

)2(
1 + 2ρ

r

)
and

(7.5) 0 ≤ w̃ ≤ c.

ii) time monotonicity
If ρ ≥ λ, then:

(7.6) w̃t ≤ 0 and a′(t) ≤ 0.

iii) monotonicity with respect to the parameters ρ, c, r, λ, σ

(7.7)
∂w̃

∂ρ
≤ 0, and

∂w̃

∂c
≥ 0,

∂w̃

∂σ
≥ 0

and

(7.8)
∂a

∂ρ
≤ 0, and

∂a

∂c
≥ 0,

∂a

∂σ
≥ 0.

Moreover, if ρ ≥ λ, then

(7.9)
∂w̃

∂r
≥ 0,

∂w̃

∂λ
≥ 0, and

∂a

∂r
≥ 0,

∂a

∂λ
≥ 0.

In the Appendix (Section A.7), we show that w̃ is the solution of the equation:

(7.10)


min(Lw̃ + f, w̃) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w̃(0, t) = c for t ∈ (0,+∞),
w̃(x, 0) = c for x ∈ (0,+∞)

with
f := Lψ = x(α′(t) + (ρ+ r)α(t))− rc = x(1 + (ρ− λ)α(t))− rc.

We also establish in the Appendix further properties of w̃.

Remark 7.3 The condition ρ ≥ λ is always satisfied for the model derived in [25].

Corollary 7.4 (The exercise region for u is on the right)
Assume (1.1). Let u be the solution given in Theorem 1.1. Then

{(x, t) ∈ R× [0,+∞), u(x, t)− u(−x, t)− ψ(x, t) = 0} = {x ≥ a(t)} ⊂
{
x ≥ c

α(t)

}
.
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8 Regularity of the free boundary

8.1 Lipschitz regularity

Theorem 8.1 (Lipschitz regularity of the free boundary)
With the notation of Theorem 7.2, the map t 7→ a(t)α(t) is nondecreasing and

(8.1) −aα
′

α
≤ a′.

As a consequence, in view of (7.6), if ρ ≥ λ then the function a is locally Lipschitz.

Proof of Theorem 8.1
Step 1: change of function
Define v by

w̃(x, t) = v(xα(t), t)

where w̃ is the solution of (A.29). Writing y = xα(t)

Lw̃ + f = w̃t − 1
2
σ2w̃xx + ρxw̃x + r(w̃ − c) + x(1 + (ρ− λ)α(t))

= vt −
1

2
σ2α2vyy + ρyvy + r(v − c) + yB(vy, t)

:= F(y, t, [v])

with

B(z, t) =
α′(t)

α(t)
z +

1

α(t)
+ ρ− λ.

Step 2: monotonicity of the coefficients and vh supersolution

Recall that vy =
w̃x
α

satisfies −1 ≤ vy ≤ 0. Then for −1 ≤ z ≤ 0, we compute

(8.2)
∂B

∂t
(z, t) =

(
α′

α

)′
z +

(
1

α

)′
≤
(
−α

′

α
+

1

α

)′
= 0.

Here we used the fact that
(
α′

α

)′ ≤ 0. For any h > 0, let

vh(y, t) = v(y, t+ h).

Then vh satisfies

F(y, t+ h, [vh]) = vt − 1
2
σ2α2(t+ h)vhyy + ρyvhy + r(vh − c) + yB(vhy , t+ h)

≤ vt − 1
2
σ2α2(t)vhyy + ρyvhy + r(vh − c) + yB(vhy , t)

= F(y, t, [vh])

where we used in the second line, the properties vyy ≥ 0, α non decreasing, and

B(vhy , t+ h) = B(vhy , t) +

∫ t+h

t

ds
∂B

∂s
(vhy , s) ≤ B(vhy , t)

because of (8.2). Therefore since v is a supersolution of the equation F = 0, we deduce that
vh is also a supersolution of the same equation.
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Step 3: supersolution w̃h

As a consequence,
wh(x, t) = vh(xα(t), t)

is also a supersolution of the first line of (A.29). Moreover we have

(8.3) w̃h(x, t) = w̃

(
xα(t)

α(t+ h)
, t+ h

)
and thus satisfies

w̃h(x, 0) = c = w̃h(0, t) for all x, t ∈ [0,+∞).

This shows that w̃h is a supersolution of (A.29) (now also including the boundary conditions).
Step 4: conclusion
We can now apply the comparison principle and deduce that for any h > 0:

w̃h(x, t) = w̃

(
xα(t)

α(t+ h)
, t+ h

)
≥ w̃(x, t).

Fix t0 > 0 and for any ε > 0 (small enough), set

xε = a(t0)− ε > 0.

Then

w̃

(
xεα(t0)

α(t0 + h)
, t0 + h

)
≥ w̃(xε, t0) > 0.

This shows that
xεα(t0)

α(t0 + h)
< a(t0 + h).

Because this holds for any ε > 0 small enough, we deduce that

a(t0)α(t0)

α(t0 + h)
≤ a(t0 + h)

which shows that t 7→ a(t)α(t) is nondecreasing.
Therefore

0 ≤ (ln(aα))′ = (ln a)′ + (lnα)′ =
a′

a
+
α′

α

which implies (8.1). This concludes the proof of the theorem.

8.2 Further regularity

We prove now the following result, which is very much in the spirit of Kinderlehrer, Nirenberg
[22].

Proposition 8.2 (Smoothness of the free boundary for σ > 0)
Let r, c, σ > 0 and ρ ≥ λ ≥ 0. Then a ∈ C∞(0,+∞).
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Proof:
Step 1: from the viscosity formulation to the variational formulation
Set

α(t) = α(r + λ, t).

Recall that w(x, t) = ψ(x, t)− ψ(−x, t) solves

min (Lw,w − ψ) = 0 on (0,+∞)× (0,+∞)

with
wxx ≥ 0, wt ≥ 0, 0 ≤ wx ≤ α(t)

If moreover ρ ≥ λ, then we have

wt ≤ ψt, a′(t) ≤ 0

and a ∈ W 1,∞
loc (0,+∞). Since we have

Lw ≥ 0

we proceed as in Section 5.3 of [18] to deduce that

(8.4) w ∈ C1,1
x,loc (locally uniformly in time)

and then almost everywhere and in the distributional sense, for w̃ = w − ψ:

(8.5) Lw̃ = −(Lψ)1{x<a(t)} in D′((0,+∞)× (0,+∞))

Notice that
(Lψ)(x, t) = α′(t)x+ ρxα(t) + rα(t)x− rc

Because a(t) ≥ c/α(t),

(8.6) (Lψ)(a(t), t) ≥ cα′(t)/α(t) > 0

Step 2: preliminary regularity theory
We can then apply Theorem 1.3 from [5] (with [6]) to deduce that w̃t is continuous up to
the free boundary x = a(t). We also deduce from (8.4) that

0 ≤ w̃x(x, t) ≤ C |x− a(t)| locally

Therefore, from the continuity of a, we deduce the continuity of w̃x up to the free boundary.
Finally from the PDE (8.5), we deduce the continuity of w̃xx on the set {x ≤ a(t)}, and then

w̃xx(a(t)−, t) =
2

σ2
(Lψ)(a(t), t) > 0

which shows that the standard nondegeneracy condition is satisfied for this obstacle problem.
Step 3: higher regularity theory
This is an adaptation of Theorem 3 in Kinderlehrer, Nirenberg [22]. The details are provided
in the Appendix. With this result, we conclude that the free boundary is smooth, i.e. that
it is C∞. The proof of the proposition is thereby compete.
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9 Convergence of the free boundary as c→ 0

The main result of this section is the following

Theorem 9.1 (Convergence of the rescaled free boundary when c→ 0)
Assume σ > 0 and λ ≤ 3r+4ρ. Then the following convergence of the rescaled free boundary
holds: ā ≤ a

c
1
3
→ ā locally uniformly on any compact sets of (0,+∞), as c→ 0, where

ā(t) =

(
3σ2

2(1 + (ρ− λ)α(t))

) 1
3

.

As a corollary, we can deduce Theorem 1.3.
Proof of Theorem 1.3
Theorem 1.3 follows from Theorems 7.2, 8.1 and 9.1.

9.1 Preliminary results

Lemma 9.2 (Global subsolution and bound from below on the free boundary)
Assume σ > 0 and λ ≤ 3r + 4ρ. Consider the function

w̃(x, t) = c φ

(
x

c
1
3 ā(t)

)
with

(9.1) ā(t) =

(
3σ2

2(1 + (ρ− λ)α(t))

) 1
3

and

φ(ȳ) =


ȳ3

2
− 3

2
ȳ + 1 if 0 ≤ ȳ ≤ 1,

0 if ȳ > 1.

