
Some uniqueness results for diagonal hyperbolisystems with large and monotone dataA. El Hajj1, R. Monneau2Marh 27, 2012AbstratIn this paper, we study the uniqueness of solutions for diagonal hyperboli systems in one spae dimension. Wepresent two uniqueness results. The �rst one is a global existene and uniqueness result of a ontinuous solutionfor stritly hyperboli systems. The seond one is a global existene and uniqueness result of a Lipshitz solutionfor hyperboli systems not neessarily stritly hyperboli. An appliation of these two results is shown in thease of one-dimensional isentropi gas dynamis.AMS Classi�ation: 35L45, 35Q35, 35Q72, 74H25.Key words: Uniqueness results, system of Burgers equations, system of nonlinear transport equations, non-linear hyperboli system, isentropi gas dynamis.1 Introdution and main results1.1 Setting of the problemIn this paper we are interested in ontinuous solutions to hyperboli systems in dimension one. Ourwork will fous on solutions u(t, x) = (ui(t, x))i=1,...,d, where d ≥ 1 is an integer, of hyperboli systemswhih are diagonal, i.e.
∂tu

i + λi(u)∂xu
i = 0 on (0,+∞)× R, for i = 1, ..., d, (1.1)with the initial data:

ui(0, x) = ui0(x), x ∈ R, for i = 1, . . . , d. (1.2)Here we use the notation ∂t = ∂

∂t
and ∂x =

∂

∂x
. Suh systems are (sometimes) alled (d× d) diagonalhyperboli systems.For real numbers αi ≤ βi, let us onsider the box

U = Πd
i=1[α

i, βi]. (1.3)We onsider a given funtion λ = (λi)i=1,...,d : U → R
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(H1)







λ ∈ [C∞(U)]
d,there exists M0 > 0 suh that for i = 1, ..., d,

|λi(u)| ≤M0 for all u ∈ U,there exists M1 > 0 suh that for i = 1, ..., d,
|λi(v) − λi(u)| ≤M1|v − u| for all v, u ∈ U,where |w| =

∑

i=1,...,d

|wi|, for w = (w1, . . . , wd). Given any Banah spae (E, ‖ · ‖E), in the rest of thepaper we onsider the norm on Ed:
‖w‖Ed =

∑

i=1,...,d

‖wi‖E, for w = (w1, . . . , wd) ∈ Ed.Then, we de�ne
λi,j(u) =

∂λi

∂uj
(u), for i, j = 1, . . . , d,and we assume that

(H2) λi,i(u) ≥ 0 for all u ∈ U, and i = 1, · · · , d.In (1.2), the initial data u0 = (u10, · · · , ud0) is assumed to satisfy the following property:
(H3)







αi ≤ ui0 ≤ βi,
ui0 is nondereasing,
∂xu

i
0 ∈ L logL(R), ∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, · · · , d,where L logL(R) is the following Zygmund spae:
L logL(R) =

{

f ∈ L1(R) suh that ∫
R

|f | ln (e+ |f |) < +∞
}

.This spae is equipped by the following norm:
‖f‖L logL(R) = inf

{

µ > 0 :

∫

R

|f |
µ

ln

(

1 +
|f |
µ

)

≤ 1

}

.This norm is due to Luxemburg (see Adams [1, (13), Page 234℄).In partiular we will say that u0 is nondereasing if eah omponent ui0, for i = 1, . . . , d, is nondereasingand we write it as ∂xu0 ≥ 0. Reall that nondereasing solutions of the lassial salar Burgers equation
∂tu+ ∂x

(
u2

2

)

= 0, do not develop shoks. Notie that assumption (H2) is a natural generalization ofBurgers equation to systems.For general (d×d) stritly hyperboli systems, (inluding diagonal systems, like system (1.1)), Bianhiniand Bressan proved in [4℄ a striking result of global existene and uniqueness of a solution assumingthat the initial data has small total variation. Their existene result is a generalization of Glimm'sresult [12℄, proved in the ase of onservation laws. Let us mention that an existene result has alsobeen obtained by LeFloh and Liu [18, 19℄ in the non-onservative ase. In this paper we are interestedin existene and uniqueness result of a ontinuous solution to system (1.1).2



1.2 Main resultsIn El Hajj, Monneau [11℄, we left open the question of the uniqueness of ontinuous solutions of system(1.1). In this subsetion we present two uniqueness results for system (1.1) under some partiularassumptions. An appliation of these two main results is then presented in Subsetion 1.3 for the 1Dgas dynamis equations.Theorem 1.1 (Existene and uniqueness of a ontinuous solution)Assume (H1), (H2), (H3) and that system (1.1) is stritly hyperboli, i.e.
λi+1(u)− λi(u) ≥ Λ > 0, for all u ∈ U and i = 1, . . . , d− 1. (1.4)Then, there exists a funtion u = (ui)i=1,...,d whih satis�es:i) Existene of a ontinuous solution:The funtion u is solution of (1.1)-(1.2), suh that u(t, ·) is nondereasing in x for all t > 0, u(t, x) ∈ Ufor all (t, x), and u satis�es
u ∈ [L∞((0,+∞)× R)]d and ∂xu ∈ [L∞((0,+∞);L logL(R))]d.Moreover u is ontinuous in time and in spae and satis�es for all δ, h ≥ 0 and all (t, x) ∈ (0, T−δ)×R,the following estimate:

|u(t+ δ, x+ h)− u(t, x)| ≤ C ω(δ, h) with ω(δ, h) =
1

ln(1
δ
+ 1)

+
1

ln( 1
h
+ 1)

, (1.5)where C(T, d,M0,M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L logL(R)]d ,Λ).Furthermore u, is a ontinuous vanishing visosity solution of system (1.1)-(1.2), in the sense of De�-nition 3.6.ii) Uniqueness:Under assumptions (H1), (H2), (H3) and (1.4) every ontinuous vanishing visosity solution of (1.1)-(1.2) in the sense of De�nition 3.6 is unique.iii) L1-stability estimate:Let u (resp. v) be two solutions of system (1.1), onstruted in (i). Assume moreover that u(0, ·) = u0(·)and v(0, ·) = v0(·) suh that u0(±∞) = v0(±∞). Then there exists a onstant L > 0, suh that for all
t ∈ [0, T ], we have

‖u(t, ·)− v(t, ·)‖[L1(R)]d ≤ L‖u0 − v0‖[L1(R)]d , (1.6)where L only depends on T , M0, M1, d, Λ and bounds on ‖u0‖[L∞(R)]d , ‖∂xu0‖[L logL(R)]d , ‖v0‖[L∞(R)]d ,
‖∂xv0‖[L logL(R)]d .Remark 1.2(i) Notie that if u0 ∈ [W 1,∞(R)]d with ∂xu0 ≥ 0 then ∂xu0 ∈ (L1(R) ∩ L∞(R))d ⊂ [L logL(R)]d andwe an apply Theorem 1.1.(ii) If we know moreover that the system is rih then by a result of Serre [26, Vol II℄, we know that thesolution is indeed Lipshitz. Therefore our Theorem 1.1 an be seen as a generalization of the result ofSerre to the ase of diagonal non-rih systems.(iii) The C∞ regularity of the oe�ients is onvenient for the proofs, but an be weakened up to theminimal regularity, i.e. Lipshitz ontinuous oe�ients λi.3



Let us mention that a global existene result similar to Theorem 1.1 (but without uniqueness) has beenobtained in [11℄ for non stritly hyperboli systems where assumptions (H2)-(1.4) are simply replaedby the following assumption
(H2)′

∣
∣
∣
∣
∣
∣
∣
∣

for all u ∈ U, we have
∑

i,j=1,...,d

ξiξjλ
i
,j(u) ≥ 0 for every ξ = (ξ1, ..., ξd) ∈ [0,+∞)d.Notie that in the ase of stritly hyperboli systems, Theorem 1.1 only requires assumption (H2) whihis weaker than (H2)′ and moreover guarantees the uniqueness of the solution. Our method of proofis strongly inspired from Bianhini, Bressan [4℄. First, we get an estimate in [L∞((0, T );L logL(R))]dfor ∂xu getting some ontrol on the interations between di�erent �elds ∫ T

0

∫

R

∂xu
i∂xu

jdxdt for i 6= j,using the stritly hyperboli ondition (1.4) similarly as in Bianhini et al. [4℄.A seond key point is that our [L∞((0, T );L logL(R))]d estimate on ∂xu implies the ontinuity of thesolution u with a ontrolled modulus of ontinuity. This implies that the solution is loally in BV withsmall norm. Taking into aount the �nite speed propagation property it is then possible to loalizethe argument developed in Bianhini et al. [4℄, and �nally to extend it to the ase of large initial data(but monotone data).Let us mention that, in the ase d = 2 and under the same assumptions of Theorem 1.1, T. T. Li provedin [20, pp. 35-41℄ an existene and uniqueness result for C1 solutions. This result is a generalization ofLax result [17℄, proved for Lipshitz solutions. Here, we prove a similar result onsidering less regularityon the solution (ontinuous solutions) and for all d ≥ 1.Let us now introdue various assumptions on the matrix (λi,j(u))i,j=1,...,d whih will guarantee the ex-istene and uniqueness of Lipshitz solutions.(Non-negative sub-diagonal matries)
(K1) λi,j(u) ≥ 0 for all u ∈ U and j ≥ i with i, j ∈ {1, . . . , d}.(Non-negative matries with non-positive o�-diagonal terms)
(K2)







λi,j(u) ≤ 0 for all u ∈ U and j 6= i with i, j ∈ {1, . . . , d},

Aij = inf
u∈U

(λi,j(u)) and ∑

i,j=1,...,d

Aijξiξj ≥ 0 for every ξ = (ξ1, ..., ξd) ∈ [0,+∞)d.(Diagonally dominant)
(K3) λi,i(u) ≥

∑

i6=j

(
λi,j(u)

)− for all u ∈ U and i = 1, . . . , d,where we note x− = max(0,−x).Theorem 1.3 (Existene and uniqueness of Lipshitz solutions)Assume one of the following assumptions (K1), (K2) or (K3). Let u0 ∈ [W 1,∞(R)]d be a non-dereasing funtion satisfying u0(x) ∈ U , for all x ∈ R. Then, there exists a unique funtion4



u ∈
⋂

T>0

[
W 1,∞([0, T )× R)

