
Some uniqueness results for diagonal hyperboli
systems with large and monotone dataA. El Hajj1, R. Monneau2Mar
h 27, 2012Abstra
tIn this paper, we study the uniqueness of solutions for diagonal hyperboli
 systems in one spa
e dimension. Wepresent two uniqueness results. The �rst one is a global existen
e and uniqueness result of a 
ontinuous solutionfor stri
tly hyperboli
 systems. The se
ond one is a global existen
e and uniqueness result of a Lips
hitz solutionfor hyperboli
 systems not ne
essarily stri
tly hyperboli
. An appli
ation of these two results is shown in the
ase of one-dimensional isentropi
 gas dynami
s.AMS Classi�
ation: 35L45, 35Q35, 35Q72, 74H25.Key words: Uniqueness results, system of Burgers equations, system of nonlinear transport equations, non-linear hyperboli
 system, isentropi
 gas dynami
s.1 Introdu
tion and main results1.1 Setting of the problemIn this paper we are interested in 
ontinuous solutions to hyperboli
 systems in dimension one. Ourwork will fo
us on solutions u(t, x) = (ui(t, x))i=1,...,d, where d ≥ 1 is an integer, of hyperboli
 systemswhi
h are diagonal, i.e.
∂tu

i + λi(u)∂xu
i = 0 on (0,+∞)× R, for i = 1, ..., d, (1.1)with the initial data:

ui(0, x) = ui0(x), x ∈ R, for i = 1, . . . , d. (1.2)Here we use the notation ∂t = ∂

∂t
and ∂x =

∂

∂x
. Su
h systems are (sometimes) 
alled (d× d) diagonalhyperboli
 systems.For real numbers αi ≤ βi, let us 
onsider the box

U = Πd
i=1[α

i, βi]. (1.3)We 
onsider a given fun
tion λ = (λi)i=1,...,d : U → R
d, whi
h satis�es the following regularity assump-tion:1Université de Te
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(H1)







λ ∈ [C∞(U)]
d,there exists M0 > 0 su
h that for i = 1, ..., d,

|λi(u)| ≤M0 for all u ∈ U,there exists M1 > 0 su
h that for i = 1, ..., d,
|λi(v) − λi(u)| ≤M1|v − u| for all v, u ∈ U,where |w| =

∑

i=1,...,d

|wi|, for w = (w1, . . . , wd). Given any Bana
h spa
e (E, ‖ · ‖E), in the rest of thepaper we 
onsider the norm on Ed:
‖w‖Ed =

∑

i=1,...,d

‖wi‖E, for w = (w1, . . . , wd) ∈ Ed.Then, we de�ne
λi,j(u) =

∂λi

∂uj
(u), for i, j = 1, . . . , d,and we assume that

(H2) λi,i(u) ≥ 0 for all u ∈ U, and i = 1, · · · , d.In (1.2), the initial data u0 = (u10, · · · , ud0) is assumed to satisfy the following property:
(H3)







αi ≤ ui0 ≤ βi,
ui0 is nonde
reasing,
∂xu

i
0 ∈ L logL(R), ∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, · · · , d,where L logL(R) is the following Zygmund spa
e:
L logL(R) =

{

f ∈ L1(R) su
h that ∫
R

|f | ln (e+ |f |) < +∞
}

.This spa
e is equipped by the following norm:
‖f‖L logL(R) = inf

{

µ > 0 :

∫

R

|f |
µ

ln

(

1 +
|f |
µ

)

≤ 1

}

.This norm is due to Luxemburg (see Adams [1, (13), Page 234℄).In parti
ular we will say that u0 is nonde
reasing if ea
h 
omponent ui0, for i = 1, . . . , d, is nonde
reasingand we write it as ∂xu0 ≥ 0. Re
all that nonde
reasing solutions of the 
lassi
al s
alar Burgers equation
∂tu+ ∂x

(
u2

2

)

= 0, do not develop sho
ks. Noti
e that assumption (H2) is a natural generalization ofBurgers equation to systems.For general (d×d) stri
tly hyperboli
 systems, (in
luding diagonal systems, like system (1.1)), Bian
hiniand Bressan proved in [4℄ a striking result of global existen
e and uniqueness of a solution assumingthat the initial data has small total variation. Their existen
e result is a generalization of Glimm'sresult [12℄, proved in the 
ase of 
onservation laws. Let us mention that an existen
e result has alsobeen obtained by LeFlo
h and Liu [18, 19℄ in the non-
onservative 
ase. In this paper we are interestedin existen
e and uniqueness result of a 
ontinuous solution to system (1.1).2



1.2 Main resultsIn El Hajj, Monneau [11℄, we left open the question of the uniqueness of 
ontinuous solutions of system(1.1). In this subse
tion we present two uniqueness results for system (1.1) under some parti
ularassumptions. An appli
ation of these two main results is then presented in Subse
tion 1.3 for the 1Dgas dynami
s equations.Theorem 1.1 (Existen
e and uniqueness of a 
ontinuous solution)Assume (H1), (H2), (H3) and that system (1.1) is stri
tly hyperboli
, i.e.
λi+1(u)− λi(u) ≥ Λ > 0, for all u ∈ U and i = 1, . . . , d− 1. (1.4)Then, there exists a fun
tion u = (ui)i=1,...,d whi
h satis�es:i) Existen
e of a 
ontinuous solution:The fun
tion u is solution of (1.1)-(1.2), su
h that u(t, ·) is nonde
reasing in x for all t > 0, u(t, x) ∈ Ufor all (t, x), and u satis�es
u ∈ [L∞((0,+∞)× R)]d and ∂xu ∈ [L∞((0,+∞);L logL(R))]d.Moreover u is 
ontinuous in time and in spa
e and satis�es for all δ, h ≥ 0 and all (t, x) ∈ (0, T−δ)×R,the following estimate:

|u(t+ δ, x+ h)− u(t, x)| ≤ C ω(δ, h) with ω(δ, h) =
1

ln(1
δ
+ 1)

+
1

ln( 1
h
+ 1)

, (1.5)where C(T, d,M0,M1, ‖u0‖[L∞(R)]d , ‖∂xu0‖[L logL(R)]d ,Λ).Furthermore u, is a 
ontinuous vanishing vis
osity solution of system (1.1)-(1.2), in the sense of De�-nition 3.6.ii) Uniqueness:Under assumptions (H1), (H2), (H3) and (1.4) every 
ontinuous vanishing vis
osity solution of (1.1)-(1.2) in the sense of De�nition 3.6 is unique.iii) L1-stability estimate:Let u (resp. v) be two solutions of system (1.1), 
onstru
ted in (i). Assume moreover that u(0, ·) = u0(·)and v(0, ·) = v0(·) su
h that u0(±∞) = v0(±∞). Then there exists a 
onstant L > 0, su
h that for all
t ∈ [0, T ], we have

‖u(t, ·)− v(t, ·)‖[L1(R)]d ≤ L‖u0 − v0‖[L1(R)]d , (1.6)where L only depends on T , M0, M1, d, Λ and bounds on ‖u0‖[L∞(R)]d , ‖∂xu0‖[L logL(R)]d , ‖v0‖[L∞(R)]d ,
‖∂xv0‖[L logL(R)]d .Remark 1.2(i) Noti
e that if u0 ∈ [W 1,∞(R)]d with ∂xu0 ≥ 0 then ∂xu0 ∈ (L1(R) ∩ L∞(R))d ⊂ [L logL(R)]d andwe 
an apply Theorem 1.1.(ii) If we know moreover that the system is ri
h then by a result of Serre [26, Vol II℄, we know that thesolution is indeed Lips
hitz. Therefore our Theorem 1.1 
an be seen as a generalization of the result ofSerre to the 
ase of diagonal non-ri
h systems.(iii) The C∞ regularity of the 
oe�
ients is 
onvenient for the proofs, but 
an be weakened up to theminimal regularity, i.e. Lips
hitz 
ontinuous 
oe�
ients λi.3



Let us mention that a global existen
e result similar to Theorem 1.1 (but without uniqueness) has beenobtained in [11℄ for non stri
tly hyperboli
 systems where assumptions (H2)-(1.4) are simply repla
edby the following assumption
(H2)′

∣
∣
∣
∣
∣
∣
∣
∣

for all u ∈ U, we have
∑

i,j=1,...,d

ξiξjλ
i
,j(u) ≥ 0 for every ξ = (ξ1, ..., ξd) ∈ [0,+∞)d.Noti
e that in the 
ase of stri
tly hyperboli
 systems, Theorem 1.1 only requires assumption (H2) whi
his weaker than (H2)′ and moreover guarantees the uniqueness of the solution. Our method of proofis strongly inspired from Bian
hini, Bressan [4℄. First, we get an estimate in [L∞((0, T );L logL(R))]dfor ∂xu getting some 
ontrol on the intera
tions between di�erent �elds ∫ T

0

∫

R

∂xu
i∂xu

jdxdt for i 6= j,using the stri
tly hyperboli
 
ondition (1.4) similarly as in Bian
hini et al. [4℄.A se
ond key point is that our [L∞((0, T );L logL(R))]d estimate on ∂xu implies the 
ontinuity of thesolution u with a 
ontrolled modulus of 
ontinuity. This implies that the solution is lo
ally in BV withsmall norm. Taking into a

ount the �nite speed propagation property it is then possible to lo
alizethe argument developed in Bian
hini et al. [4℄, and �nally to extend it to the 
ase of large initial data(but monotone data).Let us mention that, in the 
ase d = 2 and under the same assumptions of Theorem 1.1, T. T. Li provedin [20, pp. 35-41℄ an existen
e and uniqueness result for C1 solutions. This result is a generalization ofLax result [17℄, proved for Lips
hitz solutions. Here, we prove a similar result 
onsidering less regularityon the solution (
ontinuous solutions) and for all d ≥ 1.Let us now introdu
e various assumptions on the matrix (λi,j(u))i,j=1,...,d whi
h will guarantee the ex-isten
e and uniqueness of Lips
hitz solutions.(Non-negative sub-diagonal matri
es)
(K1) λi,j(u) ≥ 0 for all u ∈ U and j ≥ i with i, j ∈ {1, . . . , d}.(Non-negative matri
es with non-positive o�-diagonal terms)
(K2)







λi,j(u) ≤ 0 for all u ∈ U and j 6= i with i, j ∈ {1, . . . , d},

Aij = inf
u∈U

(λi,j(u)) and ∑

i,j=1,...,d

Aijξiξj ≥ 0 for every ξ = (ξ1, ..., ξd) ∈ [0,+∞)d.(Diagonally dominant)
(K3) λi,i(u) ≥

∑

i6=j

(
λi,j(u)

)− for all u ∈ U and i = 1, . . . , d,where we note x− = max(0,−x).Theorem 1.3 (Existen
e and uniqueness of Lips
hitz solutions)Assume one of the following assumptions (K1), (K2) or (K3). Let u0 ∈ [W 1,∞(R)]d be a non-de
reasing fun
tion satisfying u0(x) ∈ U , for all x ∈ R. Then, there exists a unique fun
tion4



u ∈
⋂

T>0

[
W 1,∞([0, T )× R)

