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Abstract
In this paper, we study the global in time existence problem for the Groma-Balogh model describing the
dynamics of dislocation densities. This model is a two-dimensional model where the dislocation densities satisfy
a system of transport equations such that the velocity vector field is the shear stress in the material, solving the
equations of elasticity. This shear stress can be expressed as some Riesz transform of the dislocation densities.
The main tool in the proof of this result is the existence of an entropy for this system.

AMS Classification: 54C70, 35L45, 35Q72, 74H20, 74H25.

Key words: Cauchy’s problem, system of non-linear transport equations, system of non-local transport
equations, system of hyperbolic equations, entropy, Riesz transform, Zygmund space, dynamics of dislocation
densities.

1 Introduction

1.1 Physical motivation and presentation of the model

Real crystals show certain defects in the organization of their crystalline structure, called dislocations.
These defects were introduced in the Thirties by Taylor, Orowan and Polanyi as the principal explana-
tion of plastic deformation at the microscopic scale of materials.

In a particular case where these defects are parallel lines in the three-dimensional space, their cross-
section can be viewed as points in a plane. Under the effect of an exterior stress, dislocations can be
moved. In the special case of what is called “edge dislocations”, these dislocations move in the direction
of their “Burgers vector” which has a fixed direction. (cf J. Hith and J. Lothe [25] for more physical
description).

In this work, we are interested in the mathematical study of a model introduced by I. Groma, P. Balogh
in [22] and [23]. In this model we consider two types of dislocations in the plane (z1, z3). Typically for
a given velocity field, those dislocations of type (+) propagate in the direction +b where b = (1,0) is

—

the Burgers vector, while those of type (—) propagate in the direction —b (see Figure 1.1).
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Figure 1: Groma-Balogh 2D model.
Here the velocity vector field is the shear stress in the material, solving the equations of elasticity. It

turns out that this shear stress can be expressed as some Riesz transform of the solution (see Section
2). More precisely our non-linear and non-local system of transport equations is the following:
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The unknowns of the system (P) are the scalar functions p™ and p~ at the time ¢ and the position
x = (x1,22), that we denote for simplification by p*. These terms correspond to the plastic deformations

. OpT

in a crystal. Their derivative in the z; direction (i.e. the direction of Burgers vector b), % represents
T

o +

the dislocation densities of + type. In our work, we will only consider solutions p* such that %,

Vp* and p* — p~ are Z2-periodic functions. The operators R; (resp. Ry) are the Riesz transformations
associated to x1 (resp. x2). More precisely, these Riesz transforms are defined as follows:

Definition 1.1 (Riesz transform in the periodic case)
Let the torus T? = R?/Z2. We define for i € {1,2} the Riesz transforms R; over T? as follows. If
f € L?(T?), the Fourier series coefficients of R;f are given by:
i) co,0) (Rif) =0,
it) e (Rif) = mck(f) for k= (ki k2) € 2%\ {(0,0)},
where we recall that ci(f) = / fx)e 2k g2y,

T2
In fact, this 2D model has been generalized later in 2003 by I. Groma, F. Csikor and M. Zaiser in a
model taking into account the back stress describing more carefully boundary layers (see [24] for further
details). The Groma-Balogh model neglects in particular the short range dislocation-dislocation corre-
lations in one slip direction. For an extension to multiple slip see S. Yefimov and E. Van der Giessen
[38, ch. 5.] and [39]. This multiple slip version of the Groma-Balogh model presents some analogies
with some traffic flow models (see O. Biham et al. [8] and J. Térsk, J. Kertész [36]). See also V.
S. Deshpande et al. [14] for a similar model with boundary conditions and exterior forces. Recently,



A. EL-Azab [16], M. Zaiser, T. Hochrainer [40] and R. Monneau [28] were interested in modeling the
dynamics of dislocation densities in the three-dimensional space, but many more open questions have
to be solved for establishing a satisfactory three-dimensional theory of dislocations dynamics and for
getting rigorous results.

We stress out the attention of the reader that there was no existence and uniqueness results for (P). In
this paper we prove that (P) admits a “global in time” solution.

1.2 Main result

In the present paper, we prove a “global in time” existence result for the system (P) describing the
dynamics of dislocation densities.
In this work, we consider the following initial conditions:

pi(:cl,:@,t = 0) = p(:)t(xl,xQ) = pat’per(l'l,xg) —+ LiL’l, (IC)

where p*P¢" is a 1-periodic function in z; and x,. The periodicity is a way of studying the bulk be-
havior of the material away from its boundary. Here L is a given positive constant that represents the
initial total dislocation densities of 4+ type on the periodic cell.

Before to give our main result, we want to show that the bilinear term on the right hand side of (P) is
well defined. To this end, we need first to recall the following definition:

Definition 1.2 (The space LlogL)
We define the space Llog L(T?)

Llog L(T?) = {f € LY(T?) such that /T2 [flln(e+|f]) < +oo}.

This space is endowed with the (Luzemburg) norm

£ 12 10g £72) = inf )\>O:/ W (e 1Y <11
T2 A A

The space Llog L(T?) is a special space of Zygmund spaces (see R. A. Adams [1, (13), Page 234], E.
M. Stein [34, Page 43])
We can now state the following proposition.

Proposition 1.3 (Meaning of the bilinear term)
Let T >0, f and g be two functions defined on T? x (0,T), such that
feLY(0,T);WhH2(T?)) and g € L*((0,T); Llog L(T?)) then,

fg € LY(T? x (0,7)).