]d solution of (1.1)-(1.2), with u(t, x) ∈ U for all (t, x). Moreover we havefor any t ∈ (0,+∞):
∑

i=1,...,d

‖∂xui(t, ·)‖L∞(R) ≤
∑

i=1,...,d

‖∂xui0‖L∞(R), if (K2) holds (1.7)and
max

i=1,...,d
‖∂xui(t, ·)‖L∞(R) ≤ max

i=1,...,d
‖∂xui0‖L∞(R), if (K3) holds. (1.8)Notie that in Theorem 1.3, we do not assume that system (1.1) is stritly hyperboli.Theorem 1.3 is based on the fat that the solution satis�es ∂xui ≥ 0, for i = 1, . . . , d, and then weonly have to bound the maximum of the gradient from one side. Assumptions (K1), (K2) and (K3)are su�ient onditions to ontrol the solution of the maximum of the gradient. These a priori boundsare obtained onsidering a paraboli regularization of the system and then writing some di�erentialinequalities satis�ed in the sense of visosity by the maximum of the gradient. The uniqueness of thesolution is an independent result valid for Lipshitz solutions.In the ase of (2× 2) stritly hyperboli systems, whih orresponds in (1.1) to the ase of λ1(u1, u2) <

λ2(u1, u2), we refer the reader to the work of Lax [17℄, whih has proved the existene of Lipshitz solu-tions of (1.1)-(1.2) with the assumption λi,i(u) ≥ 0 for the diagonal terms. As it was realled in Remark1.2 (ii), this result was also extended by Serre [26, Vol II℄ to the ase of (d× d) rih stritly hyperbolisystems. We also refer the reader to the work of Poupaud [25℄, for a global existene and uniquenessresult of a Lipshitz solution of a partiular quasi-linear hyperboli system, onsidering large initial data.In the framework of visosity solutions, Ishii, Koike [15℄ and Ishii [14℄, have shown existene anduniqueness of visosity ontinuous solutions for Hamilton-Jaobi systems of the form:






∂tu
i +Hi(u,Du

i) = 0 with u = (u1, . . . , ud) ∈ R
d, for x ∈ R

N , t ∈ (0,+∞),

ui(x, 0) = ui0(x) x ∈ R
N ,

(1.9)where the Hamiltonian Hi is quasi-monotone in u (see the de�nition in Ishii, Koike [15, Th.4.7℄). Indeedsystem (1.1) belongs to this framework with N = 1 and ∂xui ≥ 0 under the assumption λi,j(u) ≤ 0 for
j 6= i.Let us also mention that in the ase d = 2 with a matrix (λi,j(u))i,j=1,2 =

(
1 −1
−1 1

), it was provedin El Hajj, Foradel [10℄, the existene and uniqueness of a Lipshitz visosity solution, and in El Hajj[9℄, the existene and uniqueness of a strong solution in [

W 1,2
loc ([0,+∞)× R)

]2.1.3 Appliation to 1D gas dynamisNow, we present an appliation of the previous results to the following 1D system of isentropi gasdynamis:






∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0, with p(ρ) = (γ−1)2

4γ ργ

u(0, x) = u0 and ρ(0, x) = ρ0 ≥ 0.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

on (0,+∞)× R (1.10)
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where ρ is the density, u is the speed and p(ρ) is the pressure given by a simple power law for anexponent γ > 1. First, we assume the following onditions, with θ = γ−1
2 :

(J1) u0, ρ
θ
0 ∈ L∞(R), and ∂xu0 ≥

∣
∣∂xρ

θ
0

∣
∣.

(J2) ∂xu0, ∂xρ
θ
0 ∈ L logL(R).

(J2)′ u0, ρ
θ
0 ∈ Lip(R).Applying Theorems 1.1 and 1.3, we will prove the following result.Theorem 1.4 (Existene and uniqueness for isentropi gas dynamis)Assume (J1), with ρ0 ≥ 0 and γ > 1. Then we havei) Existene and uniqueness of a ontinuous solution:Under assumption (J2), system (1.10) has a ontinuous solution (ρ, u) on [0,+∞) × R, where ρ(t, ·)and u(t, ·) satisfy (J1) and (J2), for all t ≥ 0. Moreover, if

u0 + ρθ0 ≥ Λ1 > Λ2 ≥ u0 − ρθ0 for some onstants Λ1,Λ2,then this solution is the unique ontinuous vanishing visosity solution, in the sense of De�nition 3.6.ii) Existene and uniqueness of a Lipshitz solution:Assume (J2)′. If 1 < γ ≤ 3, then system (1.10) has a solution (ρ, u) ∈ [L∞([0,+∞)× R)]2, with
ρ ≥ 0 and ρθ, u ∈ W 1,∞([0,+∞)× R). (1.11)Reiproally any solution (ρ, u) of (1.10) satisfying (1.11) is unique if we assume moreover that ρ ≥

Λ > 0 on [0,+∞)× R.Remark 1.5 (Vauum ase)Notie that if ρ = 0 on a subset ω ⊂ (0,+∞) × R, then equation (1.10) is automatially satis�ed andthe funtion u an be hosen loally arbitrarily in ω. This shows that we an not expet uniqueness ofthe solution when there is vauum (i.e ρ = 0).The proof of Theorem 1.4 is an appliation of Theorems 1.1 and 1.3. We refer the reader to Setion 5for the proof of Theorem 1.4. Let us reall that, in the ase ρ0 > 0, T. T. Li proved in [20, pp. 35-41℄an existene and uniqueness result for C1 solutions. Notie that for the existene results given in (i)(ontinuous solutions) and in (ii) (Lipshitz solutions), we only assume that ρ0 ≥ 0, whih allows usto onsider solutions with vauum. In onnetion with Theorem 1.4, let us mention the work of Lionset al. in [22℄ where the existene of a solution was obtained for ρ0 ≥ 0 with any u0, ρ0 ∈ L∞(R) and
γ > 1. This extended a previous result of DiPerna [7, 8℄. We also refer the reader to Merier [23℄ foranother result with vauum.1.4 Organization of the paperThis paper is organized as follows: in Setion 2, we prove the existene of ontinuous solutions (Theorem1.1 (i)). In Setion 3, we prove the uniqueness of ontinuous vanishing visosity solutions (Theorem1.1 (ii)) and the L1-stability estimate (Theorem 1.1 (iii)). In Setion 4, we prove the existene anduniqueness of Lipshitz solutions (Theorem 1.3). Finally in Setion 5, we give the proof of Theorem 1.4as an appliation to the 1D isentropi gas dynamis.6



2 Existene of ontinuous solutionsIn this setion we prove the existene of ontinuous solutions of system (1.1)-(1.2) (Theorem 1.1 (i))adapting our existene proof developed in [11℄ and some ideas of Bianhini, Bressan [4℄.To prove the existene of ontinuous solutions to system (1.1)-(1.2), we need to reall the existeneresult proved by El Hajj et al. in [11℄ for the following paraboli regularization of system (1.1):
∂tu

ε,i + λi(uε)∂xu
ε,i = ε∂xxu

ε,i for 0 < ε ≤ 1 and ∂xx =
∂2

∂x2
, (2.1)onsidering the following initial data:

uε(x, 0) = ũ0(x) = (ũi0(x))i=1,··· ,d. (2.2)Let us now introdue the following assumption on the initial data:
(G1) ũ0(x) ∈ U and ũ0 ∈ [W 1,∞(R)]d.

(G2) ∂xũ
i
0 ≥ 0 for i = 1, · · · , d.

(G3) ũ0(x) = uε0(x) = u0 ∗ ηε(x), for 0 < ε ≤ 1,where u0 satisfying (H3) and ηε is a molli�er de�ned by ηε(·) = 1
εη(

·
ε ), suh that η ∈ C∞

c (R) is a non-negative funtion and ∫

R
η = 1. We note that assumption (G3) will be used to prove some intermediateresults. However, our �nal results are proved without this assumption.In order to pass to the limit ε → 0 in (2.1), we will need to use (and to prove later) the followingregularity assumption:

(G4)

∣
∣
∣
∣
∣
∣

For all T > 0, ∃CT > 0 independent on ε, suh that
∥
∥∂xu

ε,i
∥
∥
L∞((0,T );L logL(R))

≤ CT for i = 1, . . . , d.In [11℄, we have proven the following result (see [11℄, Theorem 2.2, Proposition 3.1, Lemma 4.3 andTheorem 4.4).Theorem 2.1 (Global existene for non stritly hyperboli ase)Assume (H1). Then we have:i) Existene, uniqueness and bounds:Under assumption (G1), system (2.1)-(2.2) has a unique solution uε = (uε,i)i=1,...,d ∈
⋂

T>0

[
W 1,∞([0, T )× R)

]d,satisfying uε(t, x) ∈ U for all (t, x), and the following L∞ estimate:
‖uε,i‖L∞((0,+∞)×R) ≤ ‖ũi0‖L∞(R) for i = 1, . . . , d. (2.3)Moreover, if we assume (G2) then the funtion uε(t, ·) is nondereasing in x for all t > 0 and we havefor any t ∈ [0, T ] the following gradient entropy estimate:

∫

R

∑

i=1,...,d

f
(
∂xu

ε,i(t, x)
)
dx+

∫ t

0

∫

R

∑

i,j=1,...,d

λi,j(u
ε)∂xu

ε,i(s, x)∂xu
ε,j(s, x) dx ds ≤ C1, (2.4)7



where
f(x) =

{
x ln(x) + 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,
(2.5)and C1(T, d,M1, ‖ũ0‖[L∞(R)]d , ‖∂xũ0‖[L logL(R)]d).Furthermore, if we assume ũ0 ∈ [W 2,∞(R)]d ∩ [C∞(R)]d, then we have

uε ∈
⋂

T>0

([
W 2,∞([0, T )× R)

]d ∩ [C∞([0, T )× R)]
d
)

.ii) Convergene:Assume that ũ0 satis�es (G3). Assume moreover that uε satis�es (G4) uniformly for ε ∈ (0, 1]. Thenup to extrat a subsequene, the funtion uε onverges loally uniformly, as ε goes to zero, to a funtion
u ∈ [L∞([0,+∞)× R)]

d. Moreover u is a solution to (1.1)-(1.2) and satis�es u(t, ·) is nondereasing in
x for all t > 0, u ∈ [C([0,+∞)× R)]d, u(t, x) ∈ U for all (t, x) and there exists a modulus of ontinuity
ω(δ, h), suh that for all δ, h ≥ 0 and all (t, x) ∈ (0, T − δ)× R, we have:

|u(t+ δ, x+ h)− u(t, x)| ≤ C2 ω(δ, h) with ω(δ, h) =
1

ln(1δ + 1)
+

1

ln( 1h + 1)
(2.6)where C2(CT ,M0), with CT is given in assumption (G4).Remark 2.2 (Sense of integral terms)It is lear here that the integral terms on the left hand side of (2.4) are always de�ned, sine weknow by (H1) that, for all i, j = 1, · · · , d, the funtions λi,j(·) are bounded, and moreover we knowthat, for all i = 1, · · · , d and T > 0, uε,i ∈ L∞((0, T );W 1,∞(R)) and ∂xu