Then w̃ is a subsolution of equation A.29. In particular, we have (for each c > 0):

(9.2) a(t) ≥ c
1
3 ā(t) for all t > 0.

Remark 9.3 Notice that for all t ≥ 0

1 + (ρ− λ)α ∈



[
1,
r + ρ

r + λ

]
if ρ ≥ λ,

[
r + ρ

r + λ
, 1

]
if ρ ≤ λ,

if r > 0 and ρ ≥ 0, λ+ r > 0.
So we have

(9.3) 1 + (ρ− λ)α ≥ δ0 = min

(
1,
r + ρ

r + λ

)
.
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Proof of Lemma 9.2
Our goal is to build a subsolution for w̃ close to the axis x = 0.
Step 1: Change of function
Set

w̃(x, t) = cv(y, t) with y =
x

c
1
3

with
w̃(x, t) > 0 if and only if x < a(t) =: c

1
3 ã(t).

Set
F := Lw̃ + f

and recall from (A.29) that

F = w̃t −
1

2
σ2w̃xx + ρxw̃x + r(w̃ − c) + x(1 + (ρ− λ)α).

This implies that

(9.4) c−
1
3F = F0[v] + c

2
3G0[v] with

{
F0[v] := −1

2
σ2vyy + y(1 + (ρ− λ)α),

G0[v] := vt + ρyvy + r(v − 1).

Because w̃ satisfies (A.29), v satisfies

(9.5)

{
min(F0[v] + c

2
3G0[v], v) = 0 for all (y, t) ∈ Ω := (0,+∞)2,

v = 1 on ∂Ω.

Step 2: Constructing a candidate subsolution
If we neglect completely the term c

2
3G0[v] in (9.5), as a first guess, for each fixed t > 0, we

can look for a stationary solution v0 of

(9.6)

{
min(−1

2
σ2v0

yy + y(1 + (ρ− λ)α), v0) = 0 for all y ∈ (0,+∞),
v0(y, t) = 1 for y = 0

with
v0(y, t) > 0 if and only if y < ā(t).

We can solve this equation explicitly, recalling that for such an obstacle problem, we have

v0
y(ā(t), t) = 0 = v0(ā(t), t).

Then we obtain successively in {0 < y ≤ ā}

(9.7) v0
yy = 2yA with A :=

(1 + (ρ− λ)α)

σ2
,

v0
y = (y2 − ā2)A,

v0 =

(
y3

3
− yā2 +

2

3
ā3

)
A.

Finally the condition v0(0, t) = 1 implies

ā =

(
3

2A

) 1
3

=

(
3σ2

2(1 + (ρ− λ)α)

) 1
3
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which is exactly (9.1). Define φ ∈ C1,1 by

φ(ȳ) =

 ȳ3

2
− 3

2
ȳ + 1 if 0 ≤ ȳ ≤ 1,

0 if ȳ > 1

which satisfies the following properties:

φ(0) = 1, φ(1) = 0 = φ′(1), and

{
1 ≥ φ(ȳ) ≥ 0,
φ′(ȳ) ≤ 0

∣∣∣∣ for 0 ≤ ȳ ≤ 1.

Then we have
v0(y, t) = φ(ȳ) with ȳ =

y

ā(t)
.

Step 3: Checking the subsolution property
Set

v(y, t) = v0(y, t) = φ(ȳ).

By construction, 
F0[v] = 0 on {0 < ȳ ≤ 1} ,
1 ≥ v ≥ 0 on (0,+∞)× (0,+∞),
v(0, t) = 1 for all t ≥ 0.

Case 1: ρ ≥ λ
Compute on {0 < ȳ ≤ 1}:

G0[v] = − ā
′

ā
ȳφ′ + ρȳφ′ + r(φ− 1)

= ȳφ′
(
ρ− ā′

ā

)
+ r(φ− 1) ≤ 0.

In the last inequality, we used the properties ā ≥ 0, φ′ ≤ 0, φ ≤ 1, and ā′ ≤ 0, if ρ ≥ λ.

Case 2: λ ≤ 3r + 4ρ
When λ < ρ, we must use a different estimate. Write φ− 1 = ȳφ′ − ȳ3 and

G0[v] = ȳφ′
(
r + ρ− ā′

ā

)
− rȳ3.

Setting

ā(t) = K(A(t))−
1
3 with K =

(
3σ2

2

) 1
3

and A(t) = 1 + (ρ− λ)α(t)

we get

(r + ρ)ā− ā′ = K

{
(r + ρ)A

1
3 +

1

3
A

4
3 (ρ− λ)α′

}
i.e.

(r + ρ)ā− ā′
K
3
A

4
3

= (ρ− λ)α′ + 3(r + ρ)(1 + (ρ− λ)α) = g(e−(r+λ)t)
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with

g(z) = (ρ− λ)z + 3(r + ρ)

{
1 + (ρ− λ)

(
1− z
r + λ

)}
which is an affine function. It satisfies g(0) =

3(r + ρ)2

r + λ
≥ 0 and

g(1) = 3r + 4ρ− λ ≥ 0.

This implies that g(e−(r+λ)t) ≥ 0 and then G0[v] ≤ 0.

Step 4: Conclusion
This implies that on {0 < ȳ ≤ 1}

F0[v] + c
2
3G0[v] ≤ 0.

This shows that v is a subsolution of (9.5). The comparison principle implies the result.
This ends the proof of the lemma.

For some constant b ∈ R, consider the following problem

(9.8)

 min

(
−σ

2

2
vxx + by, v

)
= 0 on (0,+∞),

v(0) = 1.

Even if there is no zero order term in the PDE part of problem (9.8), we are able to show
the following result (see the proof given in the appendix):

Lemma 9.4 (Comparison principle for a stationary obstacle problem without
zero order terms)
Assume σ > 0. If u (resp. v) is subsolution (resp. supersolution) of (9.8), satisfying

(9.9) u ≤ 1, v ≥ 0.

Then
u ≤ v.

9.2 Convergence as c→ 0

Proposition 9.5 (Convergence of the rescaled solution as c→ 0)
Assume σ > 0 and λ ≤ 3r+ 4ρ. Consider the solution w̃ of (A.29) on Ω = (0,+∞)2 and set

(9.10) w̃(x, t) = c vc(y, t) with y =
x

c
1
3

.

Then

(9.11) vc → v0 locally uniformly on compact sets of Ω as c→ 0

where
v0(y, t) = φ(ȳ) with ȳ =

y

ā(t)

with φ and ā defined in Lemma 9.2.
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Proof of Proposition 9.5
Step 1: The relaxed semi-limits
We know that vc satisfies on Ω = (0,+∞)2:{

min(F0[vc] + c
2
3G0[vc], vc) = 0,

v0 ≤ vc ≤ 1

with F0, G0 defined in (9.4). Notice that the condition vc ≤ 1 follows from (7.5) and vc ≥ v0

follows from Lemma 9.2. We define the relaxed semi-limits:

v = lim sup
c→0

∗ vc, v = lim inf
c→0

∗ v
c.

By construction,

(9.12) v0 ≤ v ≤ v ≤ 1.

From the stability of viscosity solutions, we deduce that v (resp. v) is a subsolution (resp.
supersolution) of

min(F0[v], v) = 0

and (9.12) implies that

(9.13) v(0, t) = v(0, t) = 1 for all t > 0.

Step 2: Sub/supersolutions of the stationary problem
We claim that for any fixed t0 > 0, v(·, t0) (resp. v(·, t0)) is a subsolution (resp. supersolu-
tion) of

(9.14)

{
min(−1

2
σ2vyy + yb(t0), v) = 0 on (0,+∞),

v(0) = 0

with
b(t0) = (1 + (ρ− λ)α(t0)).

We check it for v (the reasoning being similar for v).
Step 2.1: Preliminaries
The boundary condition is obvious because of (9.13). Recall that v is upper semi-continuous,
and then for any δ > 0 small enough, there exists rδ > 0 such that

v ≤ v(y0, t0) + δ on Qrδ(P0) ⊂⊂ Ω

where P0 = (y0, t0) and

Qrδ(P0) := (y0 − rδ, y0 + rδ)× (t0 − rδ, t0 + rδ).

Consider now a test function ϕ satisfying

v(·, t0) ≤ ϕ with equality at y0 > 0.

Up to adding η|y − y0|2 to ϕ (with η large enough), we can assume that

v(y0, t0) + 2δ ≤ ϕ(y) for all y = y0 ± rδ
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and

(9.15) v(y, t0) < ϕ(y) for all y 6= y0.

Step 2.2: The ε-penalization
For ε > 0, define

ϕε(y, t) = ϕ(y) +
(t− t0)2

2ε
.