]d solution of (1.1)-(1.2), with u(t, x) ∈ U for all (t, x). Moreover we havefor any t ∈ (0,+∞):
∑

i=1,...,d

‖∂xui(t, ·)‖L∞(R) ≤
∑

i=1,...,d

‖∂xui0‖L∞(R), if (K2) holds (1.7)and
max

i=1,...,d
‖∂xui(t, ·)‖L∞(R) ≤ max

i=1,...,d
‖∂xui0‖L∞(R), if (K3) holds. (1.8)Noti
e that in Theorem 1.3, we do not assume that system (1.1) is stri
tly hyperboli
.Theorem 1.3 is based on the fa
t that the solution satis�es ∂xui ≥ 0, for i = 1, . . . , d, and then weonly have to bound the maximum of the gradient from one side. Assumptions (K1), (K2) and (K3)are su�
ient 
onditions to 
ontrol the solution of the maximum of the gradient. These a priori boundsare obtained 
onsidering a paraboli
 regularization of the system and then writing some di�erentialinequalities satis�ed in the sense of vis
osity by the maximum of the gradient. The uniqueness of thesolution is an independent result valid for Lips
hitz solutions.In the 
ase of (2× 2) stri
tly hyperboli
 systems, whi
h 
orresponds in (1.1) to the 
ase of λ1(u1, u2) <

λ2(u1, u2), we refer the reader to the work of Lax [17℄, whi
h has proved the existen
e of Lips
hitz solu-tions of (1.1)-(1.2) with the assumption λi,i(u) ≥ 0 for the diagonal terms. As it was re
alled in Remark1.2 (ii), this result was also extended by Serre [26, Vol II℄ to the 
ase of (d× d) ri
h stri
tly hyperboli
systems. We also refer the reader to the work of Poupaud [25℄, for a global existen
e and uniquenessresult of a Lips
hitz solution of a parti
ular quasi-linear hyperboli
 system, 
onsidering large initial data.In the framework of vis
osity solutions, Ishii, Koike [15℄ and Ishii [14℄, have shown existen
e anduniqueness of vis
osity 
ontinuous solutions for Hamilton-Ja
obi systems of the form:






∂tu
i +Hi(u,Du

i) = 0 with u = (u1, . . . , ud) ∈ R
d, for x ∈ R

N , t ∈ (0,+∞),

ui(x, 0) = ui0(x) x ∈ R
N ,

(1.9)where the Hamiltonian Hi is quasi-monotone in u (see the de�nition in Ishii, Koike [15, Th.4.7℄). Indeedsystem (1.1) belongs to this framework with N = 1 and ∂xui ≥ 0 under the assumption λi,j(u) ≤ 0 for
j 6= i.Let us also mention that in the 
ase d = 2 with a matrix (λi,j(u))i,j=1,2 =

(
1 −1
−1 1

), it was provedin El Hajj, For
adel [10℄, the existen
e and uniqueness of a Lips
hitz vis
osity solution, and in El Hajj[9℄, the existen
e and uniqueness of a strong solution in [

W 1,2
loc ([0,+∞)× R)

]2.1.3 Appli
ation to 1D gas dynami
sNow, we present an appli
ation of the previous results to the following 1D system of isentropi
 gasdynami
s:






∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0, with p(ρ) = (γ−1)2

4γ ργ

u(0, x) = u0 and ρ(0, x) = ρ0 ≥ 0.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

on (0,+∞)× R (1.10)
5



where ρ is the density, u is the speed and p(ρ) is the pressure given by a simple power law for anexponent γ > 1. First, we assume the following 
onditions, with θ = γ−1
2 :

(J1) u0, ρ
θ
0 ∈ L∞(R), and ∂xu0 ≥

∣
∣∂xρ

θ
0

∣
∣.

(J2) ∂xu0, ∂xρ
θ
0 ∈ L logL(R).

(J2)′ u0, ρ
θ
0 ∈ Lip(R).Applying Theorems 1.1 and 1.3, we will prove the following result.Theorem 1.4 (Existen
e and uniqueness for isentropi
 gas dynami
s)Assume (J1), with ρ0 ≥ 0 and γ > 1. Then we havei) Existen
e and uniqueness of a 
ontinuous solution:Under assumption (J2), system (1.10) has a 
ontinuous solution (ρ, u) on [0,+∞) × R, where ρ(t, ·)and u(t, ·) satisfy (J1) and (J2), for all t ≥ 0. Moreover, if

u0 + ρθ0 ≥ Λ1 > Λ2 ≥ u0 − ρθ0 for some 
onstants Λ1,Λ2,then this solution is the unique 
ontinuous vanishing vis
osity solution, in the sense of De�nition 3.6.ii) Existen
e and uniqueness of a Lips
hitz solution:Assume (J2)′. If 1 < γ ≤ 3, then system (1.10) has a solution (ρ, u) ∈ [L∞([0,+∞)× R)]2, with
ρ ≥ 0 and ρθ, u ∈ W 1,∞([0,+∞)× R). (1.11)Re
ipro
ally any solution (ρ, u) of (1.10) satisfying (1.11) is unique if we assume moreover that ρ ≥

Λ > 0 on [0,+∞)× R.Remark 1.5 (Va
uum 
ase)Noti
e that if ρ = 0 on a subset ω ⊂ (0,+∞) × R, then equation (1.10) is automati
ally satis�ed andthe fun
tion u 
an be 
hosen lo
ally arbitrarily in ω. This shows that we 
an not expe
t uniqueness ofthe solution when there is va
uum (i.e ρ = 0).The proof of Theorem 1.4 is an appli
ation of Theorems 1.1 and 1.3. We refer the reader to Se
tion 5for the proof of Theorem 1.4. Let us re
all that, in the 
ase ρ0 > 0, T. T. Li proved in [20, pp. 35-41℄an existen
e and uniqueness result for C1 solutions. Noti
e that for the existen
e results given in (i)(
ontinuous solutions) and in (ii) (Lips
hitz solutions), we only assume that ρ0 ≥ 0, whi
h allows usto 
onsider solutions with va
uum. In 
onne
tion with Theorem 1.4, let us mention the work of Lionset al. in [22℄ where the existen
e of a solution was obtained for ρ0 ≥ 0 with any u0, ρ0 ∈ L∞(R) and
γ > 1. This extended a previous result of DiPerna [7, 8℄. We also refer the reader to Mer
ier [23℄ foranother result with va
uum.1.4 Organization of the paperThis paper is organized as follows: in Se
tion 2, we prove the existen
e of 
ontinuous solutions (Theorem1.1 (i)). In Se
tion 3, we prove the uniqueness of 
ontinuous vanishing vis
osity solutions (Theorem1.1 (ii)) and the L1-stability estimate (Theorem 1.1 (iii)). In Se
tion 4, we prove the existen
e anduniqueness of Lips
hitz solutions (Theorem 1.3). Finally in Se
tion 5, we give the proof of Theorem 1.4as an appli
ation to the 1D isentropi
 gas dynami
s.6



2 Existen
e of 
ontinuous solutionsIn this se
tion we prove the existen
e of 
ontinuous solutions of system (1.1)-(1.2) (Theorem 1.1 (i))adapting our existen
e proof developed in [11℄ and some ideas of Bian
hini, Bressan [4℄.To prove the existen
e of 
ontinuous solutions to system (1.1)-(1.2), we need to re
all the existen
eresult proved by El Hajj et al. in [11℄ for the following paraboli
 regularization of system (1.1):
∂tu

ε,i + λi(uε)∂xu
ε,i = ε∂xxu

ε,i for 0 < ε ≤ 1 and ∂xx =
∂2

∂x2
, (2.1)
onsidering the following initial data:

uε(x, 0) = ũ0(x) = (ũi0(x))i=1,··· ,d. (2.2)Let us now introdu
e the following assumption on the initial data:
(G1) ũ0(x) ∈ U and ũ0 ∈ [W 1,∞(R)]d.

(G2) ∂xũ
i
0 ≥ 0 for i = 1, · · · , d.

(G3) ũ0(x) = uε0(x) = u0 ∗ ηε(x), for 0 < ε ≤ 1,where u0 satisfying (H3) and ηε is a molli�er de�ned by ηε(·) = 1
εη(

·
ε ), su
h that η ∈ C∞

c (R) is a non-negative fun
tion and ∫

R
η = 1. We note that assumption (G3) will be used to prove some intermediateresults. However, our �nal results are proved without this assumption.In order to pass to the limit ε → 0 in (2.1), we will need to use (and to prove later) the followingregularity assumption:

(G4)

∣
∣
∣
∣
∣
∣

For all T > 0, ∃CT > 0 independent on ε, su
h that
∥
∥∂xu

ε,i
∥
∥
L∞((0,T );L logL(R))

≤ CT for i = 1, . . . , d.In [11℄, we have proven the following result (see [11℄, Theorem 2.2, Proposition 3.1, Lemma 4.3 andTheorem 4.4).Theorem 2.1 (Global existen
e for non stri
tly hyperboli
 
ase)Assume (H1). Then we have:i) Existen
e, uniqueness and bounds:Under assumption (G1), system (2.1)-(2.2) has a unique solution uε = (uε,i)i=1,...,d ∈
⋂

T>0

[
W 1,∞([0, T )× R)

]d,satisfying uε(t, x) ∈ U for all (t, x), and the following L∞ estimate:
‖uε,i‖L∞((0,+∞)×R) ≤ ‖ũi0‖L∞(R) for i = 1, . . . , d. (2.3)Moreover, if we assume (G2) then the fun
tion uε(t, ·) is nonde
reasing in x for all t > 0 and we havefor any t ∈ [0, T ] the following gradient entropy estimate:

∫

R

∑

i=1,...,d

f
(
∂xu

ε,i(t, x)
)
dx+

∫ t

0

∫

R

∑

i,j=1,...,d

λi,j(u
ε)∂xu

ε,i(s, x)∂xu
ε,j(s, x) dx ds ≤ C1, (2.4)7



where
f(x) =

{
x ln(x) + 1

e
if x ≥ 1/e,

0 if 0 ≤ x ≤ 1/e,
(2.5)and C1(T, d,M1, ‖ũ0‖[L∞(R)]d , ‖∂xũ0‖[L logL(R)]d).Furthermore, if we assume ũ0 ∈ [W 2,∞(R)]d ∩ [C∞(R)]d, then we have

uε ∈
⋂

T>0

([
W 2,∞([0, T )× R)

]d ∩ [C∞([0, T )× R)]
d
)

.ii) Convergen
e:Assume that ũ0 satis�es (G3). Assume moreover that uε satis�es (G4) uniformly for ε ∈ (0, 1]. Thenup to extra
t a subsequen
e, the fun
tion uε 
onverges lo
ally uniformly, as ε goes to zero, to a fun
tion
u ∈ [L∞([0,+∞)× R)]

d. Moreover u is a solution to (1.1)-(1.2) and satis�es u(t, ·) is nonde
reasing in
x for all t > 0, u ∈ [C([0,+∞)× R)]d, u(t, x) ∈ U for all (t, x) and there exists a modulus of 
ontinuity
ω(δ, h), su
h that for all δ, h ≥ 0 and all (t, x) ∈ (0, T − δ)× R, we have:

|u(t+ δ, x+ h)− u(t, x)| ≤ C2 ω(δ, h) with ω(δ, h) =
1

ln(1δ + 1)
+

1

ln( 1h + 1)
(2.6)where C2(CT ,M0), with CT is given in assumption (G4).Remark 2.2 (Sense of integral terms)It is 
lear here that the integral terms on the left hand side of (2.4) are always de�ned, sin
e weknow by (H1) that, for all i, j = 1, · · · , d, the fun
tions λi,j(·) are bounded, and moreover we knowthat, for all i = 1, · · · , d and T > 0, uε,i ∈ L∞((0, T );W 1,∞(R)) and ∂xu

ε,i ≥ 0, and therefore
∂xu

ε,i ∈ L∞((0, T );L1(R) ∩ L∞(R)) ⊂ L∞((0, T );L logL(R)).Before going into the proof of the existen
e result of 
ontinuous solutions introdu
ed in Theorem 1.1(i), we re
all the following lemma (dedu
ed from Lemma 7.1 in Bian
hini et al. [4℄).Lemma 2.3 (Transversal wave intera
tions)Let µ, µ̄ ∈ Cb((0,+∞) × R) (two 
ontinuous bounded fun
tions) and ε ≥ 0. Let moreover z, z̄ ∈
L∞((0,+∞);L1(R)), be solutions of the two independent s
alar equations

