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Abstract. In this note, we consider an evolution coercive Hamilton-Jacobi equation posed in a domain
and supplemented with a boundary condition. We are interested in proving a comparison principle in
the case where the time and the (normal) gradient variables are strongly coupled at the boundary. We
elaborate on a method introduced by P.-L. Lions and P. Souganidis (Atti Accad. Naz. Lincei, 2017) to extend
their comparison principle to more general boundary conditions and to Hamiltonians that are not globally
Lipschitz continuous in the time variable. Their argument relies on a single blow-up procedure after rescaling
the semi-solutions to be compared. In this work, two blow-ups are performed simultaneously, one for
each variable of the doubling variable method. We show a key one-sided Lipschitz estimate satisfied by a
combination of the two blow-up limits. Both blow-up limits are a priori allowed to be infinite separately. For
expository reasons, the result is presented here in the framework of space dimension one and the general
case is treated in a companion paper.
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1. Introduction: a comparison principle

Given T > 0, we consider viscosity solutions of a standard evolutive Hamilton-Jacobi equation
posed in the geometric setting of a domainΩ := (0,+∞),

ut +H(X ,ux ) = 0 in (0,T )×Ω (1.1)
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where X := (t , x), supplemented with the boundary condition,

ut +F (X ,ux ) = 0 in (0,T )×∂Ω
and the initial condition,

u(0, ·) = u0 in {0}×Ω.

Since the boundary condition can be lost when characteristics reach ∂Ω, it has to be imposed in
a weak sense. When working with viscosity solutions, a classical way to handle this discrepancy is
to impose that either the boundary condition or the equation is satisfied (in the viscosity sense)
at the boundary,{

ut +min{F, H } (X ,ux ) ≤ 0 in (0,T )×∂Ω (for subsolutions),
ut +max{F, H } (X ,ux ) ≥ 0 in (0,T )×∂Ω (for supersolutions).

(1.2)

Comparison principles are strong uniqueness results for Hamilton-Jacobi equations. In the
case of the previous initial boundary value problem, it is known (see [1–3,7,8]) that it is difficult to
treat the case when tangential coordinates, such as the time variable t , and the normal derivative
ux of the solution, are strongly coupled reaching the boundary (0,T )×∂Ω. It is standard to make
the (strong) assumption of uniform continuity in time t , uniformly in the gradient ux . Such an
assumption is not satisfied by the following simple example,{

ut +a(t , x)|ux | = 0 in (0,T )×Ω,

ut +max{0,−b(t , x)ux } = 0 in (0,T )×∂Ω (1.3)

when a,b ≥ 1 are bounded Lipschitz continuous functions (here with b(t , x) = b(t ,0)).
In this note, we choose structural assumptions on H and F that encompass a large variety of

examples (including (1.3)) but we do not seek for generality to avoid technicalities in proofs as
much as possible. We assume that H and F are continuous in X , Lipschitz continuous and (semi-
) coercive in p, with a time dependance allowing strong coupling with the gradient variable.
Precisely, we assume that there exists a constant C > 0 such that,

H is continuous and |H(X ,0)| ≤C and |H(X , p)−H(X , q)| ≤C |p −q |
H(X , p) →+∞ as |p|→∞ uniformly in X

|H(s, x, p)−H(t , x, p)| ≤C |t − s|(1+max(0, H)(t , x, p)
) (1.4)


F is continuous and |F (X ,0)| ≤C and |F (X , p)−F (X , q)| ≤C |p −q |,
F is nonincreasing w.r.t.p,

F (X , p) →+∞ as p →−∞ uniformly in X ,

|F (s, x, p)−F (t , x, p)| ≤C |t − s|(1+max(0,F, H)(t , x, p)
)

.

(1.5)

We make artificially appear the dependence of F on x ∈ Ω in order to unify the presentation of
assumptions for H and F . Note that condition (1.4) is classical and already appears for instance
in [7, p. 44]. On the contrary condition (1.5) seems to be new.

We do not regularize the sub/supersolution by sup/inf-convolutions. In particular, we cannot
assume without loss of generality that the subsolution is Lipschitz continuous. On the contrary,
we only use a pure tangential doubling of variables, and we are able to prove the following new
comparison principle.