ε,i ≥ 0, and therefore
∂xu

ε,i ∈ L∞((0, T );L1(R) ∩ L∞(R)) ⊂ L∞((0, T );L logL(R)).Before going into the proof of the existene result of ontinuous solutions introdued in Theorem 1.1(i), we reall the following lemma (dedued from Lemma 7.1 in Bianhini et al. [4℄).Lemma 2.3 (Transversal wave interations)Let µ, µ̄ ∈ Cb((0,+∞) × R) (two ontinuous bounded funtions) and ε ≥ 0. Let moreover z, z̄ ∈
L∞((0,+∞);L1(R)), be solutions of the two independent salar equations

∂tz + ∂x(µ z) = ε∂xxz on (0,+∞)× R (2.7)
∂tz̄ + ∂x(µ̄ z̄) = ε∂xxz̄ on (0,+∞)× R (2.8)with two initial data z(0, ·), z̄(0, ·) ∈ L1(R), where the initial data of z is understood as follows

∫

R

z(t, x)ψ(x)dx →
∫

R

z(0, x)ψ(x)dx as t→ 0, for every ψ ∈ C∞
c (R)and similarly for z̄. Assume that, for all T > 0

inf
(t,x)∈(0,T )×R

[µ(t, x)− µ̄(t, x)] ≥ Λ > 0.Then
∫ T

0

∫

R

|z(t, x)||z̄(t, x)|dx dt≤ 1

Λ

(∫

R

|z(0, x)|dx
)(∫

R

|z̄(0, x)|dx
)

.8



We remark that the proof of this lemma is based on the following estimate
d

dt

[∫ ∫

x<y

1

Λ
|z(t, x)||z̄(t, y)|dx dy

]

≤ −
∫

R

|z(t, x)||z̄(t, x)|dx.For more details see Bianhini et al. [4, Lemma 7.1℄.Proof of Theorem 1.1 (i):We will show that bound (G4) holds for the solution uε given in Theorem 3.1 (i), with initial data ũ0satisfying (G3). To this end, we bound from above the following quantity uniformly on ε
I = −

∫ t

0

∫

R

∑

i,j=1,...,d

λi,j(u
ε)∂xu

ε,i(s, x)∂xu
ε,j(s, x) dx ds

≤ −
∫ t

0

∫

R

∑

i6=j, i,j=1,...,d

λi,j(u
ε)∂xu

ε,i(s, x)∂xu
ε,j(s, x) dx ds

≤M1

∫ t

0

∫

R

∑

i6=j, i,j=1,...,d

∣
∣∂xu

ε,i(s, x)
∣
∣
∣
∣∂xu

ε,j(s, x)
∣
∣ dx dswhere to get the seond line we have used (H2), and we have used (H1) in the third line. Now, we use(1.4), Lemma 2.3 and the monotoniity of uε0 (as a onsequene of (H3) and (G3)), we obtain

I ≤ M1

Λ

∑

i6=j,i,j=1,...,d

(∫

R

∣
∣
∣∂xu

ε,i
0 (x)

∣
∣
∣ dx

)(∫

R

∣
∣
∣∂xu

ε,j
0 (x)

∣
∣
∣ dx

)

≤ 4M1

Λ
‖u0‖2[L∞(R)]d .Then, by (2.4) we get

∫

R

∑

i=1,...,d

f
(
∂xu

ε,i(t, x)
)
dx ≤ C1 +

4M1

Λ
‖u0‖2[L∞(R)]d := CT ,whih implies that ∂xuε,i, for i = 1, . . . , d, are bounded in [L∞((0, T );L logL(R))]d uniformly on ε (witha onstant only depending on CT and on ||u0||[L∞(R)]d).The fat that u is a vanishing visosity solution is a onsequene of Theorem 3.7 that will be provenlater. This ends the proof of Theorem 1.1 (i). 23 Loal semigroup property and uniqueness of ontinuous van-ishing visosity solutionsIn this setion, we show that the solution of system (1.1)-(1.2), onstruted in Theorem 1.1 (i), is theunique ontinuous vanishing visosity solution (in the sense of De�nition 3.6). In the following subsetionwe show some useful estimates for the paraboli system (2.1)-(2.2). Then using these estimates, we provein Subsetion 3.2 a kind of ��nite propagation speed result� of this paraboli system in the vanishingvisosity limit. Thanks to this result, we are able to loalize the argument developed in Bianhini et al.[4℄ and then to extend it for large and ontinuous data.9



3.1 Preliminary resultsIn this subsetion we show some useful paraboli estimates. In Proposition 3.2, we prove that the L1norm of the seond spae derivative uxx of the solution of paraboli system (2.1)-(2.2) deays rapidlyin spae loally in time, whih gives a L∞ bound on the spae derivative ux. Then, using this L∞bound we prove in Lemma 3.4 a omparison priniple result based on the maximum priniple for salarparaboli equations.Lemma 3.1 (Properties of the heat kernel)Let G(t, x) = 1√
4πt

e−
x2

4t be the standard heat kernel. Then, for all t > 0, we have:(i) ‖G(t, ·)‖L1(R) = 1,(ii) ‖∂xG(t, ·)‖L1(R) ≤
1√
t
.For the proof of this lemma, we refer to Pazy [24, Th 5.2. Page 107℄.Proposition 3.2 (Loal in time L1 bound on ∂xxu

ε)Assume that ũ0 satis�es (G1) and (G2). Let uε = (uε,i)i=1,...,d be the solution of system (2.1)-(2.2),given by Theorem 3.1 (i). Then for
T0 =

(
1

8C0

)2 and C0 = 2
(
‖ũ0‖[L∞(R)]d +M0 +M1‖ũ0‖[L∞(R)]d

)
,the following estimate holds for all t ∈ (0, εT0]:

∥
∥∂xxu

ε,i(t, ·)
∥
∥
L1(R)

≤ 2C0√
εt

for i = 1, . . . , d. (3.1)Proof of Proposition 3.2:We prove the result in three steps. In the �rst step, we prove that the seond spae derivative of thesolution of (2.1) with ε = 1 is bounded in L∞((0, T );L1(R)) for some small T . In the seond step weprove estimate (3.1) in the ase ε = 1 and then in the third step we dedue the result resaling in timeand in spae.Step 1. (Loal L∞((0, T );L1(R)) bound): First of all, assume that ũ0 ∈ [W 2,∞(R)]d ∩ [C∞(R)]d.Let v = (vi)i=1,...,d be a solution of system (2.1)-(2.2), with ε = 1, given by Theorem 3.1 (i). Taking thederivative with respet to x the equation (2.1) satis�ed by v ∈ [C∞((0, T )× R)]
d, we get that wi = ∂xv

isatis�es the following equation
∂tw

i + λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi = ∂xxw

i. (3.2)The funtion wi(t) = wi(t, ·), an be represented as
wi(t) = G(t) ∗ wi(0)−

∫ t

0

G(t− s) ∗



λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi



 ds (3.3)where G is de�ned in Lemma 3.1. Taking the derivative with respet to x we dedue that
∂xw

i(t) = G(t) ∗ ∂xwi(0)−
∫ t

0

(∂xG(t− s)) ∗



λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi



 ds.10



Using Lemma 3.1, we obtain
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+M1

∫ t

0

1√
t− s

‖wi(s)‖L∞(R)‖w(s)‖[L1(R)]d dswhere w = (wi)i=1,...,d. Using estimate (2.3) and the fat that wi ≥ 0, we obtain
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+2M1‖ũ0‖[L∞(R)]d

∫ t

0

1√
t− s

‖wi(s)‖L∞(R) ds.By Sobolev injetion and the fat that wi(t, x) → 0 as |x| → +∞, we an see that
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+2M1‖ũ0‖[L∞(R)]d

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds.This implies that
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) + κ

√
T‖∂xwi‖L∞((0,T );L1(R)) (3.4)where κ = 2(M0 + 2M1‖ũ0‖[L∞(R)]d). Using estimate (3.4), we an prove that for all T ≤ 1

4κ2 , we have(if ‖∂xwi‖L∞((0,T );L1(R)) is �nite)
‖∂xwi‖L∞((0,T );L1(R)) ≤ 2‖∂xwi(0)‖L1(R).The remaining di�ulty is to show that ‖∂xwi‖L∞((0,T );L1(R)) is �nite. To this end, we multiply w by afuntion φR(·) = φ( ·

R
), where φ is a ut-o� funtion satisfying φ ∈ Cc(R) and φ ≡ 1 on [−1, 1]. Then, werepeat the previous argument replaing w by φRw and at the end we take the limit R→ +∞ to onlude.Step 2. (Case ε = 1): We now write the derivative of equation (3.3) with respet to x, as follows

∂xw
i(t) = (∂xG(t)) ∗ wi(0)−

∫ t

0

(∂xG(t− s)) ∗



λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi



 dsUsing Lemma 3.1, we obtain
‖∂xwi(t)‖L1(R) ≤

1√
t
‖wi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+M1

∫ t

0

1√
t− s

‖wi(s)‖L∞(R)‖w(s)‖[L1(R)]d ds.Similarly as in Step 1, from estimate (2.3) and the fat that wi ≥ 0, we get
‖∂xwi(t)‖L1(R) ≤

2√
t
‖ũ0‖[L∞(R)]d +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+2M1‖ũ0‖[L∞(R)]d

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds.11



If we note C0 = 2(‖ũ0‖[L∞(R)]d +M0 +M1‖ũ0‖[L∞(R)]d), then we an dedue that
‖∂xwi(t)‖L1(R) ≤

C0√
t
+ C0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds.To prove (3.1), we shall argue by ontradition. First, we remark that from Step 1 we know that
‖∂xwi(t)‖L1(R) is �nite. Assume that there exists a �rst time τ < T0 suh that the equality in (3.1)(with ε = 1) holds. Then, observing that