Up to choosing an ε small enough (ε ≤ εδ), we have

ϕε(y, t0 ± rδ) ≥ v(y0, t0) + 2δ for all y ∈ [x0 − rδ, x0 + rδ].

Therefore
ϕε ≥ 2δ + v(y0, t0) ≥ δ + v on ∂Qrδ(P0)

and

(9.16) (ϕε − v)(Pε) = min
Qrδ (P0)

(ϕε − v) ≤ (ϕε − v)(P0) = 0 < δ ≤ min
∂Qrδ (P0)

(ϕε − v)

for some point Pε = (xε, tε) ∈ Qrδ(P0). This implies that we have

(9.17) min(−1

2
σ2ϕyy + yεb(tε), v) ≤ 0 at Pε.

Because tε → 0 as ε → 0, and up to some subsequence we have yε → ȳ, we deduce from
(9.16) that

ϕ(ȳ)− v(ȳ, t0) ≤ ϕ(ȳ)− lim sup
ε→0

v(Pε) ≤ lim inf
ε→0

(ϕε − v)(Pε) ≤ 0.

Hence (9.15) implies that
ϕ(ȳ) = v(ȳ, t0) and ȳ = y0

and then
lim sup
ε→0

v(Pε) = ϕ(ȳ) = v(P0)

and passing to the limit in (9.17), we get

(9.18) min(−1

2
σ2ϕyy + y0b(t0), v) ≤ 0 at P0.

Indeed, either we have v(Pε) ≤ 0 for a subsequence, and we define the lim sup along that
subsequence which implies that v(P0) ≤ 0, or we have −1

2
σ2ϕyy(Pε) + yεb(tε) ≤ 0 for a

subsequence, and this implies (9.18).
Step 3: Conclusion
We can now apply the comparison principle (Lemma 9.4), to deduce that

v(·, t0) ≤ v(·, t0).

Because we have the reverse inequality by construction, we deduce that

v(·, t0) = v(·, t0) = v0(·, t0)

where v0(·, t0) is the explicit solution of (9.14). This implies (9.11).
This ends the proof of the proposition.

In order to conclude to the convergence of the free boundary itself, we need the following
result, which is adapted from Caffarelli [9]:
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Lemma 9.6 (Non degeneracy)
Assume σ > 0 and λ ≤ 3r + 4ρ. Let t0 > 0 and

y0 =
a(t0)

c
1
3

.

For d > 0, define

Q−d (y0, t0) = (y0 − d, y0 + d)×

(
t0 −

c
2
3

σ2
d2, t0

)
.

Let δ1 > 0 such that {
1 + (ρ− λ)α(t) ≥ δ1 > 0 for all t ≥ 0,
ā(t) ≥ 2δ1 > 0 for all t ≥ 0.

Let vc defined in (9.10). If 
d ≤ δ1,

K ≤ δ2
1

4σ2
,

c
2
3 ≤ min

(
Kσ2

r
,

2σ2

ρδ2
1

,
t0σ

2

δ2
1

)
then

sup
Q−d (y0,t0)

vc ≥ K
d2

2
.

Proof of Lemma 9.6
Step 1: Auxiliary function
Recall that vc satisfies on Ω = (0,+∞)2{

min(F0[vc] + c
2
3G0[vc], vc) = 0,

v0 ≤ vc ≤ 1

with F0, G0 defined in (9.4).
In particular, we have

F0[vc] + c
2
3G0[vc] = 0 in {vc > 0} .

Given a point P0 = (y0, t0) ∈ Ω, consider the auxiliary function

ξ(y, t) = K

(
(y − y0)2

2
− σ2

2c
2
3

(t− t0)

)
.

For any d > 0 small enough, define

Q−d (P0) = (y0 − d, y0 + d)×

(
t0 −

c
2
3

σ2
d2, t0

)
⊂ Ω.

We have

∂pQ
−
d (P0) =

(
[y0 − d, y0 + d]×

{
t0 −

c
2
3

σ2
d2

})
∪

(
{y0 − d, y0 + d} ×

(
t0 −

c
2
3

σ2
d2, t0

])
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and

ξ ≥ K
d2

2
on ∂pQ

−
d (P0).

Step 2: Non degeneracy
Assume (and we will prove it in the next step) that ξ is a supersolution of the linear parabolic
operator, namely assume

(9.19)

 F0[ξ] + c
2
3G0[ξ] ≥ 0 in Q−d (P0) ∩ {vc > 0} =: ω,

P0 ∈ {vc > 0} .

We now apply a non degeneracy argument due to Caffarelli (see [8, 9]). Define

M = sup
ω

(vc − ξ) ≥ (vc − ξ)(P0) = vc(P0) > 0.

From the local comparison principle (the proof being similar to the usual proof of the com-
parison principle), we have

M = sup
(∂ω)\{t=t0}

(vc − ξ)

and

(∂ω)\ {t = t0} ⊂ Γ0 ∪ Γd with

 Γ0 =
(

(∂ {vc > 0}) ∩Q−d (P0)
)
\ {t = t0} ,

Γd =
((
∂Q−d (P0)

)
∩ {vc > 0}

)
\{t = t0}.

Now
vc − ξ = −ξ < 0 on Γ0

and therefore
0 < M = (vc − ξ)(P ) for some point P ∈ Γd.

This implies that

vc(P ) ≥ ξ(P ) ≥ K
d2

2
.

This shows that (9.19) implies the following non degeneracy property

(9.20) sup
Q−d (P0)

vc ≥ K
d2

2
.

Step 3: Proof of (9.19)
For the reader convenience, we recall that{

F0[ξ] := −1
2
σ2ξyy + y(1 + (ρ− λ)α),

G0[ξ] := ξt + ρyξy + r(ξ − 1).

Compute:

F0[ξ] + c
2
3G0[ξ] = −Kσ2 + y(1 + (ρ− λ)α) + c

2
3B

with
B = Kρy(y − y0) + r(ξ − 1) ≥ −r +Kρy(y − y0).
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Let δ1 > 0 such that {
1 + (ρ− λ)α ≥ δ1 > 0 for all t ≥ 0,
ā(t) ≥ 2δ1 > 0 for all t ≥ 0.

Then the previous computation shows that for (y, t) ∈ Q−d (P0)

F0[ξ] + c
2
3G0[ξ] ≥ y

{
1 + (ρ− λ)α− c 3

2Kρd
}
−
(
Kσ2 + c

3
2 r
)

≥ y
(
δ1 − c

2
3Kρd

)
−
(
Kσ2 + c

3
2 r
)

≥ δ1

(
δ1 − c

2
3Kρδ1

)
−
(
Kσ2 + c

3
2 r
)

≥ 0

for y0 − d ≥ δ1 and d ≤ δ1 ≤
ā(t0)

2
, and

c
2
3 r ≤ Kσ2,

c
2
3Kρ ≤ 1

2
,

4Kσ2 ≤ δ2
1,

c
2
3 ≤ t0σ

2

d2

i.e.

(9.21)


K ≤ δ2

1

4σ2
,

c
2
3 ≤ min

(
Kσ2

r
,

2σ2

ρδ2
1

,
t0σ

2

δ2
1

)
.

Step 4: Conclusion
Consider now

y0 :=
a(t0)

c
1
3

which satisfies y0 ≥ ā(t0) ≥ 2δ1 because of (9.2). We now consider a sequence of points yn{
yn < y0,
yn → y0

and a sequence dn such that for any d ∈ (0, δ1]:{
yn − dn ≥ δ1,
dn → d.

Then assuming (9.21), and applying the previous steps at the point (yn, t0), we get

sup
Q−dn (yn,t0)

vc ≥ K
d2
n

2
.

Passing to the limit in n, this implies

sup
Q−d (y0,t0)

vc ≥ K
d2

2
.
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This ends the proof of the lemma.

Proof of Theorem 9.1
We already know from (9.2) that

a

c
1
3

≥ ā.

Assume by contradiction that the statement is false.
Then for any δ > 0, there exists η > 0 and a sequence of times tc ∈ [δ, 1/δ], such that

yc :=
a(tc)

c
1
3

≥ η + ā(tc).

Applying Lemma 9.6, we get for c > 0 small enough that for any d ∈ [0, δ1]

sup
Q−d (yc,tc)

vc ≥ K
d2

2
.

From Proposition 9.5, we know that vc → v0 locally uniformly. Moreover, extracting a
subsequence if nenessary, we can assume that

(yc, tc)→ (y0, t0) with y0 ≥ η + ā(t0).

This implies that for any d ∈ (0, δ1] and K > 0

sup
y∈[y0−d,y0+d]

v0(y, t0) ≥ K
d2

2
> 0.

For 0 < d ≤ η, this gives a contradiction, because

v0(y, t0) = 0 for y ≥ y0 − d ≥ ā(t0).