∂tz + ∂x(µ z) = ε∂xxz on (0,+∞)× R (2.7)
∂tz̄ + ∂x(µ̄ z̄) = ε∂xxz̄ on (0,+∞)× R (2.8)with two initial data z(0, ·), z̄(0, ·) ∈ L1(R), where the initial data of z is understood as follows

∫

R

z(t, x)ψ(x)dx →
∫

R

z(0, x)ψ(x)dx as t→ 0, for every ψ ∈ C∞
c (R)and similarly for z̄. Assume that, for all T > 0

inf
(t,x)∈(0,T )×R

[µ(t, x)− µ̄(t, x)] ≥ Λ > 0.Then
∫ T

0

∫

R

|z(t, x)||z̄(t, x)|dx dt≤ 1

Λ

(∫

R

|z(0, x)|dx
)(∫

R

|z̄(0, x)|dx
)

.8



We remark that the proof of this lemma is based on the following estimate
d

dt

[∫ ∫

x<y

1

Λ
|z(t, x)||z̄(t, y)|dx dy

]

≤ −
∫

R

|z(t, x)||z̄(t, x)|dx.For more details see Bian
hini et al. [4, Lemma 7.1℄.Proof of Theorem 1.1 (i):We will show that bound (G4) holds for the solution uε given in Theorem 3.1 (i), with initial data ũ0satisfying (G3). To this end, we bound from above the following quantity uniformly on ε
I = −

∫ t

0

∫

R

∑

i,j=1,...,d

λi,j(u
ε)∂xu

ε,i(s, x)∂xu
ε,j(s, x) dx ds

≤ −
∫ t

0

∫

R

∑

i6=j, i,j=1,...,d

λi,j(u
ε)∂xu

ε,i(s, x)∂xu
ε,j(s, x) dx ds

≤M1

∫ t

0

∫

R

∑

i6=j, i,j=1,...,d

∣
∣∂xu

ε,i(s, x)
∣
∣
∣
∣∂xu

ε,j(s, x)
∣
∣ dx dswhere to get the se
ond line we have used (H2), and we have used (H1) in the third line. Now, we use(1.4), Lemma 2.3 and the monotoni
ity of uε0 (as a 
onsequen
e of (H3) and (G3)), we obtain

I ≤ M1

Λ

∑

i6=j,i,j=1,...,d

(∫

R

∣
∣
∣∂xu

ε,i
0 (x)

∣
∣
∣ dx

)(∫

R

∣
∣
∣∂xu

ε,j
0 (x)

∣
∣
∣ dx

)

≤ 4M1

Λ
‖u0‖2[L∞(R)]d .Then, by (2.4) we get

∫

R

∑

i=1,...,d

f
(
∂xu

ε,i(t, x)
)
dx ≤ C1 +

4M1

Λ
‖u0‖2[L∞(R)]d := CT ,whi
h implies that ∂xuε,i, for i = 1, . . . , d, are bounded in [L∞((0, T );L logL(R))]d uniformly on ε (witha 
onstant only depending on CT and on ||u0||[L∞(R)]d).The fa
t that u is a vanishing vis
osity solution is a 
onsequen
e of Theorem 3.7 that will be provenlater. This ends the proof of Theorem 1.1 (i). 23 Lo
al semigroup property and uniqueness of 
ontinuous van-ishing vis
osity solutionsIn this se
tion, we show that the solution of system (1.1)-(1.2), 
onstru
ted in Theorem 1.1 (i), is theunique 
ontinuous vanishing vis
osity solution (in the sense of De�nition 3.6). In the following subse
tionwe show some useful estimates for the paraboli
 system (2.1)-(2.2). Then using these estimates, we provein Subse
tion 3.2 a kind of ��nite propagation speed result� of this paraboli
 system in the vanishingvis
osity limit. Thanks to this result, we are able to lo
alize the argument developed in Bian
hini et al.[4℄ and then to extend it for large and 
ontinuous data.9



3.1 Preliminary resultsIn this subse
tion we show some useful paraboli
 estimates. In Proposition 3.2, we prove that the L1norm of the se
ond spa
e derivative uxx of the solution of paraboli
 system (2.1)-(2.2) de
ays rapidlyin spa
e lo
ally in time, whi
h gives a L∞ bound on the spa
e derivative ux. Then, using this L∞bound we prove in Lemma 3.4 a 
omparison prin
iple result based on the maximum prin
iple for s
alarparaboli
 equations.Lemma 3.1 (Properties of the heat kernel)Let G(t, x) = 1√
4πt

e−
x2

4t be the standard heat kernel. Then, for all t > 0, we have:(i) ‖G(t, ·)‖L1(R) = 1,(ii) ‖∂xG(t, ·)‖L1(R) ≤
1√
t
.For the proof of this lemma, we refer to Pazy [24, Th 5.2. Page 107℄.Proposition 3.2 (Lo
al in time L1 bound on ∂xxu

ε)Assume that ũ0 satis�es (G1) and (G2). Let uε = (uε,i)i=1,...,d be the solution of system (2.1)-(2.2),given by Theorem 3.1 (i). Then for
T0 =

(
1

8C0

)2 and C0 = 2
(
‖ũ0‖[L∞(R)]d +M0 +M1‖ũ0‖[L∞(R)]d

)
,the following estimate holds for all t ∈ (0, εT0]:

∥
∥∂xxu

ε,i(t, ·)
∥
∥
L1(R)

≤ 2C0√
εt

for i = 1, . . . , d. (3.1)Proof of Proposition 3.2:We prove the result in three steps. In the �rst step, we prove that the se
ond spa
e derivative of thesolution of (2.1) with ε = 1 is bounded in L∞((0, T );L1(R)) for some small T . In the se
ond step weprove estimate (3.1) in the 
ase ε = 1 and then in the third step we dedu
e the result res
aling in timeand in spa
e.Step 1. (Lo
al L∞((0, T );L1(R)) bound): First of all, assume that ũ0 ∈ [W 2,∞(R)]d ∩ [C∞(R)]d.Let v = (vi)i=1,...,d be a solution of system (2.1)-(2.2), with ε = 1, given by Theorem 3.1 (i). Taking thederivative with respe
t to x the equation (2.1) satis�ed by v ∈ [C∞((0, T )× R)]
d, we get that wi = ∂xv

isatis�es the following equation
∂tw

i + λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi = ∂xxw

i. (3.2)The fun
tion wi(t) = wi(t, ·), 
an be represented as
wi(t) = G(t) ∗ wi(0)−

∫ t

0

G(t− s) ∗



λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi



 ds (3.3)where G is de�ned in Lemma 3.1. Taking the derivative with respe
t to x we dedu
e that
∂xw

i(t) = G(t) ∗ ∂xwi(0)−
∫ t

0

(∂xG(t− s)) ∗



λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi



 ds.10



Using Lemma 3.1, we obtain
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+M1

∫ t

0

1√
t− s

‖wi(s)‖L∞(R)‖w(s)‖[L1(R)]d dswhere w = (wi)i=1,...,d. Using estimate (2.3) and the fa
t that wi ≥ 0, we obtain
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+2M1‖ũ0‖[L∞(R)]d

∫ t

0

1√
t− s

‖wi(s)‖L∞(R) ds.By Sobolev inje
tion and the fa
t that wi(t, x) → 0 as |x| → +∞, we 
an see that
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+2M1‖ũ0‖[L∞(R)]d

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds.This implies that
‖∂xwi(t)‖L1(R) ≤ ‖∂xwi(0)‖L1(R) + κ

√
T‖∂xwi‖L∞((0,T );L1(R)) (3.4)where κ = 2(M0 + 2M1‖ũ0‖[L∞(R)]d). Using estimate (3.4), we 
an prove that for all T ≤ 1

4κ2 , we have(if ‖∂xwi‖L∞((0,T );L1(R)) is �nite)
‖∂xwi‖L∞((0,T );L1(R)) ≤ 2‖∂xwi(0)‖L1(R).The remaining di�
ulty is to show that ‖∂xwi‖L∞((0,T );L1(R)) is �nite. To this end, we multiply w by afun
tion φR(·) = φ( ·

R
), where φ is a 
ut-o� fun
tion satisfying φ ∈ Cc(R) and φ ≡ 1 on [−1, 1]. Then, werepeat the previous argument repla
ing w by φRw and at the end we take the limit R→ +∞ to 
on
lude.Step 2. (Case ε = 1): We now write the derivative of equation (3.3) with respe
t to x, as follows

∂xw
i(t) = (∂xG(t)) ∗ wi(0)−

∫ t

0

(∂xG(t− s)) ∗



λi(v)∂xw
i +

∑

j=1,...,d

λi,j(v)w
jwi



 dsUsing Lemma 3.1, we obtain
‖∂xwi(t)‖L1(R) ≤

1√
t
‖wi(0)‖L1(R) +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+M1

∫ t

0

1√
t− s

‖wi(s)‖L∞(R)‖w(s)‖[L1(R)]d ds.Similarly as in Step 1, from estimate (2.3) and the fa
t that wi ≥ 0, we get
‖∂xwi(t)‖L1(R) ≤

2√
t
‖ũ0‖[L∞(R)]d +M0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds

+2M1‖ũ0‖[L∞(R)]d

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds.11



If we note C0 = 2(‖ũ0‖[L∞(R)]d +M0 +M1‖ũ0‖[L∞(R)]d), then we 
an dedu
e that
‖∂xwi(t)‖L1(R) ≤

C0√
t
+ C0

∫ t

0

1√
t− s

‖∂xwi(s)‖L1(R) ds.To prove (3.1), we shall argue by 
ontradi
tion. First, we remark that from Step 1 we know that
‖∂xwi(t)‖L1(R) is �nite. Assume that there exists a �rst time τ < T0 su
h that the equality in (3.1)(with ε = 1) holds. Then, observing that

∫ t

0

1
√

s(t− s)
ds = πwe 
ompute

‖∂xwi(τ)‖L1(R) ≤ C0√
τ
+ C0

∫ τ

0

1√
τ − s

2C0√
s
ds

<
C0√
τ
+ 8C2

0 ≤ 2C0√
τrea
hing a 
ontradi
tion. Hen
e,

‖∂xwi(t)‖L1(R) <
2C0√
t

for all t ∈ [0, T0]. (3.5)To terminate, it remains to show that the previous estimate holds for initial data ũ0 satisfying (G1)and (G2). To this end, we regularize the initial data ũ0 by 
lassi
al 
onvolution. Then, we repeat theprevious argument repla
ing ũ0 by ũδ0 = ũ0 ∗ ηδ. This shows that, the solution vδ = (vδ,i)i=1,...,d ofsystem (2.1), with ε = 1 and 
orresponding to the initial data ũδ0, satis�es (3.5) for all δ > 0. Namely,
‖∂xxvδ,i(t)‖L1(R) <

2C0√
t

for all t ∈ [0, T0]. (3.6)Moreover, by Theorem (i), we 
an see that, there exists a positive 
onstant CT independent on δ, su
hthat for all t ∈ (0, T ) and i = 1, · · · , d, we have ‖vδ,i(t)‖W 1,∞(R) ≤ CT . Using this estimate with some
ompa
tness arguments and the uniqueness of Lips
hitz solution of (2.1)-(2.2), we 
an show that vδ
onverges lo
ally uniformaly, as δ goes to 0, to the unique solution v of (2.1)-(2.2) (with ε = 1), 
on-stru
ted in Theorem 3.1 (i). Then, we pass to the limit δ → 0 in (3.6), using the lower semi-
ontinuityon the measure spa
e we show that (3.5) holds in the measure spa
e instead of L1(R). Finally, to re
over(3.5) in L1(R), we use some regularity properties on the solution of the paraboli
 equation (2.1), whi
h
ompletes the proof.Step 3. (Case ε > 0): We remark that if v is solution of system (2.1), with ε = 1, then uε(t, x) =

v
(
t
ε ,

x
ε

) is a solution of system (2.1), with ε > 0. Applying (3.5), we get the result.
2Corollary 3.3 (Global L1 bound on ∂xxu