∫ t

0

1
√

s(t− s)
ds = πwe ompute

‖∂xwi(τ)‖L1(R) ≤ C0√
τ
+ C0

∫ τ

0

1√
τ − s

2C0√
s
ds

<
C0√
τ
+ 8C2

0 ≤ 2C0√
τreahing a ontradition. Hene,

‖∂xwi(t)‖L1(R) <
2C0√
t

for all t ∈ [0, T0]. (3.5)To terminate, it remains to show that the previous estimate holds for initial data ũ0 satisfying (G1)and (G2). To this end, we regularize the initial data ũ0 by lassial onvolution. Then, we repeat theprevious argument replaing ũ0 by ũδ0 = ũ0 ∗ ηδ. This shows that, the solution vδ = (vδ,i)i=1,...,d ofsystem (2.1), with ε = 1 and orresponding to the initial data ũδ0, satis�es (3.5) for all δ > 0. Namely,
‖∂xxvδ,i(t)‖L1(R) <

2C0√
t

for all t ∈ [0, T0]. (3.6)Moreover, by Theorem (i), we an see that, there exists a positive onstant CT independent on δ, suhthat for all t ∈ (0, T ) and i = 1, · · · , d, we have ‖vδ,i(t)‖W 1,∞(R) ≤ CT . Using this estimate with someompatness arguments and the uniqueness of Lipshitz solution of (2.1)-(2.2), we an show that vδonverges loally uniformaly, as δ goes to 0, to the unique solution v of (2.1)-(2.2) (with ε = 1), on-struted in Theorem 3.1 (i). Then, we pass to the limit δ → 0 in (3.6), using the lower semi-ontinuityon the measure spae we show that (3.5) holds in the measure spae instead of L1(R). Finally, to reover(3.5) in L1(R), we use some regularity properties on the solution of the paraboli equation (2.1), whihompletes the proof.Step 3. (Case ε > 0): We remark that if v is solution of system (2.1), with ε = 1, then uε(t, x) =

v
(
t
ε ,

x
ε

) is a solution of system (2.1), with ε > 0. Applying (3.5), we get the result.
2Corollary 3.3 (Global L1 bound on ∂xxu

ε)Under the assumptions of Proposition 3.2, we have for all t > 0, and for i = 1, . . . , d

∥
∥∂xxu

ε,i(t, ·)
∥
∥
L1(R)

≤







2C0√
εt

if t < εT0

2C0√
εT0

if t ≥ εT0

(3.7)where C0 is de�ned in Proposition 3.2. 12



To prove this Corollary it su�es to apply Proposition 3.2 on the time interval [t− εT0, t].Lemma 3.4 (Exponential estimate)Assume that ũ0 satis�es (G1) and (G2). Let u be the solution of system (2.1)-(2.2), with ε = 1, givenby Theorem 3.1 (i). We onsider a solution z = (zi)i=1,...,d of the linearized system:
∂tz

i + ∂x(λ
i(u)zi)− ∂xxz

i =
∑

j=1,··· ,d
λi,j(u)

[
zi∂xu

j − zj∂xu
i
] for i = 1, · · · , d (3.8)with initial data satisfying

{
|z(0, x)| ≤ 1 if x ≥ 0
z(0, x) = 0 if x < 0.Then, there exists two onstants α, β > 0, suh that for all t > 0

|z(t, x)| ≤ αeβt+x,where α, β only depend on d, M0, M1 and ‖ũ0‖[L∞(R)]d .Proof of Lemma 3.4:First we assume that z is a smooth funtion. We will show that z(t, x) beomes exponentially small ona domain of the form {βt+ x < 0}. Indeed, any solution of (3.8) admits the integral representation
zi(t, x) = G(t) ∗ zi(0) −

∫ t

0

(∂xG(t− s)) ∗ [λi(u)zi](s) ds

+

∫ t

0

G(t− s) ∗




∑

j=1,...,d

λi,j(u)
[
zi∂xu

j − zj∂xu
i
]



in terms of onvolutions with standard heat kernel G(t) =G(t, x) = 1√
4πt

e
−x2

4t . Therefore
|z(t, x)| ≤

∫

R

G(t, x− y)|z(0, y)| dy +M0

∫ t

0

∫

R

|(∂xG(t− s, x− y))||z(s, y)| ds dy

+2M1

∫ t

0

∫

R

G(t− s, x− y)‖∂xu(s)‖[L∞(R)]d |z(s, y)| ds dy.We know that there exists a funtion B satisfying B(t) ≤ 2eCt for every t > 0, for some onstant Cdepending only on M0, suh that
E(t, x) = B(t)exp

(

4M1

∫ t

0

‖∂xu(s)‖[L∞(R)]d ds

)

et+x,satis�es the following estimates (see Bianhini et al. [4℄ inequalities (12.8)-(12.9)-(12.10)):






∫

R

G(t, x− y)|z(0, y)| dy < 1√
4πt

∫

R

e
−(x−y)2

4t ey dy = et+x

M0

∫ t

0

∫

R

|(∂xG(t− s, x− y))E(s, y) ds dy ≤ 1

2
E(t, x) − 1

2
et+x

2M1

∫ t

0

∫

R

G(t− s, x− y)‖∂xu(s)‖[L∞(R)]dE(s, y) ds dy ≤ 1

2
E(t, x)− 1

2
et+x.13



Notie that this result an also be heked diretly by omputation.Thanks to the previous bounds and similarly as in the proof of (3.5), we obtain
|z(t, x)| ≤ E(t, x).Then using Sobolev injetion, we dedue that

|z(t, x)| ≤ E(t, x) ≤ 2eCtexp

(

4M1

∫ t

0

‖∂xxu(s)‖[L1(R)]d ds

)

et+xwhere we have used Proposition 3.2 to see that ‖∂xxu(t)‖[L1(R)]d is �nite. Finally, using Corollary 3.3(with ε = 1), we dedue that
|z(t, x)| ≤ 2eCtexp

(

8dM1C0

(

2
√
t+

t√
T0

))

et+x.We observe that this estimate only depends on d, M0, M1 and ‖ũ0‖[L∞(R)]d . We an prove the samebound for general z, not neessarily smooth, using again an approximation argument joint to theontinuity of the solution of (3.8) with respet to its initial data. 23.2 Propagation speedConsider two solutions uε, vε of the same visous system (2.1), whose initial data oinide insidea bounded interval [a, b]. Sine the system is paraboli, at a given time t > 0 one may well have
uε(t, x) 6= vε(t, x) for all x ∈ R. Yet, we want to show that the di�erene |uε − vε| remains small oneit is on�ned within a bounded interval [a+ βt, b− βt]. This result will be useful in the Subsetion 3.3,beause it implies the uniqueness of the ontinuous vanishing visosity solutions and of the semigroup.Lemma 3.5 (Propagation speed)For some onstants α, β > 0 independent of ε, the following holds. Let us onsider two funtions ũ0and ṽ0 satisfying (G1) and (G2). Let uε = (uε,i)i=1,...,d and vε = (vε,i)i=1,...,d be the two solutions ofsystem (2.1), onstruted in Theorem 3.1 (i), with two initial data ũ0 and ṽ0. Assume moreover that,for all reals a < b, we have:

ũ0(x) = ṽ0(x) for x ∈ [a, b]. (3.9)Then for all x ∈ R, t > 0 one has
|uε(t, x)− vε(t, x)| ≤ α‖ũ0 − ṽ0‖L∞(R)

(

e
βt−(x−a)

ε + e
βt+(x−b)

ε

)

.Proof of Lemma 3.5: We prove this lemma in three Steps.Step 1.: As a �rst step we onsider a solution z of system (3.8) (for ε = 1), whose initial data satis�es
{

|z(0, x)| ≤M if x ≥ b
z(0, x) = 0 if x < b.By the linearity of system (3.8) and "translation invariane", an appliation of Lemma 3.4 to thetranslated solution, yields
|z(t, x)| ≤Mαeβt+(x−b).On the other hand, if

{
|z(0, x)| ≤M if x ≤ a
z(0, x) = 0 if x > a,then (using translation and the symmetry x 7→ −x)14



|z(t, x)| ≤Mαeβt−(x−a).Step 2. (Case ε = 1): In this step we prove the result in the partiular ase ε = 1. Let u and v betwo solutions of system (2.1), with ε = 1. We onsider a third solution w of (2.1) with initial data
w(0, x) =

{
u(0, x) if x ≤ b
v(0, x) if x ≥ bFor 0 < θ < 1, we set

uθ(t = 0, x) = uθ0(x) = θu(0, x) + (1− θ)w(0, x)and we all uθ = (uθ,i)i=1,...,d the solution given by Theorem 3.1 (i), of (2.1), with ε = 1 and initialdata uθ0. Using system (2.1), we an hek that the tangent vetor
(zθ,i)i=1,...,d = zθ =

duθ

dθis a solution of the following Cauhy problem:
∂tz

θ,i + ∂x(λ
i(uθ)zθ,i)− ∂xxz

θ,i =
∑

j=1,··· ,d
λi,j(u

θ)
[
zθ,i∂xu

θ,j − zθ,j∂xu
θ,i
] for i = 1, · · · , d

zθ(0, x) = u(0, x)− w(0, x).If (3.9) holds, then by previous analysis all funtions zθ satisfy the following inequality
|zθ(t, x)| ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)e

βt+(x−b).Therefore
|u(t, x)− w(t, x)| ≤

∫ 1

0

|zθ(t, x)|dθ ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)e
βt+(x−b). (3.10)Similarly, we an prove that

|v(t, x) − w(t, x)| ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)e
βt−(x−a). (3.11)Colleting (3.10) with (3.11), we get

|u(t, x)− v(t, x)| ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)

(

eβt−(x−a) + eβt+(x−b)
)

.Step 3. (Case ε > 0): Resaling in time and in spae, with uε(t, x) = u
(
t
ε
, x
ε

) and vε(t, x) = v
(
t
ε
, x
ε

),we obtain the result (for new a and b).
23.3 Continuous vanishing visosity solutions and L

1-stability estimateIn this subsetion we give the de�nition of ontinuous vanishing visosity solutions and we prove thatthe solution of system (1.1)-(1.2), onstruted in Theorem 1.1 (i), is the unique ontinuous vanishingvisosity solution (Theorem 1.1 (ii)). The proof of L1-stability estimate (Theorem 1.1 (iii)) is done atthe end of this subsetion. The idea of the proof is the following: our solution is ontinuous with aontrol on the modulus of ontinuity. This implies that the total variation of the solution is loallysmall. Taking into aount the �nite propagation speed property, it is then possible to loalize theargument developed in Bianhini et al. [4℄, and �nally to extend it to the ase of large initial data.15



