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Abstract

We consider general infinite nanotubes of atoms in R3 where each atom interacts
with all the others through a two-body potential. At the equilibrium, the positions of
the atoms satisfy an Euler-Lagrange equation. When there are no exterior forces and
for a suitable geometry, a particular family of nanotubes is the set of perfect nanotubes
at the equilibrium. When exterior forces are applied on the nanotube, we compare the
nanotube to nanotubes of the previous family.

In part I of the paper, this quantitative comparison is formulated in our first main
result as a discrete Saint-Venant principle. As a corollary, we also give a Liouville classi-
fication result. Our Saint-Venant principle can be derived for a large class of potentials
(including Lennard-Jones potential), when the perfect nanotubes at the equilibrium
are stable. The approach is designed to be applicable to nanotubes that can have
general shapes like for instance carbon nanotubes or DNA, under the oversimplified
assumption that all the atoms are identical.

In part II of the paper, we derive from our Saint-Venant principle, a macroscopic
mechanical model for general nanotubes. We prove that every solution is well approx-
imated by the solution of a continuum model involving stretching and twisting, but no
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bending. We establish error estimates between the discrete and the continuous solu-
tion. More precisely we give two error estimates: one at the microscopic level and one
at the macroscopic level.

AMS Classification: 35J15, 49M25, 65L70, 74A60, 74G15, 82B21.

Keywords: Two-body interactions, nonlinear elasticity, discrete-continuum, micro-macro, error

estimates, nanotubes, Cauchy-Born rule, Saint-Venant’s principle, decay estimate, Liouville theo-

rem.

1 Introduction

In this paper, we study nanotubes that are collections of atoms in R3. These atoms are
submitted to two-body interactions with all the other atoms and also to exterior forces.
Our model can be seen as simplified description of macromolecules like carbon nanotubes
or DNA, where all the atoms are assumed to be identical. We distinguish a subclass of
nanotubes that are perfect and at the equilibrium with no exterior forces.

In order to give a flavour of our main results (our main results will be stated precisely
in Section 2) we first need to introduce a few concepts and notations in Subsection 1.1. We
then provide a review of the literature in Subsection 1.2. The organisation of the paper is
given in Subsection 1.3.

1.1 Setting of the problem

1.1.1 The macroscopic description

Let us consider three maps 
Φ : R −→ R3

α : R −→ R
f̄ : R −→ R3,

that satisfy (as a simplification) the following macroscopic “linear + periodic” conditions

(1.1)

{
Φ(x+ j) = Φ(x) + j L0 for any j ∈ Z , x ∈ R
α(x+ j) = α(x) + j θ0 for any j ∈ Z , x ∈ R ,

(1.2) f̄(x+ j) = f̄(x) for any j ∈ Z , x ∈ R ,

for some given vector L0 ∈ R3\{0} and some given scalar θ0 ∈ [0, 2π). Here Φ(x) describes
the position of an arc and α(x) is proportional to the angle of rotation of a microstructure
associated to the arc. This is illustrated on Figure 1. Moreover f̄ is simply the force acting
on the arc.

The periodicity condition provides us some suitable compactness properties, which will sim-
plify the presentation and the proof of the results.
We consider the following macroscopic total energy of a non linear elastic “arc” as

(1.3)

∫
R/Z

W (α′,Φ′) + f̄Φ,
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Figure 1: Arc Φ(x) with rotation of the local basis (τ1, τ2, τ3) under the action of α(x)

where W is an (isotropic) energy density that will be defined later (see (2.13)), such that
W (α′,Φ′) only depends on α′ and |Φ′| (see Lemma 7.3), and the force f̄ satisfies the following
compatibility condition

(1.4)

∫
R/Z

f̄ dx = 0 .

We are interested in macroscopic solutions (α,Φ) of the corresponding Euler-Lagrange equa-
tions:

(1.5)

{
(W ′

Φ′(α′,Φ′))′ = f̄ on R
(W ′

α′(α′,Φ′))′ = 0 on R.

1.1.2 The microscopic description

Given K ≥ 1 we define{
X = (Xj)j∈Z with Xj = (Xj,l)0≤l≤K−1 and Xj,l ∈ R3

f = (fj)j∈Z with fj = (fj,l)0≤l≤K−1 and fj,l ∈ R3,

Here X is a nanotube, Xj is the jth cell (see Figure 2) containing K atoms, and fj,l is the
force acting on the atom Xj,l. We make the following particular choice for the forces fj,l

(1.6) fj,l =
1

K
f 0
j ,

which means that the total force f 0
j acting on the jth cell is equidistributed on the atoms

of the cell.

jcell X

nanotube X

Figure 2: Portion of a nanotube

We consider any integer Nε large enough, set ε = 1/Nε, and when we will compare the
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microscopic model to the macroscopic one, we will moreover require the following microscopic
“linear + periodic“ conditions (analogous to (1.1), (1.2))

(1.7) Xj+Nεj′ = Nεj
′L0 +Xj for any j, j′ ∈ Z,

(1.8) f 0
j+Nε j′ = f 0

j for any j, j′ ∈ Z.

Given a function V0 : (0,∞) → R, we define the two-body potential as a function of the
distance between the atoms:

(1.9) V (L) = V0(|L|) for every L ∈ R3\{0},

where by convention, we set formally

(1.10) V (0) = 0, ∇V (0) = 0 and D2V (0) = 0.

For a general nanotube X we consider the following formal microscopic elastic energy as

E0(X) =
1

2

∑
j, j′ ∈ Z

0 ≤ l, l′ ≤ K − 1

V (Xj,l −Xj′,l′)

and the formal microscopic total energy as

(1.11) E(X) = E0(X) +
∑
j ∈ Z

0 ≤ l ≤ K − 1

Xj,l · fj,l,

which is analogue to (1.3). When it will be necessary, we will assume the following additional
compatibility condition analoguous to (1.4)

(1.12)
Nε∑
j=1

f 0
j = 0.

Finally we assume that X solves the corresponding Euler-Lagrange equation

E ′(X) = 0,

i.e.

(1.13) fj,l +
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (Xj,l −Xj′,l′) = 0 for any j ∈ Z, 0 ≤ l ≤ K − 1,

where we have used convention (1.10) when (j′, l′) = (j, l).
Similarly E ′

0(X) = 0 means (1.13) with fj,l = 0.
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1.1.3 Relationship between macroscopic and microscopic scales

We assume that we have the following relationship on the force of the jth cell and the
macroscopic force

(1.14) f 0
j :=

∫ ε(j+ 1
2
)

ε(j− 1
2
)

f̄(x)dx ' εf̄(jε).

Notice that this relation implies (1.8) and (1.12) from (1.2) and (1.4). The heuristic idea is
that for regular enough nanotubes we expect to have roughly the following relation:

(1.15) Xj+1,l −
1

ε
Φ((j + 1)ε) ' R

α′(jε),Φ̂′(jε)
(Xj,l −

1

ε
Φ(jε)) with Φ̂′(jε) :=

Φ′(jε)

|Φ′(jε)|
,

where R
α′(jε),Φ̂′(jε)

is a rotation of angle α′(jε) and of axis Φ̂′(jε).

The sequence (Φ(jε))j∈Z gives a good approximation of the mean fiber of the nanotube, and
the sequence (α′(jε))j∈Z is also a good approximation of the angle of rotation of Xj into
Xj+1. Our main motivation is to obtain a quantitative justification of relation (1.15) (see
the error estimate of Theorem 2.15 for the details):

Main goal/result: under certain assumptions we can show a weak version of (1.15).

In order to obtain such a result, we will first prove a discrete Saint-Venant principle
(Theorem 2.13).

1.1.4 Perfect nanotubes

Given an angle θ ∈ [0, 2π) and a vector L ∈ R3\{0}, we define the screw displacement T θ,L

by
T θ,L(x) = L+Rθ,L̂(x) for allx ∈ R,

where Rθ,L̂ is the rotation of angle θ and axis L̂ =
L

|L|
.

We define the subclass of special perfect nanotubes

Cθ,L =
{
X = ((Xj,l)l)j ∈ ((R3)K)Z, Xj+1,l = T θ,L(Xj,l)

}
,

and the class of perfect nanotubes

Ĉθ,L = {Y ∈ ((R3)K)Z, ∃a ∈ R3, X ∈ Cθ,L with Yj,l = a+Xj,l},

which is obtained from Cθ,L by translations. Finally we see that (1.15), can be interpreted say-
ing that X is well approximated by a perfect nanotube of parameter (θ, L) = (α′(jε),Φ′(jε)).
Examples of perfect nanotubes are represented on Figures 3 and 4.

1.1.5 Notation

We will constantly use an abuse of notation writing for any rotation R ∈ SO(3), a ∈ R3 and
any cell Xj

(R(Xj) + a)l = R(Xj,l) + a.
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Figure 3: Perfect nanotube with one atom per cell (K = 1)
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Figure 4: Perfect nanotube with 6 atoms per cell (K = 6)

Moreover for a nanotube X we set

(R(X) + a)j = R(Xj) + a.

This will also be applied with R(·) = u× (·) for some u ∈ R3.

1.2 Review of the literature

Mathematical approaches
Related to our problem is the question of the structure of minimizers of the microscopic
problem. In certain cases, periodic minimizers are expected (see for instance the overview
[59] and the recent works [26, 7]). Notice that in our problem, perfect nanotubes are not
periodic at all, but are only invariant by a screw displacement T θ,L.

Recall that the Cauchy-Born rule (see [30]), means that the microscopic deformation
mimics the macroscopic one. Our Saint-Venant principle (2.15) is a kind of quantitative
version of the Cauchy-Born rule, and uses a perturbation argument that shares some simi-
larities with the work [61] on the regularity of solutions of fully non linear elliptic PDEs, or
the basic elliptic estimate in [52]. Cases where such Cauchy-Born rule fails (by fracture or
melting) have been studied in [11, 18, 68, 33, 23, 31, 17, 16] and a general representation of
the macroscopic energy has been given in [2, 19] and in [62, 42, 43] for films. General schemes
have been proposed to deduce (assuming the Cauchy-Born rule) macroscopic theories from
microscopic ones, see [32, 12, 71, 5]. See also [3, 13] for stochastic lattices. Even if it is
different, our approach shares some common points with the Quasi-Continuum Method (see
[63]) and some general aspects of multiscale modeling (see the overviews [25, 14]).

A discrete-continuum error estimate has been obtained in [27] (justifying the Cauchy-
Born rule) for three-dimensional elasticity starting from microscopic minimizers with two-
body interactions of finite range. In [27], the authors use a stability assumption on the Fourier
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transform of the hessian of the energy, which shares some similarities with our microscopic
stability assumption (H2) for nanotubes. Let us mention notable differences: in the present
work we do not consider minimizers, but only critical points of the microscopic energy; we
do not assume neither a high regularity on the exterior forces. Extension of [27] to the case
of the dynamics is presented in [28].

For a general theory of rods, we refer to the book [4] and [67], and for wire ropes, we refer
to the book [24]. Let us mention a discrete mechanical approach to rod theory introduced
in [38]. For 3D-1D reduction in the framework of continuum linear and nonlinear elasticity,
see [56, 1, 53, 54, 55].

Physical applications
We have in mind that our setting can be an oversimplified framework to modelize mechanical
behaviour of macromolecules, like DNA, tropocollagen triple helix (see [20]), micotubules (see
[37]), or carbon nanotubes in the regime where bending is neglectable.

For a nice overview of mathematical aspects of DNA, see [65] (where also some references
to discrete models for DNA are also indicated). Concerning simplified mechanical models for
DNA, involving twist-stretch coupling, we refer to [39, 35, 34] and [36] with the references
therein. For a discrete-continuuous comparison of models for DNA, see also [46]. Let us
also mention the Elastic Network Model (ENM) method, used for instance to modelize
biomolecules (see [64]).