ε)Under the assumptions of Proposition 3.2, we have for all t > 0, and for i = 1, . . . , d

∥
∥∂xxu

ε,i(t, ·)
∥
∥
L1(R)

≤







2C0√
εt

if t < εT0

2C0√
εT0

if t ≥ εT0

(3.7)where C0 is de�ned in Proposition 3.2. 12



To prove this Corollary it su�
es to apply Proposition 3.2 on the time interval [t− εT0, t].Lemma 3.4 (Exponential estimate)Assume that ũ0 satis�es (G1) and (G2). Let u be the solution of system (2.1)-(2.2), with ε = 1, givenby Theorem 3.1 (i). We 
onsider a solution z = (zi)i=1,...,d of the linearized system:
∂tz

i + ∂x(λ
i(u)zi)− ∂xxz

i =
∑

j=1,··· ,d
λi,j(u)

[
zi∂xu

j − zj∂xu
i
] for i = 1, · · · , d (3.8)with initial data satisfying

{
|z(0, x)| ≤ 1 if x ≥ 0
z(0, x) = 0 if x < 0.Then, there exists two 
onstants α, β > 0, su
h that for all t > 0

|z(t, x)| ≤ αeβt+x,where α, β only depend on d, M0, M1 and ‖ũ0‖[L∞(R)]d .Proof of Lemma 3.4:First we assume that z is a smooth fun
tion. We will show that z(t, x) be
omes exponentially small ona domain of the form {βt+ x < 0}. Indeed, any solution of (3.8) admits the integral representation
zi(t, x) = G(t) ∗ zi(0) −

∫ t

0

(∂xG(t− s)) ∗ [λi(u)zi](s) ds

+

∫ t

0

G(t− s) ∗




∑

j=1,...,d

λi,j(u)
[
zi∂xu

j − zj∂xu
i
]



in terms of 
onvolutions with standard heat kernel G(t) =G(t, x) = 1√
4πt

e
−x2

4t . Therefore
|z(t, x)| ≤

∫

R

G(t, x− y)|z(0, y)| dy +M0

∫ t

0

∫

R

|(∂xG(t− s, x− y))||z(s, y)| ds dy

+2M1

∫ t

0

∫

R

G(t− s, x− y)‖∂xu(s)‖[L∞(R)]d |z(s, y)| ds dy.We know that there exists a fun
tion B satisfying B(t) ≤ 2eCt for every t > 0, for some 
onstant Cdepending only on M0, su
h that
E(t, x) = B(t)exp

(

4M1

∫ t

0

‖∂xu(s)‖[L∞(R)]d ds

)

et+x,satis�es the following estimates (see Bian
hini et al. [4℄ inequalities (12.8)-(12.9)-(12.10)):






∫

R

G(t, x− y)|z(0, y)| dy < 1√
4πt

∫

R

e
−(x−y)2

4t ey dy = et+x

M0

∫ t

0

∫

R

|(∂xG(t− s, x− y))E(s, y) ds dy ≤ 1

2
E(t, x) − 1

2
et+x

2M1

∫ t

0

∫

R

G(t− s, x− y)‖∂xu(s)‖[L∞(R)]dE(s, y) ds dy ≤ 1

2
E(t, x)− 1

2
et+x.13



Noti
e that this result 
an also be 
he
ked dire
tly by 
omputation.Thanks to the previous bounds and similarly as in the proof of (3.5), we obtain
|z(t, x)| ≤ E(t, x).Then using Sobolev inje
tion, we dedu
e that

|z(t, x)| ≤ E(t, x) ≤ 2eCtexp

(

4M1

∫ t

0

‖∂xxu(s)‖[L1(R)]d ds

)

et+xwhere we have used Proposition 3.2 to see that ‖∂xxu(t)‖[L1(R)]d is �nite. Finally, using Corollary 3.3(with ε = 1), we dedu
e that
|z(t, x)| ≤ 2eCtexp

(

8dM1C0

(

2
√
t+

t√
T0

))

et+x.We observe that this estimate only depends on d, M0, M1 and ‖ũ0‖[L∞(R)]d . We 
an prove the samebound for general z, not ne
essarily smooth, using again an approximation argument joint to the
ontinuity of the solution of (3.8) with respe
t to its initial data. 23.2 Propagation speedConsider two solutions uε, vε of the same vis
ous system (2.1), whose initial data 
oin
ide insidea bounded interval [a, b]. Sin
e the system is paraboli
, at a given time t > 0 one may well have
uε(t, x) 6= vε(t, x) for all x ∈ R. Yet, we want to show that the di�eren
e |uε − vε| remains small on
eit is 
on�ned within a bounded interval [a+ βt, b− βt]. This result will be useful in the Subse
tion 3.3,be
ause it implies the uniqueness of the 
ontinuous vanishing vis
osity solutions and of the semigroup.Lemma 3.5 (Propagation speed)For some 
onstants α, β > 0 independent of ε, the following holds. Let us 
onsider two fun
tions ũ0and ṽ0 satisfying (G1) and (G2). Let uε = (uε,i)i=1,...,d and vε = (vε,i)i=1,...,d be the two solutions ofsystem (2.1), 
onstru
ted in Theorem 3.1 (i), with two initial data ũ0 and ṽ0. Assume moreover that,for all reals a < b, we have:

ũ0(x) = ṽ0(x) for x ∈ [a, b]. (3.9)Then for all x ∈ R, t > 0 one has
|uε(t, x)− vε(t, x)| ≤ α‖ũ0 − ṽ0‖L∞(R)

(

e
βt−(x−a)

ε + e
βt+(x−b)

ε

)

.Proof of Lemma 3.5: We prove this lemma in three Steps.Step 1.: As a �rst step we 
onsider a solution z of system (3.8) (for ε = 1), whose initial data satis�es
{

|z(0, x)| ≤M if x ≥ b
z(0, x) = 0 if x < b.By the linearity of system (3.8) and "translation invarian
e", an appli
ation of Lemma 3.4 to thetranslated solution, yields
|z(t, x)| ≤Mαeβt+(x−b).On the other hand, if

{
|z(0, x)| ≤M if x ≤ a
z(0, x) = 0 if x > a,then (using translation and the symmetry x 7→ −x)14



|z(t, x)| ≤Mαeβt−(x−a).Step 2. (Case ε = 1): In this step we prove the result in the parti
ular 
ase ε = 1. Let u and v betwo solutions of system (2.1), with ε = 1. We 
onsider a third solution w of (2.1) with initial data
w(0, x) =

{
u(0, x) if x ≤ b
v(0, x) if x ≥ bFor 0 < θ < 1, we set

uθ(t = 0, x) = uθ0(x) = θu(0, x) + (1− θ)w(0, x)and we 
all uθ = (uθ,i)i=1,...,d the solution given by Theorem 3.1 (i), of (2.1), with ε = 1 and initialdata uθ0. Using system (2.1), we 
an 
he
k that the tangent ve
tor
(zθ,i)i=1,...,d = zθ =

duθ

dθis a solution of the following Cau
hy problem:
∂tz

θ,i + ∂x(λ
i(uθ)zθ,i)− ∂xxz

θ,i =
∑

j=1,··· ,d
λi,j(u

θ)
[
zθ,i∂xu

θ,j − zθ,j∂xu
θ,i
] for i = 1, · · · , d

zθ(0, x) = u(0, x)− w(0, x).If (3.9) holds, then by previous analysis all fun
tions zθ satisfy the following inequality
|zθ(t, x)| ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)e

βt+(x−b).Therefore
|u(t, x)− w(t, x)| ≤

∫ 1

0

|zθ(t, x)|dθ ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)e
βt+(x−b). (3.10)Similarly, we 
an prove that

|v(t, x) − w(t, x)| ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)e
βt−(x−a). (3.11)Colle
ting (3.10) with (3.11), we get

|u(t, x)− v(t, x)| ≤ α‖u(0, ·)− v(0, ·)‖L∞(R)

(

eβt−(x−a) + eβt+(x−b)
)

.Step 3. (Case ε > 0): Res
aling in time and in spa
e, with uε(t, x) = u
(
t
ε
, x
ε

) and vε(t, x) = v
(
t
ε
, x
ε

),we obtain the result (for new a and b).
23.3 Continuous vanishing vis
osity solutions and L

1-stability estimateIn this subse
tion we give the de�nition of 
ontinuous vanishing vis
osity solutions and we prove thatthe solution of system (1.1)-(1.2), 
onstru
ted in Theorem 1.1 (i), is the unique 
ontinuous vanishingvis
osity solution (Theorem 1.1 (ii)). The proof of L1-stability estimate (Theorem 1.1 (iii)) is done atthe end of this subse
tion. The idea of the proof is the following: our solution is 
ontinuous with a
ontrol on the modulus of 
ontinuity. This implies that the total variation of the solution is lo
allysmall. Taking into a

ount the �nite propagation speed property, it is then possible to lo
alize theargument developed in Bian
hini et al. [4℄, and �nally to extend it to the 
ase of large initial data.15



De�nition 3.6 (Continuous vanishing vis
osity solutions)Let T > 0. A fun
tion u ∈ C((0,+∞)×R) is a vis
osity solution of system (1.1) if for any small ν > 0there exists a 
onstant η > 0 su
h that, for all t ∈ [0, T ] the fun
tion u(t, ·) has a total variation smallerthan ν on any interval [a, b] where b− a ≤ η and moreover the following integral estimate hold.There exist 
onstants C, γ > 0 (depending on η) su
h that, for every τ ≥ 0 and a < ξ < b, with b−a ≤ η,one has
lim sup
h→0+

1

h

∫ b−γh

a+γh

|u(τ + h, x)− U ♭
(u;τ,ξ)(h, x)|dx ≤ C (TV [u(τ); (a, b)])

2 (3.12)where TV [u(τ); (a, b)] is the total variation of u(τ, ·) on the interval (a, b) and U ♭
(u;τ,ξ) is the solution ofthe linear hyperboli
 Cau
hy problem with 
onstant 
oe�
ients:

∂tw
i + λi(u(τ, ξ))∂xw

i = 0, with wi(0, x) = ui(τ, x).Now, we prove that our solution 
onstru
ted in Theorem 1.1 (i) is a 
ontinuous vanishing vis
ositysolutions in the sense of this de�nition.Theorem 3.7 (Existen
e of 
ontinuous vanishing vis
osity solutions)The solution of system (1.1), given by Theorem 1.1 (i), is a 
ontinuous vanishing vis
osity solutions,in the sense of De�nition 3.6.To prove this Theorem, we need to re
all the following Lemma.Lemma 3.8 (Solution with small total variation)For all ξ ∈ R, let vε = (vε,i)i=1,...,d, wε = (wε,i)i=1,...,d be respe
tively the two solutions of the vis
oussystems
∂tv

ε,i + λi(vε)∂xv
ε,i = ε∂xxv

ε,i, (3.13)
∂tw

ε,i + λi(wε(0, ξ))∂xw
ε,i = ε∂xxw

ε,i (3.14)with the same initial data vε(0, x) = wε(0, x) = ū(x), where ū is a fun
tion with total variation smallerthan ν > 0. If ν is small enough, then for all h > 0, there exists a positive 
onstant C independent of
ε, su
h that