We will see that the proof of this proposition (given in Subsection 3.2) is a direct consequence of
Trudinger inequality.

We can now state our main result (see also our comments in Subsection 1.3 on the unknown uniqueness
of the solution).

Theorem 1.4 (Global existence)
For all T,L >0 , and for every initial data pf € L? (R?) with

loc

(H1) pE(z1 +1,20) = pi(x1,22) + L, a.e. on R?,



(H2) pg(xl,xg +1)= pét(xl,xg), a.e. on R?,

(HS3) 8po >0, a.e. onR?
+
(H4) Haﬂo < C, with T? = R? /72,
O0x; Llog L(T?)
the system (P)-(IC) admits solutions p* € C([0,T); L}, .(R?))NL>((0,T); L2 .(R?)) in the distributional

sense, such that, p*(-,t) satisfy (H1), (H2), (H3) and (H4) for a.e. t € (0,T). Moreover, we have:
(P1) RIR3 (p* —p7) € L*((0,T); W2 (R?)).

loc
Remark 1.5 (Bilinear term)
It is clear here that the bilinear term on the right hand side of(P) is always defined via (P1) and
Proposition 1.3.

In order to prove our main theorem we regularize the system (P) by adding the viscosity term (cAp¥),
and regularized also the initial data (IC) by classical convolution. Then, using a fixed point Theo-
rem, we prove that our regularized system admits local in time solutions. Moreover, as we get some
e-independent a priori estimates we will be able to extend our local in time solution into a global one.
This turns out to be possible thanks to the entropy inequality (1.1). Then, joined with other a priori
estimates, it will be possible to prove some compactness properties and to pass to the limit as € goes
to 0 is the e-problem.

Remark 1.6 (Entropy and energy inequalities)
It turns out that the constructed solution also satisfies the following fundamental entropy inequality (as
a consequence of Lemma 5.4), for a.e. t € (0,T),

Lofn () [ L (3 -50)) < L28n(E) o

Moreover, (at least formally for sufficiently reqular solution) the following energy inequality holds:

5 [ wret o) +[ [ @ p>>2(3';;+3;)s

5/]1‘ (RiRa(pg — py))”

Remark 1.7 (Bounds on the solution)
If we denote p = p+ — p~, then there exists a constant C' independent on T, and a constant Cr depend-
ing on T such that,

(E1) [lp* - L[|l ((o,ry;22(12)) < Cr, (E£4) ”R%Rgp”L2((0,T);W1=2(’JI‘2)) <C,
(E2) ‘ op” <c, (E5) HRngap <c
021 {| oo ((0,7);1 108 L(T2)) Ot || 20,1y, w-12(72))

ol

<,
L2((0,T);L}(T2))

where W—12(T?) is the dual space of W12(T?).



In a particular sub-case of model (P) where the dislocation densities depend on a single variable
T = 1 + x9, the existence and uniqueness of a Lipschitz viscosity solution was proved in A. El Hajj, N.
Forcadel [18]. Also the existence and uniqueness of a strong solution in I/Vlloc2 (R x [0,T")) was proved in
A. El Hajj [17]. Concerning the model of I. Groma, F. Csikor, M. Zaiser [24] which takes into consid-
eration the short range dislocation-dislocation correlations giving a parabolic-hyperbolic system, let us
mention the work of H. Ibrahim [26] where a result of existence and uniqueness of a viscosity solution

is given but only for a one-dimensional model.

Our study of the dynamics of dislocation densities in a special geometry is related to the more general
dynamics of dislocation lines. We refer the interested reader to the work of Q. Alvarez et al. [3], for a
local existence and uniqueness of some non-local Hamilton-Jacobi equation. We also refer to O. Alvarez
et al. [2] and G. Barles, O. Ley [6] for some long time existence results.

1.3 Comments on the uniqueness of the solution and related literature

The problem (P) is a system of transport equations with low regularity of the vector field, so that
the uniqueness of the solution here is an open question. However, in the following we present some
uniqueness results where the vector field has a better regularity.

From a technical point of view, (P) is related to other well known models, such as the transport equa-
tion with a low regularity vector field. This equation was studied in the work of R. J. Diperna, P. L.
Lions [15] and L. Ambrosio [4], where the authors showed the existence and uniqueness of renormalized
solutions by considering vector fields in L((0,7T); I/Vlloc1 (RM)) and L'((0,T); BVjoe(RY)) respectively in
both cases with bounded divergence. On the contrary in system (P), we are only able to prove that for
the constructed solution, the vector field is in L2((0,T); W, (R2)) without any better estimate on the

loc
divergence of the vector field.

More generally in the frame of symmetric hyperbolic systems, we refer to the book of D. Serre
[32, Vol I, Th 3.6.1], for a typical result of local existence and uniqueness in C([0,T); H*(RY)) N
CL([0,T); H*~Y(RYN)), with s > & +1, by considering initial data in H*(R"). This result remains local
in time, even in dimension N = 2.

We can also remark that in the case where we multiply the right side of the two equations in system
(P) by —1, we get a quasi-geostrophic-like system. For those who are concerned in quasi-geostrophic
systems, we refer to P. Constantin et al. [11], and to [12] for certain 2D numerical results. We also
refer to J. Wu [37, Th 4.1] for 2D local existence and uniqueness results in Holder spaces and to A.
Cordoba, D. Cérdoba [13], D. Chae, A. Cordoba [10] for blow-up results in finite time, in dimension one.