For an overview on the mechanics of carbon nanotubes (including nanoropes with smaller
bending stiffness), we refer to [58, 60]. For continuum elastic models of carbon nanotubes,
we refer to [41] and the references cited therein. For atomistic derivation of mechanical
properties (including torsion) of carbon nanotubes, we refer to [70, 45, 6, 69] mainly with
interatomic potentials modeling, and also [22] for a SCC-DFTB atomistic model, and the
references therein.

1.3 Organisation of the paper

This paper is divided into two first sections (Section 1 for the introduction and Section 2 for
the presentation of the main results), followed by two main parts (parts I and II) and ended
by an appendix (Section 13).

On the one hand, part I is devoted to the proof of the discrete Saint-Venant principle
(Theorem 2.13) and the Liouville result (Corollary 2.14). On the other hand, part II presents
the proof of error estimates: a microscopic error estimate (Theorem 2.15) and a macroscopic
error estimate (Corollary 2.16). Part I is independent on part II but uses the first two
subsections of the appendix, while part II uses some results in part I and the three first
subsections of the appendix.

We now describe the structure of part I. This part is composed of Sections 3 to 6. Section
3 presents certain properties about the equilibrium and the construction (proof of Proposition
2.1) of perfect nanotubes and other properties of the kernel of the hessian of the energy. In
Section 4, we prove rough rigidity estimates which are various local and global comparison
estimates between nanotubes. In Section 5, we present a fine rigidity estimate (Theorem 5.1)
which plays a crucial role in our analysis. This fine estimate compares a general nanotube
to a perfect nanotube. In Section 6, we prove the main results of this part, namely Theorem
2.13 and Corollary 2.14.
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We now focus on the structure of part II. This part is composed of Sections 7 to 12.
In Section 7 we define the line torsion, the line tension and prove their properties, with in
particular their relation with the derivatives of the energy for perfect nanotubes (Theorem
7.2 and Theorem 7.9). In Section 8, we define the important discrete notion of mean fiber
and prove some of its properties in Theorem 8.2. In Section 9, we mainly prove Theorem
9.1, which is an estimate for a general nanotube on the line tension and the line torsion (i.e.
a moment of the forces estimated on the mean fiber). In order to go further, we define in
Section 10, the notion of scalar line torsion that we prove to be almost constant (see Theorem
10.2). In Section 11, we mainly prove some estimates between continuum and discrete forces
acting on a general nanotube (Theorem 11.1), that is used in Section 12 to prove the main
results of part II: namely Theorem 2.15 and Corollary 2.16.

Finally Section 13 is an appendix composed of four subsections. Subsections 13.1 and 13.2
contain respectively properties of rotations and fundamental controls of rotations. Subsection
13.3 gives some technical results on convergent series. We conclude with Subsection 13.4
which is not necessary to establish our main results, but proposes an axiomatic approach to
the definition of perfect nanotubes.

2 Main results

In this section we present our main results which are based on the subclass of perfect nan-
otubes at the equilibrium with no exterior forces.

Our first main result is a quantitative estimate on the distance between a general nan-
otube and nanotubes of this subclass, namely a Saint-Venant principle (Theorem 2.13),
which implies in particular a Liouville classification result (Corollary 2.14).

Those perfect nanotubes at the equilibrium are used to build the macroscopic model for
nanotubes deriving from some macroscopic energyW . Our second main result is a set of two
error estimates between discrete nanotubes and the solution of the associated macroscopic
continuum model (see Theorem 2.15 and Corollary 2.16).

In order to present our main results we need first to present our assumptions in Subsection
2.1. Subsection 2.1 should probably be skipped by the reader in a first reading of this section.
Our main results will be given in Subsection 2.2. We finally discuss the main new difficulties
of our approach in Subsection 2.3.

2.1 Assumptions

In order to state precisely our main results in Subsection 2.2.1, we need first to introduce
several assumptions.

Assumption (H0) (Regularity and decay of the potential)

We assume that V0 ∈ C2(0,+∞), and for some p > 1, we assume that

sup
r≥1

rp
[
|V0(r)|+ r |V ′

0(r)|+ r2 |V ′′
0 (r)|

]
<∞ .
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Notice that our assumption (H0) allows us to consider Lennard-Jones potential. We define
the energy per cell of a special perfect nanotube X ∈ Cθ,L by (assuming convention (1.10))

(2.1)

W(θ, L,X0) =
1

2

∑
k ∈ Z

0 ≤ l,m ≤ K − 1

V (Xk,l −X0,m)

=
1

2

∑
k ∈ Z

0 ≤ l,m ≤ K − 1

V (kL+Rkθ,L̂(X0,l)−X0,m),

where X0 = (X0,l)0≤l≤K−1 is a cell for the perfect nanotube X. Notice that W , up to its
second derivatives, is well defined (when all the atoms of the nanotube are distinct) because
of assumption (H0) above.

Assumption (H1) (Stability for a particular perfect nanotube)

i) We assume that there exists θ∗ ∈ (0, 2π), L∗ ∈ R3\{0} and X∗
0 = (X∗

0,l)l ∈ (R3)K solution
of

(2.2) DX0W(θ∗, L∗, X∗
0 ) = 0.

Let the nanotube X∗ = (X∗
j,l) ∈ Cθ∗,L∗

with X∗
j,l = jL∗ + Rjθ∗,L̂∗(X∗

0,l) for j ∈ Z and
0 ≤ l ≤ K − 1, then we have

(2.3) E ′
0(X

∗) = 0.

We also assume that not all the atoms X∗
j,l are aligned for j ∈ Z, l ∈ {0, ..., K − 1}.

ii) We assume that

(2.4) KerD2
X0X0

W(θ∗, L∗, X∗
0 ) = R(L∗ ×X∗

0 ) + R


L̂∗

:
:

L̂∗

 .

where (L∗ ×X∗
0 )l = L∗ ×X∗

0,l.

Notice that it is possible to see (see later Proposition 3.3) that (2.2) implies (2.3) in
assumption (H1) i).
We will prove later in Proposition 3.4 that under assumption (H1) i) we always have the
inclusion

R(L∗ ×X∗
0 ) + R

 L̂∗

...

L̂∗

 ⊂ KerD2
X0X0

W(θ∗, L∗, X∗
0 ),

and therefore (2.4) is a natural assumption of macroscopic stability of the nanotubeX∗. Then
we have the following result which will be proven later in Subsection 3.2, which provides a
parametrisation by (θ, L) of the unit cell X∗

0 = X ∗
0 (θ, L) of special perfect nanotubes at the

equilibrium.
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Proposition 2.1 (Existence of a suitable map (θ, L) 7→ X ∗
0 (θ, L))

i) Existence
Assume (H0) and (H1). Then W is C2 (on its domain of definition) and there exists a
closed neighborhood U0 of (θ∗, L∗) in (0, 2 π) × (R3\{0}) and a bounded neighborhood V∗

0 of
X∗

0 in (R3)K, and a C1 map

X ∗
0 : U0 → V∗

0

(θ, L) 7→ X ∗
0 (θ, L)

with X ∗
0 (θ

∗, L∗) = X∗
0 , such that for all (θ, L) ∈ U0, we have

DX0W(θ, L,X ∗
0 (θ, L)) = 0 and L̂ ·

(K−1∑
l=0

(X ∗
0 )l(θ, L)

)
= 0,

and every X0 ∈ V∗
0 solution of

DX0W(θ, L,X0) = 0 for (θ, L) ∈ U0,

can be writen

(2.5) X0 = Rβ,L̂(X
∗
0 (θ, L)) + γL̂ for some β, γ ∈ R.

ii) Further technical properties
Up to reduce U0, we can always show that for any (θ, L) ∈ U0 and

(2.6) X ∗(θ, L) = (X ∗
j (θ, L))j∈Z with X ∗

j (θ, L) = Rjθ,L̂(X
∗
0 (θ, L)) + jL,

we have

(2.7) there are at least three atoms of the nanotube X ∗(θ, L) which are not aligned,

(2.8) U0 = Int U0,

and there exists c0 > 0 such that

(2.9) for all (θ, L), (θ̄, L̄) ∈ U0,

{
|L̂+ ̂̄L| ≥ c0 > 0
|L| − |L− L̄| ≥ c0 > 0,

and (for r ≥ 1 given such that rθ∗ 6= 0 (2π)) we have

(2.10) rθ 6= 0 (2π) for all (θ, L) ∈ U0.

Definition 2.2 (The hessian of the energy)
For a nanotube X∗, the hessian of the energy E ′′

0 (X
∗) : ((R3)K)Z → ((R3)K)Z is defined for

any Z ∈ ((R3)K)Z by

(E ′′
0 (X

∗) · Z)j,l =
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

D2V (X∗
j,l −X∗

j′,l′) · (Zj,l − Zj′,l′).

11



Assumption (H2) (Microscopic stability by characterisation of the kernel of the
hessian)

We assume that there exists a positive constant C such that for any Z ∈ ((R3)K)Z such that

(2.11)

{
E ′′

0 (X
∗) · Z = 0

|Zj| ≤ C(1 + |j|2),

there exist two vectors u1, u2 ∈ R3, (θ̄, L̄) ∈ R× R3 and Y ∈ ((R3)K)Z such that

(2.12) Z = u1 + u2 ×X∗ + Y,

with {
X∗ = X ∗(θ∗, L∗)
Y = (θ̄, L̄) · ∇(θ,L)X ∗(θ∗, L∗) with X ∗(θ, L) defined in (2.6).

Notice that all Z as in (2.12) are in the kernel of E ′′(X∗) by Proposition 3.5. Assumption
(H2) claims that the kernel defined by (2.11) does not contain other elements. Therefore
assumption (H2) appears as a kind of microscopic stability assumption.

Remark 2.3
We can write

Yj =

(
Rjθ,L̂(Y0) + θ · (jL̂×Rjθ,L̂(X

∗
0 )) + L ·

(
∇LRjθ,L̂

)
(X∗

0 ) + jL

)∣∣∣∣
(θ,L)=(θ∗,L∗)

Y0 = (θ, L) · ∇(θ,L)X ∗
0 (θ, L)

∣∣∣∣
(θ∗,L∗)

,

where we recall that X∗
0 = X ∗

0 (θ
∗, L∗).

For later use we introduce the following technical assumption:

Assumption (H3) (Minimal number of cells 2q0 + 1 to define the distance Dj)

We introduce conditions on some parameter

q0 = 2r − 1

involved later in Definition 2.11, where 2q0 +1 is the minimal number of cells used to define
the distance Dj.
If K ≥ 3 and not all atoms of X ∗

0 (θ, L) are aligned for each (θ, L) ∈ U0, we set

r = 1.

Otherwise if K ≥ 2, we set {
r = 2 if θ∗ 6= π
r = 3 if θ∗ = π.

If K = 1, we set 
r = 3 if θ∗ 6= 2 π

3
and θ∗ 6= 4 π

3

r = 4 if θ∗ =
2 π

3
or θ∗ =

4π

3
.
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Remark 2.4
Here q0 = 2r− 1 is such that the atoms of X0(θ, L),..., Xr−1(θ, L) are always not all aligned
when assumption (H1) i) is satisfied. Moreover rθ∗ 6= 0 (2π), and this condition is used in
(2.10).

Definition 2.5 (Macroscopic energy)
For any (θ, L) ∈ U0, we define the energy W by

(2.13) W (θ, L) = W(θ, L,X ∗
0 (θ, L)).