Theorem 1 (A comparison principle with strong time coupling). Let T > 0, assume that (1.4)
and (1.5) hold true and that u0 is bounded and Lipschitz continuous. Let u : [0,T )×Ω→R (resp. v)
be a bounded upper semi-continuous viscosity subsolution (resp. bounded lower semi-continuous
viscosity supersolution) of (1.1)-(1.2). If there exists CT > 0 such that u(0, ·) ≤ u0 ≤ v(0, x) inΩ, then
u ≤ v in [0,T )×Ω.
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More important than the result is the new method introduced to prove Theorem 1, that can be
used and adapted in numerous other situations.

Remark 2. Here, we assume for simplicity that the initial data u0 is Lipschitz continuous. With
some additional (classical) technicalities, it is possible to deal with uniformly continuous u0’s and
to relax the boundedness assumption on u, v,u0 by imposing that they grow at most linearly.

Remark 3. Lipschitz continuity of F with respect to p is only used to get barriers in the proof of
Theorem 1.

Remark 4. Notice that, given (1.4), we can always define the state constraint boundary function

H−(t , x, p) := sup
q≤p

H(t , x, q) for (t , x) ∈ [0,T ]×∂Ω and p ∈R

and it satisfies (1.5). Up to our knowledge, the comparison principle was also an open problem
for F = H− in the generality of this note.

Remark 5. Notice that in Theorem 1, semi-coercivity of F in condition (1.5) can be replaced by
the weak continuity of the subsolution u on the boundary (0,T )×∂Ω, using [4, Proposition 3.12])
and replacing F by F1 := max(F, H−).

Comparison with known results. J. Guerand [5] proved a comparison principle in our geometric
setting in the case where H and F are independent of (t , x). She also proved a comparison
principle for non-coercive Hamiltonians.

P.-L. Lions and P. Souganidis [8] introduced a new method to prove comparison principle
for junctions with N ≥ 1 branches (or half-spaces) between bounded uniformly continuous
sub/supersolutions. They use a blow-up argument that reduces the study to a 1D problem. The
authors show the comparison principle in the case of Kirchoff-type boundary conditions and
non-convex Hamiltonians. As far as (t , x) dependence is concerned, these authors can handle
Hamiltonians that are Lipschitz in t , see [8, Assumption (4)].

This result is generalized by G. Barles and E. Chasseigne [3, Theorem 15.3.7, page 295] to the
case of bounded semi-continuous sub/supersolutions under three different junction conditions.
Even if they are presented for N = 2 branches, we present their results in our geometric setting: a
junction reduced to a single branch N = 1 in 1D. The three cases are the following: F is constant
in (1.2), the Neumann problem, and general nonincreasing continuous F . In the third case, the
normal derivative is not coupled with the tangential coordinates in F (see also the very end of [3,
§13.2.2 and condition (GA-G-FLT) p. 247]).

As explained above, we improve these results in the case where the functions H and F imply a
strong coupling of the time variable with the normal derivative of the solution.

Organization of the note. In Section 2 we recall the definition of (limiting) semi-differentials
and we state and prove a technical lemma relating some slopes (that we call critical) at the
boundary with semi-differentials (Lemma 1). We deduce from this technical lemma a corollary
about critical slopes of stationary semi-solutions of the boundary value problem (Corollary 1). In
Section 3, we state a barrier result (Lemma 2) that helps us dealing with the initial time condition;
we also state a result (Lemma 3) about regularized subsolutions, that will be only used as an
auxiliary result. In Section 4, the comparison principle (Theorem 1) is proved.

Acknowledgements. The authors thank G. Barles and E. Chasseigne for enlighting discussions
during the preparation of this note.
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2. Boundary lemmas

Definition 6 ((Limiting) semi-differentials). For a set A ⊂ Ω = [0,+∞) and a point x0 ∈ A, we
define the (first order) super/subdifferential at x0 of a function u in A as

D±
Au(x0) = {

p ∈R, such that 0 ≤±{
u(x0)+p(x −x0)+o(x −x0)−u(x)

}
in A

}
and the limiting (first order) super/subdiffential at the boundary x0 = 0 of u inΩ as

D̄±
Ωu(0) = {

p ∈R, there exists a sequence pn ∈ D±
Ωu(xn) with xn ∈Ω and (xn , pn) → (0, p)

}
.