Let us also mention some related Vlasov-Poisson models (see J. Nieto et al. [29] for instance) and
a related model in superconductivity studied by N. Masmoudi et al. [27] and by L. Ambrosio et al.
[5]. These models were derived from some Vlasov-Poisson-Fokker-Planck models (see for instance T.
Goudon et al. [21] for an overview of similar models). It is also worth mentioning that this model is
related to Vlasov-Navier-Stokes equation see T. Goudon et al. [19], [20].

1.4 Notation
In what follows, we are going to use the following notation:
Lp=pt—p7,

2. pi’p”(:cl,wg,t) = pi(xl,xQ,t) — Lz,



3. Let f be a function defined on R? x (0, T) having values in R?, we denote by f(t) = f(.,t) : 2
f(z, 1),

4. Throughout the paper, C'is an arbitrary positive constant independent on 7" and Cr is an arbitrary
positive constant depending on 7.

1.5 Organization of the paper

First, in Section 2, we recall the physical derivation of system (P). In Section 3, we recall the definitions
and properties of some useful fundamental spaces, and we give the proof of Proposition 1.3. We also
prove that the bilinear term of our system has a better mathematical meaning (see Proposition 3.5).
Next, in Section 4, we regularize the initial conditions and we show that the system (P), modified by a
term (¢ApT), admits local solutions. Moreover, we show that these solutions are regular and increasing
for all ¢ € (0,T), for increasing initial data. In Section 5, we prove some e-uniform a priori estimates for
the regularized solution obtained in Section 4. Then, thanks to these a priori estimates, we extend the
local in time solutions for the e-problem constructed in Section 4, in to global in time solution. Finally,
in Section 6, we achieve the proof of our main theorem, passing to the limit in the equation as € goes
to 0, and using some compactness properties inherited from our a priori estimates.

2 Physical derivation of the model

In this section we explain how to derive physically the system (P). We consider a three-dimensional
crystal, with displacement
u = (ur,us,u3) : R — R3,

For x = (z1, 22, 3), and an orthogonal basis (e, es, €3), we define the total strain by:

1 /0u; = Ouy .
- i + ) =1,2,3.
iy (1) 2 (&rj 3:52-) r 2,3

This total strain is decomposed as
p

€ij(u) = €5 + €3}

with &f; is the elastic strain and &} the plastic strain which is defined by:

el = pelyy (2.2)

1
with the fixed matrix 5% =3 (1 —d;;), where ¢;; is the Kronecker symbol, in the special case of a single
slip system where dislocations move in the plane {x5 = 0} with Burgers vector b= e1. Here 7v is

the resolved plastic strain, and will be clarified later. In the case of linear homogeneous and isotropic
elasticity, the stress is given by

oy = 2pe; + N0y | D ey | foridj=1,2,3, (2.3)
k=1,2,3

where A, p1 are the constant Lamé coefficients of the crystal (satisfying p > 0 and 3A+2u > 0). Moreover
the stress satisfies the equation of elasticity:

> G
j=123 9%

We now assume that we are in a particular geometry where the dislocations are straight lines parallel
to the direction es and that the problem is invariant by translation in the x3 direction. Moreover we



assume that us = 0 and o;3 = 0 for ¢« = 1,2,3. Then, this problem reduces to a two-dimensional
problem with wj, us only depending on (z1,22) and so we can express the resolved plastic strain p as

p=p-—p,
Opt 0p~ . .. . . . >
where —— and T are respectively the densities of dislocations of Burgers vectors given by b = e;
Xr1 X1
and b = —ey.

Furthermore, these dislocation densities are transported in the direction of the Burgers vector at a given

velocity. This velocity is indeed the resolved shear stress Z Uijsgj = 012, up to sign of the Burgers
i,j=1,2,3
vectors. More precisely, we have:
8pi i( ) \V/ +
—— = *(o12)e1. .
ot 12)€1-Vp

Finally, the functions p* and u = (u1, us) are solutions of the coupled system (see I. Groma, P. Balogh
[23], [22]), on R? x (0,T):

00
3 a‘” =0 fori=1,2,
=12 9%
Tij = 2#8% + )\(51']‘ Z Ezk fori,j=1,2,
k=1,2
e 1 (‘9u1 au] + N\ .0 .. 2.4
€5 2(8.'L'j+8xi>(p —p ey forij=1,2, (2.4)
1 ‘

e =3 (1—6;5) for i, = 1,2,

op* op*

o — 4o

8t g1z 8%1

Then the following lemma holds.

Lemma 2.1 (Computation of 13)
Assume that (u1,uz) and p = p™ — p~ are Z*-periodic functions. If (ui,us), p*, p~ are solutions of
problem (2.4), then

o2 = —Cy (RIR3p) , (2.5)

where Cq = 4M > 0.