This ends the proof of the theorem.

10 No comparison principle for c = 0 and σ > 0

In this section, we discuss the existence of multiple solutions for c = 0, i.e. solutions u0 of

(10.1)

{
min (Lu0, u0(x, t)− u0(−x, t)− ψ0(x, t)) = 0 for (x, t) ∈ R× (0,+∞),
u0(x, 0) = 0 for x ∈ R,

with ψ0(x, t) = α(t)x. Indeed, for c = 0, we can reduce the construction of solutions to a
more classical problem.

Proposition 10.1 (Family of solutions u0 for c = 0 and σ > 0) For c = 0, there exists
an infinite familly of viscosity solutions u0 of (10.1), such that for each u0, there exists a
constant C > 0 such that |u0 − max(0, ψ)| ≤ C. More precisely, when c = 0, all viscosity
solutions u0(x, t) of

(10.2)


u0(x, t)− u0(−x, t) ≡ ψ0(x, t), for all x ∈ R, t ∈ (0, T ),
Lu0 ≥ 0, for x ∈ R, t ∈ (0, T ),
u0(x, 0) = 0 for x ∈ R,

are viscosity solutions of (10.1).
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Remark 10.2 (No comparison principle for c = 0 and σ > 0)
This shows that the condition c > 0 for our comparison principle is sharp, since the com-
parison principle is not valid when c = 0.

Before giving a rigorous proof of Proposition 10.1, let us explain heuristically why we expect
to have non uniqueness of solutions of (10.1) in case c = 0. First, when c < 0 we expect
that u ≡ +∞, because we gain −c in each transaction and there are no limits to the amount
of trades one can do in any interval. As a consequence, for c = 0, we expect to have a
transition family of solutions u0 between the two limit cases u ≡ +∞ for c < 0 and u = u0

for c = 0+. Thus we loose the comparison principle when c = 0. Another heuristic argument
starts from observing that the functions w0(x, t) ≡ u0(x, t)− u0(−x, t) and ψ0(x, t) are odd
in x ∈ R, and thus the inequality u0(x, t) − u0(−x, t) ≥ ψ0(x, t) on all of R implies that
u0(x, t)− u0(−x, t) ≡ ψ0(x, t). This equality holds pointwise. Hence the system of comple-
mentary inequalities (10.1) reduces to Lu0 ≥ 0 in the viscosity sense, and one should expect
the existence of many solutions.

Proof of Proposition 10.1.
Since we deal with viscosity solutions, a solution of (10.2) is obviously a solution of (10.1). It
is clear that system (10.2) admits a large set of solutions. First, we note that it is a convex
set. Then, to construct solutions of (10.2) we can reduce the problem to a problem on the
half-line in the following manner.

Proposition 10.3 Let v be a C2,1(R− × (0, T )) solution of the following system:

(10.3)


Lv ≥ 0 for (x, t) ∈ (−∞, 0)× (0, T ),

vx(0, t) =
α(t)

2
for t ∈ (0, T ),

v(x, 0) = 0 for x ∈ (−∞, 0).

Then, u0 defined by u0(x, t) = v(x, t) for x ∈ R− and u0(x, t) = v(−x, t) +ψ0(x, t) for x ≥ 0
is a (classical) solution of (10.2).

It is straightforward to check that the construction of u0 from v yields a function of class
C2,1. Further, the function u0 recovered from a solution v of (10.3) satisfies Lu0 ≥ 0. Indeed,
this is true on R− by the inequality for v. Now, for a function z = z(x, t) denote z] the
function defined by z](x, t) = z(−x, t). Observe that (L(v))] = L(v]). Thus, on R+ we get

Lu0 = Lv] + Lψ0.

We know that on R+, Lv] = (Lv)] ≥ 0 and

Lψ0 = x (α′(t) + (ρ+ r)α(t)) ≥ 0 for x > 0 because α, α′ ≥ 0.

Therefore, we see that Lu0 ≥ 0 on R+ as well. Note also that α(t) = 2u0
x(0, t).

For instance, a solution (10.3) can be obtained in the form

z(x, t) = α(t)
κ(x)

2κ′(0)

40



where κ is a Kummer function (see [25] for the construction and properties of Kummer
functions in our setting) satisfying:

Mκ = 0, κ > 0 on (−∞, 0].

We know that κ(−∞) = 0, κ′(x) > 0 and κ′(0) > 0 (see [25]). The function z satisfies
Lz = α′(t)κ > 0 since α′(t) > 0.

We thus get a solution z of (10.3) such that z(−∞) = 0. As we have seen, such a solution
yields a solution u0 of our original problem (10.1) such that |u0 −max(0, ψ)| ≤ C. In fact,
it satisfies lim|x|→∞ |u0 −max(0, ψ)| = 0.

By using the method of super and sub-solution we can construct another solution v that
satisfies equality in the first line of (10.3) rather than an inequality. Since the set of solutions
of (10.3) is convex, it is clear that because of the inequality in (10.3), there is a very large
indeterminacy.

As a further example we can construct a one parameter family of solutions by considering
the operators

Lsu = ut +Msu with Msu = −1

2
σ2uxx + ρxux + su.

Let κs be a Kummer function associated with Ms: Msκs = 0, κs > 0 on (−∞, 0]. Then
define

zs(x, t) = α(t)
κs(x)

2κ′s(0)
.

For each s with 0 < s < r, we get Lzs > 0. Thus, the functions zs for 0 < s < r
is a one parameter family of (pairwise distinct) solutions of (10.3). Likewise they yield
a one parameter family of solutions of our original problem (10.1) each of which satisfies
lim|x|→∞ |u0 −max(0, ψ)| = 0.

This concludes the proof of the proposition.

Remark 10.4 (An explicit supersolution) In the proof of Proposition 10.1, we can also
use in place of the Kummer function κ(x), the function κ̃(x) = α(+∞)φ(x) where φ is the
function constructed in Lemma 4.3 (for supersolutions of the u-problem). One can verify
that κ̃ is a supersolution for the stationary problem (1.3) in the case c = 0. Proposition 10.3

holds for the function v(x, t) = z̃(x, t) = α(t) κ̃(x)
2κ̃′(0)

, because v is C2,1 in a neighborhood of

x = 0. This produces one viscosity solution u0 for (10.2) for x ∈ R.

Remark 10.5 (A particular solution u0) In a recent work, H. Tian [26] constructed a
particular solution u0 of (10.1) from a function v that satisfies (10.3) with equality in the
first line (i.e. Lv = 0 on the negative half line). One can show that there is a unique function
v which satisfies (10.3) and Lv(x, t) = 0 for (x, t) ∈ (−∞, 0) × (0, T ). This can be verified

by setting z(x, t) = v(x, t)− xα(t)

2
g(x), where g is a smooth function with compact support

41



such that g′(0) = 1. Then zx(0, t) = 0 and one can check that Lz = f(x, t) for x < 0.
Extending f and z as even functions for positive x (still using the same notation for the
extension), we see that z now solves the same PDE for all real x. This can be checked also
for x = 0 using the boundary regularity of the solution on the half line. We can now apply a
comparison principle on the whole real line to derive the uniqueness of the function v. (The
proof of this comparison principle is similar to the one of the u-problem, but is much simpler
here.)

Appendix

This appendix contains additional material. We start by stating precise definitions of vis-
cosity solutions for equations (1.3) and (1.6). In Section A.2, we provide a more elaborate
statement and a proof of the Jensen-Ishii lemma for our obstacle problem. In Section A.3
we show that the antisymmetric part of u is a viscosity solution to the w-problem. Section
A.4 establishes a comparison principle for the w problem and in Section A.5 we construct
subsolutions and supersolutions for the w-problem. Sections A.6 and A.7 contain proofs of
the convexity and monotonicity properties of solutions to the w-problem, as well as the proof
of Corollary 7.4. In Section A.8 we complete the proof of our claim that the free boundary
is C∞. This is an adaptation of a proof in [22], and we actually provide an argument for a
more general problem, because this result may be of interest in other applications. The last
section provides the proof for Lemma 9.4, which is used to establish the asymptotics of the
free boundary.

A.1 Viscosity solutions for the stationary (equation (1.3)) and w-
problem (equation (1.6))

We first define viscosity solutions for the stationary problem. The definition is the same as
that for the u–problem, except for the initial conditions.