Remark 2.6
For any β, γ ∈ R, let X0 := Rβ,L̂(X ∗

0 (θ, L)) + γL. Then we have

W(θ, L,X0) = W(θ, L,Rβ,L̂(X
∗
0 (θ, L)) + γL) = W(θ, L,X ∗

0 (θ, L)) =W (θ, L).

We have the following regularity:

Proposition 2.7 (Regularity of W )
The energy W is C2 on U0.

We denote by (L1, L2, L3) the coordinates of L ∈ R3 and we denote θ by L0, and we assume
that

Amn :=
∂2W

∂Lm ∂Ln

(θ∗, L∗) for any m, n = 0, · · · , 3

satisfies the following non-degeneracy assumption.

Assumption (H4) (Invertibility assumption at the macroscopic level)

The matrix A = (Amn) is invertible.

Remark 2.8
Intuitively, it is expected that assumption (H4) should be related to assumption (H2), but we
do not know if (H4) can be deduced from (H2). This question shares some analogies with
Lemma 3.1 in [27].

In this paper, when we use the set U0, we implicitely assume that (H0) and (H1) hold.

2.2 Main results

In order to give our main results in Subsection 2.2.2, we first need some definitions in
Subsection 2.2.1.

13



2.2.1 Perfect nanotubes at the equilibrium, distance and semi-norm

A nanotube X ∈ Cθ,L is at the equilibrium if E ′
0(X) = 0. We introduce the following

definitions.

Definition 2.9 (Class Cθ,L
∗ )

For any (θ, L) ∈ U0, we define the subclass of special perfect nanotubes at the equilibrium by

Cθ,L
∗ = {Y ∈ Cθ,L, E ′

0(Y ) = 0, ∃(β, γ) ∈ R2, Y0 = Rβ,L̂(X
∗
0 (θ, L)) + γL̂}.

Notice that X ∗
0 (θ, L) is a parametrisation of the unit cell given by Proposition 2.1.

Definition 2.10 (Class Ĉθ,L
∗ )

For any (θ, L) ∈ U0, we define the class of the perfect nanotubes at the equilibrium by

Ĉθ,L
∗ = {Y ∈ Ĉθ,L, ∃a ∈ R3, X ∈ Cθ,L

∗ , Yj = a+Xj},

which is obtained from Cθ,L
∗ by translations.

In order to give our main result we need to test the degree of perfection of a nanotube. To
this end, we will define a “three cells distance” (when q = 1) for a local control of the degree
of perfection of a nanotube, and a semi-norm making the local control a global control.

Definition 2.11 (Distance Dj)
For fixed q ≥ q0 ≥ 1, with q0 given in (H3), and for any (θ, L) ∈ U0 and a nanotube X we
define

Dj(X, θ, L) = inf
X̂∗∈Ĉθ,L

∗

sup
|β|≤q

|Xj+β − X̂∗
j+β|,

where |Xj| = sup
0≤l≤K−1

|Xj,l|.

Similarly we define for the force |fj| = sup
0≤l≤K−1

|fj,l|.

Definition 2.12 (Semi–norm)
We shall say that a subset J ⊂ Z of indices is a box, (i.e. a discrete interval), if and only if
it is the intersection of Z with an interval. For such a box, J , let us define the semi–norm

NJ(X) := sup
j∈J

inf
(θ,L)∈U0

Dj(X, θ, L).

Moreover, for a given ρ > 0, we set

Jρ := J +Qρ,

where Qρ := {e ∈ Z, such that |e| ≤ ρ}. We are now ready to state our first main result in
the next paragraph, namely our discrete Saint-Venant principle for nanotubes.
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2.2.2 Statement of the main results

With the notation of Subsection 2.2.1, we have:

Theorem 2.13 (A Saint-Venant principle for nanotubes)
Assume (H0), (H1), (H2) and (H3), where we recall that θ∗ ∈ (0, 2π) and L∗ ∈ R3\{0}.
Then there exists δ0 > 0, µ ∈ (0, 1), C1, C2 > 0 such that, for every nanotube X ∈ ((R3)K)Z

satisfying the Euler–Lagrange equation (1.13) for some f ∈ ((R3)K)Z satisfying (1.6) and

(2.14) sup
j∈Z

Dj(X, θ
∗, L∗) ≤ δ0,

we have for any box J ⊂ Z

(2.15) NJ(X) ≤ µ NJρ(X) + C1 sup
j∈Jρ

|fj|,

with

(2.16) ρp =
C2

NJ(X)
,

where we recall that p > 1 is the decay exponent of the two-body potential given in (H0).

Estimate (2.15) when f = 0 on Jρ is illustrated on Figure 5.

J

J

(X)(X)
JJ

perfect nanotube X*

nanotube X

Figure 5: Interpretation of our Saint-Venant principle when f = 0 on Jρ:
X looks more perfect on J than on Jρ

This Saint-Venant principle (2.15) has been obtained following the general lines of the previ-
ous works [8, 15, 50, 51], but with substantial difficulties that are mentionned in Subsection
2.3. Concerning Saint-Venant’s principle and exponential decay estimates, we refer the
reader to [40, 57, 66] and to [48, 49, 47] for a center manifolds approach.

Corollary 2.14 (Liouville result for nanotubes)
Assume (H0), (H1), (H2) and (H3), where we recall that θ∗ ∈ (0, 2π) and L∗ ∈ R3\{0}. Then
there exists δ0 > 0 such that for every nanotube X ∈ ((R3)K)Z satisfying the Euler–Lagrange
equation (1.13) with f = 0 and

(2.17) sup
j∈Z

Dj(X, θ
∗, L∗) ≤ δ0,
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then there exists (θ0, L0) ∈ U0, such that

sup
j∈Z

Dj(X, θ0, L0) = 0,

and X is a perfect nanotube.

Notice that it could also be interesting to try to derive for nanotubes a boundary layer
estimate similar Corollary 2 of [8], (this would require some substantial additional work).

Theorem 2.15 (Discrete-continuum error estimate)
Assume that (H0), (H1), (H2), (H3) and (H4) hold with p > 2. Let f̄ : R → R3 be a function
satisfying (1.2), (1.4). There exists ε0 > 0, such that if we have for some constant K0 ≥ 0

(2.18) ||f̄ ′||L∞(R) ≤ K0 , ||f̄ ||L∞(R) ≤ ε0 , sup
j∈Z

Dj(X, θ
∗, L∗) ≤ ε0,

then there exists a constant C = C(K0) > 0 such that for any discrete solution X of (1.13),
(1.14), (1.6) and (1.7) with ε ∈ (0, ε0), for L

0 defined in (1.7), there exists θ0 ∈ R satisfying

(2.19) |θ0 − θ∗| ≤ Cε0 , |L0 − L∗| ≤ Cε0

and there exists a solution (α,Φ) of (1.1) and (1.5) where W is defined in (2.13), such that

(2.20) sup
j∈Z

Dj(X,α
′(jε),Φ′(jε)) ≤ Cεγ with γ = min

(
1

3
,
p− 2

p

)
.

Moreover there exists ãj ∈ R3 for j ∈ Z such that we have the following error estimate

(2.21)


|Xj − ãj| ≤ C
|ãj+1 − ãj − Φ′(jε)| ≤ C εγ

|Xj+1 − ãj+1 −R
α′(jε),Φ̂′(jε)

(Xj − ãj)| ≤ C εγ,

where we recall the notation ẑ =
z

|z|
.

The result of Theorem 2.15 is illustrated on Figure 6.

Corollary 2.16 (Macro-micro error estimate)
Under the assumptions and with the notations of Theorem 2.15, we have that there exists
a ∈ R3 such that for all j ∈ Z we have

(2.22) |εXj − Φ(jε)− a| ≤ C εγ.

Result (2.22) of Corollary 2.16 is illustrated on Figure 7.
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by a perfect

nanotube X*

Figure 6: Discrete-continuum error estimates (2.21), (2.20)

( )

( )

Xj

(x)

( )

Figure 7: Macro-micro error estimate (2.22) for a = 0

2.3 Main difficulties encountered

The starting point of our work was paper [8], where a Saint-Venant principle has been ob-
tained for a linear chain of atoms. This Saint-Venant principle was called a Harnack type
inequality in [8]. Our goal was to adapt the method to the case of oversimplified models
of nanotubes in R3, sketching applications for instance to carbon nanotubes and to DNA
molecules (in the regime where the bending is neglectable, which is for instance expected
when a huge traction is applied). We simplified the analysis, concentrating on the problem
with two-body interactions in the case where all the atoms are the same. Nevertheless, we
had to face some questions that are several order of magnitude more difficult than in [8].
Even if some proofs may seem elementar from line to line, we had to design from scratch
the whole strategy and structure of proof of this paper. For this reason, this paper is fully
self-contained.

We list below some of the main difficulties encountered here.

Main difficulties in part I
I.1) the definition of perfect nanotubes:
At a first glance, a perfect nanotube should be a set of atoms that is invariant by a screw
displacement T θ,L (composition of a rotation Rθ,L̂ and a translation in the direction of the
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axis L of the rotation). Even if it is very intuitive that we should define a cell repeated by
screw displacement, we had to realize that the barycenter of the cell is not necessarily on
the axis of the rotation, and then has in general to rotate around this axis. Moreover the
parametrisation by (θ, L) ∈ U0 of the family of perfect nanotubes at the equilibrium was
not very intuitive, even if it was realised already in [21] that the shape of the microscopic
cell of a nanotube can change under homogeneous macroscopic deformations. Moreover, we
realised that we had to exclude the case of rotation angle θ = 0 (modulo 2π), which is more
singular for at least two reasons: on the one hand several nanotubes families could bifurcate
from the case θ = 0 because the dimension of the kernel of D2

X0X0
W is higher when θ = 0,

and on the other hand, the axis of the identity rotation is not well defined, which makes
it impossible to control the axis of perturbed rotations close to the identity. In the same
spirit, the suitable stability condition (H2) that we assume on the kernel of the hessian of
the microscopic energy was not obvious a priori.
I.2) the notion of curvature to use:
The statement of our Saint-Venant principle (Theorem 2.13) uses a notion of measure of
the degree of imperfection of a general nanotube, which we can interprete as a generalised
curvature of the nanotube. When each cell Xk reduces to a single atom and θ = 0 (as in
[8]), we can simply consider Dj(X) := |(Xk+1 − Xk) − (Xk − Xk−1)| which measures the
curvature of the chain of atoms. At the beginning of our work, it was not clear what should
be the right corresponding notion Dj(X, θ, L) for nanotubes and how to use it.
I.3) rigidity estimates on nanotubes:
Contrarily to the chain of atoms, we have to consider the action of rotations of the nanotube
around its axis. This creates a lot of difficulties to estimate the long range position of a
general nanotube, from its local generalised curvature inf

(θ,L)∈U0

Dj(X, θ, L).