‖vε(h, ·)− wε(h, ·)‖[L1(R)]d ≤ Ch(TV [ū])2.For the proof of this Lemma see Bian
hini et al. [4, Lemma 15.2℄ (Ne
essity).Proof of Theorem 3.7:Be
ause the solution u given by Theorem 1.1 (i) has a modulus of 
ontinuity 
ontrolled by (1.5), we
an 
hoose a 
onstant η > 0 su
h that for a < b with b− a ≤ η, we have
TV [u(τ); (a, b)] ≤ δ(i.e. u(τ, ·) has small total variation on (a, b)). To prove estimate (3.12), �rst, we �x τ and ξ ∈ (a, b)and we de�ne the following trun
ate fun
tion

ūε(τ)(x) = ūε(τ, x) =







uε(τ, a) if x ≤ a,
uε(τ, x) if a < x < b,
uε(τ, b) if b ≤ x,

(3.15)where uε is the solution of (2.1)-(2.2), with initial data ũ0 satisfying (G3), 
onstru
ted in Theorem 3.1(i). Call vε = (vε,i)i=1,...,d, wε = (wε,i)i=1,...,d respe
tively the solutions of (3.13) and (3.14) with the16



same initial data vε(0, x) = wε(0, x) = ūε(τ, x). Let U ♭,ε
(u;τ,ξ) =

(

U ♭,ε,i
(u;τ,ξ)

)

i=1,...,d
be the solution of theparaboli
 Cau
hy problem (3.14) with U ♭,ε

(u;τ,ξ)(0, x) = uε(τ, x). Let β be the positive 
onstant de�nedin Lemma 3.5. Then by de�nition of u and U ♭
(u;τ,ξ), we 
an see that

1

h

∫ b−βh

a+βh

|u(τ + h, x)− U ♭
(u;τ,ξ)(h, x)|dx

≤ lim
ε→0

1

h

∫ b−βh

a+βh

|uε(τ + h, x)− U ♭,ε
(u;τ,ξ)(h, x)|dx.This implies that

1

h

∫ b−βh

a+βh

|u(τ + h, x)− U ♭
(u;τ,ξ)(h, x)|dx ≤ lim

ε→0

1

h

∫ b−βh

a+βh

|uε(τ + h, x)− vε(h, x)|dx
︸ ︷︷ ︸

Iε
1

+ lim
ε→0

1

h

∫ b−βh

a+βh

|vε(h, x)− wε(h, x)|dx
︸ ︷︷ ︸

Iε
2

+ lim
ε→0

1

h

∫ b−βh

a+βh

|wε(h, x) − U ♭,ε
(u;τ,ξ)(h, x)|dx

︸ ︷︷ ︸

Iε
3

.Using Lemma 3.5 on the �nite propagation speed and estimate (2.3), we obtain, for h small enough,that lim
ε→0

Iε1 + Iε3 = 0. Moreover, by Lemma 3.8, we know that,
lim sup

ε→0
Iε2 ≤ lim sup

ε→0
C(TV [ūε(τ)])2 ≤ C(TV [u(τ); (a, b)])2whi
h ends the proof of Theorem 3.7.

2Before going into the proof of Theorem 1.1 (ii) and (iii), we �rst re
all in Lemma 3.9 the 
ontinuous
L1 estimate, proved by Bian
hini et al. in [4℄. Then we prove Proposition 3.10 that 
laims that oursolution 
oin
ides lo
ally with the semigroup vanishing vis
osity solutions de�ned by Bian
hini et al. in[4℄. Let us underline that the semigroup of Bian
hini-Bressan is de�ned for initial data whi
h are notne
essarily 
ontinuous, but with small total variation.Lemma 3.9 (L1 estimate for initial data with small total variation)Let St be the semigroup of vanishing vis
osity solutions, 
onstru
ted by Bian
hini et al. in [4℄ as thelimit in L1

loc(R) of a sequen
e Sε (see [4, (13.9)℄). Consider any interval [a, b] and two initial data
ū, v̄ ∈ L1

loc(R) with small total variation. Then, the following 
ontinuous L1 estimate holds.
∫ b−βt

a+βt

|(Stū)(x)− (Stv̄)(x)| dx ≤ L0

∫ b

a

|ū(x)− v̄(x)| dx for all 0 ≤ t ≤ b − a

4β
, (3.16)

‖(Sε
t ū)(x) − (Sε

t v̄)(x)‖[L1(R)]d ≤ L0 ‖ū(x) − v̄(x)‖[L1(R)]d for all t ≥ 0, (3.17)where β is the 
onstant de�ned in Lemma 3.5 and L0 is a positive 
onstant independent of ε.17



For the proof of this lemma see Bian
hini et al. [4, (13.13), (13.5)℄.Now we prove the following proposition, whi
h shows that our solution is lo
ally a semigroup.Proposition 3.10 (Semigroup for 
ontinuous vanishing vis
osity solutions)Let u be a solution of system (1.1), given by Theorem 1.1 (i). Then, for all T > 0, there exists η > 0only depending on T , d, M0, M1, Λ and bounds on ‖u0‖[L∞(R)]d and ‖∂xu0‖[L logL(R)]d, su
h that forall 0 < b− a ≤ η and τ ∈ [0, T ], we have
∫ b−βt

a+βt

|u(τ + t, x)− (Stū(τ))(x)|dx = 0, for all 0 ≤ t ≤ b − a

4β
, (3.18)where β is the 
onstant de�ned in Lemma 3.5, St is the semigroup of vanishing vis
osity solution de�nedby Bian
hini et al. in [4℄ and ū is the following trun
ate fun
tion

ū(τ)(x) =







u(τ, a) if x ≤ a,
u(τ, x) if a < x < b,
u(τ, b) if b ≤ x.Proof of Proposition 3.10:First we remark that the solution u, given by Theorem 1.1 (i) satis�es (1.5), and then we 
an 
hoose a
onstant η > 0 su
h that for all b − a ≤ η the fun
tion ū(τ) has small total variation on (a, b). Then,adopting the semigroup notation, we 
an write the vanishing vis
osity solution de�ned by Bian
hini etal. in [4℄ as St(ū(τ)). The fa
t that St is a semigroup is a 
onsequen
e of the theory of Bian
hini-Bressandeveloped in [4℄. By 
onstru
tion of the solutions, we 
an write

∫ b−βt

a+βt

|u(τ + t, x)− St(ū(τ))(x)| dx ≤ lim
ε→0

∫ b−βt

a+βt

|uε(τ + t, x)− Sε
t (ū(τ))(x)| dx (3.19)where uε is the solution of (2.1)-(2.2), with initial data ũ0 satisfying (G3), 
onstru
ted in Theorem 3.1(i). Here Sε

t (ū(τ)) is the semigroup solution of (3.13) with initial data ū, 
onstru
ted by Bian
hini-Bressan in [4℄. Now, we add and we subtra
t in (3.19) the fun
tion Sε
t (ū

ε(τ)), where ūε(τ) is thetrun
ate fun
tion of uε de�ned in (3.15), we dedu
e that, there exists two positive 
onstants C and L0independent of ε su
h that
∫ b−βt

a+βt

|u(τ + t, x)− St(ū(τ))(x)| dx ≤ lim
ε→0

∫ b−βt

a+βt

|uε(τ + t, x)− Sε
t (ū

ε(τ))(x)| dx

+ lim
ε→0

∫ b−βt

a+βt

|Sε
t (ū

ε(τ))(x) − Sε
t (ū(τ))(x)| dx

≤ lim
ε→0

C

∫ b−βt

a+βt

(

e
βt−(x−a)

ε + e
βt+(x−b)

ε

)

dx

+ lim
ε→0

L0‖ū(τ)− ūε(τ)‖[L1(R)]dwhere we have used in the se
ond inequality the �nite propagation speed Lemma 3.5 with estimate(2.3) and estimate (3.17). Using the fa
t that uε 
onverges, as ε→ 0, to u in L∞
loc([0,+∞)× R) and

lim
ε→0

C
(

e
βt−(x−a)

ε + e
βt+(x−b)

ε

)

= 0 on [a+ βt, b− βt]we obtain the result.
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Now, we prove that the solution u 
onstru
ted in Theorem 1.1 (i), is the unique 
ontinuous vanishingvis
osity solution of system (1.1)-(1.2), in the sense of De�nition 3.6.Proof of Theorem 1.1 (ii):Step 1. (Short time): Let w = w(t, x) be a 
ontinuous vanishing vis
osity solution of (1.1) and ube a solution of (1.1) 
onstru
ted in Theorem 1.1 (i). Assume w(0, x) = u(0, x). By De�nition 3.6,we know that there exists two 
onstants γ and η su
h that w satis�es (3.12). Let us 
all (η0, β) theparameters given by Proposition 3.10. Then up to de
reasing η0 and in
reasing β, we 
an assume that
η0 = η and β = γ. Given any interval [a, b], su
h that b− a = η, thanks to identity (3.18) (with τ = 0)and w(0, x) = u(0, x) we have

∫ b−tβ

a+tβ

|w(t, x) − u(t, x)|dx =

∫ b−tβ

a+tβ

|w̄(t, x)− (Stw̄(0))(x)|dx, for all t ≤ η

4βwhere
w̄(t)(x) = w̄(t, x) =







w(t, a) if x ≤ a,
w(t, x) if a < x < b,
w(t, b) if b ≤ x.Let L0 be the Lips
hitz 
onstant of the semigroup St, de�ned in (3.16). Using estimate (3.16) (and thefa
t that St(w̄(0)) is 
ontinuous in t with values in L1(R)), we get the following error estimate

∫ b−tβ

a+tβ

|w̄(t, x)− (Stw̄(0))(x)|dx

≤ L0

∫ t

0

[

lim sup
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

|w̄(τ + h, x)− Sh(w̄(τ))(x)|dx
]

dτ

(3.20)as in Bian
hini et al. [4, (15.9)℄. Now, to prove the uniqueness it thus su�
es to show that the integrandon the right hand side of (3.20) vanishes for τ ∈ [0, t]. Fix any τ ∈ [0, t] and let ε > 0 be given. We 
an
hoose �nitely many points
a+ τβ = x0 < x1 < · · · < xN = b− τβ,su
h that, for every j = 1, . . . , N,

TV [w̄(τ, ·); (xj−1, xj)] < ε. (3.21)By Theorem 3.7 and Proposition 3.10, the fun
tion t 7→ St−τ w̄(τ) is itself a 
ontinuous vanishingvis
osity solution and hen
e it also satis�es estimate (3.12). We now 
onsider the mid point yj =
xj−1+xj

2 . Using the estimate (3.12) with ξ = yj on ea
h interval (xj−1, xj), we 
ompute
lim sup
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

|w̄(τ + h, x)− Sh(w̄(τ))(x)|dx ≤
N∑

j=1

lim sup
h→0+

1

h

∫ xj−hβ

xj−1+hβ

∣
∣
∣w̄(τ + h, x)− U ♭

(w̄;τ,yj)
(h, x)

∣
∣
∣ dx

+

N∑

j=1

lim sup
h→0+

1

h

∫ xj−hβ

xj−1+hβ

∣
∣
∣U ♭

(w̄;τ,yj)
(h, x)− Sh(w̄(τ))(x)

∣
∣
∣ dx.Using (3.21), we obtain
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lim sup
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

|w̄(τ + h, x)− Sh(w̄(τ))(x)|dx ≤ C1

N∑

j=1

(TV [w̄(τ, ·); (xj−1, xj)])
2

≤ C1εTV [w̄(τ, ·); (a+ τβ, b − τβ)]

≤ C1ε,be
ause TV [w̄(τ, ·); (a+ τβ, b − τβ)] ≤ ν ≤ 1 (for a suitable 
hoi
e of ν in De�nition 3.6).Sin
e ε > 0 was arbitrary, the integrand on the right hand side of (3.20) must vanish at time τ ∈ [0, t],with t ≤ η

