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Abstract

In this paper, we present a surprising two-dimensional contraction family for porous medium

and fast diffusion equations. This approach provides new a priori estimates on the solutions, even

for the standard heat equation.
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1 Introduction

In this paper, we answer a long standing open question about the existence of new contrac-
tions for porous medium type equations. For m > 0 and d ≥ 1, we consider nonnegative
solutions U(t, x) of the following normalized equation

(1.1) mUt = ∆Um on (0,+∞)× Ω = Q with Ω = Rd.

For m > 1, this equation is called the porous medium equation (PME), while for m < 1, it
is called the fast diffusion equation (FDE). We choose the following standard definition of
solution:

Definition 1.1 (Notion of solution)
Let m > 0. We say that U ≥ 0 is a solution of (1.1) with intial data 0 ≤ U0 ∈ L1(Ω), if
U,Um ∈ L1

loc(Q) and for every function η ∈ C∞c (Q) with compact support, we have∫∫
Q

{
Um

m
∆η + Uηt

}
dxdt+

∫
Ω

U0(x)η(0, x) dx = 0.
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We recall that for m > 0 and any initial data satisfying

(1.2) U0 ∈ L1(Ω) ∩ L∞(Ω) with U0 ≥ 0,

there is exactly one solution U ∈ C([0,+∞);L1(Ω)) ∩ L∞(Q) in the sense of Definition 1.1
(see [10, 11]). In the special case where m > mc(d) := max

(
0, d−2

d

)
, it is well known that

it is possible to remove the condition U0 ∈ L∞(Ω) to get existence and uniqueness in some
weaker space. To present our results in a concise and unified way for m > 0, we will stick
under assumptions (1.2).

In any dimensions, it is known (see [9] and the references therein), that this equation
has at least three types of contractions: in L1, in H−1 and finally for the 2-Wasserstein
distance if m > mc(d). This last contraction property has been discovered by Otto in [7] and
published in [6] (see also later [2]). It is also known for the PME, that for the p-Wasserstein
distance, there is no contraction for d ≥ 2 and p > p1(m, d), while there is contraction for
any p ∈ [1,+∞] in dimension d = 1 (see [9]). Note also that in [11] (Theorem A.5 p. 583),
the author proves that the PME is not contractive with respect to Lp norm for m ≥ 2 if
p > p2(m, d).

In this paper, for 0 < m < 2, we present a new family of contractions for this equation in
any dimensions, which extends the L1 contraction properties. Our contraction can be seen
as the fourth known contraction for this equation. Even for the case m = 1, our approach
leads to new results for the standard heat equation.
More precisely, for U and V two nonnegative solutions of (1.1), we show that the following
quantity

(1.3)

∫
Ω

|Uα − V α|p

is a Lyapunov functional which is nonincreasing in time for all (α, p) in some admissible set.
For convenience, we will work in the whole paper with

n = m− 1.

For 0 < |n| < 1, we define the admissible (convex) set (which is skeched on Figure 1)

(1.4)

K|n| =

{
(α, p) ∈ [|n|, 1]× R; P−(α) ≤ p ≤ P+(α), with P±(α) = 1 +

2

n2
(1− α)(α±

√
α2 − n2)

}
.

For n = 0, we also set K0 = {(α, p) ∈ (0, 1]× R; αp ≥ 1}. One may wonder if contraction
(1.3) is related or not to some gradient flow structure of the equation. Indeed, for a given
positive solution U of (1.1), we can set u = Uα which solves

(1.5) ut = uγ−1
(
u∆u+ γ̄|∇u|2

)
with γ =

n

α

and γ̄ = γ − 1 + α−1. In the special case where γ̄ = γ/2, it can be seen that equation (1.5)
is the negative L2-gradient flow of some energy, i.e. it solves

ut = −∇L2E(u) with E(u) =

∫
Ω

uγ
|∇u|2

2
.
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Moreover, it is easy to check (computing the hessian of E) that E is convex if γ ∈ [−1, 0].
This corresponds exactly to the points (α, p) = (1 + n

2
, 2) ∈ K|n| that we capture for n ∈

[−2
3
, 0]. This interpretation is similar to the derivation of Yamabe flow (see for instance [12])

with the difference here that the exponent of the fast diffusion is not directly related to the
space dimension. Nevertheless, except this very exceptional case, contraction (1.3) does not
seem to be related to any gradient flow structure.

Figure 1: The set K|n|.

The paper is organized as follows. In Section 2, we present our main results. In Section
3, we prove the new contraction property. Finally in Section 4, we prove several gradient
decay estimates.