Main difficulties in part II
II.1) the macroscopic model:
The macroscopic model is now built on the family of perfect nanotubes at the equilibrium,
parametrized by (θ, L) ∈ U0, and creates an isotropic energy W (θ, L) such that W (θ, L) =
W̃ (θ, |L|). This was absolutely not clear at the beginning of our work, even if a posteriori
this is related to the energetic regime that we consider, which allows ”large” deformations
(with respect to the solution of minimum energy). We also realised that those parameters
can be interpreted as

(θ, L) = (α′,Φ′)

where Φ(x) is the macroscopic arc of a continuous mechanical model, and α can be interpreted
as the angle of rotation of an orthonormal basis (whose first vector is tangent to the arc,
see Figure 1) associated to each point of the arc with respect to the natural Bishop frame
corresponding to zero torsion of the macroscopic arc (see [9, 44, 10]).
II.2) the line torsion and the mean fiber:
In comparison to [8] where line tension was introduced, we had additionnaly to introduce
the notion of line torsion at the microscopic level, which is a moment of the internal forces,
evaluated at some point. But this notion was difficult to use, and we had to define the right
point where to evaluate this moment. We discovered that this moment has to be evaluated on
the mean fiber ãk, a suitable notion that we also had to introduce (and which corresponds to
the projection of the barycenter of the cell on the axis of the nanotube, when this nanotube
is perfect). We introduced this notion of mean fiber for general nanotubes.
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II.3) microscopic scalar torsion at large scale:
For simplicity, we assumed (as in [8]) some large scale (of order 1/ε) periodicity conditions
on the microscopic nanotube. To this end, we imposed the large scale translation L0/ε of
atoms, but it was impossible to prescribe the large scale torsion of the nanotube. This is of
course natural, because even if the nanotube is anisotropic at the microscopic level, it turns
out that it is isotropic at the macroscopic level (in the regime that we consider). This also
creates a lot of difficulties to evaluate the microscopic line torsion and to relate it to the
macroscopic one. In order to do that, we had to introduce the notion of scalar microscopic
line torsion mi (instead of the vectorial line torsion), that we have shown in Theorem 10.2
to be almost constant, i.e. (for p ≥ 3)

mi −m0 = O

(
1

N
+N2ε

)
= O(ε

1
3 ).

This has been obtained by averaging rotations of the cells of the nanotube on a window
of size N << Nε = ε−1 and optimizing the error with N = ε−

1
3 . Here the averaging was

possible because θ 6= 0 (2π). Notice also that this is the only part of the proof where we use
the Lipschitz regularity of the forces f̄ .

Part I

A discrete Saint-Venant principle

3 Properties of perfect nanotubes

This section is divided into three subsections. In Subsection 3.1 we mainly prove Proposition
3.3 for the equilibrium of perfect nanotubes. In Subsection 3.2 we show Proposition 2.1 and
Proposition 3.4 for the construction of a family of perfect nanotubes at the equilibrium.
Finaly in Subsection 3.3 we get Proposition 3.5 on the properties of the kernel of the hessian
of the energy.

3.1 The equilibrium of perfect nanotubes

In this subsection, we grasp a few results that will be used later in the paper. We first notice
that using (H0) we can estimate the rest of the series defining W , DW and D2W , and then
show that W ∈ C2, while there are no pairs of atoms in X that touch each other.

Lemma 3.1 (Computation of DX0,l
W(θ, L,X0) )

Let us consider a nanotube X ∈ Cθ,L, then for the energy per cell defined in (2.1) we have

DX0,l
W(θ, L,X0) =

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (X0,l −Xj′,l′).

Proof of Lemma 3.1

We have W(θ, L,X0) =
1

2

∑
j′ ∈ Z

0 ≤ l, l′ ≤ K − 1

V (X0,l − j′L−Rj′θ,L̂(X0,l′)).
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Then

DX0,pW(θ, L,X0) =
1

2

∑
j′ ∈ Z

0 ≤ l, l′ ≤ K − 1

δlp∇V (X0,l − j′L−Rj′θ,L̂(X0,l′))

− 1

2

∑
j′ ∈ Z

0 ≤ l, l′ ≤ K − 1

δl′pR−j′θ,L̂∇V (X0,l − j′L−Rj′θ,L̂(X0,l′))

=
1

2

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (X0,p − j′L−Rj′θ,L̂(X0,l′))

− 1

2

∑
j′ ∈ Z

0 ≤ l ≤ K − 1

R−j′θ,L̂∇V (X0,l − j′L−Rj′θ,L̂(X0,p)).

Using Lemma 13.4 in the appendix, we compute

−1

2

∑
j′ ∈ Z

0 ≤ l ≤ K − 1

R−j′θ,L̂∇V (X0,l − j′L−Rj′θ,L̂(X0,p))

= −1

2

∑
j′ ∈ Z

0 ≤ l ≤ K − 1

∇V
(
R−j′θ,L̂

(
X0,l − j′L−Rj′θ,L̂(X0,p)

))

= −1

2

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V
(
R−j′θ,L̂(X0,l′)− j′L−X0,p

)
=

1

2

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V
(
X0,p − (−j′L)−R−j′θ,L̂(X0,l′)

)
=

1

2

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V
(
X0,p − j′L−Rj′θ,L̂(X0,l′)

)
,

then we have

DX0,pW(θ, L,X0) =
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V
(
X0,p − j′L−Rj′θ,L̂(X0,l′)

)
,

and finally

DX0,l
W(θ, L,X0) =

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (X0,l −Xj′,l′).

�

Lemma 3.2 (Rotation of the external forces)
If X ∈ Cθ,L solves (1.13), then we have

fj+1 = Rθ,L̂(fj),
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and

(3.1) L̂ ·
K−1∑
l=0

fj,l = 0 for all j ∈ Z.

Proof of Lemma 3.2
Step 1: Proof of fj+1 = Rθ,L̂(fj)
We recall (1.13) for any j ∈ Z and 0 ≤ l ≤ K − 1

(3.2) fj,l + Aj,l = 0 with Aj,l =
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (Xj,l −Xj′,l′).

Now we compute

Aj+1,l =
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (Xj+1,l −Xj′+1,l′)

=
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (L+Rθ,L̂(Xj,l)− L−Rθ,L̂(Xj′,l′)))

=
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (Rθ,L̂(Xj,l −Xj′,l′))

= Rθ,L̂

( ∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (Xj,l −Xj′,l′)

)
= Rθ,L̂(Aj,l),

where we have used Lemma 13.4 in the fourth line. From (3.2), we deduce that

fj+1,l = Rθ,L̂(fj,l).

Step 2: Proof of L̂ ·
K−1∑
l=0

fj,l = 0

Using (3.2), we get

(3.3) L̂ ·
K−1∑
l=0

fj,l + L̂ ·
K−1∑
l=0

Aj,l = 0.

We compute

L̂ ·
K−1∑
l=0

Aj,l = L̂ ·
∑
j′ ∈ Z

0 ≤ l, l′ ≤ K − 1

∇V ((j − j′)L+Rjθ,L̂(X0,l)−Rj′θ,L̂(X0,l′))

=
∑
j′ ∈ Z

0 ≤ l, l′ ≤ K − 1

L̂ · ∇V
(
Rjθ,L̂

(
(j − j′)L+X0,l −R(j′−j)θ,L̂(X0,l′)

))
=

∑
j′ ∈ Z

0 ≤ l, l′ ≤ K − 1

R−jθ,L̂(L̂) · ∇V ((j − j′)L+X0,l −R(j′−j)θ,L̂(X0,l′)),
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where we have used Lemma 13.4 in the last line. This shows that

L̂ ·
K−1∑
l=0

Aj,l =
∑
k ∈ Z

0 ≤ l, l′ ≤ K − 1

L̂ · ∇V (kL+X0,l −R−kθ,L̂(X0,l′)),

Using similar arguments, we get

L̂ ·
K−1∑
l=0

Aj,l =
∑
k ∈ Z

0 ≤ l, l′ ≤ K − 1

L̂ · ∇V (−kL+X0,l −Rkθ,L̂(X0,l′))

=
∑
k ∈ Z

0 ≤ l, l′ ≤ K − 1

L̂ · ∇V (Rkθ,L̂(−kL+R−kθ,L̂(X0,l)−X0,l′))

=
∑
k ∈ Z

0 ≤ l, l′ ≤ K − 1

R−kθ,L̂(L̂) · ∇V (−kL+R−kθ,L̂(X0,l′)−X0,l)

=
∑
k ∈ Z

0 ≤ l, l′ ≤ K − 1

L̂ · ∇V (kL+Rkθ,L̂(X0,l′)−X0,l)

= −L̂ ·
K−1∑
l=0

Aj,l.

This implies that L̂ ·
K−1∑
l=0

Aj,l = 0, which with (3.3) implies (3.1).

�
Finally we have

Proposition 3.3 (Euler-Lagrange equations deriving from W and E)
Given a solution X ∈ Cθ,L of Euler-Lagrange equation (1.13), we have

(3.4) −DX0,pW(θ, L,X) = f0,p,

and
DX0,pW(θ, L,X) = 0 ⇐⇒ E ′

0(X) = 0.

Proof of Proposition 3.3
By Lemma 3.1, we have

DX0,l
W(θ, L,X0) =

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (X0,l −Xj′,l′).

Using (1.13), we obtain
−DX0,pW(θ, L,X0) = f0,p.

If E ′
0(X) = 0, then f0 = 0 and finally

DX0,pW(θ, L,X0) = 0.

Reciprocically, let us assume that f0 = 0. Then by Lemma 3.2 we have fj+1 = Rθ,L̂(fj), and
then fj = 0 for all j ∈ Z, which implies

E ′
0(X) = 0.

�
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3.2 Stability of perfect nanotubes at the equilibrium

Proposition 3.4 (On assumption (H1) ii))
Under assumption (H1) i), we have

R(L∗ ×X∗
0 ) + R

 L̂∗

...

L̂∗

 ⊂ KerD2
X0X0

W(θ∗, L∗, X∗
0 ).

Proof of Proposition 3.4
To simplify the presentation, we set λ = (θ, L), X = X0 and λ∗ = (θ∗, L∗), X∗ = X∗

0 .
Step 1: Invariance by translation along L
From the explicit expression of DXW(λ,X) given by Lemma 3.1, we see that

DXW(λ,X + γL̂) = DXW(λ,X) for all γ ∈ R.

By derivation with respect to γ, we deduce in particular that L̂
...

L̂

 ·D2
XXW(λ,X) = 0,

which shows that R

 L̂
...

L̂

 ⊂ KerD2
XXW(λ,X).

Step 2: Invariance by rotation
We have

W(λ,Rα,L̂(X)) = W(λ,X) for all α ∈ R.

Taking the derivative with respect to α, we obtain

(3.5) DXW(λ,Rα,L̂(X)) · (L̂×Rα,L̂(X)) = 0 for all α ∈ R.

Taking again the derivative with respect to α at α = 0, we obtain

D2
XXW(λ,X) · (L̂×X, L̂×X) +DXW(λ,X) · (L̂× (L̂×X)) = 0.

Using DXW(λ∗, X∗) = 0, we deduce that

L̂∗ ×X∗ ∈ KerD2
XXW(λ∗, X∗),

and then
R(L∗ ×X∗) ⊂ KerD2

XXW(λ∗, X∗).

�
Proof of Proposition 2.1
Step 1: Definition and properties of ψ
We keep the notations λ,X, λ∗, X∗ of the proof of Proposition 3.4.
We introduce the following map

(3.6) ψ(λ,X) := DXW(λ,X).
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We know that ψ(λ∗, X∗) = 0, and we want to find a solution X(λ) of ψ(λ,X(λ)) = 0, using
an inverse function theorem. We notice that we have DXψ(λ,X) = D2

XXW(λ,X), with
kerD2

XXW(λ∗, X∗) 6= {0} by Proposition 3.4.
On the other hand we know by (3.4) and (3.1) that

L̂ · ψ(λ,X) = 0 with L̂ :=

 L̂
...

L̂

 ,

i.e.

(3.7) ψ(λ,X) ∈ L̂⊥.

Moreover computation (3.5) shows that

(3.8) ψ(λ,X) ∈ (AX)⊥ with AX := L×X.

From Lemma 3.1 and Lemma 13.4, we have for all α, γ ∈ R

(3.9) ψ(λ,Rα,L̂(X) + γL̂) = Rα,L̂(ψ(λ,X)).

Step 2: Setting for invertibility
We set

V1 = (A∗X∗)⊥ ∩ L̂∗⊥ with L̂∗ :=

 L̂∗

...