Remark 7. Note that if p ∈ D̄+
Ωu(0) and u is a subsolution of H(ux ) ≤ 0 inΩ, then H(p) ≤ 0.

Lemma 1 (Critical slopes and semi-differentials). LetΩ := (0,+∞) and u, v :Ω→R∪ {−∞,+∞}
with u upper semi-continuous and v lower semicontinous such that u(0) = 0 = v(0) and u ≤ v in
Ω. The critical slopes defined by

p := limsup
Ω3x→0

u(x)

x
, p := liminf

Ω3x→0

v(x)

x
(2.1)

satisfy the following (limiting) semi-differentials inclusions

R∩
[

p, p
]
⊂ D̄+

Ωu(0)∩ D̄−
Ωv(0) if p ≥ p (2.2)

R∩
[

p, p
]
⊂ D+

Ω
u(0)∩D−

Ω
v(0) if p ≤ p (2.3){

p ∈ D̄+
Ωu(0) if p ∈R

p ∈ D̄−
Ωv(0) if p ∈R (2.4)

Proof. We first notice that (2.3) is a straightforward consequence of the definition of semi-
differentials.

We now focus on the proof of

R∩
[

p, p
]
⊂ D̄+

Ωu(0) in case p > p (2.5)

and will even show the following better result

R∩
[

q , p
]
⊂ D̄+

Ωu(0) in case p > q := liminf
Ω3x→0

u(x)

x
(2.6)

where the last inequality is assumed because u ≤ v implies q ≤ p. This claim is a variant of [8,
Eq. (18)], and its proof is a variant of [3, Lemma 15.3.1]. We give the details for the sake of
completness.

Notice that p ∈ (q , p) means

limsup
Ω3x→0

u(x)

x
= p > p > q = liminf

Ω3x→0

u(x)

x

We deduce that for any ε> 0, there exists yε ∈ (0,ε) and zε ∈ (0, yε) such that

u(zε)

zε
> p > u(yε)

yε

Hence the function ζ(x) := u(x)− px satisfies ζ(0) = 0 > ζ(yε). Let M := sup[0,yε] ζ ≥ ζ(zε) > 0.
Hence at a point xε ∈ (0, yε) of maximum of ζ, we see that p ∈ D+

Ωu(xε). In the limit ε→ 0, we
recover p ∈ D̄+

Ωu(0). Then (2.6) follows from the fact that D̄+
Ωu(0) is closed. Then (2.5) holds true

for u. The similar inclusion for v implies (2.2) in the special case where p > p. On the other hand,
notice that (2.4) implies (2.2) in the case p = p. Hence it remains to show (2.4).

We now explain why the following fact holds true,

p ∈ D̄−
Ωv(0) if p ∈R (2.7)
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This result is a property of the critical slope for any lower semi-continuous functions. Its proof
follows exactly the lines of the proof of [6, Lemma 2.9]. A similar result holds for u and this proves
(2.4). �

Definition 8 (Coercive and semi-coercive functions). Consider a function G : R→ R. Then G is
coercice if lim|p|→+∞G(p) =+∞, and semi-coercive if limp→−∞G(p) =+∞.

As a consequence of Lemma 1, we have

Corollary 1 (Boundary viscosity inequalities). Let Ω and u, v be as in statement of Lemma 1.
For γ=α,β, consider continuous functions Hγ,Fγ : R→ R with Hα coercive and Fα semi-coercive.
Assume that we have the following viscosity inequalities for some η> 0

Hα(ux ) ≤ 0 on Ω ∩ {|u| < +∞}
min{Fα, Hα} (ux ) ≤ 0 on {0} ∩ {|u| < +∞}

Hβ(vx ) ≥ η on Ω ∩ {|v | < +∞}
max

{
Fβ, Hβ

}
(vx ) ≥ η on {0} ∩ {|v | < +∞}

(2.8)

For p, p defined in (2.1), we set a := min(p, p) and b := max(p, p). Then p ∈ [a,b]∩R and there
exists a real number p ∈ [a,b] such that

either Hα(p) ≤ 0 < η≤ (Hβ−Hα)(p) or max(Fα, Hα)(p) ≤ 0 < η≤ (Fβ−Fα)(p)

Remark 9. Corollary 1 can very easily be extended to the case of junctions where the Hamilto-
nians Hα’s are coercive on each branch and the junction function is semi-coercive in the sense
of [6, Eq. (2.2)].