A2
Using this expression of o5 and rescaling in time with the positive constant C; we obtain system (P),
from the last equation (2.4).
Proof of Lemma 2.1:

We can rewrite the first equation of (2.4) with divu = Ou + Ouz
(9331 81‘2
a .. _Op
Az + (A + )2 (div w) = p 22 (2.6b)
. 2 K 8!E2 N 'uafL‘l ' )



Considering ai(Q.Ga)nLai(Q.Gb), we get
X1 xro
. 9%p

Plugging the expression of div u into (2.6), we get

dp A+p) 0y &p

Auy = — — 22— —— 2.7
u1 Oxy (X +2u) Oz 0x10xs’ (2.72)
dp A+p) 9 4 Pp
Aug = — —2-— - — A7 ———, 2.7b
2 o0x1 (A +2u) Ozs 0x10x2 ( )
L 0 0 .
Considering now —(2.7a)+—=—(2.7b) , we obtain
(9582 31‘1
8’11,1 8“2 _ ()\ + M) _ 84 _
Al —+ =) =A>(p"—p)-4 ATt t—p). 2.8
(a@ + 5x1> "= ) =4 e ) (28)
Recalling that
8“1 8u2 + _
_ Oup  Oup) o 2.9
ma=n (G2 + 52) == 0). (29)
this yields
A+ o O - 2 p2 -
=—4 A t - =—C; (RIR5(p" — .
12 Ot awa P 1 (RIR3(p* = p7)
O
Remark 2.2 (Property of the elastic energy)
If we define the elastic energy by
2
A
E=[ w3
R2/22 ”212 ! 2 k:ZLQ
Using system (2.4) we can show formally that
dE o (Opt  Op~
— = —+— | <0.
dt /R?/Z2(Jl2) (6%‘1 + or1 ) —
dpT Op~ ) . . o
where we have used the fact that Do Be > 0 to see that the elastic energy is a non-increasing in
il X1

time. Hence, the elastic energy E is a Lyapunov functional for our dissipative model.

3 Concerning the meaning of the solution of (P)

In this section we prove Proposition 1.3. This shows that if (P) admits solutions verifying the conditions
of Theorem 1.4, then we can give a mathematical meaning to the bilinear term. In order to do this, we
need to define some functional spaces and recall some of their properties, that will be used later in our
work.



3.1 Properties of some useful Orlicz spaces

We recall the definition of Orlicz spaces and some of their properties. For details, we refer to R. A.
Adams [1, Ch. 8] and M. M. Rao, Z. D. Ren [31].

A real valued function A : [0, +00) — R is called a Young function if it has the following properties (see
R. O’Neil [30, Def 1.1]):

e A is a continuous, non-negative, non-decreasing and convex function.
e A(0)=0and lim A(t) = +oo.
t—-4o00

Let A(-) be a Young function. The Orlicz class K 4(T?) is the set of (equivalence classes of) real-valued
measurable function h on T? satisfying

A(Jh(2)|) < +o0.
11‘2

The Orlicz space L4(T?) is the linear hull of K 4(T?) supplemented with the Luxemburg norm

s = int {300 4 (B <1},

Endowed with this norm, the Orlicz space L4(T?) is a Banach space. Moreover, for all f € L(T?), we
have the following estimate

Ml <1+ [ AS@)D (3.10)

Definition 3.1 (Some Orlicz spaces)
o EXP,(T?) denotes the Orlicz space defined by the function A(t) = e — 1 for a > 1.

e Llog” L(T?) denotes the Orlicz space defined by the function A(t) = t(log(e +1))?, for 8> 0.

Observe that for 0 < 8 < 1 the space EXP% (T?) is the dual of the Zygmund space Llog” L(T?). (see
C. Bennett and R. Sharpley [7, Def 6.11]). It is worth noticing that Llog" L(T?) = Llog L(T?).

Let us recall some useful properties of these spaces. The first one is the generalized Holder inequality.

Lemma 3.2 (Generalized Hélder inequality)

i) Let f € EXPy(T?) and g € Llog% L(T?). Then there exists a constant C' such that (see R. O’Neil
[30, Th 2.3])

1£gllercry < Cllflexpacrllall g3 f ey

ii) Let f € EXPy(T?) and g € Llog L(T?). Then there exists a constant C' such that (see R. O’Neil
[30, Th 2.3])

17911, 1og3 12y S CUFlExPar2) 191 L 10g L(T2)-

The second property is the Trudinger inequality.

Lemma 3.3 (Trudinger inequality)
There exists a constant v > 0 such that, for all f € W12(T?), we have (see N. S. Trudinger [35])

f 2
i (Ilfll
/ e W1,2(T?2) <1.
']I‘Q



In particular we have the following embedding
WH2(T?) — EX Py(T?).
Finally, we have the following embedding.

Lemma 3.4 (Properties of the Zygmund spaces).
For1<p< 400, a>1 and § > 0 we have the following continuous embedding (see R. A. Adams [1,
Th 8.12)):
L>®(T?) — EXP,(T?) < LP(T?) — Llog’ L(T?) — L(T?).
3.2 Sharp estimate of the bilinear term

Now, we propose to verify with the help of the following proposition that the system (P) has indeed a
sense, and first prove a better estimate than those mentioned in Proposition 1.3. Namely, we have the
following.

Proposition 3.5 (Estimate of the bilinear term)
Let T >0, f and g be two functions defined on T? x (0,T), such that

(1) f e L*((0,T); Wh(T?)),
(2) g € L>((0,T); Llog L(T?)). Then
fg € L*((0,T); Llog? L(T?))
and for a positive constant C, we have:
1791 12 0.1y:0 1083 Leryy S CMF L2,y 22y Il (0,7 L10g L(72))-

For the proof of this Proposition , we use Lemma 3.2 (ii), and integrate in time. Thanks to the Trudinger
inequality (Lemma 3.3), we get the result. We do the same way for the proof of the Proposition 1.3.

4 Local existence of solutions of a regularized system
In this section, we state a local in time existence result for system (P), modified by the term eAp®, and

for smoothed data. This modification brings us to study, for all 0 < ¢ < 1, the following regularized
system:

Opte Opte .
i eApte = _(R%R%pa)Tm in D'(R? x (0,7)),
5 5 (Pe)
pF _ pc
e = (RSN in (R x (0.7))
where p° = p™° — p~¢, with the following regular initial data:
P (@,0) = py " (x) = p5 " wme(@) + (L + e)ay = py =" (@) + Leay, (IC:)

where n.(-) = %n(2), such that € C°(R?) is a non-negative function and [, n = 1.