L̂∗

 and A∗X∗ := L∗ × A∗,

and notice that A∗X∗ 6= 0 because not all the atoms are aligned (as a consequence of
assumption (H1) i)). We consider (with the orthogonal projection on V1)

(3.10) ψ̃(λ, ·) := Proj∣∣
V1

(
ψ(λ, ·)∣∣

X∗+V1

)
.

We now want to apply the inverse function theorem to ψ̃. To this end, we compute

DXψ̃(λ
∗, X∗) = Proj∣∣

V1

(
D2

XXW(λ∗, X∗)∣∣
V1

)
.

ButD2
XXW(λ∗, X∗) is a symmetric matrix whose kernel is V ⊥

1 by assumption (H1) ii). There-
foreD2

XXW(λ∗, X∗) is invertible from V1 to V1, which shows the invertibility ofDXψ̃(λ
∗, X∗).

From the inverse function theorem, there exist a bounded neighborhood U0 of λ∗ and a
bounded neighborhood Ṽ∗

0 of X∗ in X∗ + V1 and a C1-map (because the map (λ,X) 7→
W(λ,X) is C2 by assumption (H0))

X ∗
0 : U0 → Ṽ∗

0

λ 7→ X ∗
0 (λ),

such that the equation
ψ̃(λ,X) = 0 for X ∈ Ṽ∗

0
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has a unique solution which is X ∗
0 (λ).

Step 3: Consequences
Notice that ψ̃(λ,X) = 0 means

(3.11) ψ(λ,X)− αA∗X∗ − βL̂∗ = 0 with


α =

(A∗X∗) · ψ(λ,X)

|A∗X∗|2

β =
L̂∗ · ψ(λ,X)

|L̂∗|2
,

where we have substracted to ψ its orthogonal projection on V ⊥
1 , namely

V ⊥
1 = R(A∗X∗)

⊥
⊕ RL̂∗.

Taking respectively the scalar product with AX and L̂ in (3.11), and using respectively
(3.8) and (3.7), we get {

0− α (A∗X∗ · AX)− β (L̂∗ · AX) = 0

0− α (A∗X∗ · L̂)− β (L̂∗ · L̂) = 0.

For

∆(L,X) := det

(
(A∗X∗ · AX) (L̂∗ · AX)

(A∗X∗ · L̂) (L̂∗ · L̂)

)
,

we have
∆(L∗, X∗) = |A∗X∗|2|L̂∗|2 6= 0,

and ∆(L,X) 6= 0 for (L,X) close enough to (L∗, X∗) (which is true for X = X ∗
0 (λ) and

λ = (θ, L) ∈ U0, up to reduce U0). Therefore α = β = 0 which implies that

ψ(λ,X) = 0 for all X = X ∗
0 (λ) and λ ∈ U0.

Step 4: Further properties
With notation (2.6), recall that not all the atoms in the nanotube X ∗(λ∗) are aligned.
Because X ∗

0 is a continuous map, we deduce that not all the atoms in X ∗(λ) are aligned, for
λ ∈ U0 with U0 small enough, which shows (2.6). Moreover up to reduce U0, we can assume
(2.8), (2.9) and (2.10).
Step 5: Conclusion for the existence of V∗

0

We define

F : (0, 2π)× (R3\{0})× (X∗ + V1)× R× R −→ (0, 2 π)× (R3\{0})× (R3)K

(θ, L,X, α, γ) 7−→ (θ, L,Rα,L̂(X) + γL̂).

We have F(θ∗, L∗, X∗, 0, 0) = (θ∗, L∗, X∗), and we compute

DF(θ∗, L∗, X∗, 0, 0) · (θ̄, L̄, X̄, ᾱ, γ̄) = (θ̄, L̄, X̄ + ᾱL̂∗ ×X∗ + γ̄L̂∗).

This shows that DF is invertible at this point. Because F is C1, we deduce from the inverse
function theorem that there exists a bounded neighborhood V∗

0 of X∗ in (R3)K such that (up
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to reduce U0 and choose V∗
0 small enough) for all (θ, L,X) ∈ U0 × V∗

0 , there exists a unique
(θ, L, X̃, α, γ) ∈ U0 × Ṽ∗

0 ×Br(0), with Br0(0) ⊂ R2 for some small r0 > 0, such that

F(θ, L, X̃, α, γ) = (θ, L,X).

As a consequence if (θ, L,X) ∈ U0 × V∗
0 and ψ(θ, L,X) = 0, then

X = Rα,L̂(X̃) + γL̂ with X̃ ∈ X∗ + V1.

Therefore from (3.9), we deduce

ψ(θ, L, X̃) = 0 with X̃ ∈ X∗ + V1.

From Step 2, we deduce that
X̃ = X ∗

0 (θ, L),

and then
X = Rα,L̂(X̃

∗
0 (θ, L)) + γL̂,

which shows (2.5).
�

3.3 The kernel of the hessian

Proposition 3.5 (The kernel of the hessian)
We set

Zj = u1 + u2 ×X∗
j + Yj,

with u1, u2 ∈ R3, X∗ ∈ Cθ∗,L∗
∗ , with X∗ = X ∗(θ∗, L∗) and for (θ, L) ∈ R× R3

(3.12) Y := (θ, L).∇(θ,L)X ∗(θ∗, L∗),

where X ∗ is defined in Proposition 2.1. Then
i) for Z = (Zj)j∈Z, we have Z ∈ KerE ′′

0 (X
∗),

ii) there exists a constant C > 0 such that |Zj| ≤ C(1 + |j|).

Proof of Proposition 3.5
Proof of i)
Action of translations
For Y = X∗ + tu1, we have Yj,l − Yj′,l′ = X∗

j,l −X∗
j′,l′ and then E ′

0(X
∗ + tu1) = E ′

0(X
∗).

Therefore

0 =
d

dt
(E ′

0(X
∗ + tu1))

∣∣
t=0

= E ′′
0 (X

∗) · u1

and finally

(3.13) u1 ∈ KerE ′′
0 (X

∗).

Action of rotations
For α ∈ R and Y = Rα,û2(X

∗), we have Yj,l − Yj′,l′ = Rα,û2(X
∗
j,l −X∗

j′,l′), then we write

E ′
0(Rα,û2(X

∗)) = Rα,û2(E
′
0(X

∗)) = 0,

26



where we have used Lemma 13.4 and the fact that E ′
0(X

∗) = 0.
Therefore for α = t|u2|, we get

0 =
d

dt
E ′

0(Rt|u2|,û2(X
∗))
∣∣
α=0

= E ′′
0 (X

∗) · (u2 ×X∗),

and finally

(3.14) u2 ×X∗ ∈ KerE ′′
0 (X

∗).

Perturbation of X ∗(θ, L)
We have

E ′
0(X ∗(θ, L)) = 0.

Therefore for (θ, L) = (θ∗, L∗) + t(θ̄, L̄), we have

0 =
d

dt
E ′

0(X ∗(θ∗ + tθ̄, L∗ + tL̄)) = E ′′
0 (X ∗(θ∗, L∗)) · Y,

with Y = (θ̄, L̄) · ∇(θ,L)X ∗(θ∗, L∗). And finally

(3.15) Y ∈ KerE ′′
0 (X

∗).

Conclusion
From (3.13), (3.14) and (3.15), we deduce that Z ∈ KerE ′′

0 (X
∗).

Proof of ii)
On the one hand, there exists a constant C1 > 0 such that

(3.16) |X∗
j | ≤ C1(1 + |j|),

which can be deduced, for instance, from the independent Lemma 4.4.
On the other hand, we have

X ∗
j (θ, L) = jL+Rjθ,L̂(X

∗
0 (θ, L)).

This gives

Yj = (θ̄, L̄) · ∇(θ,L)X ∗
j (θ

∗, L∗)

= jL̄+ jθ̄Rjθ∗+π
2
,L̂∗(X ∗

0 (θ
∗, L∗)) +

(
L̄ · ∇LRjθ∗,L̂

)∣∣
L=L∗

(X ∗
0 (θ

∗, L∗))

+ Rjθ∗,L̂∗

(
(θ̄, L̄) · ∇(θ,L)X ∗

0 (θ
∗, L∗)

)
,

and then (using Lemma 13.7) there exists a constant C2 such that

(3.17) |Yj| ≤ C2(1 + |j|).

From (3.16) and (3.17) we deduce that there exists a constant C such that

|Zj| ≤ C(1 + |j|).

�
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4 Rough rigidity estimates

The goal of this section is to prove Propositions 4.5 and 4.6 about finite differences of a
single nanotube. This is done in Subsection 4.2. In Subsection 4.1, we present preliminary
results about comparaison between two nanotubes, that are used in Subsection 4.2 and also
later in Section 6.

4.1 Comparison between two nanotubes

Lemma 4.1 (Long distance error estimate for perfect nanotubes)

Let us consider two perfect nanotubes X ∈ Ĉθ,L and X̄ ∈ Ĉ θ̄,L̄ for (θ, L), (θ̄, L̄) ∈ U0 such
that 

sup
α=0,−1

|Xα − X̄α| ≤ ε

|θ − θ̄| ≤ ε0 ≤ ε
|L− L̄| ≤ ε0 ≤ ε.

Assume moreover that we can write

(4.1) X = a+ Y with Y ∈ Cθ,L and inf
γ∈R

sup
0≤l≤K−1

|Y0,l − γL| ≤ c1.

Then there exists a constant C0 = C0(c1) > 0 such that

(4.2) |Xj − X̄j| ≤ C0(ε+ ε0|j|),

and there exists a constant C1 = C1(j, c1) such that we have

(4.3) |(Xj′ −Xj)− (X̄j′ − X̄j)| ≤ C1(ε0 + ε|j′ − j|+ ε0|j′ − j|2).

Error estimate (4.2) is illustrated on Figure 8.

( )
X X

X

X X

X

0

0-1

-1

j

j

j( )

Figure 8: Illustration of error estimate (4.2)

Remark 4.2
In statement of Lemma 4.1, we assumed for simplicity that (θ, L), (θ̄, L̄) ∈ U0. Indeed the
result is still true if |R

θ̄,̂̄L − I| is bounded from bellow by a positive constant.
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Proof of Lemma 4.1
Step 1: Estimate on rotations
We have |L− L̄| ≤ ε0, then by Lemma 13.9 there exists a constant c > 0 such that

|L̂− ̂̄L| ≤ cε0.

By Lemma 13.8, we have

|Rjθ,L̂ −R
jθ̄,̂̄L| ≤ |jθ − jθ̄|+ 5|L̂− ̂̄L|

≤ (|j|+ 5c)ε0,

where we have used the fact that |θ − θ̄| ≤ ε0.
Then there exists c0 > 0 such that (with the difference of identity matrices for j = 0)

|Rjθ,L̂ −R
jθ̄,̂̄L| ≤ c0|j|ε0.

Step 2: First estimate on |Xj − X̄j|
We recall that {

Xj = a+Rjθ,L̂(X0 − a) + jL with a ∈ R3

X̄j = ā+R
jθ̄,̂̄L(X̄0 − ā) + jL̄ with ā ∈ R3,

where up to change a in a+ γL, we can assume that we can take γ = 0 in (4.1). We have

|Xj − X̄j| = |(a+Rjθ,L̂(X0 − a) + jL)− (ā+R
jθ̄,̂̄L(X̄0 − ā) + jL̄)|,

and then

(4.4) |Xj−X̄j| = |a− ā−R
jθ̄,̂̄L(a− ā)+(Rjθ,L̂−Rjθ̄,̂̄L)(X0−a)+Rjθ̄,̂̄L(X0−X̄0)+j(L−L̄)|.