2 Main results

We state precisely our main results. With the previous notation, and for u, v > 0, we define
the symmetric matrix for p > 1 and α ∈ (0, 1]:
(2.6)

Qα,p(v, u) = (p− 1)

vγ
(

1 + Γ
(u
v
− 1
))

−1

2
(vγ + uγ)

−1

2
(vγ + uγ) uγ

(
1 + Γ

(v
u
− 1
))
 with Γ =

1− α
α(p− 1)

.

and set Q1,1(v, u) = 0. We can check that this matrix is nonnegative for all u, v > 0 if and
only if (α, p) ∈ K|n| (see Lemma 3.1). For y ∈ R, we set y+ = max(0, y). Then our main
result is the following
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Theorem 2.1 (The new contraction family)
We recall that Ω = Rd with d ≥ 1. Let |n| < 1 and U (resp. V ) be the solution of
(1.1) in the sense of Definition 1.1, with initial data 0 ≤ U0 ∈ L1(Ω) ∩ L∞(Ω) (resp.
0 ≤ V0 ∈ L1(Ω) ∩ L∞(Ω)). Let (α, p) ∈ K|n| where K|n| is defined in (1.4). We set

u = Uα and v = V α.

Then for w = u and v, we have w ∈ C(Q) ∩ L∞(Q) ∩ C([0,+∞);Lp(Ω)) and w ∈ C∞(Q ∩
{w > 0}). Moreover, with the notation v(τ) = v(τ, ·), u(τ) = u(τ, ·), we have for all t ≥ 0

(2.7)

∫
Ω

(v(t)− u(t))p+ dx+ p

∫ t

0

dτ

∫
{v−u>0}∩{u>0}

e[v, u] dx ≤
∫

Ω

(v(0)− u(0))p+ dx

with

(2.8) e[v, u] = |v − u|p−2

(
∇v
∇u

)T
Qα,p(v, u)

(
∇v
∇u

)
≥ 0, for v > u > 0.

Note that it is possible to see that there is equality in (2.7), for instance if u and v are
smooth and positive on the torus Td instead of the whole space.
We now define a second symmetric matrix M1,1 = 0 and for (α, p) ∈ K|n|\ {(1, 1)}

(2.9) Mα,p = (p− 1)


1 −Γ +

γ

2

−Γ +
γ

2
Γ(1− γ)

 ,

which turns out to be also nonnegative (see Lemma 4.1).

Then, we have also the following result

Theorem 2.2 (Decay of the gradient)
Let U be the solution of equation (1.1) with initial data U0, under the assumptions of Theorem
2.1. Assume that ∇Uα

0 ∈ Lp(Ω). Setting u = Uα, we have ∇u ∈ L∞([0,+∞);Lp(Ω)).
Moreover, with the notation u(τ) = u(τ, ·), we have for almost every t ≥ 0:

(2.10)

∫
Ω

|∇u(t)|p dx+ p

∫ t

0

dτ

∫
{∇u6=0}∩{u>0}

ē[u,∇u,D2u]dx ≤
∫

Ω

|∇u(0)|p dx.

with

(2.11) ē[u,w,A] = |w|p−2uγ−2

(
uA0

w2

)T
Mα,p

(
uA0

w2

)
+ |w|p−2uγ

(
|A2|2 + p|A1|2

)
≥ 0,

where we write a general symmetric matrix A as

A =

(
A0 A1

AT1 A2

)
by blocks in the vector space Rb⊕ b⊥ with b =

w

|w|
.

Again, note that it is possible to see that there is equality in (2.10), if U0 is smooth and
positive with Ω = Td.

Let us mention that our results will be used in a future work to get information on the
anomalous exponents associated to self-similar solutions like the one of Aronson-Graveleau
(see [1]), and also the one of King-Peletier-Zhang (see [3, 5]).
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3 The new contraction property

This section is devoted to the proof of Theorem 2.1. To this end, we first need the following
result whose proof is elementary.

Lemma 3.1 (Properties of the matrix Qα,p)
For |n| < 1, let (α, p) ∈ Int K|n| where K|n| is defined in (1.4).
i) Positive definite matrix
Let η > 0. Then for v > u > 0 with 1 + η−1 > v/u ≥ 1 + η, we have

(3.12) Qα,p(v, u) ≥ vγνI2,

where I2 is the 2× 2 identity matrix, Qα,p is defined in (2.6), and ν = ν(n, α, p, η) > 0.
ii) Bound from below for the top diagonal term
Let v ≥ u > 0, then the top diagonal term of the matrix satisfies

(3.13) (Qα,p(v, u))11 ≥ vγν0,

for some ν0 = ν0(n, α, p) > 0.