De�nition 3.6 (Continuous vanishing visosity solutions)Let T > 0. A funtion u ∈ C((0,+∞)×R) is a visosity solution of system (1.1) if for any small ν > 0there exists a onstant η > 0 suh that, for all t ∈ [0, T ] the funtion u(t, ·) has a total variation smallerthan ν on any interval [a, b] where b− a ≤ η and moreover the following integral estimate hold.There exist onstants C, γ > 0 (depending on η) suh that, for every τ ≥ 0 and a < ξ < b, with b−a ≤ η,one has
lim sup
h→0+

1

h

∫ b−γh

a+γh

|u(τ + h, x)− U ♭
(u;τ,ξ)(h, x)|dx ≤ C (TV [u(τ); (a, b)])

2 (3.12)where TV [u(τ); (a, b)] is the total variation of u(τ, ·) on the interval (a, b) and U ♭
(u;τ,ξ) is the solution ofthe linear hyperboli Cauhy problem with onstant oe�ients:

∂tw
i + λi(u(τ, ξ))∂xw

i = 0, with wi(0, x) = ui(τ, x).Now, we prove that our solution onstruted in Theorem 1.1 (i) is a ontinuous vanishing visositysolutions in the sense of this de�nition.Theorem 3.7 (Existene of ontinuous vanishing visosity solutions)The solution of system (1.1), given by Theorem 1.1 (i), is a ontinuous vanishing visosity solutions,in the sense of De�nition 3.6.To prove this Theorem, we need to reall the following Lemma.Lemma 3.8 (Solution with small total variation)For all ξ ∈ R, let vε = (vε,i)i=1,...,d, wε = (wε,i)i=1,...,d be respetively the two solutions of the visoussystems
∂tv

ε,i + λi(vε)∂xv
ε,i = ε∂xxv

ε,i, (3.13)
∂tw

ε,i + λi(wε(0, ξ))∂xw
ε,i = ε∂xxw

ε,i (3.14)with the same initial data vε(0, x) = wε(0, x) = ū(x), where ū is a funtion with total variation smallerthan ν > 0. If ν is small enough, then for all h > 0, there exists a positive onstant C independent of
ε, suh that

‖vε(h, ·)− wε(h, ·)‖[L1(R)]d ≤ Ch(TV [ū])2.For the proof of this Lemma see Bianhini et al. [4, Lemma 15.2℄ (Neessity).Proof of Theorem 3.7:Beause the solution u given by Theorem 1.1 (i) has a modulus of ontinuity ontrolled by (1.5), wean hoose a onstant η > 0 suh that for a < b with b− a ≤ η, we have
TV [u(τ); (a, b)] ≤ δ(i.e. u(τ, ·) has small total variation on (a, b)). To prove estimate (3.12), �rst, we �x τ and ξ ∈ (a, b)and we de�ne the following trunate funtion

ūε(τ)(x) = ūε(τ, x) =







uε(τ, a) if x ≤ a,
uε(τ, x) if a < x < b,
uε(τ, b) if b ≤ x,

(3.15)where uε is the solution of (2.1)-(2.2), with initial data ũ0 satisfying (G3), onstruted in Theorem 3.1(i). Call vε = (vε,i)i=1,...,d, wε = (wε,i)i=1,...,d respetively the solutions of (3.13) and (3.14) with the16



same initial data vε(0, x) = wε(0, x) = ūε(τ, x). Let U ♭,ε
(u;τ,ξ) =

(

U ♭,ε,i
(u;τ,ξ)

)

i=1,...,d
be the solution of theparaboli Cauhy problem (3.14) with U ♭,ε

(u;τ,ξ)(0, x) = uε(τ, x). Let β be the positive onstant de�nedin Lemma 3.5. Then by de�nition of u and U ♭
(u;τ,ξ), we an see that

1

h

∫ b−βh

a+βh

|u(τ + h, x)− U ♭
(u;τ,ξ)(h, x)|dx

≤ lim
ε→0

1

h

∫ b−βh

a+βh

|uε(τ + h, x)− U ♭,ε
(u;τ,ξ)(h, x)|dx.This implies that

1

h

∫ b−βh

a+βh

|u(τ + h, x)− U ♭
(u;τ,ξ)(h, x)|dx ≤ lim

ε→0

1

h

∫ b−βh

a+βh

|uε(τ + h, x)− vε(h, x)|dx
︸ ︷︷ ︸

Iε
1

+ lim
ε→0

1

h

∫ b−βh

a+βh

|vε(h, x)− wε(h, x)|dx
︸ ︷︷ ︸

Iε
2

+ lim
ε→0

1

h

∫ b−βh

a+βh

|wε(h, x) − U ♭,ε
(u;τ,ξ)(h, x)|dx

︸ ︷︷ ︸

Iε
3

.Using Lemma 3.5 on the �nite propagation speed and estimate (2.3), we obtain, for h small enough,that lim
ε→0

Iε1 + Iε3 = 0. Moreover, by Lemma 3.8, we know that,
lim sup

ε→0
Iε2 ≤ lim sup

ε→0
C(TV [ūε(τ)])2 ≤ C(TV [u(τ); (a, b)])2whih ends the proof of Theorem 3.7.

2Before going into the proof of Theorem 1.1 (ii) and (iii), we �rst reall in Lemma 3.9 the ontinuous
L1 estimate, proved by Bianhini et al. in [4℄. Then we prove Proposition 3.10 that laims that oursolution oinides loally with the semigroup vanishing visosity solutions de�ned by Bianhini et al. in[4℄. Let us underline that the semigroup of Bianhini-Bressan is de�ned for initial data whih are notneessarily ontinuous, but with small total variation.Lemma 3.9 (L1 estimate for initial data with small total variation)Let St be the semigroup of vanishing visosity solutions, onstruted by Bianhini et al. in [4℄ as thelimit in L1

loc(R) of a sequene Sε (see [4, (13.9)℄). Consider any interval [a, b] and two initial data
ū, v̄ ∈ L1

loc(R) with small total variation. Then, the following ontinuous L1 estimate holds.
∫ b−βt

a+βt

|(Stū)(x)− (Stv̄)(x)| dx ≤ L0

∫ b

a

|ū(x)− v̄(x)| dx for all 0 ≤ t ≤ b − a

4β
, (3.16)

‖(Sε
t ū)(x) − (Sε

t v̄)(x)‖[L1(R)]d ≤ L0 ‖ū(x) − v̄(x)‖[L1(R)]d for all t ≥ 0, (3.17)where β is the onstant de�ned in Lemma 3.5 and L0 is a positive onstant independent of ε.17



For the proof of this lemma see Bianhini et al. [4, (13.13), (13.5)℄.Now we prove the following proposition, whih shows that our solution is loally a semigroup.Proposition 3.10 (Semigroup for ontinuous vanishing visosity solutions)Let u be a solution of system (1.1), given by Theorem 1.1 (i). Then, for all T > 0, there exists η > 0only depending on T , d, M0, M1, Λ and bounds on ‖u0‖[L∞(R)]d and ‖∂xu0‖[L logL(R)]d, suh that forall 0 < b− a ≤ η and τ ∈ [0, T ], we have
∫ b−βt

a+βt

|u(τ + t, x)− (Stū(τ))(x)|dx = 0, for all 0 ≤ t ≤ b − a

4β
, (3.18)where β is the onstant de�ned in Lemma 3.5, St is the semigroup of vanishing visosity solution de�nedby Bianhini et al. in [4℄ and ū is the following trunate funtion

ū(τ)(x) =







u(τ, a) if x ≤ a,
u(τ, x) if a < x < b,
u(τ, b) if b ≤ x.Proof of Proposition 3.10:First we remark that the solution u, given by Theorem 1.1 (i) satis�es (1.5), and then we an hoose aonstant η > 0 suh that for all b − a ≤ η the funtion ū(τ) has small total variation on (a, b). Then,adopting the semigroup notation, we an write the vanishing visosity solution de�ned by Bianhini etal. in [4℄ as St(ū(τ)). The fat that St is a semigroup is a onsequene of the theory of Bianhini-Bressandeveloped in [4℄. By onstrution of the solutions, we an write

∫ b−βt

a+βt

|u(τ + t, x)− St(ū(τ))(x)| dx ≤ lim
ε→0

∫ b−βt

a+βt

|uε(τ + t, x)− Sε
t (ū(τ))(x)| dx (3.19)where uε is the solution of (2.1)-(2.2), with initial data ũ0 satisfying (G3), onstruted in Theorem 3.1(i). Here Sε

t (ū(τ)) is the semigroup solution of (3.13) with initial data ū, onstruted by Bianhini-Bressan in [4℄. Now, we add and we subtrat in (3.19) the funtion Sε
t (ū

ε(τ)), where ūε(τ) is thetrunate funtion of uε de�ned in (3.15), we dedue that, there exists two positive onstants C and L0independent of ε suh that
∫ b−βt

a+βt

|u(τ + t, x)− St(ū(τ))(x)| dx ≤ lim
ε→0

∫ b−βt

a+βt

|uε(τ + t, x)− Sε
t (ū

ε(τ))(x)| dx

+ lim
ε→0

∫ b−βt

a+βt

|Sε
t (ū

ε(τ))(x) − Sε
t (ū(τ))(x)| dx

≤ lim
ε→0

C

∫ b−βt

a+βt

(

e
βt−(x−a)

ε + e
βt+(x−b)

ε

)

dx

+ lim
ε→0

L0‖ū(τ)− ūε(τ)‖[L1(R)]dwhere we have used in the seond inequality the �nite propagation speed Lemma 3.5 with estimate(2.3) and estimate (3.17). Using the fat that uε onverges, as ε→ 0, to u in L∞
loc([0,+∞)× R) and

lim
ε→0

C
(

e
βt−(x−a)

ε + e
βt+(x−b)

ε

)