This implies

|Xj − X̄j| ≤ |a− ā−R
jθ̄,̂̄L(a− ā)|+ |Rjθ,L̂ −R

jθ̄,̂̄L||X0 − a|+ |X0 − X̄0|+ |j||L− L̄|
≤ Aj + c1c0|j|ε0 + ε+ |j|ε0,

with
Aj = |a− ā−R

jθ̄,̂̄L(a− ā)|.

This gives

(4.5) |Xj − X̄j| ≤ Aj + c4(ε+ ε0|j|),

with c4 = max(1, c1c0 + 1).
Step 3: Control of A1

Again from (4.4), we get (using ε0 ≤ ε)

Aj ≤ |Xj − X̄j|+ c4(1 + |j|)ε.

For j = 1, this gives
A1 ≤ ε+ 2c4ε ≤ c5ε,
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with c5 = 1 + 2c4.
Step 4: Control of Aj

We get with u = a− ā

(4.6) A1 = |u−R
θ̄,̂̄L(u)| ≤ c5ε.

Let u⊥ = u − (u · ̂̄L)̂̄L. Then using (4.6) and (θ̄, L̄) ∈ U0 which implies that |R
θ̄,̂̄L − I| is

bounded from below by some positive constant, there exists c6 > 0 such that

|u⊥| ≤ c6ε,

and for all j ∈ Z
Aj = |u−R

jθ̄,̂̄L(u)| = |u⊥ −R
jθ̄,̂̄L(u⊥)| ≤ 2c6ε.

Step 5: Conclusion
Similarly we get

|Xj − X̄j| ≤ Aj + c4(ε+ ε0|j|) ≤ 2c6ε+ c4(ε+ ε0|j|) ≤ C(ε+ ε0|j|),

with C = 2c6 + c4, which shows (4.2).
Step 6: Bound on |(Xj′ −Xj)− (X̄j′ − X̄j)|
We compute (using (4.2)),

(4.7)
|(Xk+1 − X̄k+1)− (Xk − X̄k)| ≤ C(ε+ ε0|k + 1|) + C(ε+ ε0|k|)

≤ C1(ε+ ε0|k|).

Up to change (j, j′) in (−j,−j′) we can assume that j′ > j. Then by iteration of (4.7), we
have

(4.8) |(Xj′ −Xj)− (X̄j′ − X̄j)| ≤ C1

(
ε|j′ − j|+ ε0

j′−1∑
k=j

|k|

)
for j′ > j.

We distinguish the cases

j′−1∑
k=j

|k| =



j′−1∑
k=j

k if j ≥ 0

−
j∑

k=1−j′

k if j′ − 1 ≤ 0

−
0∑

k=j

k +

j′−1∑
k=0

k if j < 0 < j′ − 1.

In each case, we deduce that there exists a constant c7 = c7(j) such that we have

j′−1∑
k=j

|k| ≤ c7(1 + |j′ − j|2),

Joint to (4.8), we deduce that there exists a constant C2 = C2(j) such that we have

|(Xj′ −Xj)− (X̄j′ − X̄j)| ≤ C2(ε0 + ε|j′ − j|+ ε0|j′ − j|2).

�
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Lemma 4.3 (Estimate between a general and a perfect nanotube)
Let us consider a nanotube X and (θ0, L0) ∈ U0. Let us assume that we have

sup
|α|≤1

|Xα − X̂∗
α| ≤ ε with X̂∗ ∈ Ĉθ0,L0

∗ .

Let us assume the existence of sequences (θj, Lj) ∈ U0 such that for some ε > 0, we have

(4.9) Dj(X, θj, Lj) ≤ ε for M ≤ j ≤ N with M ≤ 0 ≤ N,

and for some ε0 ≥ 0{
|θj+1 − θj| ≤ ε0 ≤ ε
|Lj+1 − Lj| ≤ ε0 ≤ ε

∣∣∣∣ for M ≤ j ≤ N − 1.

Then there exists a constant c > 0 such that

(4.10) |Xj − X̂∗
j | ≤ c

(
ε(1 + |j|) + ε0j

2
)

for M ≤ j ≤ N.

Error estimate (4.10) is illustrated on Figure 9.

nanotube X

perfect nanotube X*

j
( ( 2) )

Figure 9: Illustration of error estimate (4.10) between a general and a perfect nanotube

Proof of Lemma 4.3
Let us consider a perfect nanotube X̂∗,j ∈ Ĉθj ,Lj that achieves the infimum in Dj(X, θj, Lj),
which satisfies in particular

sup
|α|≤1

|Xj+α − X̂∗,j
j+α| ≤ ε,

with the choice X̂∗,0 := X̂∗.
We see that (4.9) implies for M ≤ j ≤ N

(4.11)


|Xj − X̂∗,j

j | ≤ ε

|Xj+1 − X̂∗,j
j+1| ≤ ε

|Xj−1 − X̂∗,j
j−1| ≤ ε.

Similarly for j replaced by j − 1 with M ≤ j − 1 ≤ N , we have

(4.12)


|Xj−1 − X̂∗,j−1

j−1 | ≤ ε

|Xj − X̂∗,j−1
j | ≤ ε

|Xj−2 − X̂∗,j−1
j−2 | ≤ ε.
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Using the first line in (4.11) and the second line in (4.12) , we get

(4.13) |X̂∗,j
j − X̂∗,j−1

j | ≤ 2ε.

Using the last line in (4.11) and the first line in (4.12) , we get

(4.14) |X̂∗,j
j−1 − X̂∗,j−1

j−1 | ≤ 2ε.

We summarize (4.13) and (4.14) as

sup
α=0,−1

|X̂∗,j
j+α − X̂∗,j−1

j+α | ≤ 2ε for M + 1 ≤ j ≤ N.

Because we have |θj − θj−1| ≤ ε0 and |Lj − Lj−1| ≤ ε0, using (4.2) in Lemma 4.1 then there
exists c0 = 2C0 > 0 such that we have

(4.15) |X̂∗,j
k − X̂∗,j−1

k | ≤ c0(ε+ ε0|j − k|).

Therefore, we can write for 0 ≤ j ≤ N

(4.16)

|X̂∗,j
j − X̂∗,0

j | = |(X̂∗,j
j − X̂∗,j−1

j ) + (X̂∗,j−1
j − X̂∗,j−2

j ) + ...+ (X̂∗,1
j − X̂∗,0

j )|
≤ |X̂∗,j

j − X̂∗,j−1
j |+ |X̂∗,j−1

j − X̂∗,j−2
j |+ ...+ |X̂∗,1

j − X̂∗,0
j |

≤ c0
(
(ε+ 0ε0) + (ε+ 1ε0) + ...+ (ε+ |j − 1|ε0)

)
≤ c0(ε|j|+ ε0j

2),

where in the third line we have used (4.15). Similarly we get the same result for M ≤ j ≤ 0
and then for M ≤ j ≤ N . Finally, we have for M ≤ j ≤ N

|Xj − X̂∗
j | ≤ |Xj − X̂∗,j

j |+ |X̂∗,j
j − X̂∗

j |
= |Xj − X̂∗,j

j |+ |X̂∗,j
j − X̂∗,0

j |
≤ ε+ c0(ε|j|+ ε0j

2)
≤ c(ε(1 + |j|) + ε0j

2),

with c = max{1, c0} and where in the third line we have used (4.16) and the first line of
(4.11).

�

4.2 Finite differences for a single nanotube

In order to prove Propositions 4.5 and 4.6 we need first the following result:

Lemma 4.4 (Estimate on perfect nanotubes)
For (θ, L) ∈ U0, let us consider X ∈ Cθ,L. Then we have

(4.17) |Xj′,l′ −Xj,l − (j′ − j)L| ≤ 4C0,

with C0 = inf
γ∈R

sup
0≤l≤K−1

|X0,l − γL|.

32



Proof of Lemma 4.4
We have

Xj,l −Xj′,l′ = jL+Rjθ,L̂(X0,l)− j′L−Rj′θ,L̂(X0,l′)

= (j − j′)L+ (Rjθ,L̂ −Rj′θ,L̂)(X0,l) +Rj′θ,L̂(X0,l −X0,l′),

= (j − j′)L+ (Rjθ,L̂ −Rj′θ,L̂)(X0,l − V ) +Rj′θ,L̂((X0,l − V )− (X0,l′ − V )),

for any vector V = γL for γ ∈ R. We deduce that (4.17) holds.
�

Proposition 4.5 (Estimate on a general nanotube)
There exists a constant C such that the following holds.
For any general nanotube X, (θ, L) ∈ U0 and δ ∈ (0, 1), satisfying

sup
j∈Z

Dj(X, θ, L) ≤ δ,

we have

(4.18) |Xj′,l′ −Xj,l − (j′ − j)L| ≤ C(1 + δ|j′ − j|).

Moreover there exists X̂∗,j ∈ Ĉθ,L such that

(4.19) |Xj′,l′ −Xj,l − (X̂∗,j
j′,l′ − X̂∗,j

j,l )| ≤ Cδ(1 + |j′ − j|).

Proof of Proposition 4.5
We recall that there exists X̂∗,j ∈ Ĉθ,L

∗ such that

(4.20) Dj(X, θ, L) = sup
|α|≤q

|Xj+α − X̂∗,j
j+α| ≤ δ.

Writing X̂∗,j = X∗,j + aj with X∗,j ∈ Cθ,L
∗ and aj ∈ L⊥, we deduce from Lemma 4.4 that

there exists a constant C1 such that

(4.21) |X∗,j
j,l −X∗,j

j′,l′ − (j − j′)L| ≤ C1.

Because of (4.20), we can apply (4.10) in Lemma 4.3 with ε0 = 0, and get the existence of a
constant C2 such that we have

|Xj′,l′ −X∗,j
j′,l′ | ≤ C2δ(1 + |j − j′|) for all j ∈ Z.

In particular for (j′, l′) = (j, l), we get

|Xj,l −X∗,j
j,l | ≤ C2δ,

Subtracting the two last lines, we get that there exists a constant C3 such that

|Xj,l −Xj′,l′ − (X∗,j
j,l −X∗,j

j′,l′)| ≤ C3δ(1 + |j − j′|),

which shows (4.19).
Using (4.21), we see that there exists a constant C4 such that we have

(4.22) |Xj,l −Xj′,l′ − (j − j′)L| ≤ C4(1 + δ|j − j′|).

�
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Proposition 4.6 (Another estimate on a general nanotube)
There exist η ∈ (0, 1) and C0 > 0 such that the following holds. Let us consider (θ, L) ∈ U0,
δ ∈ (0, η) and a nanotube X, satisfying

sup
j∈Z

Dj(X, θ, L) ≤ δ,

such that for some (θ0, L0) ∈ U0, there exists X̂∗ ∈ Ĉθ0,L0

∗ satisfying

sup
|α|≤q

|Xα − X̂∗
α| ≤ δ.

Then for t ∈ [0, 1]

Zj,l(t) = tXj,l + (1− t)X̂∗
j,l,

we have

(4.23) |Zj,l(t)− Zj′,l′(t)| ≥ C0|j′ − j| if |j − j′| ≥ 1

C0

.

Proof of Proposition 4.6
From Lemma 4.4 and Proposition 4.5, we get respectively

(4.24) |X̂∗
j,l − X̂∗

j′,l′ − (j − j′)L0| ≤ C1,

and

(4.25) |Xj,l −Xj′,l′ − (j − j′)L| ≤ C2(1 + δ|j − j′|).
with C1, C2 > 0. If we multiply (4.24) by 1− t and (4.25) by t, we can deduce that

|Zj,l(t)− Zj′,l′(t)− (tL+ (1− t)L0)(j − j′)| ≤ tC2(1 + δ|j − j′|) + (1− t)C1

≤ C3δ|j − j′|+ C3,

with C3 > 0. We can write

tL+ (1− t)L0 = L+ (1− t)(L0 − L).