Remark 4.1
We consider L. = L + € to obtain strictly monotonous initial data p(jf’s. This condition will be useful
in the proof of Lemma 5.4.

For the regularized system (P:)-(IC.) we have the following result .

10



Theorem 4.2 (Local existence result of monotone smooth solutions)
For all initial data pf € L3, (R?) satisfying (H1), (H2) and (H3), and all ¢ > 0, there exists T* > 0

loc

such that the system (P.)-(IC.) admits solutions p™= € C>®(R? x [0,T*)). Moreover p™=(-,t) satisfy

8pi,e
(H1), (H2) and B 0, for all t € [0,T*).
1
The lines of the proof of this theorem are very standard. For this reason, we skip the details of the
o +
proof. Essentially, we use the bounds on pxo and ||pT — Lxy||p2¢r2y for this "nonlinear heat
1 1L 1og L(T2)

equation". The existence of the solution for short time follows from the classical Fixed point Theorem.
The regularity follows from a bootstrap argument. The monotonicity of the solution is a consequence
of the maximum principle for scalar parabolic equations the previous result (for more details, see [9]).

5 e-Uniform estimates on the solution of the regularized system

In this section, we prove some fundamental e-uniform estimates. In Subsection 5.1 we give some general
estimates which are independent on the equation. In the second Subsection 5.2 we establish a priori
estimates on the solutions of system (P).

5.1 Useful estimates
Now we recall some well known properties of Riesz transform, that will be used later in our work.
Lemma 5.1 (Properties of Riesz transform)

i) For all g € L*(T?), we have
[ RigllL2(r2) < llgllz2(r2)-

ii) If g € L*(T?), then // Rig(x1,x9)dzy =0, for a.e. 2 € R/Z.
R/Z

iii) For all g € L*(T?), we have iRgg = ing and RiRog = RoRyg.
81'1 8x2
iv) For all f,g € L*(T?), we have

/ (Rif)g = / f(Rig)
T2 T2
Proof of Lemma 5.1:

For the proof of i) and iv) this is straightforward, using Fourier series. For the proof of ii), it suffices
to note that, if we denote by f(x2) = / R1g(x1,22)dx1, then we have c,(f) = ¢k, (R19) = 0 by
R/Z
definition of ¢, for k1 = 0. Finally, we prove iii), checking simply that
0 o ko k1 0
—R = 2miky — = 2miky— = —R
cr (axl 29) i 1|k|ck(9) i 2‘k|0k(9) Ck <8x2 1g>,

and similar we prove second equality of iii).

Lemma 5.2 (L estimate)
If f € L? _(R?) and f verifies (H1), (H2) and (H3) for a.e. t € (0,T), then there exists a constant

loc

C = C(L) such that,

1
fper o / fperdxl
0

<C. (5.11)
Loo(T2)

11



where fP¢" = f — Lx.

Proof of Lemma 5.2:
We compute
1
|

8f‘per
81'1

of
=L
6(E1

1
dxl SL—F/ 37]0
0,19

1
0 6:61

=2I,

da:1

dl‘l—/
0

where we use (H3) in the second line and (H1) in the last line. We next apply a “Poincaré-Wirtinger
inequality” in x; and we deduce the result. O
We will also use the following technical result.

Lemma 5.3 (Llog L Estimate)
Let (n2)e be a non-negative mollifier, then for all f € Llog L(T?) and f > 0, the function f. = f x .
satisfies

feln fo — fInf as e —0.
T2 T2
For the proof see R. A. Adams [1, Th 8.20].

5.2 A priori estimates

In this subsection, we show some e-uniform estimates on the solutions of the system (P:)-(IC.) obtained
in Theorem 4.2. These estimates will be used, on the one hand to extend the solution in a global one
and, on the other hand in Subsection 6.2, for ensuring by compactness the passage to the limit as ¢
tends to zero.

The first estimate concerns the physical entropy of the system, and is a key result. It shows that in our
model, the dislocation densities cannot be so concentrated and then can be controlled.

Lemma 5.4 (Entropy estimate)
Let pz € L} (R?). If p©° € C(R? x [0,T)) are solutions of the system (P.)-(IC.) and p™°(-t)

satisfy (H1), (H2), (H3) and (H4), then
+,e +,e
Ipy”
D)= LTBm() e

L5 (5 [ L (e (5

where p = pt€ — p=°.

In particular, there exists a constant C independent of € € (0,1] such that

(Rlepe) <(C (513)

Oxq L2(T2 x(0,T))

ap:t,s
H di

e

L~°((0,T);Llog L(T?))

3P0i
Llog L(T?)

with C = C (H D

Proof of Lemma 5.4:

12



apzl:,a

d
i an

First of all, we denote §%°¢ =

NE(E) = /T () (0 (1),

Using the fact that p™° € C°(R? x [0,T)), we can derive N(t) = N*(t) + N~ (t) with respect to t,
and since #%° > 0, we obtain:

_ +,e n +.,e i,et
/TQ;_(e )oIn(o >+/T2;<9 )

Using system (P.) we see that the second term is zero. Moreover, we get

/Z ((RIR3p%)0%*) +6A9i’1ln(0i75).
T2 !