Proof of Lemma 3.1
We set w = u/v ∈ (0, 1] and start with α ∈ (0, 1) and p > 1.
Step 1: on the determinant
A direct computation shows that det Qα,p(v, u) > 0 if and only if

(3.14) Gγ(w) := Γ (1− Γ) f1(w)− 1

4
fγ(w) > 0 with fγ(w) := wγ − 2 +

1

wγ
.

Note that Gγ(1) = G′γ(1) = 0. We now show that Gγ is strictly convex for w ≤ 1, which will
imply (3.14) for w 6= 1. Indeed, we have

G′′γ(w) = −w−3Fγ(w) with Fγ(w) :=
1

4
γ
(
(γ − 1)wγ+1 + (γ + 1)w1−γ)−2Γ (1− Γ) ≤ Fγ(1),

where we have used |γ| < 1 and w ≤ 1 to get the inequality. We see that Fγ(1) < 0 if

and only if Γ is in between the two distinct roots Γ± :=
1±

√
1− γ2

2
, which is equivalent to

(α, p) ∈ Int K|n|. This implies the strict convexity of Gγ.
Step 2: conclusion

Recall that for (α, p) ∈ Int K|n|, we have p > P−(α) ≥ 1

α
. We deduce that each diagonal

term of Qα,p is positive (which shows ii)) and then tr Qα,p(v, u) > 0. With Step 1, this
implies the result i). �

Proof of Theorem 2.1
We only deal with the case (α, p) ∈ Int K|n|. Note that the border case can easily be
recovered, by a passage to the limit. The proof is divided into several steps.
Step 1: Estimate for smooth positive solutions
Given two nonnegative and smooth initial data U0, V0 with compact support, we consider
modified initial data for ε ∈ (0, 1)

U0ε = U0 + ε and V0ε = V0 + ε.
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According to the standard parabolic theory (see [4]), we can consider the smooth positive
functions Uε, Vε, which are the classical solutions of (1.1) respectively associated to initial
data U0ε and V0ε. We have moreover the obvious bounds

(3.15) ε ≤ Uε, Vε ≤ |U0|L∞(Ω) + ε.

For uε = Uα
ε , vε = V α

ε , for a cut-off function ϕ ∈ C∞c (Ω) satisfying ϕ ≥ 0 and for p > 1,
we will compute d

dt

∫
Ω
ϕ2(vε− uε)p+. We will use the positivity properties of the matrix Qα,p,

to control the error term created by the cut-off. To this end, it is useful to introduce for
δ ∈ [0, ε), the function Ψδ,p(w) which is an approximation of Ψ0,p(w) = wp+, given by

Ψδ,p(w) =

{
wp

p
− δp−1w − δp

(
1

p
− 1

)}
· 1{w>δ}.

Then a direct computation gives
(3.16)
d

dt

∫
Ω

ϕ2Ψδ,p (vε − uε) dx

=

∫
Ω

ϕ2Ψ′δ,p (vε − uε) {vγε∆vε − uγε∆uε} dx+

∫
Ω

ϕ2Ψ′δ,p (vε − uε) γ̄
{
vγ−1
ε |∇vε|2 − uγ−1

ε |∇uε|2
}
dx

=

∫
{vε−uε>δ}

f dx−
∫
{vε−uε>δ}

ϕ2e[vε, uε] dx+ δp−1

∫
{vε−uε>δ}

ϕ2g dx

with the notation e[·, ·] defined in (2.8) and

f = −Ψ′δ,p (vε − uε) 2ϕ∇ϕ·{vγε∇vε − uγε∇uε} and g =
(α− 1)

α

(
|∇vε|2vγ−1

ε − |∇uε|2uγ−1
ε

)
.

Here in (3.16) we have used equation (1.5) to get the second line, and have done an integration
by parts on the first term of the second line, using in particular for δ > 0 the chain rule
∇Ψ′δ,p (w) = Ψ′′δ,p (w)∇w with equality almost everywhere with the convention that the right
hand side is zero if ∇w = 0 irrespective of whether Ψ′′δ,p is defined. The case δ = 0 can be
recovered, passing to the limit δ → 0.
Using bounds (3.15), we see that 0 < vγε , u

γ
ε ≤ M for some constant M > 0. Moreover for

vε − uε > δ > 0, we have by Young inequality

(3.17) |f | ≤ (vε − uε)p−2

{
2M

εν
(vε − uε)2|∇ϕ|2 + ϕ2εν(vγε |∇vε|2 + uγε |∇uε|2)