We compute

|Zj,l(t)− Zj′,l′(t)− (j − j′)L)| ≤ C3δ|j − j′|+ C3 + |j − j′||L0 − L|.
This implies

|Zj,l(t)− Zj′,l′(t)| ≥ |j − j′||L| − C3 − |j − j′||L0 − L| − C3δ|j − j′|
= |j − j′|(|L| − |L0 − L| − C3δ)− C3.

Recall that we have from (2.9)

|L| − |L0 − L| ≥ c0 > 0.

Therefore
|L| − |L0 − L| − C3δ ≥

c0
2

for δ ≤ η :=
c0
2C3

,

and we deduce that there exist constants C4 and C5 such that we have

|Zj,l(t)− Zj′,l′(t)| ≥ C4|j − j′| − C5.

Then there exists a constant C0 > 0 such that if |j − j′| ≥ 1

C0

, we have

(4.26) |Zj,l(t)− Zj′,l′(t)| ≥ C0|j − j′|.
�
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5 Fine rigidity results for nanotubes

The main result of this section is the following:

Theorem 5.1 (Main rigidity estimate)
There exists a constant C > 0, such that for every nanotube X, and any ε ∈ (0, 1), if

inf
(θ,L)∈U0

Dj(X, θ, L) ≤ ε for M ≤ j ≤ N with M < 0 < N,

then the following holds.
If for some (θ0, L0) ∈ U0, we have X̂∗ ∈ Ĉθ0,L0

∗ and sup
|α|≤q

|Xα − X̂∗
α| ≤ ε.

Then X̄ := X − X̂∗ satisfies

(5.1) |X̄j| ≤ Cε(1 + |j|2) for M ≤ j ≤ N,

and for all M + 1 ≤ j ≤ N − 1, there exists a constant C ′ = C ′(j) such that we have

(5.2) |X̄j′ − X̄j| ≤ C ′ε(1 + |j′ − j|2) for all M ≤ j′ ≤ N.

In order to prove this result, we need Lemma 5.2 and Proposition 5.4 below.

Lemma 5.2 (A quantitative estimate for perfect nanotubes)

Assume that X ∈ Ĉθ,L, X̄ ∈ Ĉ θ̄,L̄, with (θ, L), (θ̄, L̄) ∈ [0, 2 π)× (R3\{0}), with

(5.3)

 sup
α=0,1

|X̄α −Xα| ≤ ε

|̂̄L− L̂| ≤ ε.

If moreover
X = a+ Y with Y ∈ Cθ,L,

and

(5.4)

{
inf
γ∈R

sup
0≤l≤K−1

|Y0,l − γL| ≤ c1

|L| ≤ c1,

then there exists C = C(c1) > 0, such that

(5.5)
∣∣|L| − |L̄|

∣∣ ≤ C ε.

Proof of Lemma 5.2
We recall that

X1 − a = Rθ,L̂(X0 − a) + L,

and then

(5.6) L̂ · (X1 −X0) = |L|,

and similarly

(5.7) ̂̄L · (X̄1 − X̄0) = |L̄|.
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From (5.3), we deduce
|(X̄1 − X̄0)− (X1 −X0)| ≤ 2ε.

Taking the scalar product with ̂̄L, we get

|̂̄L · (X̄1 − X̄0)− ̂̄L · (X1 −X0)| ≤ 2ε.

i.e. (using (5.7))

||L̄| − ̂̄L · (X1 −X0)| ≤ 2ε.

Using moreover (5.6), we deduce

||L̄| − |L|| ≤ 2ε+ |(X1 −X0) · (̂̄L− L̂)|.

We also have for any γ ∈ R

X1 −X0 = L+ (Rθ,L̂ − I)(Y0 − γL),

and (5.4) implies
||L̄| − |L|| ≤ 2ε+ 3c1ε,

which implies (5.5).
�

In order to prove Proposition 5.4 below, we need to introduce the following:

Definition 5.3 (Barycenter and centered cell)
We define the barycenter bj of the cell Xj of a nanotube X = ((Xj,l)0≤l≤K−1)j∈Z by

bj =
1

K

K−1∑
l=0

Xj,l.

And we define the centered cell X ′
j by

X ′
j,l = Xj,l − bj and X ′

j = (X ′
j,l)0≤l≤K−1.

Proposition 5.4 (Error estimate on the angles and the axes)
There exists a constant C > 0 and ε1 > 0 such that if a nanotube X satisfies for some
ε ∈ [0, ε1)

Dk(X, θk, Lk) ≤ ε for k = j, j + 1,

then we have

(5.8)

{
|θj+1 − θj| ≤ Cε
|Lj+1 − Lj| ≤ Cε.

Proof of Proposition 5.4
We have

Dk(X, θk, Lk) ≤ ε for k = j, j + 1,

which implies that there exists X̂∗,k ∈ Ĉθk,Lk
∗ such that

(5.9) sup
|α|≤q

|Xk+α − X̂∗,k
k+α| ≤ ε.
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Taking the difference for k = j and α = 0, 1 (respectively k = j + 1 and α = −1, 0), we get

(5.10) sup
β=0,1

|X̂∗,j+1
j+β − X̂∗,j

j+β| ≤ 2ε.

Step 1: Preliminary estimate
Writing

(5.11) X̂∗,k = ak +X∗,k with X∗,k ∈ Cθk,Lk
∗ and

{
inf
γ∈R

sup
0≤l≤K−1

|X∗,k
k,l − γLk| ≤ c1

|Lk| ≤ c1,

with c1 > 0, we deduce (by convexity) for the centered cell (see Definition 5.3)

(5.12) sup
β=0,1

|(X∗,j+1
j+β )′ − (X∗,j

j+β)
′| ≤ 2ε.

Applying the rotation Rθj+1,L̂j+1
to (5.12) for β = 0, we get

(5.13) |Rθj+1,L̂j+1
(X∗,j+1

j )′ −Rθj+1,L̂j+1
(X∗,j

j )′| ≤ 2ε.

Recall that
(X∗,k

j+1)
′ = Rθk,L̂k

(X∗,k
j )′.

Then (5.12) for β = 1 can be rewritten as

(5.14) |Rθj+1,L̂j+1
(X∗,j+1

j )′ −Rθj ,L̂j
(X∗,j

j )′| ≤ 2ε.

Substracting (5.13) and (5.14), we get

(5.15) |(Rθj+1,L̂j+1
−Rθj ,L̂j

)(X∗,j
j )′| ≤ 4ε.

Step 2: Estimate on |(θj+1, L̂j+1)− (θj, L̂j)|
Case 1: q ≥ 1 and three atoms of X ∗

0 (θ, L) are not aligned for each (θ, L) ∈ U0

Because we can find at least three atoms not aligned in X∗,j
j , this implies that there exist

two vectors vi, i = 1, 2 in the centered cell (X∗,j
j )′ such that

(5.16) |v1|, |v2| ≤
1

c0
and |v1 × v2| ≥ c0 > 0,

for some constant c0 uniform in (θj, Lj) ∈ U0.
If θj ∈ [0, π], using the fact that

(5.17) U0 ⊂ (0, 2π)× R3\{0},

then we can apply Lemma 13.10 to (5.15) and deduce that there exists a constant C1 > 0
and m ∈ Z such that

(5.18)

{
|θj+1 − θj − 2mπ| ≤ C1ε

|L̂j+1 − L̂j| ≤ C1ε.

or (using R2π−θj+1,−L̂j+1
= Rθj+1,L̂j+1

)

(5.19)

{
|2 π − θj+1 − θj − 2mπ| ≤ C1ε

| − L̂j+1 − L̂j| ≤ C1ε.
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The last line of (5.19) is impossible for (θk, Lk) ∈ U0, k = j, j + 1 and ε small enough,
because of (2.9). Notice that (5.17) implies m = 0 for ε in (5.18) small enough. Similarly if
θj ∈ [π, 2 π], we set θ̄k = 2 π−θk, L̄k = −Lk for k = j, j+1 and apply the previous reasoning
to θ̄j ∈ [0, π]. Then in all cases this shows

(5.20)

{
|θj+1 − θj| ≤ C1ε

|L̂j+1 − L̂j| ≤ C1ε.

Case 2: The general case
Let us consider the new supercell X̃∗,k

0 (see Figure 10) for k = j, j + 1 built from the r cells
X∗,k

j , X∗,k
j+1, ..., X

∗,k
j+r−1 for r ≥ 2, with{

X̃∗,k
m = (X̃∗,k

m,l̃
)0≤l̃≤K̃−1 with K̃ = rK,

X̃∗,k
m,pK+l = X∗,k

j+mr+p,l for p = 0, ..., r − 1 and l = 0, ..., K − 1.

Because X∗,k ∈ Cθk,Lk , we get X̃∗,k ∈ C θ̃k,L̃k with θ̃k = rθk and L̃k = rLk, and X̃
∗,k satisfies

X̃∗,k
m+1 = R

θ̃k,
̂̃Lk
(X̃∗,k

m ) + L̃k.

Now if all the atoms of X̃∗,k
0 are aligned, applying T θk,Lk to the cells X∗,k

j , X∗,k
j+1, ..., X

∗,k
j+r−1,

we get that all the atoms of X∗,k
j+1, X

∗,k
j+2, ..., X

∗,k
j+r are also aligned.

If r ≥ 3, whatever is the value K ≥ 1, we conclude that all the atoms of X∗,k
j , X∗,k

j+1, ..., X
∗,k
j+r

are aligned.

bc

b bb
b b b

bc

0

0cell X*

axis L

perfect nanotube with K=1

b b b b

bc

bc

bc

bc bc

bc bc bc bc

supercell X*

Figure 10: The supercell X̃∗
0 constructed using X∗

0 , ..., X
∗
r−1 for r = 4, θ =

2π

3
, and K = 1

If K ≥ 2 and r ≥ 2, we also conclude that all the atoms of X∗,k
j , ..., X∗,k

j+r are aligned.

By iteration, this implies that all atoms of X∗,k are aligned, which is excluded by assumption
(2.7). We conclude that we can find three atoms not aligned in X̃∗,k

0 .
Recalling the definition of ak in (5.11), we define

̂̃X∗,k

m := ak + X̃∗,k
m .

Following assumption (H3), and using (2.10), we get that rθ 6= 0 (2π) for all (θ, L) ∈ U0.
Recall that (5.9) implies (by difference) for k = j and k = j+1 and q ≥ q0 ≥ 2r− 1 ≥ r ≥ 1

|X̂∗,j+1
j+β − X̂∗,j

j+β| ≤ 2ε for 0 ≤ β ≤ 2r − 1.
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This implies

(5.21) | ̂̃X∗,j+1

β̃ − ̂̃X∗,j

β̃ | ≤ 2ε for β̃ = 0, 1,

which is exactly similar to (5.10).
This shows that we can apply Step 1 and Step 2 (case 1) using (5.21) in place of (5.10).
Because by construction there are at least three atoms not aligned in the centered cell (X̃∗,j

j )′

with θ̃j = rθj 6= 0 (2π) and L̃j = rLj, we conclude that{
|θ̃j+1 − θ̃j| ≤ C1ε

|̂̃Lj+1 − ̂̃Lj| ≤ C1ε,

which implies (5.20).
Step 3: Proof of |Lj+1 − Lj| ≤ Cε.
Because

(5.22) |L̂j+1 − L̂j| ≤ C1ε,

we can apply Lemma 5.2, using (5.10) and (5.11) and checking that (5.4) is satisfied because
(θj, Lj) ∈ U0. We deduce that there exists a constant C2 such that

(5.23)
∣∣|Lj+1| − |Lj|

∣∣ ≤ C2ε.