Proof of Corollary 1. We sketch the proof that p ∈ R. Because Hα is coercive and Fα is semi-
coercive, we know from [4, Lemma 3.8] that u is weakly continuous at x = 0, i.e.

0 = u(0) = limsup
Ω3x→0+

u(x). (2.9)

Then the proof [6, Lemma 2.10] shows additionally that p >−∞. Now we claim that we also have
p <+∞. Indeed, it can be seen by contradiction, leaving fall down above the graph of u on [0, y],
some straight lines of slopes s = u(y)

y for large positive s and using the equation satisfied by u. We
conclude that p ∈R∩ [a,b].

Assume first that p ≤ p. Here (2.2) shows that Hα(p) ≤ 0 < η≤ Hβ(p) and then

η≤ (Hβ−Hα)(p) for all p ∈
[

p, p
]
∩R

which implies in particular the desired conclusion.
If p > p, then we have [a,b] ⊂ (−∞,+∞] with a < b and

Hα(a) ≤ 0 because a ∈R
0 < η ≤ Hβ(b) if b ∈R

min{Hα,Fα} ≤ 0 < η ≤ max
{

Hβ,Fβ
}

on [a,b]∩R
(2.10)

where the last line follows from (2.3), and the first two lines follow from (2.4).
INTERMEDIATE CLAIM. Now we assume by contradiction that there exists ε > 0 (small enough)
such that 

i) Hβ−Hα < η−ε or ε< Hα

and
ii) Fβ−Fα < η or ε< max(Fα, Hα)

∣∣∣∣∣∣ for all p ∈ [a,b]∩R (2.11)
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Recall that the coercivity of Hα means Hα(±∞) := liminfp→±∞ Hα(p) =+∞.
Case 1: Hα(b) > ε
Here b can be finite or equal to +∞. We get

Hα(b) > ε> 0 ≥ Hα(a)

Therefore by continuity, there exists p ∈ (a,b) such that Hα(p) = ε. Hence in the last line of (2.10),
the first inequality implies that Fα(p) ≤ 0. Because (2.11) i) and ii) hold true for p, we get

Hβ(p) < η and Fβ(p) < η
which leads to a contradiction in the last line of (2.10), the second inequality.
Case 2: Hα(b) ≤ ε
Then b ∈R and (2.11) i) implies for p = b that Hβ(b) < η, which is in contradiction with the second
line of (2.10).
CONCLUSION. We just proved that (2.11) does not hold true. This implies that for all ε > 0 small
enough, there exists some pε ∈ [a,b]∩R such that we have at pε

i) Hα ≤ ε< η−ε≤ Hβ−Hα or ii) max(Fα, Hα) ≤ ε< η≤ Fβ−Fα

Because Hα is coercive, we see in both cases i) or ii), that we can always extract a subsequence
as ε→ 0 such that pε → p ∈ [a,b]∩R. As a consequence, we get that p satisfies i) or ii) for ε = 0,
which is the desired conclusion. �

3. Barriers and auxiliary tangential regularization

In the proof of the comparison principle, two standard results about the construction of barriers
and regularization of subsolutions by sup-convolution are needed.

Lemma 2 (Barriers). Assume (1.4) and (1.5) and that the initial data u0 is bounded and Lipschitz
continuous. Assume that u (resp. v) is a bounded upper semi-continuous subsolution (resp. a
bounded lower semi-continuous supersolution) of (1.1)-(1.2). Then there exists some constant
λ> 0 such that the functions

u±(t , x) = u0(x)±λt

satisfy the following barrier properties:

• if u ≤ u0 in {0}×Ω, then u ≤ u+ in [0,T )×Ω,
• if v ≥ u0 in {0}×Ω, then v ≥ u− in [0,T )×Ω.