Definition A.1 (Viscosity sub/super–solution for stationary obstacle problem)
i) (Viscosity sub/super–solution)
A function u : R→ R is a viscosity subsolution (resp. supersolution) of (1.3), if u is upper
semi-continuous (resp. lower semi-continuous), if for any function ϕ ∈ C2(R) and any point
x0 ∈ R such that u(x0) = ϕ(x0) and u ≤ ϕ on R (resp. u ≥ ϕ on R), then

min {(Mϕ)(x0), u(x0)− u(−x0)− ψ∞(x0)} ≤ 0,
(resp. min {(Mϕ)(x0), u(x0)− u(−x0)− ψ∞(x0)} ≥ 0).

ii) (Viscosity solution)
A function u : R → R is a viscosity solution of (1.3), if and only if u∗ is a viscosity
subsolution and u∗ is a viscosity supersolution.

An analogue of the stability property (see Proposition 2.2 in Section 2) holds but we do
not state it explicitly.

Similarly, we have the following definition of viscosity solutions for the evolution w-
problem (we skip the definition for the stationary w-problem, which is similar).
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Definition A.2 (Viscosity sub/super/solution of equation (1.6) Let T ∈ (0,+∞].
i) (Viscosity sub/supersolution on (0,+∞)× (0, T ))
A function w : [0,+∞)× [0, T )→ R is a viscosity subsolution (resp. supersolution) of (1.6)
on (0,+∞)× (0, T ), if w is upper semi-continuous (resp. lower semi-continuous), if for any
function ϕ ∈ C2,1((0,+∞)× (0, T )) and any point P0 = (x0, t0) ∈ (0,+∞)× (0, T ) such that
w(P0) = ϕ(P0) and w ≤ ϕ on (0,+∞)× (0, T ) (resp. w ≥ ϕ on (0,+∞)× (0, T )) then

min {(Lϕ)(x0, t0), w(x0, t0)− ψ(x0, t0)} ≤ 0,
(resp. min {(Lϕ)(x0, t0), w(x0, t0)− ψ(x0, t0)} ≥ 0).

ii) (Viscosity sub/supersolution on [0,+∞)× [0, T ))
A function w : [0,+∞) × [0, T ) → R is a viscosity subsolution (resp. supersolution) of
(1.6) on [0,+∞) × [0, T ), if w is a viscosity subsolution (resp. supersolution) of (1.6) on
(0,+∞)× (0, T ) and satisfies moreover

w(x, t) ≤ 0 (resp. w(x, t) ≥ 0) for all (x, t) ∈ ([0,+∞)× {0}) ∪ ({0} × [0,+∞)).

iii) (Viscosity solution on [0,+∞)× [0, T ))
A function w : [0,+∞)×[0, T )→ R is a viscosity solution of (1.6) on [0,+∞)×[0, T ), if and
only if w∗ is a viscosity subsolution and w∗ is a viscosity supersolution on [0,+∞)× [0, T ).

A.2 Jensen-Ishii lemma for the obstacle problem

The following is a more complete version of the Jensen-Ishii Lemma 3.2 of our article for the
obstacle problem:

Lemma A.3 (Jensen-Ishii lemma for the obstacle problem)
Let u (resp. v) be a subsolution (resp. a supersolution) of (3.1) on R × [0, T ) for some
T > 0, satisfying

u(x, t) ≤ CT (1+max(0, x)) and v(x, t) ≥ −CT (1+max(0, x)) for all (x, t) ∈ R×[0, T ).

For (z0, s0) ∈ R× (0, T ) and ε, β, η > 0 and δ ≥ 0, let:

ũ(x, t) = u(x, t)− βx
2

2
− δ

4
|x− z0|2 and ϕδ(x, y, t) =

(x− y)2

2ε
+

η

T − t
+
δ

2
|t− s0|2

and
Φδ(x, y, t) = ũ(x, t)− v(y, t)− ϕδ(x, y, t).

Assume that there exists a point (x̄, ȳ, t̄) ∈ R2 × (0, T ) such that

sup
(x,y,t)∈R2×[0,T )

Φδ(x, y, t) = Φδ(x̄, ȳ, t̄).

Then

(A.4)


either B1 ≤ 0 and B2 ≥ 0,

or A1 ≤ 0 and A2 ≥ 0 and

{
there exist τ1, τ2, X, Y ∈ R
such that (A.7) holds true
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with

(A.5) X ≤ Y, and τ1 − τ2 = (ϕδ)t =
η

(T − t̄)2
+ δ(t̄− s0)

and for p =
x̄− ȳ
ε

A1 := τ1 − 1
2
σ2(X + β + 3δ|x̄− z0|2) + ρx̄(p+ βx̄+ δ(x̄− z0)3) + ru(x̄, t̄),

B1 := u(x̄, t̄)− u(−x̄, t̄)− ψ(x̄, t̄),

A2 := τ2 − 1
2
σ2Y + ρȳp+ rv(ȳ, t̄),

B2 := v(ȳ, t̄)− v(−ȳ, t̄)− ψ(ȳ, t̄)).

In particular we have

(A.6) A ≤ 0 or (B ≤ 0 and B1 ≤ 0)

where

A := A1 − A2 =
η

(T − t̄)2
+ δ(t̄− s0)− 1

2
σ2(X − Y + β + 3δ|x̄− z0|2)

+ρ

(
(x̄− ȳ)2

ε
+ βx̄2 + δx̄(x̄− z0)3

)
+ r (u(x̄, t̄)− v(ȳ, t̄)) ,

B = B1 −B2 = u(x̄, t̄)− v(ȳ, t̄)− (u(−x̄, t̄)− v(−ȳ, t̄))− (ψ(x̄, t̄)− ψ(ȳ, t̄)) .

Proof
Notice that A here is related to the A0 in Lemma 3.2 by

A = A0 −
1

2
σ2(X − Y ).

When we can apply Jensen-Ishii Lemma (as stated in Theorem 7 in [15], or Theorem 8.3 in
the User’s Guide [16]), we know that for any γ > 0

(A.7)



(τ1, (ϕδ)x(x̄, ȳ, t̄), X) ∈ P 2,+
ũ(x̄, t̄),

(τ2,−(ϕδ)y(x̄, ȳ, t̄), Y ) ∈ P 2,−
v(ȳ, t̄),

τ1 − τ2 = (ϕδ)t =
η

(T − t̄)2
+ δ(t̄− s0),(

X 0
0 −Y

)
≤ A0 + γA2

0 with A0 = D2ϕδ(x̄, ȳ, t̄) =
1

ε

(
1 −1
−1 1

)
and this implies (A.5). In expression (A.7) and in what follows, we use the standard notation
of the User’s Guide [16]). To apply Jensen-Ishii Lemma, we need the following bounds

(A.8) τ1 ≤ C

and

(A.9) τ2 ≥ −C
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for any point close to (x̄, t̄) and (ȳ, t̄) with bounded values of the functions, their gradients
and their hessians.

However we can not apply directly Jensen-Ishii Lemma, because, while we can obtain
bound (A.9), we can not establish bound (A.8). Instead, we go back to the proof of Jensen-
Ishii Lemma based on Lemma 8 in [15]. The idea developed there is simply to make a
doubling of variables in time, replacing Φδ by

ũ(x, t)− v(y, s)− ϕδ(x, y, t)−
(t− s)2

2δ̃

and to apply the standard elliptic Jensen-Ishii Lemma which does not require (A.8), and
finally to pass to the limit as δ̃ → 0.

It suffices to notice that before passing to the limit, we get for some points (x̄δ̃, t̄δ̃), (ȳδ̃, s̄δ̃)

and pδ̃ =
x̄δ̃ − ȳδ̃

ε
and (τ1,δ̃, pδ̃, Xδ̃) ∈ P

2,+
ũ(x̄δ̃, t̄δ̃), (τ2,δ̃, pδ̃, Yδ̃) ∈ P

2,−
v(ȳδ̃, s̄δ̃), such that we

have the analogue of (A.4), i.e.

(A.10) min(A1,δ̃, B1,δ̃) ≤ 0 and min(A2,δ̃, B2,δ̃) ≥ 0

with

A1,δ̃ := τ1,δ̃ − 1
2
σ2(Xδ̃ + β + 3δ|x̄δ̃ − z0|2) + ρx̄δ̃(pδ̃ + βx̄δ̃ + δ(x̄δ̃ − z0)3) + ru(x̄δ̃, t̄δ̃),

B1,δ̃ := u(x̄δ̃, t̄δ̃)− u(−x̄δ̃, t̄δ̃)− ψ(x̄δ̃, t̄δ̃),

A2,δ̃ := τ2,δ̃ − 1
2
σ2Yδ̃ + ρȳδ̃pδ̃ + rv(ȳδ̃, s̄δ̃),

B2,δ̃ := v(ȳδ̃, s̄δ̃)− v(−ȳδ̃, s̄δ̃)− ψ(ȳδ̃, s̄δ̃).