}
where ν = ν(δ) > 0 is given in (3.12) for δ > 0.
Step 2: First integral estimate on the gradient
We now choose uε ≡ ε and δ = 0. Then estimate (3.17) still holds true, but with ν replaced
by ν0 given in (3.13). This implies

d

dt

∫
Ω

ϕ2Ψ0,p (vε − ε) dx ≤
∫

Ω

C0|∇ϕ|2Ψ0,p(vε − ε) dx− (1− ε)
∫
{vε−ε>0}

ϕ2e[vε, ε] dx

with C0 =
2pM

εν0

. We then take a sequence of functions ϕ converging towards ϕλ(x) = e−λ|x|

for λ > 0. Integrating in time, and passing to the limit λ → 0, and using again (3.13), we
get

(3.18)

∫
Ω

Ψ0,p (vε(t)− ε) dx+ (1− ε)ν0

∫ t

0

dτ

∫
Ω

vγε |∇vε|2 ≤
∫

Ω

Ψ0,p (vε(0)− ε) dx
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Step 3: Refined estimate
We come back to general vε, uε as in Step 1 and now consider δ > 0. Using (3.17), we get

d

dt

∫
Ω

ϕ2Ψδ,p (vε − uε) dx

≤
∫

Ω

C|∇ϕ|2Ψ0,p(vε − uε) dx− (1− ε)
∫
{vε−uε>δ}

ϕ2e[vε, uε] dx+ δp−1

∫
{vε−uε>δ}

ϕ2g dx

with C =
2pM

εν
. Note that estimate (3.18) for both vε and uε, controls uniformly in time∫

Ω
Ψ0,p(vε − uε) dx and the time integral of

∫
Ω
δp−1|g| dx. Therefore, we can again apply

the choice of ϕ = ϕλ, integrate in time, and take the limit λ→ +∞ as in Step 2, and then
conclude in the limit δ → 0
(3.19)∫

Ω

Ψ0,p (vε(t)− uε(t)) dx+(1−ε)
∫ t

0

dτ

∫
{vε−uε>0}∩{uε>0}

e[vε, uε] dx ≤
∫

Ω

Ψ0,p (vε(0)− uε(0)) dx.

Step 4: The limit ε→ 0
For a point P0 = (t0, x0), let us denote the open parabolic cylinder Qr(P0) = (t0 − r2, t0)×
Br(x0), where Br(x0) is the open ball of center x0 and radius r > 0. It is known by Theorem
1.1 in Sacks [8] that for any smooth solution Uε of (1.1) on Q2r(P0), there exists a modulus
of continuity ω of Uε on Qr(P0), depending only on r, d, n and |Uε|L∞(Q2r(P0)). This property
is automatically transfered to uε = Uα

ε with the modulus of continuity ωα. This implies, by
Ascoli-Arzela theorem, that Uε → U , where U is still a solution of (1.1) with initial data U0

in the sense of Definition 1.1. We also note that (with αp ≥ 1)∫
Ω

|u(t, ·)− u(s, ·)|p ≤
∫

Ω

|U(t, ·)− U(s, ·)|αp ≤ (2|U |L∞(Q))
αp−1|U(t, ·)− U(s, ·)|L1(Ω)

which shows in particular that U ∈ C([0,+∞);L1(Ω)) implies u ∈ C([0,+∞);Lp(Ω)).
From the standard parabolic theory [4], we know that U ∈ C∞(Q ∩ {U > 0}), with

corresponding quantitative estimates on solutions locally bounded from above and below.
Similarly, we have Vε → V , and we call u = Uα, v = V α. Using the C1 convergence of (vε, uε)
to (v, u) on compact sets inside {v − u > 0} ∩ {u > 0}, we can pass to the limit in (3.19),
and get the same inequality for ε = 0 with (vε, uε) replaced by (v, u). This means (2.7). We
finally conclude to the result for general initial data U0, V0, by a standard approximation
argument in L1(Ω). �

4 Decay of the gradient

This section is divided into two subsections. In the first subsection, we give the proof of
the gradient decay Theorem 2.2. In the second subsection, we give a directional derivative
estimate (Theorem 4.2) as a corollary of our contraction estimate.

4.1 Decay of the gradient

We start with the following simpler analogue of Lemma 3.1, whose proof follows from an
elementary computation.
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Lemma 4.1 (Properties of the matrix Mα,p)
For |n| < 1, let (α, p) ∈ Int K|n| where K|n| is defined in (1.4).
Then we have

(4.20) Mα,p ≥ ν1I2,

where I2 is the 2× 2 identity matrix, Mα,p is defined in (2.9), and ν1 = ν1(n, α, p) > 0.