= 0 on [a+ βt, b− βt]we obtain the result.
218



Now, we prove that the solution u onstruted in Theorem 1.1 (i), is the unique ontinuous vanishingvisosity solution of system (1.1)-(1.2), in the sense of De�nition 3.6.Proof of Theorem 1.1 (ii):Step 1. (Short time): Let w = w(t, x) be a ontinuous vanishing visosity solution of (1.1) and ube a solution of (1.1) onstruted in Theorem 1.1 (i). Assume w(0, x) = u(0, x). By De�nition 3.6,we know that there exists two onstants γ and η suh that w satis�es (3.12). Let us all (η0, β) theparameters given by Proposition 3.10. Then up to dereasing η0 and inreasing β, we an assume that
η0 = η and β = γ. Given any interval [a, b], suh that b− a = η, thanks to identity (3.18) (with τ = 0)and w(0, x) = u(0, x) we have

∫ b−tβ

a+tβ

|w(t, x) − u(t, x)|dx =

∫ b−tβ

a+tβ

|w̄(t, x)− (Stw̄(0))(x)|dx, for all t ≤ η

4βwhere
w̄(t)(x) = w̄(t, x) =







w(t, a) if x ≤ a,
w(t, x) if a < x < b,
w(t, b) if b ≤ x.Let L0 be the Lipshitz onstant of the semigroup St, de�ned in (3.16). Using estimate (3.16) (and thefat that St(w̄(0)) is ontinuous in t with values in L1(R)), we get the following error estimate

∫ b−tβ

a+tβ

|w̄(t, x)− (Stw̄(0))(x)|dx

≤ L0

∫ t

0

[

lim sup
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

|w̄(τ + h, x)− Sh(w̄(τ))(x)|dx
]

dτ

(3.20)as in Bianhini et al. [4, (15.9)℄. Now, to prove the uniqueness it thus su�es to show that the integrandon the right hand side of (3.20) vanishes for τ ∈ [0, t]. Fix any τ ∈ [0, t] and let ε > 0 be given. We anhoose �nitely many points
a+ τβ = x0 < x1 < · · · < xN = b− τβ,suh that, for every j = 1, . . . , N,

TV [w̄(τ, ·); (xj−1, xj)] < ε. (3.21)By Theorem 3.7 and Proposition 3.10, the funtion t 7→ St−τ w̄(τ) is itself a ontinuous vanishingvisosity solution and hene it also satis�es estimate (3.12). We now onsider the mid point yj =
xj−1+xj

2 . Using the estimate (3.12) with ξ = yj on eah interval (xj−1, xj), we ompute
lim sup
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

|w̄(τ + h, x)− Sh(w̄(τ))(x)|dx ≤
N∑

j=1

lim sup
h→0+

1

h

∫ xj−hβ

xj−1+hβ

∣
∣
∣w̄(τ + h, x)− U ♭

(w̄;τ,yj)
(h, x)

∣
∣
∣ dx

+

N∑

j=1

lim sup
h→0+

1

h

∫ xj−hβ

xj−1+hβ

∣
∣
∣U ♭

(w̄;τ,yj)
(h, x)− Sh(w̄(τ))(x)

∣
∣
∣ dx.Using (3.21), we obtain
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lim sup
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

|w̄(τ + h, x)− Sh(w̄(τ))(x)|dx ≤ C1

N∑

j=1

(TV [w̄(τ, ·); (xj−1, xj)])
2

≤ C1εTV [w̄(τ, ·); (a+ τβ, b − τβ)]

≤ C1ε,beause TV [w̄(τ, ·); (a+ τβ, b − τβ)] ≤ ν ≤ 1 (for a suitable hoie of ν in De�nition 3.6).Sine ε > 0 was arbitrary, the integrand on the right hand side of (3.20) must vanish at time τ ∈ [0, t],with t ≤ η

4β
.Step 2. (Long time): Sine the onstants L0 and C1 are uniform on (0, T ), for all T > 0 we an �nd

n0 ∈ N, suh that n0+2
2

η
4β ≥ T . We repeat the same argument, for all n = 1, . . . , n0 on the interval

[
n
2

η
4β ,

n+2
2

η
4β

], we prove the uniqueness for all t ∈ [0, T ]. This ompletes the proof.
2In the following we prove the L1-stability estimate announed in Theorem 1.1 (iii).Proof of Theorem 1.1 (iii):Step 1. (Loal estimate): From Proposition 3.10, we know that, there exist two positive onstants βand η depending only on T , M0, M1, d, Λ and bounds on ‖u0‖[L∞(R)]d , ‖∂xu0‖[L logL(R)]d , ‖v0‖[L∞(R)]d ,

‖∂xv0‖[L logL(R)]d , suh that, for all 0 < t ≤ η
4β , we have

∫ a+η−βt

a+βt

|u(t, x)− v(t, x)|dx =

∫ a+η−βt

a+βt

|Stū0(x)− Stv̄0(x)|dxwhere ū0 and v̄0 are the following trunate funtions
ū0(x) =







u0(a) if x ≤ a,
u0(x) if a < x < a+ η,
u0(a+ η) if a+ η ≤ x

and v̄0(x) =







v0(a) if x ≤ a,
v0(x) if a < x < a+ η,
v0(a+ η) if a+ η ≤ x.Using the ontinuous L1 estimate (3.16), we get

∫ a+η−βt

a+βt

|u(t, x)− v(t, x)|dx ≤ L0

∫ a+η

a

|ū0(x)− v̄0(x)|dx = L0

∫ a+η

a

|u0(x)− v0(x)|dx.This leads to the following loal estimate:
‖u(h, ·)− v(h, ·)‖[L1(It

η)]
d ≤ L0‖u0 − v0‖[L1(I0

η)]
d for all 0 < t ≤ η

4β
, (3.22)where Itη = [a+ βt, a+ η − βt].Step 2. (Global estimate): For all k ∈ Z, we note Ik =

[
k
2η,

k+2
2 η

] and Jk =
[
2k+1

4 η, 2k+3
4 η

]. Weapply the loal estimate (3.22), we obtain
‖u(t, ·)− v(t, ·)‖[L1(Jk)]d ≤ L0‖u0 − v0‖[L1(Ik)]d for all 0 < t ≤ η

4β
.Taking the sum over k ∈ Z, we dedue that

‖u(t, ·)− v(t, ·)‖[L1(R)]d ≤ 2L0‖u0 − v0‖[L1(R)]d for all 0 < t ≤ η

4β
.20



Now for all T > 0, we know that there exists n0 ∈ N, where n0+2
2

η
4β ≥ T . We repeat the previousestimate, for all n = 1, . . . , n0 on the interval [n

2
η
4β ,

n+2
2

η
4β

], we obtain that there exists L = L(η, β, n0)suh that
‖u(t, ·)− v(t, ·)‖[L1(R)]d ≤ L‖u0 − v0‖[L1(R)]d for all 0 < t ≤ Twhih proves the result. 24 Existene and uniqueness of Lipshitz solutionThis setion is devoted to the proof of Theorem 1.3. We study Lipshitz solutions of system (1.1)-(1.2)and we show some uniqueness results for some partiular matries (λi,j(u))i,j=1,...,d with d ≥ 2. In thefollowing subsetion, we �rst reall the de�nition of visosity solutions (di�erent from De�nition 3.6 forontinuous vanishing visosity solutions) and some well-known results in this framework. The proof ofTheorem 1.3 is done in Subsetion 4.2.4.1 Some useful results for visosity solutionsThe notion of visosity solutions has been introdued by Crandall and Lions [6℄ in 1980, to solve �rst-order Hamilton-Jaobi equations. Let us mention that this theory has also been extended to the seondorder equations (see for instane the work of Jensen [16℄ and Ishii [13℄). For a good introdution to thistheory, we refer the reader for instane to Barles [3℄ and Bardi, Capuzzo-Doletta [2℄.Now, we reall the de�nition of the visosity solution for the following problem for all 0 ≤ ε ≤ 1 satis�edby a real funtion v(t, x):
∂tv +H(t, x, v, ∂xv)− ε∂xxv = 0 for x ∈ R, t ∈ (0,+∞). (4.1)where H : (0,+∞)×R
3 7−→ R is the Hamiltonian and is supposed to be ontinuous. We introdue thefollowing set of funtions, for a set Ω ⊂ R

N :
USC(Ω) = {f : Ω 7−→ R, with f upper semiontinuous},
LSC(Ω) = {f : Ω 7−→ R, with f lower semiontinuous}.De�nition 4.1 (Visosity subsolution, supersolution and solution)A funtion v ∈ USC((0,+∞)×R) is a visosity subsolution of (4.1) if for every (t0, x0) ∈ (0,+∞)×Rand for every test funtion φ ∈ C2((0,+∞)×R), that is tangent from above to v at (t0, x0), the followingholds:

∂tφ(t0, x0) +H(t0, x0, v(t0, x0), ∂xφ(t0, x0))− ε∂xxφ(t0, x0) ≤ 0.A funtion v ∈ LSC((0,+∞)×R) is a visosity supersolution of (4.1) if for every (t0, x0) ∈ (0, T )×Rand for every test funtion φ ∈ C2((0,+∞)×R), that is tangent from below to v at (t0, x0), the followingholds:
∂tφ(t0, x0) +H(t0, x0, v(t0, x0), ∂xφ(t0, x0))− ε∂xxφ(t0, x0) ≥ 0.A ontinuous funtion v is a visosity solution of (4.1) if, and only if, it is a sub and a supersolutionof (4.1).Remark 4.2 When v is a subsolution (resp. supersolution) of (4.1), we write

∂tv +H(t, x, v, ∂xv)− ε∂xxv ≤ 0 (resp. ∂tv +H(t, x, v, ∂xv)− ε∂xxv ≥ 0).Let us now reall some well-known results. 21



Remark 4.3 (Classial solution-visosity solution)If v is a C2 solution of (4.1), then v is a visosity solution of (4.1).We now onsider solutions of the following ODE for α ∈ R:
dv

dt
= αv on (0,+∞). (4.2)A funtion v : (0,+∞) 7−→ R is said to be visosity subsolution (resp. supersolution) if v(t, x) = v(t)is a visosity subsolution (resp. supersolution) of (4.1) with H = −αv, ε = 0 in the sense of De�nition4.1.Lemma 4.4 (Gronwall lemma for visosity solution)Let us onsider a funtion v ∈ USC[0,+∞), whih is a visosity subsolution of (4.2). Assume that

v(0) ≤ v0 then v(t) ≤ v0 e
αt for all t ≥ 0.The proof of this Lemma is a diret appliation of the omparison priniple, (see Barles [3, Th 2.4℄).4.2 Uniqueness results for W