4β
.Step 2. (Long time): Sin
e the 
onstants L0 and C1 are uniform on (0, T ), for all T > 0 we 
an �nd

n0 ∈ N, su
h that n0+2
2

η
4β ≥ T . We repeat the same argument, for all n = 1, . . . , n0 on the interval

[
n
2

η
4β ,

n+2
2

η
4β

], we prove the uniqueness for all t ∈ [0, T ]. This 
ompletes the proof.
2In the following we prove the L1-stability estimate announ
ed in Theorem 1.1 (iii).Proof of Theorem 1.1 (iii):Step 1. (Lo
al estimate): From Proposition 3.10, we know that, there exist two positive 
onstants βand η depending only on T , M0, M1, d, Λ and bounds on ‖u0‖[L∞(R)]d , ‖∂xu0‖[L logL(R)]d , ‖v0‖[L∞(R)]d ,

‖∂xv0‖[L logL(R)]d , su
h that, for all 0 < t ≤ η
4β , we have

∫ a+η−βt

a+βt

|u(t, x)− v(t, x)|dx =

∫ a+η−βt

a+βt

|Stū0(x)− Stv̄0(x)|dxwhere ū0 and v̄0 are the following trun
ate fun
tions
ū0(x) =







u0(a) if x ≤ a,
u0(x) if a < x < a+ η,
u0(a+ η) if a+ η ≤ x

and v̄0(x) =







v0(a) if x ≤ a,
v0(x) if a < x < a+ η,
v0(a+ η) if a+ η ≤ x.Using the 
ontinuous L1 estimate (3.16), we get

∫ a+η−βt

a+βt

|u(t, x)− v(t, x)|dx ≤ L0

∫ a+η

a

|ū0(x)− v̄0(x)|dx = L0

∫ a+η

a

|u0(x)− v0(x)|dx.This leads to the following lo
al estimate:
‖u(h, ·)− v(h, ·)‖[L1(It

η)]
d ≤ L0‖u0 − v0‖[L1(I0

η)]
d for all 0 < t ≤ η

4β
, (3.22)where Itη = [a+ βt, a+ η − βt].Step 2. (Global estimate): For all k ∈ Z, we note Ik =

[
k
2η,

k+2
2 η

] and Jk =
[
2k+1

4 η, 2k+3
4 η

]. Weapply the lo
al estimate (3.22), we obtain
‖u(t, ·)− v(t, ·)‖[L1(Jk)]d ≤ L0‖u0 − v0‖[L1(Ik)]d for all 0 < t ≤ η

4β
.Taking the sum over k ∈ Z, we dedu
e that

‖u(t, ·)− v(t, ·)‖[L1(R)]d ≤ 2L0‖u0 − v0‖[L1(R)]d for all 0 < t ≤ η

4β
.20



Now for all T > 0, we know that there exists n0 ∈ N, where n0+2
2

η
4β ≥ T . We repeat the previousestimate, for all n = 1, . . . , n0 on the interval [n

2
η
4β ,

n+2
2

η
4β

], we obtain that there exists L = L(η, β, n0)su
h that
‖u(t, ·)− v(t, ·)‖[L1(R)]d ≤ L‖u0 − v0‖[L1(R)]d for all 0 < t ≤ Twhi
h proves the result. 24 Existen
e and uniqueness of Lips
hitz solutionThis se
tion is devoted to the proof of Theorem 1.3. We study Lips
hitz solutions of system (1.1)-(1.2)and we show some uniqueness results for some parti
ular matri
es (λi,j(u))i,j=1,...,d with d ≥ 2. In thefollowing subse
tion, we �rst re
all the de�nition of vis
osity solutions (di�erent from De�nition 3.6 for
ontinuous vanishing vis
osity solutions) and some well-known results in this framework. The proof ofTheorem 1.3 is done in Subse
tion 4.2.4.1 Some useful results for vis
osity solutionsThe notion of vis
osity solutions has been introdu
ed by Crandall and Lions [6℄ in 1980, to solve �rst-order Hamilton-Ja
obi equations. Let us mention that this theory has also been extended to the se
ondorder equations (see for instan
e the work of Jensen [16℄ and Ishii [13℄). For a good introdu
tion to thistheory, we refer the reader for instan
e to Barles [3℄ and Bardi, Capuzzo-Dol
etta [2℄.Now, we re
all the de�nition of the vis
osity solution for the following problem for all 0 ≤ ε ≤ 1 satis�edby a real fun
tion v(t, x):
∂tv +H(t, x, v, ∂xv)− ε∂xxv = 0 for x ∈ R, t ∈ (0,+∞). (4.1)where H : (0,+∞)×R
3 7−→ R is the Hamiltonian and is supposed to be 
ontinuous. We introdu
e thefollowing set of fun
tions, for a set Ω ⊂ R

N :
USC(Ω) = {f : Ω 7−→ R, with f upper semi
ontinuous},
LSC(Ω) = {f : Ω 7−→ R, with f lower semi
ontinuous}.De�nition 4.1 (Vis
osity subsolution, supersolution and solution)A fun
tion v ∈ USC((0,+∞)×R) is a vis
osity subsolution of (4.1) if for every (t0, x0) ∈ (0,+∞)×Rand for every test fun
tion φ ∈ C2((0,+∞)×R), that is tangent from above to v at (t0, x0), the followingholds:

∂tφ(t0, x0) +H(t0, x0, v(t0, x0), ∂xφ(t0, x0))− ε∂xxφ(t0, x0) ≤ 0.A fun
tion v ∈ LSC((0,+∞)×R) is a vis
osity supersolution of (4.1) if for every (t0, x0) ∈ (0, T )×Rand for every test fun
tion φ ∈ C2((0,+∞)×R), that is tangent from below to v at (t0, x0), the followingholds:
∂tφ(t0, x0) +H(t0, x0, v(t0, x0), ∂xφ(t0, x0))− ε∂xxφ(t0, x0) ≥ 0.A 
ontinuous fun
tion v is a vis
osity solution of (4.1) if, and only if, it is a sub and a supersolutionof (4.1).Remark 4.2 When v is a subsolution (resp. supersolution) of (4.1), we write

∂tv +H(t, x, v, ∂xv)− ε∂xxv ≤ 0 (resp. ∂tv +H(t, x, v, ∂xv)− ε∂xxv ≥ 0).Let us now re
all some well-known results. 21



Remark 4.3 (Classi
al solution-vis
osity solution)If v is a C2 solution of (4.1), then v is a vis
osity solution of (4.1).We now 
onsider solutions of the following ODE for α ∈ R:
dv

dt
= αv on (0,+∞). (4.2)A fun
tion v : (0,+∞) 7−→ R is said to be vis
osity subsolution (resp. supersolution) if v(t, x) = v(t)is a vis
osity subsolution (resp. supersolution) of (4.1) with H = −αv, ε = 0 in the sense of De�nition4.1.Lemma 4.4 (Gronwall lemma for vis
osity solution)Let us 
onsider a fun
tion v ∈ USC[0,+∞), whi
h is a vis
osity subsolution of (4.2). Assume that

v(0) ≤ v0 then v(t) ≤ v0 e
αt for all t ≥ 0.The proof of this Lemma is a dire
t appli
ation of the 
omparison prin
iple, (see Barles [3, Th 2.4℄).4.2 Uniqueness results for W

1,∞ solutionsIn this subse
tion we prove Theorem 1.3. Before going on, we re
all below in Theorem 4.5 a well-knownuniqueness result for W 1,∞ solutions of (1.1).Theorem 4.5 (Existen
e and uniqueness of W 1,∞ solution)Assume (H1). Let ũ0 = u0 ∗ ηε with u0 ∈ [W 1,∞(R)]d and ∂xu0 ≥ 0.i) Then, for any 0 < ε ≤ 1, there exists a fun
tion uε ∈ ⋂

T>0

([
W 2,∞([0, T )× R)

]d ∩ [C∞([0, T )× R)]
d
)solution of (2.1)-(2.2), su
h that for every �xed t ∈ [0,+∞) the fun
tion uε(t, ·) is nonde
reasing.ii) If the solution uε of (2.1)-(2.2) satis�es (for all T > 0)

||uε(t, ·)||[W 1,∞(R)]d ≤ CT for all t ∈ [0, T ] (4.3)with CT independent on ε, then uε 
onverges lo
ally uniformly, as ε → 0, to a fun
tion u with u ∈
⋂

T>0

[
W 1,∞([0, T )× R)

]d. Moreover, this fun
tion u is the unique solution of system (1.1)-(1.2) in thesense of distributions, assuming the solutions in ⋂

T>0

[
W 1,∞([0, T )× R)

]d.The lines of the proof of this theorem are very standard (see for instan
e Cannone et al. [5℄ for a similarproblem). For this reason, we skip the details of the proof, and noti
e that Theorem 4.5 follows fromRemark 1.2 (i) and Theorem 3.1.Proof of Theorem 1.3:Using Theorem 4.5, it is enough to show that system (1.1)-(1.2) admits a solution satisfying (4.3).Indeed, we then get the same property for ∂xu, where u is the limit of uε as ε → 0. Moreover, fromsystem (1.1) satis�ed by u and the fa
t that
u ∈ [L∞((0,+∞)× R)]

d and ∂xu ∈ [L∞((0,+∞)× R)]
d
,we dedu
e that ∂tu ∈ [L∞((0,+∞)× R)]

d whi
h shows that u ∈
[
W 1,∞([0,+∞)× R)

]d.To simplify, we set wε = ∂xu
ε. Moreover, by Theorem 4.5 (i), we know that, wε,i ≥ 0 and there existsa positive 
onstant Cε

T , su
h that for all (t, x) ∈ (0, T )× R and for i = 1, . . . , d22



|uε,i|+ |∂xuε,i|+ |∂tuε,i|+ |∂txuε,i|+ |∂xxuε,i|+ |∂ttuε,i| ≤ Cε
T , (4.4)whi
h implies in parti
ular that

∫

R

|wε,i(t, x)| dx ≤ 2Cε
T .We are interested in the quantity

mi(t) = sup
x∈R

wε,i(t, x).whi
h also satis�es |∂tmi| ≤ Cε
T . This supremum is rea
hed at least at some point xi(t), be
ause

wε,i ∈ W 1,∞([0, T )× R) ∩ L1([0, T )× R) and then for ea
h t ∈ [0, T ), wε,i(t, x) → 0 as |x| → +∞.In the following we prove that mi is bounded uniformly in ε for all i = 1, . . . , d whi
h will imply the�rst point of the Theorem.First, taking the derivative with respe
t to x, equation (2.1) satis�ed by uε ∈ [C∞((0, T )× R)]
d, we
an see that wε satis�es the following equation

∂tw
ε,i + λi(uε)∂xw

ε,i +
∑

j=1,...,d

λi,j(u
ε)wε,jwε,i = ε∂xxw

ε,i. (4.5)Now, we prove that mi is a vis
osity subsolution of the following equation
d

dt
mi(t) +

∑

j=1,...,d

λi,j(u
ε(t, xi(t)))w

ε,j(t, xi(t))w
ε,i(t, xi(t)) = 0. (4.6)Indeed, let φ ∈ C2(0, T ) be a test fun
tion, su
h that φ ≥ mi and φ(t0) = mi(t0) for some t0 ∈ (0, T ).From the de�nition of mi, we 
an easily 
he
k that φ(t) ≥ wε,i(t, x) for all (t, x) ∈ [0, T ) × R and