The previous lemma is a direct consequence of the definition of viscosity solutions if u0 is C 1.
In the general case, it follows by a standard approximation procedure.

We now turn to an auxiliary result about the regularization of subsolutions with respect to
tangential variables. Even if the proof is very standard, we will give below a short sketch of it.

Lemma 3 (Auxiliary tangential regularization of subsolutions by sup-convolution). Assume
that H satisfies (1.4). Let u : [0,T )×Ω→R be an upper semi-continuous subsolution of (1.1) which
satisfies

|u −u0| ≤CT in [0,T )×Ω.

We extend u to t = T by u(T, x) := limsup{u(s, y) : (s, y) → (T, x), (s, y) ∈ [0,T )×Ω} and to R×Ω by,{
u(t , x) = u(T, x) for t ≥ T,

u(t , x) = u(0, x) for t ≤ 0.

Then for ν> 0, we consider the tangential sup-convolution

uν(s, x) := sup
t∈R

{
u(t , x)− |t − s|2

2ν

}
= u(t̄ , x)− |t̄ − s|2

2ν
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and any such t̄ (depending on (s, x) ∈R×Ω) satisfies t̄ ∈ [s −θν, s +θν] with θν := 2
p
νCT < T /2.

If Iν denotes the time interval (θν,T − θν), then the function uν is Lipschitz continuous with
respect to t in R× Ω̄ and with respect to x in Iν×Ω,

|∂s uν|L∞(R×Ω) ≤
θν

ν
and |∂x uν|L∞(Iν×Ω) ≤ Lν

with Lν := sup
{

p ∈R, minX∈[0,T ]×ΩH(X , p) ≤ θν

ν

}
.

Assume moreover that that u is a subsolution at the boundary (0,T )×∂Ω, i.e. satisfies the first
line of (1.2), for some F that satisfies (1.5). Then uν is Lipschitz continuous in space and time on
Iν×Ω of Lipschitz constant Lν := max( θ

ν

ν ,Lν).

Sketch of the proof. It is easy to check that u −uν ≤ 2CT which gives the bound on θν ≥ |t̄ − s|.
Moreover the time derivative of uν is like t̄−s

ν which gives the bound on ∂s uν. The PDE inequality
satisfied by uν gives naturally the bound on ∂x uν. Finally, when F satisfies (1.5), we see using [4,
Lemma 3.8]) that u (and then uν) is weakly continuous on Iν×∂Ω, which implies the Lipschitz
continuity of uν in Iν×Ω. This ends the sketch of the proof. �

4. Proof of the comparison principle

Before proving our comparison principle, we describe the main steps.
We first use the doubling variable technique with respect to time with a parameter ν > 0

(Step 1).
We then focus on the case where the supremum of

u(t , x)− v(s, x)−correction/penalization

is reached at some (t̄ , s̄, x̄) with x̄ on the boundary ofΩ (Step 2).
We also show a key one-sided Lipschitz estimate satisfied by the function u(t , x) − v(s, y)

(Step 3).
We then consider twin blow-ups (Step 4): one at (t̄ , x̄) for u, and one at (s̄, x̄) for v (up to some

correction terms on v). After blow-up, we get half-relaxed limits U 0, V 0 that are globally defined
on Rt ×Ω and satisfy U 0(0,0) = 0 = V 0(0,0). As a consequence of Step 3, we show the following
one-sided Lipschitz estimate

U 0(t , x)−V 0(s, y) ≤ Lν|x − y |+b(t − s) with b := t̄ − s̄

ν
(4.1)

where the Lipschitz constant Lν is defined in Lemma 3.
Then, considering u, the supremum in time of the map t 7→U 0(t , x)−bt and v , the infimum

in time of the map s 7→ V 0(s, y) − bs (Step 5), we see that u∗ and v∗ are subsolution and
supersolution of a 1D problem with moreover the key one-sided Lipschitz estimate1

u∗(x)− v∗(y) ≤ Lν|x − y | with u∗(0) = 0 = v∗(0).