Integrating by part in x1, we get
2 p2 +, H Vo= 8|
/JTQZ RR 69 Eeils Z/]T? gis
— 2 p2 6 |V9:t€|
,/Tz(RlRQ — Z/T -
where 6° = ¢ — §7°. We integrate also the first term by part in x1, and we deduce that
d Y 5|
—N(t) =—[ (RIR36°)06° /
dt ®) /W(12 ZTZ N
vei a|
:—/ (R1R296 —EZ/ Q:I:s S ,

where we have used Lemma 5.1 (iii) and (iv) for the second line.

Integrating in time, we get
t
+/ / (R1R26°)> < N(0).
o JT2

Which proves (5.12). Moreover, we have

N(0) < /T S 0% (0) log(e + 6%<(0)).
+7_

Since the initial data (IC) satisfies (H4), we deduce by Lemma 5.3 that there exists a positive constant

C independent of ¢ € (0, 1] such that
t
+/ / (R1R26°)* < C.
0 Jr2

NE@t) = /T 0% (t) log(e 4+ 654(1)).

We deduce, with another constant C’ > 0, that

Let us now consider

Ni (t) + Ny (¢ // (R1R26°)> < C'
T2

which joint to Lemma 3.10 implies (5.13). O

13



Remark 5.5 (L? estimate on the gradient of the vector field)
We want to bound V (R%Rgps). To this end, remark that by the property of Riesz transform (see Lemma
5.1 (i), we have

d d d d
— R?R%2,°* = RiRs | — R1Rop° d —R?R%2)* = R2( — R Ry)°
81'1 1 2p 142 (8.’1:1 14v2p ) an 6.7;2 1 2p 2 8‘7;1 1420 )

0
where those quantities involve 8—RlepE which is bounded in L? (T2 X (O,T)) by (5.18). Then using
T

the fact the Riesz transforms are continuous from L? onto itself (see Lemma 5.1 (i)), we deduce that

v (R%Rng)HLz(TQX(O,T)) <G (5.14)

where the constant C is independent on ¢.

We now present a second a priori estimate.

Lemma 5.6 (L? bound on the solutions)
Let T > 0. Under the condition pf € L2 (R?). If p©° € C>°(R? x [0,T)) are solutions of system (P.)-

(IC.) and p*¢(-,t) satisfy (H1), (H2), (H3) and (H4), then there exists a constant Cr independent
of ¢ € (01], but depending on T, such that:

+,e,per
or ||L°°((0,T);L2(’I[‘2)) <Cr

le
with ptePer = pte — Loy,

Proof of Lemma 5.6:
Let T = R/Z. We want to bound m**(z,,t) = /pi’€7p”(x17x2,t)dx1. There is no problem of

T
regularity since p™¢ € C>(R? x [0,T)). We integrate equation (P.) with respect to x1, and we get

ami7a ani7a 3pa 3p€
. - + R2R2 +.,e.per _ E.e d + i,a/ R2R2 d
e il K e e Kt -
FL. [ (B o
T
where for the first line we have integrated by part, and introduced the mean value m*°. Therefore,
using that p° is a 1-periodic function in z; and Lemma 5.1 (ii) and (iii), we deduce that
2p2 ¢ 2 p2 Op°
(RiR3p%)dxy = 0= [ (RIR;-—)dx;.
T T Oy
Equation (5.15) is then equivalent to
8m:t,s an:t,e 806
- =+ [ (RIR3 ) (p™ P — m™®)dxy = I*(,1). 5.16
e = (RIS (e e, = 1w ) (516)

We now show that I+ € L2(T x (0,7)). Indeed, we have

p° r
HIiHLz(’]I‘x(O,T)) < H/T(R%Rgazl)(/)i’s’pe —mi’e)dacl

L2(Tx(0,T))

5 Op°

+.eper _ %, 2R27F
< ||p g,per m 5| Lo (T2 x(0,T)) HRleaxl

L2(T2x(0,T))

<C
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5 Op°
2 61‘1

where for the last line we have used (5.14) and (Lemma 5.1 (i)) to bound HR%R

L2(T? ><(07T)).
Furthermore, the bound

<0,

+,e,per _  E.e
m HL°°(T2><(0,T)) =

lo
follows from (5.11).

Multiplying (5.16) by m™®*° and integrating in 2o, we get

2
= [,

2y JT

Using Cauchy-Schwarz inequality on the right hand side, we deduce that

1d
**Hmi’g(',t)HQLz(T) te

+.,e
2dt )

im ’ (7t

812

1d
5 g Im GOl L < I D2

We conclude to the result by integrating in time. O

Corollary 5.7 (W'? estimate on the vector field)
Under the assumptions pt € L2 (R?). If p™° € C>°(R? x [0,T)) are solutions of the system (P.)-(IC.)
and p=(-,t) satisfy (H1), (H2), (H3) and (H4), then there exists a constant C independent of ¢ such
that:

2 P2

HRlR?pE||L2((O,T);W1’2(’1T2)) <G,

Using (5.14) and the fact that R2R3p° is of null average (see Lemma 5.1 (ii)) and applying “Poincaré-
Wirtinger inequality”, we can prove the result.
The following estimate will provide compactness in time of the solution, uniform with respect to ¢.