φ(t0) = wε,i(t0, xi(t0)). From the fa
t that wε,i ∈ C∞((0, T )×R), by Remark 4.3 we know that wε,i isa vis
osity solution of (4.5). We apply De�nition 4.1, and using the fa
t that ∂xφ = ∂xxφ = 0, we get
d

dt
φ(t0) +

∑

j=1,...,d

λi,j(u
ε(t0, xi(t0)))w

ε,j(t0, xi(t0))w
ε,i(t0, xi(t0)) ≤ 0.This proves that mi is a vis
osity subsolution of (4.6).Noti
e that in the 
ase d = 1 ea
h assumption (K1), (K2) or (K3) redu
es to λ1,1(u) ≥ 0 whi
h 
or-responds to the well-known 
ase of s
alar Burgers equation with non sho
ks when the initial data isnon-de
reasing. For this reason in the following we 
onsider the 
ase d ≥ 2. We will establish estimateson mi at the level ε, and the result for ε = 0 is then a straightforward 
onsequen
e passing to the limitin ε. Three 
ases may o

ur:1- The 
ase where (K1) holds: We see that m1, satis�es (in the vis
osity sense)

d

dt
m1(t) ≤ −

∑

j=1,...,d

λ1,j(u
ε(t, x1(t))w

ε,j(t, x1(t))w
ε,1(t, x1(t)) ≤ 0,where we have used the fa
t that, for j = 1, . . . , d, λ1,j(uε) ≥ 0 and wε,j ≥ 0. This proves by Lemma4.4 (with α = 0) that,

m1(t) ≤ m1(0) = wε,1(0, x1(0)) ≤ ‖∂xuε,1(0, ·)‖L∞(R) ≤ ‖∂xu10‖L∞(R)=: C1(t).By re
urren
e, we assume that mj(t) ≤ Ci(t) for all j ≤ i, where Ci is a positive fun
tion independentof ε, and we prove that mi+1 is bounded uniformly in ε. Indeed, we know that23



d

dt
mi+1(t) ≤ −

∑

j=1,...,d

λi+1
,j (uε(t, xi+1(t))))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t)),

≤ −
∑

j≤i

λi+1
,j (uε(t, xi+1(t)))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t))

−
∑

i+1≤j≤d

λi+1
,j (uε(t, xi+1(t)))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t)).We use that λi+1

,j (uε) ≥ 0, for i+ 1 ≤ j ≤ d and we obtain that
d

dt
mi+1(t) ≤ −

∑

j≤i

λi+1
,j (uε(t, xi+1(t)))w

ε,j(t, xi+1(t))w
ε,i+1(t, xi+1(t)),

≤ dM1mi+1(t)Ci(t).where we have used the assumption mj ≤ Ci for all j ≤ i. This implies by Lemma 4.4, with α = dM1,that
mi+1(t) ≤ mi+1(0)e

α
∫

t

0
Ci(s)ds,

≤ ‖∂xui+1
0 ‖L∞(R)e

α
∫

t

0
Ci(s)ds:= Ci+1(t).This proves that, for all i = 1, . . . , d, mi is bounded uniformly in ε, on ea
h time interval [0, T ].2- The 
ase where (K2) holds: From (4.6), we obtain that,

d

dt
mi(t) ≤ −

∑

j=1,...,d

λi,j(u
ε(t, xi(t)))w

ε,j(t, xi(t))w
ε,i(t, xi(t))

≤ −
∑

j=1,...,d

Aijw
ε,j(t, xi(t))w

ε,i(t, xi(t))

≤ −
∑

j=1,...,d

Aijw
ε,j(t, xj(t))w

ε,i(t, xi(t))where we have used the fa
t that λi,j ≤ 0 for i 6= j. Applying the 
omparison prin
iple (see Barles [3,Th 2.4℄), we dedu
e that
mi(t) ≤ mi(0)−

∫ t

0

∑

j=1,...,d

Aijmj(s)mi(s) ds. (4.7)Taking the sum over the index i, from (4.7) we get that the quantity m(t) =
∑

i=1,...,d

mi(t) satis�es thefollowing
m(t) ≤ m(0)−

∫ t

0

∑

i,j=1,...,d

Aijmj(s)mi(s) ds,

≤ m(0) =
∑

i=1,...,d

‖∂xuε,i(0, ·)‖L∞(R) ≤
∑

i=1,...,d

‖∂xui0‖L∞(R),where we have used assumption (K2) and wε,i ≥ 0, for i = 1, . . . , d. This proves (1.7).24



3- The 
ase where (K3) holds: We are interested in the following quantity:
m(t) = max

i=1,...,d
mi(t)= mi0(t) for some i0 = i0(t).We remark that m ∈ USC(0, T ) and that m is a vis
osity subsolution of (4.6), whi
h implies (in thevis
osity sense) that

d

dt
m(t) ≤ −

∑

j=1,...,d

λi0,j (u
ε(t, xi0 (t)))w

ε,j(t, xi0 (t))mi0 (t)

≤ −λi0,i0(u
ε(t, xi0 (t)))(mi0 (t))

2 −
∑

j=1,...,d, j 6=i0

λi0,j (u
ε(t, xi0 (t)))w

ε,j(t, xi0(t))mi0 (t).By de�nition of mi0 , we dedu
e that
d

dt
m(t) ≤ −λi0,i0(u

ε(t, xi0 (t)))(mi0 (t))
2 +

∑

j=1,...,d, j 6=i0

[
λi0,j (u

ε(t, xi0 (t)))
]−
mi0(t)mj(t)

≤ (mi0(t))
2



−λi0,i0(u
ε(t, xi0 (t))) +

∑

j=1,...,d, j 6=i0

(λi0,j (u
ε(t, xi0(t))))

−



 ≤ 0,where we have used (K3) and the fa
t that wε,i ≥ 0. Finally, we integrate in time and obtain that
m(t) ≤ m(0) = max

i=1,...,d
‖∂xuε,i(0, ·)‖L∞(R) ≤ max

i=1,...,d
‖∂xui0‖L∞(R).This proves (1.8). 2Remark 4.6 (Mis
ellaneous extensions)In Theorem 1.3 we have 
onsidered the study of a parti
ular system only to simplify the presentation.This result 
ould be generalized to the following system

∂tu
i + λi(u, x, t)∂xu

i = hi(u, x, t) on (0,+∞)× R for i = 1, ..., d, (4.8)with λi, hi ∈ W 1,∞(Rd × R × (0,+∞)), ∂xhi ≥ 0 and hi,j ≥ 0 for i 6= j and with moreover one of thefollowing 
onditions:
(K1)′







λ
i
,j(u, x, t) ≥ 0 and h

i
,j(u, x, t) ≥ 0for all (u, x, t) ∈ R

d × R× [0,+∞) and j ≥ i with i, j ∈ {1, . . . , d}.

(K2)′



















λ
i
,j(u, x, t) ≤ 0 for all (u, x, t) ∈ R

d × R× [0,+∞) and j 6= i with i, j ∈ {1, . . . , d},

Aij = inf
u ∈ R

d, x ∈ R

t ≥ 0

(λi
,j(u, x, t)) and ∑

i,j=1,...,d

Aijξiξj ≥ 0 for ξ = (ξ1, ..., ξd) ∈ [0,+∞)d.

(K3)′ λ
i
,i(u, x, t) ≥

∑

i6=j

(

λ
i
,j(u, x, t)

)− for all (u, x, t) ∈ R
d × R× [0,+∞) and i = 1, . . . , d.

25



5 Appli
ation to the 1D system of isentropi
 gas dynami
sIn this se
tion we present an appli
ation of the results proved previously. More pre
isely, we study thesystem of isentropi
 gas dynami
s, de�ned as follows






∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0, with p(ρ) = (γ−1)2

4γ ργ

u(0, x) = u0 and ρ(0, x) = ρ0 ≥ 0

(5.1)where γ > 1 and respe
ting the usual notation for the physi
al quantities: ρ represents the density ofthe �uid, u is the velo
ity of the �uid and p the pressure. In what follows, we present an appli
ation ofTheorem 1.1 and 1.3 (proved in the present paper) on system (5.1).First of all, we remark that system (5.1) is a diagonalizable hyperboli
 system. Indeed, in the 
asewhere ρ > 0 and (ρ, u) is a smooth solution, we 
an 
he
k easily that the following two variables
r1 = u+

2c

γ − 1
and r2 = u− 2c

γ − 1
, where c =

√
γp

ρ
=

(γ − 1)

2

√

ργ−1,satisfy the following diagonal system:






∂tr1 + λ1(r1, r2)∂xr1 = 0

∂tr2 + λ2(r1, r2)∂xr2 = 0with initial data r01 , r
0
2

(5.2)where λ1 and λ2 are de�ned as follows






λ1(r1, r2) =
r1 + r2

2
+
γ − 1

4
(r1 − r2) = u+ c

λ2(r1, r2) =
r1 + r2

2
− γ − 1

4
(r1 − r2) = u− c.Moreover, we have

(λi,j(r1, r2))i,j=1,2 =







1

2
+
γ − 1

4

1

2
− γ − 1

4

1

2
− γ − 1

4

1

2
+
γ − 1

4






.In the 
ase γ > 1, this matrix satis�es the assumptions, (H2), (K3) and (H2)′, of Theorems 1.1, 1.3and 3.1. In the following, we show some existen
e and uniqueness results for system (5.1) applyingTheorems 1.1, 1.3 and 3.1.Firstly, we start with the study of system (5.2) and we 
onsider the following assumptions

(A1) r01 , r
0
2 ∈ L∞(R) and ∂xr01 , ∂xr02 ≥ 0.

(A2) ∂xr
0
1 , ∂xr

0
2 ∈ L logL(R).

(A2)′ r01 , r
0
2 ∈ Lip(R). 26



The following existen
e and uniqueness results for the diagonal system (5.2) hold.Theorem 5.1 (Diagonal isentropi
 gas dynami
s system)Assume (A1) and γ > 1. Then, we havei) Existen
e and uniqueness of a 
ontinuous solution:Existen
e: Under assumption (A2), system (5.2) has a 
ontinuous solution (r1, r2) on [0,+∞) × Rsatisfying (A1) and (A2) for all t ≥ 0. Moreover, if r10 − r20 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0.Uniqueness: Furthermore, if we assume (A2) and
r01 ≥ Λ1 > Λ2 ≥ r02then the previous solution (r1, r2) is the unique 
ontinuous vanishing vis
osity solution (in the sense ofDe�nition 3.6).ii) Existen
e and uniqueness of W 1,∞ solution:Assume (A2)′, then system (5.2) has a unique solution (r1, r2) ∈ [W 1,∞([0,+∞)×R)]2 satisfying (A1)and (A2)′ for all t > 0. Moreover, if r10 − r20 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0.Proof of Theorem 5.1:Proof of i): We apply Theorem 3.1, whi
h proves that, under the assumptions (A1) and (A2), system(5.2) admits a solution (r1, r2) ∈ [C([0,+∞)× R)]2 satisfying (A1) and (A2) for all t ≥ 0.We now want to prove that, if r01 − r02 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0. To this end, we re
all that byTheorem 3.1, we know that r1 = lim

ε→0
rε1 and r2 = lim

ε→0
rε2, where (rε1, r

ε
2) is the solution of the followingregularized paraboli
 system

∂tr
ε
i + λi(rε1, r

ε
2)∂xr

ε
i ,= ε∂xxr

ε
i , for i = 1, 2with regular initial data r0,ε1 , r0,ε2 (see Theorem 3.1). To simplify, we set rε = rε1 − rε2, using theregularized paraboli
 system, we 
an see that rε satis�es the following equation

∂tr
ε = −

(
rε1 + rε2

2

)

∂xr
ε − γ − 1

4
rε∂x(r

ε
1 + rε2) + ε∂xxr

ε.Using the maximum prin
iple theorem for paraboli
 equations (see Lieberman [21, Th 2.10℄), we knowthat the following property holds:If rε(0, x) ≥ 0, then rε(t, x) ≥ 0 for all t > 0. (5.3)We pass to the limit ε → 0 and obtain that r(t, x) ≥ 0. This proves the existen
e result announ
ed ini). The proof of the uniqueness result is dire
t appli
ation of Theorem 1.1.Proof of ii): The proof of ii) is similar to the proof of i). Indeed, we apply Theorem 1.3 (with assump-tion (K3)), whi
h proves that, under the assumptions (A1) and (A2)′, system (5.2) admits a solution
(r1, r2) ∈

[
W 1,∞([0,+∞)× R)

]2 satisfying (A1) and (A2)′ for all t ≥ 0.Moreover, we 
an prove as in the proof of i) that if r01 − r02 ≥ 0, then r1 − r2 ≥ 0 for all t ≥ 0. Let usmention that in the 
ase of Lips
hitz solutions, we 
an also prove the following result: if r01−r02 ≥ Λ > 0,then r1 − r2 ≥ Λe−αt > 0 for all t ≥ 0, with α =
γ − 1

2
max
i=1,2

||∂xr0i ||L∞(R). 2Before going into the proof of Theorem 1.4, we need the following te
hni
al lemma.27



Lemma 5.2 (From Diagonal system to nondiagonal)Let us 
onsider two fun
tions r1, r2 ∈ C([0,+∞) × R) ∩W 1,1
loc ([0,+∞) × R) satisfying r1 − r2 ≥ 0 on

[0,+∞)× R, with (r1, r2) solution of (5.2). Then the following fun
tions
u =

r1 + r2
2

and ρθ =
r1 − r2

2
where θ =

γ − 1

2
(5.4)solve the following system







∂t(ρ
θ) + u∂x(ρ

θ) + θρθ∂xu = 0

∂tu+ u∂xu+ θρθ∂x(ρ
θ) = 0.