Case A1,δ̃ ≤ 0
Then we can bound τ1,δ̃ (and therefore get (A.8)), which implies the second line of (3.5) in

the limit δ̃ → 0.
Case A1,δ̃ > 0
Then we can not bound τ1,δ̃, but we have

B1,δ̃ ≤ 0

and we always have
B2,δ̃ ≥ 0

and passing to the limit δ̃ → 0, we get the first line of (3.5).
This ends the proof of the lemma.

A.3 Equation satisfied by the antisymmetric part of u

Lemma A.4 Assume 1.1 and let u be the solution given in Theorem 1.1. Set

w(x, t) = u(x, t)− u(−x, t).
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Then, in the viscosity sense (see Definition A.2 above) w solves:

(A.11)


min (Lw, w − ψ) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w(0, t) = 0 for t ∈ [0,+∞),
w(x, 0) = 0 for x ∈ [0,+∞).

Proof
We want to check that the continuous function w solves (A.11) in the viscosity sense. The
boundary conditions are obvious.
Step 1: w is a subsolution
We now check the subsolution property for the PDE . To this end, we consider a test function
ϕ such that

w ≤ ϕ with equality at (x0, t0) ∈ (0,+∞)× (0,+∞)

and we want to show that

(A.12) min {(Lϕ)(x0, t0), w(x0, t0)− ψ(x0, t0)} ≤ 0.

Up to replacing ϕ by ϕ+ |(x, t)− (x0, t0)|4, we can assume that

(A.13) (w − ϕ)(x, t) ≤ −|(x, t)− (x0, t0)|4.

We have for some T > t0:

M = sup
(x,t)∈[0,+∞)×[0,T )

(w − ϕ)(x, t) = 0.

For ε > 0, we set
Mε = sup

(x,y,t)∈[0,+∞)2×[0,T )

Φε(x, y, t)

with

Φε(x, t, y, s) = ũ(x, t)− ǔ(y, t)− ϕ̃ε(x, y) with



ũ(x, t) = u(x, t)− ϕ(x, t),

ϕ̃ε(x, y) =
(x− y)2

2ε
,

ǔ(y, t) := u(−y, t).

Then we have
Mε ≥M = 0.

We also recall that
0 ≤ u(x, t) ≤ C(1 + max(0, x)).

This implies that

Φ(x, y, t) = w(x, t)− ϕ(x, t) + u(−x, t)− u(−y, t)− (x− y)2

2ε

≤ −|(x, t)− (x0, t0)|4 + C(1 + max(0, x))− (x− y)2

2ε
.
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This implies that the supremum in Mε is reached at some point (x̄, ȳ, t̄) ∈ [0,+∞)2 × [0, T ]
and x̄ stays bounded as ε → 0. Here we use the convention that t̄ = T if the sequence of
points optimizing Mε converges to T in time. It is then classical that Mε → M as ε → 0
and

(x̄, ȳ, t̄)→ (x0, x0, t0)

which in particular excludes the case t̄ = T for ε small enough.

From an adaptation of Jensen-Ishii Lemma (similar to Lemma A.3), we get the viscosity

inequalities with p =
x̄− ȳ
ε

(A.14)



B1 ≤ 0 and B2 ≥ 0,

or

A1 ≤ 0 and A2 ≥ 0 and


there exist

(τ1, (ϕ̃ε)x(x̄, ȳ), X) ∈ P 2,+
ũ(x̄, t̄),

(τ2,−(ϕ̃ε)y(x̄, ȳ), Y ) ∈ P 2,−
ǔ(ȳ, t̄),

such that (A.15) holds true

with

(A.15)

{
X ≤ Y,
τ1 − τ2 = (ϕ̃ε)t = 0

and using the fact that ǔ solves (1.2) with ψ replaced by ψ̌(z, t) = ψ(−z, t), we get

A1 = τ1 + ϕt(x̄, t̄)− 1
2
σ2(X + ϕxx(x̄, t̄)) + ρx̄(p+ ϕx(x̄, t̄)) + ru(x̄, t̄),

B1 = u(x̄, t̄)− u(−x̄, t̄)− ψ(x̄, t̄),

A2 = τ2 − 1
2
σ2Y + ρȳp+ ru(−ȳ, t̄),

B2 = u(−ȳ, t̄)− u(ȳ, t̄)− ψ(−ȳ, t̄).

Therefore we have either

(A.16) B1 = w(x̄, t̄)− ψ(x̄, t̄) ≤ 0

or
A ≤ 0

with

A := A1 − A2 = ϕt(x̄, t̄)−
1

2
σ2(X − Y + ϕxx(x̄, t̄))

+ρ

{
x̄ ϕx(x̄, t̄) +

(x̄− ȳ)2

ε

}
+ r (u(x̄, t̄)− u(−ȳ, t̄)) .

But we know that X ≤ Y , we see that A ≤ 0 implies

(A.17) ϕt(x̄, t̄)−
1

2
σ2ϕxx(x̄, t̄) + ρx̄ ϕx(x̄, t̄) + r (u(x̄, t̄)− u(−ȳ, t̄)) ≤ 0.
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Passing to the limit in (A.16) and (A.17), we see that we get (A.12).
Step 2: w is a supersolution
Similarly, we consider a test function ϕ such that

w ≥ ϕ with equality at (x0, t0) ∈ (0,+∞)× (0,+∞)

and we want to show that

(A.18) min {(Lϕ)(x0, t0), w(x0, t0)− ψ(x0, t0)} ≥ 0.

Up to replacing ϕ by ϕ− |(x, t)− (x0, t0)|4, we can assume that

(A.19) (w − ϕ)(x, t) ≥ |(x, t)− (x0, t0)|4.

We have for some T > t0:

M = inf
(x,t)∈[0,+∞)×[0,T )

(w − ϕ)(x, t) = 0.

For ε > 0, we set
Mε = inf

(x,y,t)∈[0,+∞)2×[0,T )
Φε(x, y, t)

with

Φε(x, t, y, s) = ũ(x, t)− ǔ(y, t)− ϕ̃ε(x, y) with



ũ(x, t) = u(x, t)− ϕ(x, t),

ϕ̃ε(x, y) = −(x− y)2

2ε
,

ǔ(y, t) := u(−y, t).
Then we have

Mε ≤M = 0.

Recall that
0 ≤ u(x, t) ≤ C(1 + max(0, x)).

This implies that

Φ(x, y, t) = w(x, t)− ϕ(x, t) + u(−x, t)− u(−y, t) +
(x− y)2

2ε

≥ |(x, t)− (x0, t0)|4 − C(1 + max(0,−y)) +
(x− y)2

2ε
.

This implies that the infimum in Mε is reached at some point (x̄, ȳ, t̄) ∈ [0,+∞)2 × [0, T ]
and x̄ stays bounded as ε→ 0. It is then classical that Mε →M as ε→ 0 and

(x̄, ȳ, t̄)→ (x0, x0, t0).

Making an adaptation of Jensen-Ishii Lemma (similar to the proof of Lemma A.3 in
Section A.2), we get at a δ̃ level:

(A.20)



min(A1,δ̃, B1,δ̃) ≥ 0,

min(A2,δ̃, B2,δ̃) ≤ 0,

A2,δ̃ ≤ 0 because − ȳδ̃ <
c

α(t̄δ̃)
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where we have used in (A.20), the modified equation (6.3) satisfied by the solution con-
structed in Proposition 6.2, which implies additional properties for the subsolution ǔ.
This implies 

B1,δ̃ ≥ 0,

and

A1,δ̃ ≥ 0 and A2,δ̃ ≤ 0.

Therefore, at the limit δ̃ → 0, we get the viscosity inequalities with −p =
x̄− ȳ
ε

(A.21)



B1 ≥ 0,

and

A1 ≥ 0 and A2 ≤ 0 and

{
there exist τ1, τ2, X, Y ∈ R
such that (A.22) holds true

with

(A.22)

{
X ≥ Y,
τ1 − τ2 = (ϕ̃ε)t = 0

and 

A1 = τ1 + ϕt(x̄, t̄)− 1
2
σ2(X + ϕxx(x̄, t̄)) + ρx̄(p+ ϕx(x̄, t̄)) + ru(x̄, t̄),

B1 = u(x̄, t̄)− u(−x̄, t̄)− ψ(x̄, t̄),

A2 = τ2 − 1
2
σ2Y + ρȳp+ ru(−ȳ, t̄),

B2 = u(−ȳ, t̄)− u(ȳ, t̄)− ψ(−ȳ, t̄).
Therefore we have

(A.23) w(x̄, t̄)− ψ(x̄, t̄) ≥ 0

and
A ≥ 0

with

A := A1 − A2 = ϕt(x̄, t̄)−
1

2
σ2(X − Y + ϕxx(x̄, t̄))

+ρ

{
x̄ ϕx(x̄, t̄)−

(x̄− ȳ)2

ε

}
+ r (u(x̄, t̄)− u(−ȳ, t̄)) .