This procedure reduces the study to a 1D problem that is solved using the boundary viscosity
inequalities from Corollary 1 (Step 6).

1Notice that without the one-sided Lipschitz estimate (4.1), we would only get u ≤ v and u(0) = 0 = v(0), which is not
sufficient to conclude, because we need the envelopes.
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Proof of Theorem 1. The proof is split into several steps. The first two steps are standard and
new ideas appear in the next steps.

STEP 1: APPROXIMATE SUPREMUM.
Let η> 0. This parameter will be small enough but will not vary until we prove that the following
quantity is non-positive,

M = sup
t∈[0,T ),x∈Ω

{
u(t , x)− v(t , x)− η

T − t

}
.

It turns out that

M = lim
ν→0

{
lim
α→0

Mν,α

}
. (4.2)

with

Mν,α := sup
t ,s∈[0,T ), x∈Ω

Ψν,α(t , s, x)=Ψν,α(t̄ , s̄, x̄)

and (with a careful choice of the penalization term η
T−s instead of η

T−t )

Ψν,α(t , s, x) := u(t , x)− v(s, x)− η

T − s
−αg (x)− |t − s|2

2ν
with g (x) := x2

2
.

Moreover all maximisers (t̄ , s̄, x̄) in the definition of Mν,α satisfy

lim
ν→0

{
lim
α→0

|t̄ − s̄|2
ν

}
= 0, lim

ν→0

{
lim
α→0

αg (x̄)

}
= 0, limsup

ν→0

{
limsup
α→0

η

T − s̄

}
≤ 2CT . (4.3)

STEP 2: REDUCTION TO THE CASE WHERE THE SUPREMUM IS REACHED AT THE BOUNDARY.
Using the doubling variable technique with respect to x for u and v and considering u(t , x), v(s, y)

with a further penalization term of the form |x−y |2
2δ , we can rely on barrier estimates close to t = 0

to get estimates on maximum points (t̄δ, x̄δ, s̄δ, ȳδ) → (t̄ , x̄, s̄, x̄) as δ→ 0 (for some subsequence δ
and some suitable limit (t̄ , s̄, x̄)). We deduce that in the limit, the following fact holds true,

t̄ , s̄ ∈ [τη,T −τη], x̄ ∈ [0,ρα],

(
t̄ − s̄

ν
, p̄

)
∈ D̄1,+

t ,x u(t̄ , x̄), |p̄| ≤ Lν (4.4)

where Lν is the Lipschitz constant of uν in Lemma 3. Moreover, it is possible to choose τη
depending on η only and ρα depending on α only.2

If x̄ > 0, then we are in the classical case where we can conclude by writing viscosity inequal-
ities for the sequence (t̄δ, x̄δ, s̄δ, ȳδ) and by combining them in the classical way. Classical details
for this step are given in the companion paper. We are thus reduced to deal with the case where
x̄ = 0.

STEP 3: THE KEY ONE-SIDED LIPSCHITZ ESTIMATE.
We set

V (s, x) = v(s, x)+ η

T − s
+αg (x).

Then we have
∂t u +H(t , x,∂x u) ≤ 0 in (0,T )×Ω

∂t u +min(F, H)(t , x,∂x u) ≤ 0 in (0,T )×∂Ω

− η

(T−s)2 +∂sV +H(s, x,∂xV −α∂x g ) ≥ 0 in (0,T )×Ω
− η

(T−s)2 +∂sV +max(F, H)(s, x,∂xV −α∂x g ) ≥ 0 in (0,T )×∂Ω.

2Up to increase λ and CT in the barrier Lemma 2, and to decrease η in the time penalisation term, we can assume

that λT =CT and it is possible to show in this case that we can choose τη := η
4CT

and ρα =
√

6CT
α .



Nicolas Forcadel, Cyril Imbert and Régis Monneau 9

We now claim the following key one-sided "Lipschitz" estimate

u(t , x)−V (s, y) ≤ u(t̄ , x̄)−V (s̄, x̄)+ |t − s|2
2ν

− |t̄ − s̄|2
2ν

+Lν|x − y | (4.5)

where equality holds for t = t̄ , s = s̄, y = x = x̄. For clarity, the proof of (4.5) is postponed at the
end after Step 6.