(5.5)Re
ipro
ally, if ρθ, u ∈ C([0,+∞)×R) ∩W 1,1
loc ([0,+∞)×R) (with ρθ ≥ 0) is solution of (5.5) then r1,

r2 de�ned in (5.4), solve (5.2).With a simple 
omputation we 
an 
he
k the result (see also Serre [26, Vol II℄).Proof of Theorem 1.4:Firstly we prove the existen
e and uniqueness of a Lips
hitz solution announ
ed in Theorem 1.4 ii).Proof of ii): We prove the result three steps.Step 1. (Existen
e and uniqueness of (r1, r2)): We remark that, if u0 and ρθ0 satisfy assumptions
(J1) and (J2)′, then the fun
tions r01 = u0 + ρθ0 and r02 = u0 − ρθ0, where θ = γ−1

2 , satisfy assump-tions (A1) and (A2)′. Now, we 
onsider system (5.2) with the following initial data r01 = u0 + ρθ0 and
r02 = u0 − ρθ0. We apply Theorem 5.1 ii), whi
h proves that system (5.2) admits a unique solution
(r1, r2) in W 1,∞([0,+∞)× R).Using the 
ondition r01−r02 = 2ρθ0 ≥ 0, we 
an also prove, by Theorem 5.1 ii), that r1−r2 ≥ 0 for all t > 0.Step 2. (From (r1, r2) toward (ρ, u)): By Lemma 5.2, it is equivalent to say that u = r1+r2

2 and
ρθ = r1−r2

2 ≥ 0 are in W 1,∞([0,+∞)× R) and solution of system (5.5).We 
an also see that in the 
ase 1 < γ ≤ 3 the fun
tions u and ρ de�ned above belong toW 1,∞([0,+∞)×
R), and moreover solve the following system







ρθ−1 [∂tρ+ u∂xρ+ ρ∂xu] = 0

ρ∂tu+ ρu∂xu+ θ2ρ2θ∂xρ = 0
(5.6)Using the following result:If f ∈W 1,p for some p ∈ [1,+∞], then Df = 0 a.e. on the set {f = 0},we 
an rewrite (5.6) as follows







∂tρ+ ∂x(uρ) = 0,

ρ∂tu+ ρu∂xu+ ∂x(p(ρ)) = 0.
(5.7)This shows that (ρ, u) is a solution of system (5.1).Step 3. (Uniqueness of (ρ, u)): Re
ipro
ally, if (ρ, u) ∈ [W 1,∞([0,+∞) × R)]2 solves (5.7), with

ρ ≥ Λ > 0, we want to show that (ρ, u) is unique. From Step 1, it is su�
ient to show that r1 = u+ ρθand r2 = u − ρθ is solution of (5.2). This is easy to see that this is true by reversing the arguments of28



Step 2.Now, we prove the existen
e and uniqueness of a 
ontinuous solution announ
ed in Theorem 1.4 i).Proof of i): We pro
eed as in the proof of ii). We 
onsider system (5.2) with the following initialdata r01 = u0 + ρθ0 and r02 = u0 − ρθ0. We apply Theorem 5.1 i) (Existen
e), we prove that, under theassumption (J1) and (J2), system (5.2) admits a 
ontinuous solution (r1, r2) on [0,+∞)×R satisfying
(A1) and (A2). Sin
e r01 − r02 = 2ρθ0 ≥ 0, we know also that r1 − r2 = 2ρθ ≥ 0, for all t > 0.Moreover, if we assume the 
ondition r01 ≥ Λ1 > Λ2 ≥ r02 then in parti
ular we have that 2ρθ ≥
Λ1 − Λ2 > 0. This proves that system (5.5) is equivalent to system (5.7). By Lemma 5.2, we dedu
ethat it is equivalent to write that u = r1+r2

2 and ρθ = r1−r2
2 are 
ontinuous solution of system (5.5)satisfying (J1) and (J2) for all t ≥ 0. We use Theorem 5.1 i) (Uniqueness), whi
h proves that (ρ, u) isthe unique 
ontinuous vanishing vis
osity solution (in the sense of De�nition 3.6).

26 A
knowledgementsThis work was partially supported by the program �PPF, programme pluri-formations mathématiques �-nan
iéres et EDP�, (2006-2010), Marne-la-Vallée University and E
ole Nationale des Ponts et Chaussées.Referen
es[1℄ R. A. Adams, Sobolev spa
es, A
ademi
 Press [A subsidiary of Har
ourt Bra
e Jovanovi
h, Pub-lishers℄, New York-London, 1975. Pure and Applied Mathemati
s, Vol. 65.[2℄ M. Bardi and I. Capuzzo-Dol
etta, Optimal 
ontrol and vis
osity solutions of Hamilton-Ja
obi-Bellman equations, Systems & Control: Foundations & Appli
ations, Birkhäuser BostonIn
., Boston, MA, 1997. With appendi
es by Maurizio Fal
one and Pierpaolo Soravia.[3℄ G. Barles, Solutions de vis
osité des équations de Hamilton-Ja
obi, vol. 17 of Mathématiques &Appli
ations (Berlin) [Mathemati
s & Appli
ations℄, Springer-Verlag, Paris, 1994.[4℄ S. Bian
hini and A. Bressan, Vanishing vis
osity solutions of nonlinear hyperboli
 systems,Ann. of Math. (2), 161 (2005), pp. 223�342.[5℄ M. Cannone, A. El Hajj, R. Monneau, and F. Ribaud, Global existen
e for a system ofnon-linear and non-lo
al transport equations des
ribing the dynami
s of dislo
ation densities, Ar
h.Ration. Me
h. Anal., 196 (2010), pp. 71�96.[6℄ M. G. Crandall and P.-L. Lions, Condition d'uni
ité pour les solutions généralisées des équa-tions de Hamilton-Ja
obi du premier ordre, C. R. A
ad. S
i. Paris Sér. I Math., 292 (1981), pp. 183�186.[7℄ R. J. DiPerna, Convergen
e of approximate solutions to 
onservation laws, Ar
h. Rational Me
h.Anal., 82 (1983), pp. 27�70.[8℄ R. J. DiPerna, Compensated 
ompa
tness and general systems of 
onservation laws, Trans. Amer.Math. So
., 292 (1985), pp. 383�420.[9℄ A. El Hajj,Well-posedness theory for a non
onservative Burgers-type system arising in dislo
ationdynami
s, SIAM J. Math. Anal., 39 (2007), pp. 965�986.29



[10℄ A. El Hajj and N. For
adel, A 
onvergent s
heme for a non-lo
al 
oupled system modellingdislo
ations densities dynami
s, Math. Comp., 77 (2008), pp. 789�812.[11℄ A. El Hajj and R. Monneau, Global 
ontinuous solutions for diagonal hyperboli
 systems withlarge and monotone data, J. Hyperboli
 Di�er. Equ., 7 (2010), pp. 139�164.[12℄ J. Glimm, Solutions in the large for nonlinear hyperboli
 systems of equations, Comm. Pure Appl.Math., 18 (1965), pp. 697�715.[13℄ H. Ishii, On uniqueness and existen
e of vis
osity solutions of fully nonlinear se
ond-order ellipti
PDEs, Comm. Pure Appl. Math., 42 (1989), pp. 15�45.[14℄ , Perron's method for monotone systems of se
ond-order ellipti
 partial di�erential equations,Di�erential Integral Equations, 5 (1992), pp. 1�24.[15℄ H. Ishii and S. Koike, Vis
osity solutions for monotone systems of se
ond-order ellipti
 PDEs,Comm. Partial Di�erential Equations, 16 (1991), pp. 1095�1128.[16℄ R. Jensen, The maximum prin
iple for vis
osity solutions of fully nonlinear se
ond order partialdi�erential equations, Ar
h. Rational Me
h. Anal., 101 (1988), pp. 1�27.[17℄ P. D. Lax, Hyperboli
 systems of 
onservation laws and the mathemati
al theory of sho
k waves,So
iety for Industrial and Applied Mathemati
s, Philadelphia, Pa., 1973. Conferen
e Board of theMathemati
al S
ien
es Regional Conferen
e Series in Applied Mathemati
s, No. 11.[18℄ P. LeFlo
h, Entropy weak solutions to nonlinear hyperboli
 systems under non
onservative form,Comm. Partial Di�erential Equations, 13 (1988), pp. 669�727.[19℄ P. LeFlo
h and T.-P. Liu, Existen
e theory for nonlinear hyperboli
 systems in non
onservativeform, Forum Math., 5 (1993), pp. 261�280.[20℄ T. T. Li, Global 
lassi
al solutions for quasilinear hyperboli
 systems, vol. 32 of RAM: Resear
hin Applied Mathemati
s, Masson, Paris, 1994.[21℄ G. M. Lieberman, Se
ond order paraboli
 di�erential equations, World S
ienti�
 Publishing Co.In
., River Edge, NJ, 1996.[22℄ P.-L. Lions, B. Perthame, and P. E. Souganidis, Existen
e and stability of entropy solutionsfor the hyperboli
 systems of isentropi
 gas dynami
s in Eulerian and Lagrangian 
oordinates,Comm. Pure Appl. Math., 49 (1996), pp. 599�638.[23℄ M. Mer
ier, Étude de di�érents aspe
ts des EDP hyperboliques: persistan
e d'onde de 
ho
 dans ladynamique des �uides 
ompressibles, modélisation du tra�
 routier, stabilité des lois de 
onservations
alaires, 2010. Thèse, Université Lyon 1, 2010.[24℄ A. Pazy, Semigroups of linear operators and appli
ations to partial di�erential equations, vol. 44of Applied Mathemati
al S
ien
es, Springer-Verlag, New York, 1983.[25℄ F. Poupaud, Global smooth solutions of some quasi-linear hyperboli
 systems with large data, Ann.Fa
. S
i. Toulouse Math. (6), 8 (1999), pp. 649�659.[26℄ D. Serre, Systems of 
onservation laws. I, II, Cambridge University Press, Cambridge, 1999-2000.Geometri
 stru
tures, os
illations, and initial-boundary value problems, Translated from the 1996Fren
h original by I. N. Sneddon.
30