Since X ≥ Y , A ≥ 0 implies

(A.24) ϕt(x̄, t̄)−
1

2
σ2ϕxx(x̄, t̄) + ρx̄ ϕx(x̄, t̄) + r (u(x̄, t̄)− u(−ȳ, t̄)) ≥ 0.

Passing to the limit in (A.23) and (A.24), we obtain (A.18).
This shows that w is solution of (A.11) and ends the proof of the lemma.
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A.4 Comparison principle for w

We now consider the following more general problem

(A.25)


min(Lw − f, w − g) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w(0, t) = h for t ∈ (0,+∞),
w(x, 0) = h for x ∈ (0,+∞)

where f(x, t) and g(x, t) are continuous functions and h ∈ R is a constant.
In this section we prove the following result.

Theorem A.5 (Comparison principle for the w problem)
Assume (1.1). Let T > 0. Suppose w is a subsolution (resp. v a supersolution) of equation
(A.25) on [0,+∞)× [0, T ) with f, g ∈ C([0,+∞)2) and h ∈ R, satisfying

w(x, t) ≤ CT (1 + |x|) (resp. v(x, t) ≥ −CT (1 + |x|)) for (x, t) ∈ [0,+∞)× [0, T ).

Then w ≤ v.

Proof.– Step 1: preliminaries
Let

M = sup
(x,t)∈[0,+∞)×[0,T )

w(x, t)− v(x, t)

and let us assume by contradiction that

M > 0.

Then for any small ε, β, η > 0, we have

Mε,β,η = sup
x,y∈[0,+∞), t∈[0,T )

Φ(x, y, t)

with

Φ(x, y, t) = w(x, t)− v(y, t)− (x− y)2

2ε
− βx

2

2
− η

T − t
.

As usual, the supremum is reached at some point (x̄, ȳ, t̄) and

Φ(x̄, ȳ, t̄) = Mε,β,η ≥M/2 > 0

for β, η small enough. In particular we have t̄ > 0. Moreover the point (x̄ε, ȳε, t̄ε) = (x̄, ȳ, t̄)
satisfies

(x̄ε, ȳε, t̄ε)→ (x0, x0, t0) as ε→ 0

and then x0 > 0 because of the boundary condition. This also implies that x̄ = x̄ε > 0 and
ȳ = ȳε > 0 and then we have the viscosity inequalities at both points (x̄, t̄) and (ȳ, t̄).

Step 2: viscosity inequalities
As usual, we get

B ≤ 0 or there exists X ≤ Y such thatA ≤ 0

with p =
x̄− ȳ
ε

and
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If A ≤ 0, then we get a contradiction as usual (in the limit ε → 0, for β small enough).
If B ≤ 0, then we get

0 < M/2 ≤ w(x̄, t̄)− v(ȳ, t̄) ≤ g(x̄, t̄)− g(ȳ, t̄)→ 0 as ε→ 0

which gives also a contradiction.
This ends the proof of the theorem.

A proof similar to the one of Theorem A.5 (but using r > 0) gives the following result:

Theorem A.6 (Comparison principle for the stationary w∞ problem)
Assume (1.1). Suppose w is a subsolution (resp. v a supersolution ) of equation (7.2),
satisfying

w(x) ≤ C(1 + |x|) (resp. v(x) ≥ −C(1 + |x|)).
Then w ≤ v.

A.5 Sub/super–solutions for the w–problem

Lemma A.7 (Sub/supersolutions)
The function w = max(0, ψ) is a subsolution of (7.1). The function w(x, t) = xα(t) is a
supersolution of (7.1).

Proof of Lemma A.7
It is straightforward to check that w is a subsolution.
For w, we compute

(Lw)(x, t) = x(α′(t) + (ρ+ r)α(t)) ≥ 0.

This implies that w is a supersolution of (7.1), because w ≥ ψ.
This ends the proof of the lemma.

Remark A.8 If c = 0, then w(x, t) = ψ(x, t) = xα(t) is a solution of (7.1).

Lemma A.9 (Refined supersolution)
Assume that σ ≥ 0. Then for any A > 0, there exists a function φ̃ such that

w(x, t) = α(t)φ̃(x− d(t)) with d(t) =
c

α(t)

is a supersolution of (7.1). More precisely, we have

φ̃(y) =

{
y if y − h > A
φ (y − h) if y − h ≤ A

where φ, h ≥ 0 are given in Lemma (4.3) for the chosen A > 0.

Proof of Lemma A.9
Set y = x−d(t). We start by observing that the map y 7→ φ̃(y) is C1 except for y−h = −B
where it is a supersolution. Also, φ̃′ ≥ 0 and, in addition, φ̃ ≥ 0 implies that

w(x, t) ≥ 0 for x = 0 or t = 0.
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Furthermore, w ≥ ψ because φ̃(y) ≥ max(0, y).

The computation of the supersolution for u (see the proof of Lemma 4.3) shows that it is
enough to check that

(A.26) φ̃ ≥ σ2

2r
φ̃′′ − ρ

r
yφ̃′

which is true for y − h ≥ A. This also holds for y − h ≤ A, because we already know that
φ satisfies (A.26), which implies for h ≥ 0, φ(y − h) also satisfies (A.26), because φ̃′ ≥ 0.
This implies that w is a supersolution (in the viscosity sense) and ends the proof of the lemma.

A.6 Convexity in x of w

Proposition A.10 Assume (1.1). Then the function w defined in Theorem (7.1) is convex
in x for each t ≥ 0.

Proof. We follow the proof of Proposition 5.2 in Section 5.
Step 1: the implicit scheme
Given a time step ε > 0, we consider an approximation wn(x) of w(x, nε) defined for n ∈ N
as a solution of the following implicit scheme:
(A.27)

w0 = 0,

min

(
wn+1 − wn

ε
+Mwn+1, wn+1(x)− ψ(x, (n+ 1)ε)

)
= 0 for x ∈ (0,+∞),

wn+1(0) = 0.

Step 2: subsolution wn+1

As in the proof of Lemma A.7 and Proposition 5.2, we check that

wn+1(x) = max(0, ψ(x, (n+ 1)ε))

is a subsolution of the scheme (A.27).

Step 3: supersolution min(wn+1, w
n+1

)
It is straightworward to check (as in the proof of Lemma A.7) that

w
n+1

(x) = w(x, (n+ 1)ε)

is a supersolution of the scheme (A.27).
It is also straightforward to check that

wn+1(x) = w(x, (n+ 1)ε)

is also a supersolution of the scheme (A.27). To this end, we simply notice that Mw ≥ 0
implies

Mwn+1 ≥ 0
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and notice that
wn+1 ≥ wn.

Finally this implies that
min(wn+1, w

n+1
)

is a supersolution of the scheme (A.27).
Step 4: existence of a unique solution to the scheme
We can then apply Perron’s method and prove a comparison principle similar to Theorem
A.5. This shows the existence and uniqueness of a unique solution (wn)n to the scheme.
Moreover the comparison principle implies that for each n, the function wn is continuous.
Step 5: convexity of wn+1

We proceed as in the proof of Proposition 5.2 to prove by recurrence that wn is convex
starting from w0 = 0.
Substep 5.1: definition of the convex envelope of wn+1

We define
W n+1(x) = sup

l∈E
l(x)

where E is the set of affine functions below wn+1. The fact that

wn+1 ≥ wn+1 ≥ 0

shows that
W n+1(0) = 0.

Our goal is to show that W n+1 is a supersolution of (A.27). Then the comparison principle
will imply

W n+1 = wn+1

which will show that wn+1 is convex.
Substep 5.2: W n+1 is a supersolution
We proceed exactly as in Substep 5.2 of the proof of Proposition 5.2. One change is the fact
that un+1(x)−un+1(−x)−ψ(x, (n+1)ε) is changed in wn+1(x)−ψ(x, (n+1)ε) which is even
simpler to analyse. The only other change is that for a point x0 > 0, we may have x− = 0
for some affine function which is a linear function. We now claim that
(A.28)

min

(
l0(x−)− wn(x−)

ε
+ (Ml0)(x−), l0(x−)− ψ(x−, (n+ 1)ε)

)
≥ 0 for x− = 0

which is straightforward to check. Then, the remaining part of the proof is the same as in the
proof of Proposition 5.2. and this shows that W n+1 is a supersolution and then wn+1 = W n+1

is convex.
Step 6: convergence towards w as ε tends to zero
The proof is similar to the one of Proposition 5.2. This ends the proof of Proposition A.10.

A.7 Proofs of properties of solutions to the w–problem

Proof of Theorem 7.1
If σ = 0, then u = max(0, ψ) = w and the theorem is true.
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If σ 6= 0, notice that i) follows from

w ≤ w ≤ min(w,w).