1,∞ solutionsIn this subsetion we prove Theorem 1.3. Before going on, we reall below in Theorem 4.5 a well-knownuniqueness result for W 1,∞ solutions of (1.1).Theorem 4.5 (Existene and uniqueness of W 1,∞ solution)Assume (H1). Let ũ0 = u0 ∗ ηε with u0 ∈ [W 1,∞(R)]d and ∂xu0 ≥ 0.i) Then, for any 0 < ε ≤ 1, there exists a funtion uε ∈ ⋂

T>0

([
W 2,∞([0, T )× R)

]d ∩ [C∞([0, T )× R)]
d
)solution of (2.1)-(2.2), suh that for every �xed t ∈ [0,+∞) the funtion uε(t, ·) is nondereasing.ii) If the solution uε of (2.1)-(2.2) satis�es (for all T > 0)

||uε(t, ·)||[W 1,∞(R)]d ≤ CT for all t ∈ [0, T ] (4.3)with CT independent on ε, then uε onverges loally uniformly, as ε → 0, to a funtion u with u ∈
⋂

T>0

[
W 1,∞([0, T )× R)

]d. Moreover, this funtion u is the unique solution of system (1.1)-(1.2) in thesense of distributions, assuming the solutions in ⋂

T>0

[
W 1,∞([0, T )× R)

]d.The lines of the proof of this theorem are very standard (see for instane Cannone et al. [5℄ for a similarproblem). For this reason, we skip the details of the proof, and notie that Theorem 4.5 follows fromRemark 1.2 (i) and Theorem 3.1.Proof of Theorem 1.3:Using Theorem 4.5, it is enough to show that system (1.1)-(1.2) admits a solution satisfying (4.3).Indeed, we then get the same property for ∂xu, where u is the limit of uε as ε → 0. Moreover, fromsystem (1.1) satis�ed by u and the fat that
u ∈ [L∞((0,+∞)× R)]

d and ∂xu ∈ [L∞((0,+∞)× R)]
d
,we dedue that ∂tu ∈ [L∞((0,+∞)× R)]

d whih shows that u ∈
[
W 1,∞([0,+∞)× R)

]d.To simplify, we set wε = ∂xu
ε. Moreover, by Theorem 4.5 (i), we know that, wε,i ≥ 0 and there existsa positive onstant Cε

T , suh that for all (t, x) ∈ (0, T )× R and for i = 1, . . . , d22



|uε,i|+ |∂xuε,i|+ |∂tuε,i|+ |∂txuε,i|+ |∂xxuε,i|+ |∂ttuε,i| ≤ Cε
T , (4.4)whih implies in partiular that

∫

R

|wε,i(t, x)| dx ≤ 2Cε
T .We are interested in the quantity

mi(t) = sup
x∈R

wε,i(t, x).whih also satis�es |∂tmi| ≤ Cε
T . This supremum is reahed at least at some point xi(t), beause

wε,i ∈ W 1,∞([0, T )× R) ∩ L1([0, T )× R) and then for eah t ∈ [0, T ), wε,i(t, x) → 0 as |x| → +∞.In the following we prove that mi is bounded uniformly in ε for all i = 1, . . . , d whih will imply the�rst point of the Theorem.First, taking the derivative with respet to x, equation (2.1) satis�ed by uε ∈ [C∞((0, T )× R)]
d, wean see that wε satis�es the following equation

∂tw
ε,i + λi(uε)∂xw

ε,i +
∑

j=1,...,d

λi,j(u
ε)wε,jwε,i = ε∂xxw

ε,i. (4.5)Now, we prove that mi is a visosity subsolution of the following equation
d

dt
mi(t) +

∑

j=1,...,d

λi,j(u
ε(t, xi(t)))w

ε,j(t, xi(t))w
ε,i(t, xi(t)) = 0. (4.6)Indeed, let φ ∈ C2(0, T ) be a test funtion, suh that φ ≥ mi and φ(t0) = mi(t0) for some t0 ∈ (0, T ).From the de�nition of mi, we an easily hek that φ(t) ≥ wε,i(t, x) for all (t, x) ∈ [0, T ) × R and

φ(t0) = wε,i(t0, xi(t0)). From the fat that wε,i ∈ C∞((0, T )×R), by Remark 4.3 we know that wε,i isa visosity solution of (4.5). We apply De�nition 4.1, and using the fat that ∂xφ = ∂xxφ = 0, we get
d

dt
φ(t0) +

∑

j=1,...,d

λi,j(u
ε(t0, xi(t0)))w

ε,j(t0, xi(t0))w
ε,i(t0, xi(t0)) ≤ 0.This proves that mi is a visosity subsolution of (4.6).Notie that in the ase d = 1 eah assumption (K1), (K2) or (K3) redues to λ1,1(u) ≥ 0 whih or-responds to the well-known ase of salar Burgers equation with non shoks when the initial data isnon-dereasing. For this reason in the following we onsider the ase d ≥ 2. We will establish estimateson mi at the level ε, and the result for ε = 0 is then a straightforward onsequene passing to the limitin ε. Three ases may our:1- The ase where (K1) holds: We see that m1, satis�es (in the visosity sense)

d

dt
m1(t) ≤ −

∑

j=1,...,d

λ1,j(u
ε(t, x1(t))w

ε,j(t, x1(t))w
ε,1(t, x1(t)) ≤ 0,where we have used the fat that, for j = 1, . . . , d, λ1,j(uε) ≥ 0 and wε,j ≥ 0. This proves by Lemma4.4 (with α = 0) that,

m1(t) ≤ m1(0) = wε,1(0, x1(0)) ≤ ‖∂xuε,1(0, ·)‖L∞(R) ≤ ‖∂xu10‖L∞(R)=: C1(t).By reurrene, we assume that mj(t) ≤ Ci(t) for all j ≤ i, where Ci is a positive funtion independentof ε, and we prove that mi+1 is bounded uniformly in ε. Indeed, we know that23



d

dt
mi+1(t) ≤ −

∑

j=1,...,d

λi+1
,j (uε(t, xi+1(t))))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t)),

≤ −
∑

j≤i

λi+1
,j (uε(t, xi+1(t)))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t))

−
∑

i+1≤j≤d

λi+1
,j (uε(t, xi+1(t)))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t)).We use that λi+1

,j (uε) ≥ 0, for i+ 1 ≤ j ≤ d and we obtain that
d

dt
mi+1(t) ≤ −

∑

j≤i

λi+1
,j (uε(t, xi+1(t)))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t)),

≤ dM1mi+1(t)Ci(t).where we have used the assumption mj ≤ Ci for all j ≤ i. This implies by Lemma 4.4, with α = dM1,that
mi+1(t) ≤ mi+1(0)e

α
∫

t

0
Ci(s)ds,

≤ ‖∂xui+1
0 ‖L∞(R)e

α
∫

t

0
Ci(s)ds:= Ci+1(t).This proves that, for all i = 1, . . . , d, mi is bounded uniformly in ε, on eah time interval [0, T ].2- The ase where (K2) holds: From (4.6), we obtain that,

d

dt
mi(t) ≤ −

∑

j=1,...,d

λi,j(u
ε(t, xi(t)))w

ε,j(t, xi(t))w
ε,i(t, xi(t))

≤ −
∑

j=1,...,d

Aijw
ε,j(t, xi(t))w

ε,i(t, xi(t))

≤ −
∑

j=1,...,d

Aijw
ε,j(t, xj(t))w

ε,i(t, xi(t))where we have used the fat that λi,j ≤ 0 for i 6= j. Applying the omparison priniple (see Barles [3,Th 2.4℄), we dedue that
mi(t) ≤ mi(0)−

∫ t

0

∑

j=1,...,d

Aijmj(s)mi(s) ds. (4.7)Taking the sum over the index i, from (4.7) we get that the quantity m(t) =
∑

i=1,...,d

mi(t) satis�es thefollowing
m(t) ≤ m(0)−

∫ t

0

∑

i,j=1,...,d

Aijmj(s)mi(s) ds,

≤ m(0) =
∑

i=1,...,d

‖∂xuε,i(0, ·)‖L∞(R) ≤
∑

i=1,...,d

‖∂xui0‖L∞(R),where we have used assumption (K2) and wε,i ≥ 0, for i = 1, . . . , d. This proves (1.7).24



3- The ase where (K3) holds: We are interested in the following quantity:
m(t) = max

i=1,...,d
mi(t)= mi0(t) for some i0 = i0(t).We remark that m ∈ USC(0, T ) and that m is a visosity subsolution of (4.6), whih implies (in thevisosity sense) that

d

dt
m(t) ≤ −

∑

j=1,...,d

λi0,j (u
ε(t, xi0 (t)))w

ε,j(t, xi0 (t))mi0 (t)

≤ −λi0,i0(u
ε(t, xi0 (t)))(mi0 (t))

2 −
∑

j=1,...,d, j 6=i0

λi0,j (u
ε(t, xi0 (t)))w

ε,j(t, xi0(t))mi0 (t).By de�nition of mi0 , we dedue that
d

dt
m(t) ≤ −λi0,i0(u

ε(t, xi0 (t)))(mi0 (t))
2 +

∑

j=1,...,d, j 6=i0

[
λi0,j (u

ε(t, xi0 (t)))
]−
mi0(t)mj(t)

≤ (mi0(t))
2



−λi0,i0(u
ε(t, xi0 (t))) +

∑

j=1,...,d, j 6=i0

(λi0,j (u
ε(t, xi0(t))))

−



 ≤ 0,where we have used (K3) and the fat that wε,i ≥ 0. Finally, we integrate in time and obtain that
m(t) ≤ m(0) = max

i=1,...,d
‖∂xuε,i(0, ·)‖L∞(R) ≤ max

i=1,...,d
‖∂xui0‖L∞(R).This proves (1.8). 2Remark 4.6 (Misellaneous extensions)In Theorem 1.3 we have onsidered the study of a partiular system only to simplify the presentation.This result ould be generalized to the following system

∂tu
i + λi(u, x, t)∂xu

i = hi(u, x, t) on (0,+∞)× R for i = 1, ..., d, (4.8)with λi, hi ∈ W 1,∞(Rd × R × (0,+∞)), ∂xhi ≥ 0 and hi,j ≥ 0 for i 6= j and with moreover one of thefollowing onditions:
(K1)′







λ
i
,j(u, x, t) ≥ 0 and h

i
,j(u, x, t) ≥ 0for all (u, x, t) ∈ R

d × R× [0,+∞) and j ≥ i with i, j ∈ {1, . . . , d}.