Lemma 5.8 (Duality estimate for the time derivative of the solution)
Let T > 0. Under the assumptions p € L2 _(R?). If p¥° € C(R? x [0,T)) are solutions of the

loc

system (P.)-(IC.) and p™=(-,t) satisfy (H1), (H2), (H3) and (H4), then
i) For all ¢ € L*((0,T); W12(T?)), there exists a constant C independent of € € (0,1] such that:

ap°
VRIRS ()
/T?x(o,T) R ot
where p¢ = ptF — pTE.

ii) For all ¢ € L*((0,T); W*2%(T?)), there exists a constant Cr independent of € € (0,1] such that:

o +.,e
fovar (%)
T2x(0,T)
Proof of Lemma 5.8:

£
Proof of (i): The idea is somehow to bound R}Rj (%i) using the available bounds on the right

hand side of the equation (F;).
We will give a proof by duality. First of all, we subtract the two equations of system (P.) and we apply
the Riesz transform R?R3, to obtain that

< CllYll L2 o,m)w2(12)),5

< CT||¢||L2((O,T);W2,2(T2)).
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I

Iz
dp° ok® —
wir () = - mes (o) G ) + SRERE (A, Ga7)
with k¢ = p* + p~—. In what follows, we will prove that for a function ¢ € L2((0,T); W2(T?)), we
can bound J; = / Wl; for i =1,2.
T2 (0,T)

Estimate of Jy: To estimate Jy, we integrate by part, to get:
Jo = —5/ V(R2R2p°) - V.
T2x (0,T)

We deduce that for all £ € (01]:

|| < HR%RgpsHL?((O,T);WL?(W)) 19112 (0,mywr2(12))

(5.18)
< Ol Lz(o,m);wr2(r2))

where we have used Corollary 5.7 in the last line.
Estimate of J;: To control J;, we rewrite it under the following form:

ok*® ok*®
[ |mm(wme i) o= [ (@wmnds) are.
T2x(0,T) L1 T2x(0,T) L1

We use the fact that

(i) (R3R3p%) is bounded in L?((0,T); W2(T?)) uniformly in ¢ (by Corollary 5.7)

)

(ii) gk is bounded in L>((0,T); Llog L(T?)), uniformly in e (by Lemma 5.4).
T

e

ok
We deduce from this and from Proposition 3.5, (with f = R?R2p® and g = 3 ) the following estimate:

Z1
0k® ke
H(R%R%pf) ) < C|RER50° || 2((0,7y;w 1 2 (12)) ’
Oz L2((0,T);Llog2 L(T2)) Oy L0 ((0,T);L log L(T?))
<c H Ok e
Oy Lo°((0,T);L log L(T2))
We use Lemma 3.2 (i), to deduce that
212 o Ok ° 2 2
|1 < (RiR3p )57 (RIR5¢)
T2x(0,T) L1
< (RQRQP‘S)%E HR2R2wH
N . dz1 Lz((o,T);Llog% L(T2)) PR TIILA((0,7); X Py(T2)) (5-19)

<C "R%ngHM((o,T);Wm(W))

<C ||7/’||L2((0,T);W1=2(T2)) ’

where we have used the Trudinger inequality (see Lemma 3.3) in the third line and the fact that Riesz
transforms are continuous from L? onto itself in the last line (see Lemma 5.1 (i)).
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Finally, collecting (5.19) and (5.18) together with (5.17) and the definitions of J;, for i = 1,2, we get
that there exists a constant C' independent of £ such that

ap°
R2R2 i
/WQT{‘” LR

Proof of ii): The proof of (ii) is similar to that of (i). The only difference is that we integrate by part
the viscosity term twice and use the estimate of Lemma 5.6. O

< CllYl 20, 7);wr2(12))-

Remark 5.9 (W~12 and W22 estimate)
Let W=Y2(T?) be the dual space of WY2(T?). By point (i) of the previous lemma, we deduce that there
exists a constant C independent of ¢, such that

op°
e
77 ()
However, the point (i) controls the time derivative of the solution in L* ((0,T); W~=22(T?)), where

W =22(T?) is the dual space of W*2(T?). This control will allows us later to recover the initial conditions
in the limit as € goes to zero.

<C.
L2((0,T);W=12(T2))

Theorem 5.10 (Global existence)
For all T > 0, € € (0,1] and for all initial data pE € L?, (R?) satisfying (H1), (H2), (H3) and (H4),

the system (P.)-(IC.) admits a solution p™° € C™(R? x [0,T)). Moreover, p™°(-,t) satisfies (H1),
(H2) and (H3) for allt € (0,T) and the estimates given in Lemmata 5.4, 5.6, 5.8 and Corollary 5.7.

The proof of the previous theorem is based on very standard arguments. To give a rough idea of the
demonstration, let us say that we use essentially the a priori estimates given in Lemmata 5.4 and 5.6

3;):‘:’5 + .
and [|p™ =P || 12(12)). These estimates allow us to
L1 |1 10g L(T2)
control from below the time T™* given in Theorem 4.2, by a positive constant. Then, thanks this control
on T*, we can reapply successively Theorem 4.2 with new initial time. This gives easily the global
existence of the solution (for more details, see [9]).

(see the L™ bounds in time of

6 Existence of solutions for the system (P)-(IC)

In this section, we will prove that the system (P)-(IC) admits solutions p* in the distributional sense.
They are the limits when ¢ — 0 of the solution p®¢ given in Theorem 5.10. To do this, we will jus-
tify the passage to the limit as € tends to 0 in the system (P;)-(IC.), using some compactness arguments.

6.1 Preliminary results

Before proving the main theorem, let us recall some well known results.

Lemma 6.1 (Trudinger compact embedding)
The following injection (see N. S. Trudinger [35]):

W3(T?) — EX Py(T?),
is compact, for all 1 < 3 < 2.