STEP 4: THE TWIN BLOW-UPS.
We then consider the following twin blow-ups with small parameter ε > 0: one blow-up for u at
the point (t̄ , x̄) and one blow-up for V at the point (s̄, x̄),{

U ε(τ,ξ) := ε−1
{
u(t̄ +ετ, x̄ +εξ)−u(t̄ , x̄)

}
, U ε(0,0) = 0,

V ε(σ,ξ) := ε−1 {V (s̄ +εσ, x̄ +εξ)−V (s̄, x̄)} , V ε(0,0) = 0.
(4.6)

Before passing to the limit ε→ 0, they satisfy

∂τU ε+H(t̄ +ετ, x̄ +εξ,∂ξU
ε) ≤ 0 in I ε

t̄
×Ω

∂τU ε+min(F, H)(t̄ +ετ, x̄ +εξ,∂ξU
ε) ≤ 0 in I ε

t̄
×∂Ω

−η̄ε+∂σV ε+H(s̄ +εσ, x̄ +εξ,∂ξV ε−α∂x g (x̄ +εξ)) ≥ 0 in I εs̄ ×Ω
−η̄ε+∂σV ε+max(F, H)(s̄ +εσ, x̄ +εξ,∂ξV ε−α∂x g (x̄ +εξ)) ≥ 0 in I εs̄ ×∂Ω

(4.7)

with

η̄ε(σ) := η

(T − (s̄ +εσ))2 and I εr̄ :=
(
− r̄

ε
,

T − r̄

ε

)
for r̄ = t̄ , s̄.

From (4.5), they also satisfy

U ε(τ,ξ)−V ε(σ,ζ) ≤ Lν|ξ−ζ|+b(τ−σ)+ε |τ−σ|
2

2ν
with b := t̄ − s̄

ν
(4.8)

We then define the following half-relaxed limitsU 0 := limsup
ε→0

∗U ε, U 0(0,0) ≥ 0,

V 0 := liminf
ε→0

∗V ε, V 0(0,0) ≤ 0.

Passing to the limit we get

U 0(τ,ξ)−V 0(σ,ζ) ≤ Lν|ξ−ζ|+b(τ−σ), U 0(0,0) = 0 =V 0(0,0). (4.9)

and from (4.7) thanks to the discontinuous stability of viscosity solutions, we get

∂τU 0 +H(t̄ , x̄,∂ξU
0) ≤ 0 in (R×Ω) ∩{|U 0| < +∞}

∂τU 0 +min(F, H)(t̄ , x̄,∂ξU
0) ≤ 0 in (R×∂Ω) ∩{|U 0| < +∞}

−η̄+∂σV 0 +H(s̄, x̄,∂ξV 0) ≥ 0 in (R×Ω) ∩{|V 0| < +∞}
−η̄+∂σV 0 +max(F, H)(s̄, x̄,∂ξV 0) ≥ 0 in (R×∂Ω) ∩{|V 0| < +∞} (4.10)

with η̄ := η

(T−s̄)2 . We used the fact that α∂x g (x̄) =αx̄ = 0.

STEP 5: THE 1D PROBLEM.
We now define the following functions as supremum/infimum in time of the functions defined
in R×Ω,

u(ξ) := sup
τ∈R

{
U 0(τ,ξ)−bτ

}
, v(ξ) := inf

τ∈R
{
V 0(τ,ξ)−bτ

}
.

From (4.9), these functions satisfy

−∞≤−Lν|ζ−ξ|+u(ξ) ≤ v(ζ) ≤+∞, 0 ≤ u(0) ≤ v(0) ≤ 0

and then u(0) = 0 = v(0). Because of this one-sided Lipschitz inequality, this is also the case for
their semi-continuous envelopes, i.e. we have

−∞≤−Lν|ζ−ξ|+u∗(ξ) ≤ v∗(ζ) ≤+∞, u∗(0) = 0 = v∗(0). (4.11)
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From (4.10), we get (again from stability) that these functions satisfy in particular for X̄ := (t̄ , x̄)
and Ȳ := (s̄, x̄) 

b +H(X̄ ,∂ξu∗) ≤ 0 in Ω ∩{|u∗| < +∞}
b +min(F, H)(X̄ ,∂ξu∗) ≤ 0 in ∂Ω ∩{|u∗| < +∞}

−η̄+b +H(Ȳ ,∂ξv∗) ≥ 0 in Ω ∩{|v∗| < +∞}
−η̄+b +max(F, H)(Ȳ ,∂ξv∗) ≥ 0 in ∂Ω ∩{|v∗| < +∞}

.