The remaining part of the proof is similar to the proof of Theorem 1.2 and Theorem 6.1 for
the monotonicity in r. The new monotonicity in ρ follows from the fact that xwx ≥ 0. This
ends the proof of the theorem.

Proof of Theorem 7.2
If σ = 0, then we know that u = max(0, ψ) = w and thus the proposition is true.
Proof of i)
If σ > 0, then from the explicit supersolution w given in Lemma A.9, we deduce (7.4) with

a(t) ≤ c

α(t)
+ A+ h

where A + h = b +
3A

4
and where we can choose b =

σ2

4rA
+
A

4

(
1 + ρ

r

)2(
1 + 2ρ

r

) . The optimization

of A+ h as a function of A > 0 gives the result.
We also check that the function w̃ solves

(A.29)


min(Lw̃ + f, w̃) = 0 for (x, t) ∈ (0,+∞)× (0,+∞),
w̃(0, t) = c for t ∈ (0,+∞),
w̃(x, 0) = c for x ∈ (0,+∞)

with
f := Lψ = x(α′(t) + (ρ+ r)α(t))− rc = x(1 + (ρ− λ)α(t))− rc.

We already know that w̃ ≥ max(0, ψ) − ψ ≥ 0 and on the other hand it is easy check that
the constant function equal to c is a supersolution. This implies w̃ ≤ c and then (7.5).
Proof of ii)
Clearly,

ft ≥ 0 if ρ ≥ λ.

This implies that for every h > 0, the function w̃h(x, t) = w̃(x, t + h) is a subsolution of
(A.29) and then w̃h ≤ w̃. This implies (7.6).
Proof of iii)
We start by establishing monotonicity with respect to c and σ. Notice that

∂f

∂c
≤ 0 and

∂f

∂σ
= 0.

On the other hand
w̃xx ≥ 0.

Therefore the comparison principle implies

(A.30)
∂w̃

∂c
≥ 0 and

∂w̃

∂σ
≥ 0.

Next, we show monotonicity with respect to ρ and r. Notice that ψ is independent of ρ,
therefore the monotonicity of w̃ with respect to ρ is the same as for w, i.e.

(A.31)
∂w̃

∂ρ
≤ 0.
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We also have

Lw̃ + f = w̃t −
1

2
σ2w̃xx + ρxw̃x + r(w̃ − c) + x(1 + (ρ− λ)α(r + λ, t))

with

α(r + λ, t) =
1− e−(r+λ)t

r + λ
.

Since

w̃ − c ≤ 0 and
∂α

∂r
(r + λ, t) ≤ 0

we deduce that

(A.32)
∂w̃

∂r
≥ 0 if ρ ≥ λ.

Lastly, we derive monotonicity with respect to λ. Similarly to the case of the parameter r,

(A.33)
∂w̃

∂λ
≥ 0 if ρ ≥ λ.

Inequalities (A.30), (A.31), (A.32) and (A.33) imply (7.7) (and then (7.8)) and also (7.9).
This ends the proof of the theorem.

Proof of Corollary 7.4
Consider a point (x, t) ∈ R× [0,+∞) such that w(x, t) = u(x, t)− u(−x, t) satisfies

w(x, t) = ψ(x, t).

Case x < 0
Then this implies that for −x > 0

w(−x, t) = −w(x, t) = c− xα(t) = 2c+ ψ(−x, t) ≥ c > 0.

This is impossible for t > 0, because we know from Theorem 7.2 that

w̃ = w − ψ ≤ c

and this is also impossible for t = 0, because w(·, 0) = 0.
Case x ≥ 0
Then we know, still from Theorem 1.3, that

{x ≥ 0} ∩ {w = ψ} = {x ≥ a(t)} ⊂
{
x ≥ c

α(t)

}
which shows the result and ends the proof of the corollary.
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A.8 Adaptation of Kinderlehrer and Nirenberg’s regularity result

The statement of Theorem 3 in [22] requires the regularity C1 of the free boundary in space
and time, and here we only know that it is Lipschitz-continuous in time. Indeed, as we will
show now, continuity in time of the free boundary is sufficient to conclude smoothness under
the standard other assumptions in [22].

We show here how to circumvent this difficulty in a more general framework, involving
functions U(x1, . . . , xN , t), in any dimension, in place of w̃. Indeed, this result may be of
interest in other applications. We assume that U,Ut, DxU,D

2
xxU are continuous on {U > 0}.

It turns out that in general, the only additional assumption required is that we can write
locally

{U > 0} = {x1 > f(t, x2, . . . , xN)}
where the free boundary is assumed to be locally a continuous graph x1 = f(t, x2, . . . , xN)
with a spatial normal ν = ν(t, x2, . . . , xN) which is also continuous in all its variables. Let
us consider a point (x0, t0) of the free boundary with

Ux1x1(x
0, t0) > 0

Then there exists a radius δ > 0, such that for each fixed time t ∈ (t0 − δ, t0 + δ), we can
find a C1

x extension Ũx1 of Ux1 in Bδ(x
0) (this extension is continuous in space and time, but

this extension is not C1 in time in general, contrarily to what is required in [22]).
In order to remedy to this lack of time regularity, we proceed as follows. For every ε ∈ (0, δ),
we consider a mollification in time of the extension Ũx1 (with a smooth function ηε(t) =
ε−1η(ε−1t) with supp(η) ⊂ [−1, 1] such that

∫
η = 1) as follows

Ũ ε
x1

= ηε ? Ũx1

We also define the following function

U ε = ηε ? U

which is of interest for us only at points (x, t) of the following open set

(A.34) Ωε = {(x, t), U(x, t+ s) > 0 for all s ∈ [−ε, ε]}

We set Qδ(x
0, t0) := Bδ(x

0) × (t0 − δ, t0 + δ), and we define as in [22], the following
Hodograph-Legendre transform for every (x, t) ∈ Ωε ∩Qδ(x

0, t0):

(A.35) yε1 = −Ũ ε
x1

(x, t), yεj = xj for j = 2, . . . , N, and V ε(yε, t) = x1y
ε
1 + U ε(x, t)

In particular, we get at such points

V ε
t (yε, t) = U ε

t (x, t)

and in the limit ε→ 0, we recover

Vt(y, t) = Ut(x, t) for all (x, t) ∈ Qδ(x
0, t0) ∩ {U > 0}

for the natural definitions of y and V . We recover as in [22] that V, Vt, DyV,D
2
yyV ∈

C({y1 ≥ 0}) locally, and V solves a fully nonlinear parabolic equation locally in {y1 > 0},
with V = 0 on {y1 = 0}. As in [22], the regularity theory up to the boundary implies that
V ∈ C∞({y1 ≥ 0} locally, and then x1 = Vy1(0, x2, . . . , xN , t) = f(x2, . . . , xN , t) is C∞, i.e.
the free boundary is C∞.
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A.9 Proof of a comparison principle for a stationary obstacle
problem without zero order terms

Proof of Lemma 9.4
The proof follows the usual reasoning; with an adaptation here, because there is no zero
order term in the equation.
We assume by contradiction that

M = sup
x∈[0,+∞)

(u− v)(x) > 0

and then consider for ε, η > 0:

Mε,η = sup
x,y∈[0,+∞)

Φ(x, y)

with

Φ(x, y) = u(x)− v(y)− (x− y)2

2ε
− ηζ(x), ζ(x) =

√
1 + x− 1.

For η > 0 small enough, we have
Mε,η ≥M/2 > 0

and the supremum is reached at a point (x̄, ȳ). We deduce moreover from (9.10) that

ηζ(x̄) +
(x̄− ȳ)2

2ε
≤ 1

which implies in particular that

(A.36) x̄ ≤ Cη.

As usual, we can not have x̄ = 0 or ȳ = 0 for a sequence ε → 0, otherwise we get a
contradiction from the boundary condition. Therefore x̄, ȳ > 0 and we have the viscosity
inequalities. As usual, we get

B ≤ 0 or there exists X ≤ Y such that A ≤ 0

with 
A = −σ

2

2
(X − Y + ηζ ′′(x̄)) + b(x̄− ȳ),

B = u(x̄)− v(ȳ).

Notice that

ζ ′′(x̄) = − 1

4(1 + x̄)
3
2

≤ −cη < 0

where we have used (A.36). If A ≤ 0, we get

0 < ηcη ≤ −
2b

σ2
(x̄− ȳ)→ 0 as ε→ 0

which gives a contradiction.
If B ≤ 0, then

0 < M/2 ≤ u(x̄)− v(ȳ) = B ≤ 0
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which is a contradiction.
This ends the proof of the lemma.
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