Proof of Theorem 2.2
We follow the lines of proof of Theorem 2.1. For δ > 0, a direct computation gives with

bε =
∇uε
|∇uε|

(4.21)

d

dt

∫
Ω

ϕ2Ψδ,p (|∇uε|) dx

=

∫
Ω

ϕ2Ψ′δ,p (|∇uε|) bε · ∇
{
uγ−1
ε

(
uε∆uε + γ̄|∇uε|2

)}
dx

=

∫
{|∇uε|>δ}

f̄ dx−
∫
{|∇uε|>δ}

ϕ2ē[uε,∇uε, D2uε] dx+ δp−1

∫
{|∇uε|>δ}

ϕ2ḡ

with the notation ē[·, ·, ·] defined in (2.11) and

f̄ =
d∑
i=1

−2ϕ∇iϕΨ′δ,p (|∇uε|) bε · ∇ {uγε∇iuε} and ḡ =
(α− 1)

α
bε · ∇

{
uγ−1
ε |∇uε|2

}
.

Here we have integrated by parts the term ∆uε in the second line of (4.21). We then pass
to the limit δ → 0. We replace the fine property (3.12) of the matrix Qα,p, by (4.20). We
finally conclude as in the proof of Theorem 2.1. �

4.2 Decay of the directional derivative

For ξ = (ξt, ξx) ∈ R× Rd, we define the directional derivative

(4.22) Dξu = ξtut + ξx · ∇u.

In this subsection, we prove the following result as a consequence of our contraction es-
timate.

Theorem 4.2 (Decay of the directional derivative)
Let U be the solution of equation (1.1) with initial data U0, under the assumptions of Theorem
2.1. We also set u = Uα. Let ξ ∈ R× Rd, and let us assume that

(4.23) Cξ := lim sup
η→0+

∫
Ω

∣∣∣∣u((0, x) + ηξ)− u(0, x)

η

∣∣∣∣p dx < +∞

With the notation Dξu defined in (4.22), we have Dξu ∈ L∞([0,+∞);Lp(Ω)). Moreover,
with the notation u(τ) = u(τ, ·), we have for almost every t ≥ 0:

(4.24)

∫
Ω

|Dξu(t)|p dx+ p

∫ t

0

∫
{Dξu6=0}∩{u>0}

¯̄e[u,Dξu,∇u]dx ≤ Cξ.
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with

(4.25) ¯̄e[u,w,∇u] = |w|p−2uγ−2

(
u∇w
w∇u

)T
Mα,p

(
u∇w
w∇u

)
≥ 0.

In particular (4.23) is satisfied if ξt = 0 and DξU
α
0 ∈ Lp(Ω).

We will use the following result.

Lemma 4.3 (Limit of the quadratic term)
For |n| < 1, let (α, p) ∈ K|n| where K|n| is defined in (1.4).
Let Ω1 be an open set such that u,w, z ∈ C1(Ω1) with u > 0 on Ω1. For η ∈ (0, 1), let vη be
a function satisfying

|vη − (u+ ηw + η2z)|C1(Ω1) = o(η2)

Then we have on Ω1

Jη(vη, u) = η−2

(
∇vη
∇u

)T
Qα,p (vη, u)

(
∇vη
∇u

)
−→
η→0

J0 = uγ−2

(
u∇w
w∇u

)T
Mα,p

(
u∇w
w∇u

)
,

where we recall that the matrices Qα,p and Mα,p are respectively defined in (2.6) and (2.9).

Proof of Lemma 4.3
The proof is done using a simple Taylor expansion argument. For Qα,p(v, u), we set Qi =

∂ivQα,p(u, u) for i = 0, 1, 2. For Vη =

(
∇vη
∇u

)
, we set Vη = V0 + ηV1 + η2V2 + o(η2). Using the

fact that Q0V0 = 0 = V T
0 Q1V0, we get

Jη(vη, u) =
1

2
w2V T

0 Q2V0 + 2wV T
1 Q1V0 + V T

1 Q0V1 + o(1)

which implies the result. �

Proof of Theorem 4.2
Let vη(t, x) = u((t, x) + ηξ). We simply apply Theorem 2.1 to vη − u and u− vη and use the
symmetry e[v, u] = e[u, v], in order to control∫

Ω

∣∣∣∣vη(t)− u(t)

η

∣∣∣∣p
We pass to the limit as η → 0 using Lemma 4.3 which gives (4.23). �
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