(4.12)

STEP 6: GETTING A CONTRADICTION FROM STRUCTURAL ASSUMPTIONS.
We now apply Corollary 1. In order to do so, we consider

p := limsup
Ω3x→0

u∗(x)

x
, p := liminf

Ω3x→0

v∗(x)

x
, a := min(p, p), b := max(p, p)

and we get that there exists p ∈ [a,b]∩R 6= ; such that either

b +H(X̄ , p) ≤ 0 < η̄≤ H(Ȳ , p)−H(X̄ , p)

or

b +max(F, H)(X̄ , p) ≤ 0 < η̄≤ F (Ȳ , p)−F (X̄ , p).

One of these facts are true along a subsequence ν → 0. In the first case, we get from the
assumption on the Hamiltonian H , see (1.4) ii), that,

η̄≤ H(Ȳ , p)−H(X̄ , p) ≤C |t̄ − s̄|{1+max(0, H(X̄ , p))
}

≤C |t̄ − s̄| {1+max(0,−b)}

≤C

{ |t̄ − s̄|2
ν

+|t̄ − s̄|
}
→ 0 as ν→ 0

where we have used b = t̄ − s̄

ν
in the third line, and (4.3) in the last line. Contradiction because

η̄≥ η/T 2 > 0.
From the assumption on the function F , see (1.5) ii), we get a similar contradiction in the second
case,

η̄≤ F (Ȳ , p)−F (X̄ , p) ≤C |t̄ − s̄|{1+max(0,max(F, H)(X̄ , p))
}

≤C |t̄ − s̄| {1+max(0,−b)}

≤C

{ |t̄ − s̄|2
ν

+|t̄ − s̄|
}
→ 0 as ν→ 0.

We conclude that M ≤ 0. Recalling that

M = sup
t∈[0,T ),x∈Ω

{
u(t , x)− v(t , x)− η

T − t

}
≤ 0,

it is enough to let η→ 0 to get u ≤ v as desired.

BACK TO STEP 3: PROOF OF THE KEY ONE-SIDED LIPSCHITZ ESTIMATE (4.5).
We now justify (4.5). Following Lemma 3, we extend u and consider

Uν(s, x) = sup
t∈R

{
u(t , x)− |t − s|2

2ν

}
and there exists some (possibly non unique) t̄s ∈ [s−θν, s+θν] such that Uν(s, x) = u(t̄s , x)− |t̄s−s|2

2ν .
If s ∈ (θν,T −θν), then we see that t̄s ∈ (0,T ) and then we also have

Uν(s, x) := sup
t∈[0,T )

{
u(t , x)− |t − s|2

2ν

}
.
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In particular for (s, x) = (s̄, x̄), we can choose t̄ s̄ = t̄ where t̄ s̄ is given by Lemma 3 and (t̄ , s̄, x̄)
appear in Steps 1 and 2. Now we choose ν > 0 small enough such that θν < τη and we set
Iν := (θν,T −θν). Moreover we have for all s ∈ Iν, y ∈Ω

Uν(s, y)−V (s, y) = sup
t∈[0,T )

Ψν,α(t , s, y) ≤Ψν,α(t̄ , s̄, x̄) =Uν(s̄, x̄)−V (s̄, x̄).

Now from Lemma 3, we also know that Uν is Lν-Lipschitz, and then Uν(s, x)−Uν(s, y) ≤ Lν|x−y |,
which implies

Uν(s, x)−V (s, y) ≤Uν(s̄, x̄)−V (s̄, x̄)+Lν|x − y |
which gives exactly (4.5). This ends the proof of the theorem. �
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