For the proof of this lemma see also R. A. Adams [1, Th 8.32].
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Lemma 6.2 (Simon’s Lemma)
Let X, B, Y three Banach spaces, where X — B with compact embedding and B — Y with continuous
embedding. If (p™), is a sequence such that

n n dp"
o™ lLacco,my;8) + 10" | 21 (0,7):x) + H@t <C,

L0, T)Y)

where ¢ > 1 and C is a constant independent of n, then (p™),, is relatively compact in LP((0,T); B) for
all1 <p<q.

For the proof, see J. Simon [33, Th 6, Page 86].
In order to show the global existence of system (P) in Subsection 6.2, we will apply this lemma in the
particular cases where B = EX P3(T?), X = W12(T?) and Y = W~12(T?), for 1 < 3 < 2.

Lemma 6.3 (Weak star topology in Llog L)
Let Eeyp(T?) be the closure in EXP(T?) of the space of functions bounded on T?. Then E..,(T?) is a
separable Banach space which verifies,

i) Llog L(T?) is the dual space of Eeyp(T?).

i) EXPg(T2) — E¢pp(T2) — EXP(T2) for all § > 1.
For the proof, see R. A. Adams [1, Th 8.16, 8.18, 8.20].

6.2 Proof of Theorem 1.4

Let us fix any 7" > 0. For any ¢ € (0, 1], we are considering the solution p™¢ of (P.)-(IC.) given in
Theorem 5.10 on R? x (0,7). First, by Lemma 5.6 we know that, the periodic part of the solutions,
denoted by p™P¢" are e-uniformly bounded in L?(T? x (0, 7). Hence, as € goes to zero, we can extract
a subsequence still denoted by p*5P¢", that converges weakly in L2(T2 x (0,7)) to some limit p*:Pe".
Then we want to prove that p™ = p=P¢" + Lz, are solutions of the system (P)-(IC). Indeed, since the
passage to the limit in the linear term is trivial in D’(T? x (0,7)), it suffices to pass to the limit in the
non-linear term

8[):‘:’5
8371 '
Step 1 (compactness of (R?R3p°)): Now notice that:

e From Corollary 5.7 we know that the term (R$R3p°) is e-uniformly bounded in L*((0,T); W2(T?)).

Then it is in particular e-uniformly bounded in L*((0,7); W12(T?)).

e From the previous point and Lemma 6.1, we know that (R%R%ps) is also e-uniformly bounded in

L2((0,T); EX P3(T?)) for all 1 < 8 < 2.

e From Lemma 5.8, the term R%R%(ap
ot

LH(0,T); W12(T?)).

(RIR5p%) (6.20)

) is e-uniformly bounded in L2((0,7); W~%2(T?)) and then in

Collecting this, we get that there exists a constant C independent on ¢ such that p° = R?R2p° satisfies
for some 1 < 3 < 2

a5

1P L2 0,7y Ex Pacreyy + 1P I Lr o,y 2 rey) + Hat =0

LI((0,T);W=12(T2))

Then Lemma 6.2 joint to Lemma 6.1, with B = EX P3(T?), X = W12(T?) and Y = W~12(T?), shows
the relative compactness of (RIR3p°) in L'((0,T); EX P3(T?)), and then using Lemma 6.3, we deduce
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the compactness in L' ((0,T); Ee.p(T?)).

+.,e +,e
Step 2 (weak-x convergence of ): By Lemma 5.4, we have that 0 is e-uniformly bounded
X1 €1
in L>((0,T); Llog L(T?)) which is the dual of L'((0,T); Eesp(T?)) by Lemma 6.3. Then, this term
+

0
converges weakly-x in L*°((0,T); Llog L(T?)) toward 8L That enables us to pass to the limit in the
T

bilinear term (6.20) in the sense

LY(0,T); Eerp(T?)) — strong x L=((0,T); Llog L(T?)) — weak — .
which shows that

r2R2 20 (R 2 i (T (0,7
(RY 2p)8x1 — (RY 2'0)3951 in D'(T* x (0,7)).

In what precedes, we have shown that p* are solutions of the system (P).

Step 3 (conclusion): Passing to the limit in the estimates of Lammata 5.4, 5.6, 5.8 and Corollary
5.7, we get in particular by Lemma 5.3, the entropy estimates (1.1) and (E1), (E2), (E4), (E5). At
this stage we remark that, by Proposition 3.5 that

o0
ot

— (R?R? op* L2((0,T): Llog? L(T?
= (R} 2p)8x1 € L*((0,T); Llog= L(T=)),

and then p=Pe" € C([0,T); Llog? L(T?)), which proves (E3).

Since the function p*Pem (- t) satisfy (H1), (H2), (H3), (H4) (see Theorem 5.10) by passing in the

limit € — 0, we can see that the limit function ptPer (- 1) reserves the same assumptions (H1), (H2),
(H3), (H4).

It remains to prove that p* satisfies the initial conditions (IC). Indeed, from the estimates on p®-Per
+,e

given by Lemma 5.6 and given by Lemma 5.8 (ii), we can prove easily, that

||pi75,per(t) _ p(ﬂ)QEyPET”W_z’Q(Tz) S CTt%

where C7r is constant independent of €. Hence we can pass to the limit € — 0, which this implies in
particular that p=#e(-,0) = pEP" in D' (R2). O

Remark 6.4
In our proof, we have indirectly used a kind of compensated compactness technic for Hardy spaces.
Newvertheless in our case, we do not have enough reqularity to do so.
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