(K2)′



















λ
i
,j(u, x, t) ≤ 0 for all (u, x, t) ∈ R

d × R× [0,+∞) and j 6= i with i, j ∈ {1, . . . , d},

Aij = inf
u ∈ R

d, x ∈ R

t ≥ 0

(λi
,j(u, x, t)) and ∑

i,j=1,...,d

Aijξiξj ≥ 0 for ξ = (ξ1, ..., ξd) ∈ [0,+∞)d.

(K3)′ λ
i
,i(u, x, t) ≥

∑

i6=j

(

λ
i
,j(u, x, t)

)− for all (u, x, t) ∈ R
d × R× [0,+∞) and i = 1, . . . , d.
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5 Appliation to the 1D system of isentropi gas dynamisIn this setion we present an appliation of the results proved previously. More preisely, we study thesystem of isentropi gas dynamis, de�ned as follows






∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0, with p(ρ) = (γ−1)2

4γ ργ

u(0, x) = u0 and ρ(0, x) = ρ0 ≥ 0

(5.1)where γ > 1 and respeting the usual notation for the physial quantities: ρ represents the density ofthe �uid, u is the veloity of the �uid and p the pressure. In what follows, we present an appliation ofTheorem 1.1 and 1.3 (proved in the present paper) on system (5.1).First of all, we remark that system (5.1) is a diagonalizable hyperboli system. Indeed, in the asewhere ρ > 0 and (ρ, u) is a smooth solution, we an hek easily that the following two variables
r1 = u+

2c

γ − 1
and r2 = u− 2c

γ − 1
, where c =

√
γp

ρ
=

(γ − 1)

2

√

ργ−1,satisfy the following diagonal system:






∂tr1 + λ1(r1, r2)∂xr1 = 0

∂tr2 + λ2(r1, r2)∂xr2 = 0with initial data r01 , r
0
2

(5.2)where λ1 and λ2 are de�ned as follows






λ1(r1, r2) =
r1 + r2

2
+
γ − 1

4
(r1 − r2) = u+ c

λ2(r1, r2) =
r1 + r2

2
− γ − 1

4
(r1 − r2) = u− c.Moreover, we have

(λi,j(r1, r2))i,j=1,2 =







1

2
+
γ − 1

4

1

2
− γ − 1

4

1

2
− γ − 1

4

1

2
+
γ − 1

4






.In the ase γ > 1, this matrix satis�es the assumptions, (H2), (K3) and (H2)′, of Theorems 1.1, 1.3and 3.1. In the following, we show some existene and uniqueness results for system (5.1) applyingTheorems 1.1, 1.3 and 3.1.Firstly, we start with the study of system (5.2) and we onsider the following assumptions

(A1) r01 , r
0
2 ∈ L∞(R) and ∂xr01 , ∂xr02 ≥ 0.

(A2) ∂xr
0
1 , ∂xr

0
2 ∈ L logL(R).

(A2)′ r01 , r
0
2 ∈ Lip(R). 26



The following existene and uniqueness results for the diagonal system (5.2) hold.Theorem 5.1 (Diagonal isentropi gas dynamis system)Assume (A1) and γ > 1. Then, we havei) Existene and uniqueness of a ontinuous solution:Existene: Under assumption (A2), system (5.2) has a ontinuous solution (r1, r2) on [0,+∞) × Rsatisfying (A1) and (A2) for all t ≥ 0. Moreover, if r10 − r20 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0.Uniqueness: Furthermore, if we assume (A2) and
r01 ≥ Λ1 > Λ2 ≥ r02then the previous solution (r1, r2) is the unique ontinuous vanishing visosity solution (in the sense ofDe�nition 3.6).ii) Existene and uniqueness of W 1,∞ solution:Assume (A2)′, then system (5.2) has a unique solution (r1, r2) ∈ [W 1,∞([0,+∞)×R)]2 satisfying (A1)and (A2)′ for all t > 0. Moreover, if r10 − r20 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0.Proof of Theorem 5.1:Proof of i): We apply Theorem 3.1, whih proves that, under the assumptions (A1) and (A2), system(5.2) admits a solution (r1, r2) ∈ [C([0,+∞)× R)]2 satisfying (A1) and (A2) for all t ≥ 0.We now want to prove that, if r01 − r02 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0. To this end, we reall that byTheorem 3.1, we know that r1 = lim

ε→0
rε1 and r2 = lim

ε→0
rε2, where (rε1, r

ε
2) is the solution of the followingregularized paraboli system

∂tr
ε
i + λi(rε1, r

ε
2)∂xr

ε
i ,= ε∂xxr

ε
i , for i = 1, 2with regular initial data r0,ε1 , r0,ε2 (see Theorem 3.1). To simplify, we set rε = rε1 − rε2, using theregularized paraboli system, we an see that rε satis�es the following equation

∂tr
ε = −

(
rε1 + rε2

2

)

∂xr
ε − γ − 1

4
rε∂x(r

ε
1 + rε2) + ε∂xxr

ε.Using the maximum priniple theorem for paraboli equations (see Lieberman [21, Th 2.10℄), we knowthat the following property holds:If rε(0, x) ≥ 0, then rε(t, x) ≥ 0 for all t > 0. (5.3)We pass to the limit ε → 0 and obtain that r(t, x) ≥ 0. This proves the existene result announed ini). The proof of the uniqueness result is diret appliation of Theorem 1.1.Proof of ii): The proof of ii) is similar to the proof of i). Indeed, we apply Theorem 1.3 (with assump-tion (K3)), whih proves that, under the assumptions (A1) and (A2)′, system (5.2) admits a solution
(r1, r2) ∈

[
W 1,∞([0,+∞)× R)

]2 satisfying (A1) and (A2)′ for all t ≥ 0.Moreover, we an prove as in the proof of i) that if r01 − r02 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0. Let usmention that in the ase of Lipshitz solutions, we an also prove the following result: if r01−r02 ≥ Λ > 0,then r1 − r2 ≥ Λe−αt > 0 for all t ≥ 0, with α =
γ − 1

2
max
i=1,2

||∂xr0i ||L∞(R). 2Before going into the proof of Theorem 1.4, we need the following tehnial lemma.27



Lemma 5.2 (From Diagonal system to nondiagonal)Let us onsider two funtions r1, r2 ∈ C([0,+∞) × R) ∩W 1,1
loc ([0,+∞) × R) satisfying r1 − r2 ≥ 0 on

[0,+∞)× R, with (r1, r2) solution of (5.2). Then the following funtions
u =

r1 + r2
2

and ρθ =
r1 − r2

2
where θ =

γ − 1

2
(5.4)solve the following system







∂t(ρ
θ) + u∂x(ρ

θ) + θρθ∂xu = 0

∂tu+ u∂xu+ θρθ∂x(ρ
θ) = 0.

(5.5)Reiproally, if ρθ, u ∈ C([0,+∞)×R) ∩W 1,1
loc ([0,+∞)×R) (with ρθ ≥ 0) is solution of (5.5) then r1,

r2 de�ned in (5.4), solve (5.2).With a simple omputation we an hek the result (see also Serre [26, Vol II℄).Proof of Theorem 1.4:Firstly we prove the existene and uniqueness of a Lipshitz solution announed in Theorem 1.4 ii).Proof of ii): We prove the result three steps.Step 1. (Existene and uniqueness of (r1, r2)): We remark that, if u0 and ρθ0 satisfy assumptions
(J1) and (J2)′, then the funtions r01 = u0 + ρθ0 and r02 = u0 − ρθ0, where θ = γ−1

2 , satisfy assump-tions (A1) and (A2)′. Now, we onsider system (5.2) with the following initial data r01 = u0 + ρθ0 and
r02 = u0 − ρθ0. We apply Theorem 5.1 ii), whih proves that system (5.2) admits a unique solution
(r1, r2) in W 1,∞([0,+∞)× R).Using the ondition r01−r02 = 2ρθ0 ≥ 0, we an also prove, by Theorem 5.1 ii), that r1−r2 ≥ 0 for all t > 0.Step 2. (From (r1, r2) toward (ρ, u)): By Lemma 5.2, it is equivalent to say that u = r1+r2

2 and
ρθ = r1−r2

2 ≥ 0 are in W 1,∞([0,+∞)× R) and solution of system (5.5).We an also see that in the ase 1 < γ ≤ 3 the funtions u and ρ de�ned above belong toW 1,∞([0,+∞)×
R), and moreover solve the following system







ρθ−1 [∂tρ+ u∂xρ+ ρ∂xu] = 0

ρ∂tu+ ρu∂xu+ θ2ρ2θ∂xρ = 0
(5.6)Using the following result:If f ∈W 1,p for some p ∈ [1,+∞], then Df = 0 a.e. on the set {f = 0},we an rewrite (5.6) as follows







∂tρ+ ∂x(uρ) = 0,

ρ∂tu+ ρu∂xu+ ∂x(p(ρ)) = 0.
(5.7)This shows that (ρ, u) is a solution of system (5.1).Step 3. (Uniqueness of (ρ, u)): Reiproally, if (ρ, u) ∈ [W 1,∞([0,+∞) × R)]2 solves (5.7), with

ρ ≥ Λ > 0, we want to show that (ρ, u) is unique. From Step 1, it is su�ient to show that r1 = u+ ρθand r2 = u − ρθ is solution of (5.2). This is easy to see that this is true by reversing the arguments of28



Step 2.Now, we prove the existene and uniqueness of a ontinuous solution announed in Theorem 1.4 i).Proof of i): We proeed as in the proof of ii). We onsider system (5.2) with the following initialdata r01 = u0 + ρθ0 and r02 = u0 − ρθ0. We apply Theorem 5.1 i) (Existene), we prove that, under theassumption (J1) and (J2), system (5.2) admits a ontinuous solution (r1, r2) on [0,+∞)×R satisfying
(A1) and (A2). Sine r01 − r02 = 2ρθ0 ≥ 0, we know also that r1 − r2 = 2ρθ ≥ 0, for all t > 0.Moreover, if we assume the ondition r01 ≥ Λ1 > Λ2 ≥ r02 then in partiular we have that 2ρθ ≥
Λ1 − Λ2 > 0. This proves that system (5.5) is equivalent to system (5.7). By Lemma 5.2, we deduethat it is equivalent to write that u = r1+r2

2 and ρθ = r1−r2
2 are ontinuous solution of system (5.5)satisfying (J1) and (J2) for all t ≥ 0. We use Theorem 5.1 i) (Uniqueness), whih proves that (ρ, u) isthe unique ontinuous vanishing visosity solution (in the sense of De�nition 3.6).
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