We can compute

|Lj+1 − Lj| =
∣∣|Lj+1|L̂j+1 − |Lj|L̂j

∣∣
=

∣∣|Lj+1|L̂j+1 − |Lj+1|L̂j + |Lj+1|L̂j − |Lj|L̂j

∣∣
≤ |Lj+1||L̂j+1 − L̂j|+

∣∣|Lj+1| − |Lj|
∣∣|L̂j|.

Using (5.23) and (5.22), we deduce that there exists a constant C3 such that

|Lj+1 − Lj| ≤ C3ε,

This last inequality and (5.20) imply (5.8).
�

Proof of Theorem 5.1
Step 1: Proof of (5.1)
We have 

inf
(θ,L)∈U0

Dj(X, θ, L) ≤ ε for M ≤ j ≤ N

sup
|α|≤q

|Xα − X̂∗
α| ≤ ε,

then for M ≤ j ≤ N , there exists (θj, Lj) ∈ U0 such that

(5.24)

{
Dj(X, θj, Lj) ≤ ε
with θ0 = θ0 and L0 = L0.

Then by Proposition 5.4 we deduce that there exists a constant c > 0 such that we have

(5.25)

{
|θj+1 − θj| ≤ cε
|Lj+1 − Lj| ≤ cε

∣∣∣∣ for M ≤ j ≤ N − 1.
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Moreover because Dj(X, θj, Lj) ≤ ε for M ≤ j ≤ N and sup
|α|≤q

|Xα − X̂∗
α| ≤ ε, we can apply

Lemma 4.3 and we deduce that there exists a constant C such that we have

|X̄j| ≤ Cε(1 + |j|2) for M ≤ j ≤ N.

Step 2: Proof of (5.2)
Step 2-1: Preliminary result: proof of (5.27)
By (5.1), we have for M + 1 ≤ j ≤ N

|Xj+α − X̂∗
j+α| ≤ Cε(1 + |j + α|2) for α = −1, 0.

Because of (5.24), we get

|Xj+α − X̂∗,j
j+α| ≤ ε for α = −1, 0 and M ≤ j ≤ N.

Substracting these two lines, we get that there exists a constant C1 such that

(5.26) |X̂∗
j+α − X̂∗,j

j+α| ≤ C1ε(1 + |j + α|2) for α = −1, 0 and M + 1 ≤ j ≤ N.

On the other hand, by an iteration of (5.25) we have for M ≤ j ≤ N − 1{
|θ0 − θj| ≤ cε|j|
|L0 − Lj| ≤ cε|j|.

Moreover using (5.26), we can apply (4.3) in Lemma 4.1, and we deduce that there exists a
constant C2 = C2(j) such that we have for M + 1 ≤ j ≤ N − 1 and any j′ ∈ Z,

(5.27) |(X̂∗
j′ − X̂∗

j )− (X̂∗,j
j′ − X̂∗,j

j )| ≤ C2ε(1 + |j′ − j|2).

Step 2-2: Proof of (5.29)
We have

Dj(X, θj, Lj) ≤ ε for M ≤ j ≤ N,

then for M ≤ j′, j ≤ N , there exist X̂∗,j′ ∈ Ĉθj′ ,Lj′
∗ and X̂∗,j ∈ Ĉθj ,Lj

∗ such that we have{
|Xj′ − X̂∗,j′

j′ | ≤ ε

|Xj − X̂∗,j
j | ≤ ε.

Substracting the two lines we deduce that

|Xj′ −Xj − (X̂∗,j′
j′ − X̂∗,j

j )| ≤ 2ε.

Using
X̄j′ − X̄j = Xj′ −Xj − (X̂∗

j′ − X̂∗
j ),

we deduce
|X̄j′ − X̄j + (X̂∗

j′ − X̂∗
j )− (X̂∗,j′

j′ − X̂∗,j
j )| ≤ 2ε,

and then for M ≤ j′, j ≤ N , we get

(5.28) |X̄j′ − X̄j + (X̂∗
j′ − X̂∗

j )− (X̂∗,j
j′ − X̂∗,j

j )− (X̂∗,j′
j′ − X̂∗,j

j′ )| ≤ 2ε.
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Using moreover (5.27), we deduce that there exists a constant C3 = C3(j) such that for
M + 1 ≤ j ≤ N − 1 we have

(5.29) |X̄j′ − X̄j − (X̂∗,j′
j′ − X̂∗,j

j′ )| ≤ C3ε(1 + |j′ − j|2) for all M ≤ j′ ≤ N.

Step 2-3: Conclusion
By a generalization of (5.1) (replace X̂∗ = X̂∗,0 by X̂∗,j for M + 1 ≤ j ≤ N − 1) we deduce
that there exists a constant C4 such that we have for M ≤ j′ ≤ N

|Xj′ − X̂∗,j
j′ | ≤ C4ε(1 + |j′ − j|2).

But because Dj′(X, θ
′
j, L

′
j) ≤ ε forM ≤ j′ ≤ N , we deduce |Xj′−X̂∗,j′

j′ | ≤ ε forM ≤ j′ ≤ N ,
and then

|X̂∗,j′
j′ − X̂∗,j

j′ | ≤ C4ε(1 + |j′ − j|2) + ε for M ≤ j′ ≤ N and M + 1 ≤ j ≤ N − 1.

Using moreover (5.29), we deduce for M + 1 ≤ j ≤ N − 1 and M ≤ j′ ≤ N that

|X̄j′ − X̄j| ≤ C4ε(1 + |j′ − j|2) + ε+ C3ε(1 + |j′ − j|2),

which implies (5.2).
�

6 Proof of a discrete Saint-Venant principle: Theorem

2.13 and Corollary 2.14

Proof of Theorem 2.13
We do the proof by contradiction in several steps.
Step 1: Construction of sequences
Assume by contradiction that the statement of Theorem 2.13 is false. This means that for
every δ0 > 0, µ ∈ (0, 1), C1, C2 > 0, there exists X satisfying (1.13) with forces (fj)j∈Z and
(11.1), and there exists a box J such that (2.15) is false with the definition (11.2) of ρ. We
can choose sequences (δn0 )n∈N, (µ

n)n∈N, (C
n
1 )n∈N, (C

n
2 )n∈N, such that

δn0 → 0,
µn → 1,

Cn
1 , C

n
2 → +∞,

and assume the existence of corresponding sequences (Xn)n∈N, (J
n)n∈N, (ρ

n)n∈N, (f
n)n∈N

such that

(6.1)



sup
j∈Z

Dj(X
n, θ∗, L∗) ≤ δn0 → 0,

(ρn)p =
Cn

2

NJn(Xn)
→ +∞,

NJn(Xn) > µn NJn
ρn
(Xn) + Cn

1 sup
j∈Jn

ρn

|fn
j |,

Xn satisfies (1.13) with forces fn.
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Then we set

εn := NJn(Xn).

We have

(6.2) NJn(Xn) = sup
j∈Jn

inf
(θ,L)∈U0

Dj(X
n, θ, L) ≤ sup

j∈Z
Dj(X

n, θ∗, L∗) ≤ δn0 → 0.

which implies

(6.3) εn → 0.

When Jn is bounded, we can define jn ∈ Jn and (θn, Ln) ∈ U0 such that

(6.4) εn = NJn(Xn) = sup
j∈Jn

inf
(θ,L)∈U0

Dj(X
n, θ, L) = inf

(θ,L)∈U0

Djn(X
n, θ, L) = Djn(X

n, θn, Ln).

When Jn is not bounded, we can use an approximation argument and for instance assume
that there exists jn ∈ Jn such that

εn ≥ n

n+ 1

(
inf

(θ,L)∈U0

Djn(X
n, θ, L)

)
=

n

n+ 1
Djn(X

n, θn, Ln).

In order to simplify the presentation, we restrict the proof to the case of Jn bounded, but
the adaptation to the general case is straightforward.
Step 2: Proof that (θn, Ln, Xn

jn+·) → (θ∗, L∗, X̂∗∗,∞) for X̂∗∗,∞ ∈ Ĉθ∗,L∗
∗

Step 2-1: Proof that Xn
jn+· → X̂∗∗,∞ for X̂∗∗,∞ ∈ Ĉθ∗,L∗

∗

By (6.2) and by definition of Djn(X
n, θ∗, L∗), there exists X̂∗∗,jn ∈ Ĉθ∗,L∗

∗ such that

(6.5) sup
|α|≤q

|Xn
jn+α − X̂∗∗,jn

jn+α| ≤ δn0 .

Up to substract a suitable constant, we can assume that X̂∗∗,jn
jn is bounded.

Using (6.2) and (6.5), we can apply (5.1) of Theorem 5.1 and we deduce that there exists a
constant C1 such that

|Xn
jn+j − X̂∗∗,jn

jn+j | ≤ C1δ
n
0 (1 + |j|2).

Because δn0 → 0, we deduce that

(6.6) lim
n
Xn

jn+j = lim
n
X̂∗∗,jn

jn+j = X̂∗∗,∞
j with X̂∗∗,∞ ∈ Ĉθ∗,L∗

∗ .

Step 2-2: Proof of (θn, Ln) → (θ∗, L∗)
From (6.2), we have

Dj(X
n, θ∗, L∗) ≤ δn0 for all j ∈ Z,

and then in particular
Djn+1(X

n, θ∗, L∗) ≤ δn0 .

Recall that from (6.2) and (6.4), we also have

(6.7) Djn(X
n, θn, Ln) ≤ δn0 ,
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We can apply Proposition 5.4, and deduce that there exists a constant C2 such that we have{
|θn − θ∗| ≤ C2δ

n
0

|Ln − L∗| ≤ C2δ
n
0 ,

which implies in the limit δn0 → 0 that

(6.8) (θn, Ln) → (θ∗, L∗).

Step 3: A priori estimates for renormalized quantities
Let us define

X̄n
j =

Xn
j+jn − X̂∗,jn

j+jn

εn
,

with (X̂∗,jn
j )j∈Z = X̂∗,jn ∈ Ĉθn,Ln

∗ , where we recall that

Djn(X
n, θn, Ln) = sup

|α|≤q

|Xn
jn+α − X̂∗,jn

jn+α|.

Let us define

(6.9) D̄n
j (X̄

n, θ, L) :=
1

εn
Dj+jn(X

n, θ, L),

we have

(6.10) inf
(θ,L)∈U0

D̄n
0 (X̄

n, θ, L) = inf
(θ,L)∈U0

1

εn
Djn(X

n, θ, L) = 1.

On the other hand we have from (6.1)

εn = NJn(Xn) > µnNJn
ρn
(Xn) + Cn

1 sup
j∈Jn

ρn

|fn
j |

≥ µnNJn
ρn
(Xn)

= µn sup
j+jn∈Jn

ρn

inf
(θ,L)∈U0

Dn
j+jn(X

n, θ, L)

= µn sup
j+jn∈Jn

ρn

inf
(θ,L)∈U0

εnD̄n
j (X̄

n, θ, L)

≥ εnµn inf
(θ,L)∈U0

D̄n
j (X̄

n, θ, L) for all j + jn ∈ Jn
ρn ,

hence we obtain

(6.11) inf
(θ,L)∈U0

D̄n
j (X̄

n, θ, L) <
1

µn
for all j ∈ Jn

ρn − jn ⊃ Qρn = {−ρn, · · · , ρn}.

On the other hand by (6.4) we have Djn(X
n, θn, Ln) ≤ εn, then we deduce

sup
|α|≤q

|Xn
jn+α −X∗,jn

jn+α| ≤ εn.

Using moreover (6.11), and taking into account the definition (6.9) of D̄n
j , we can apply

Theorem 5.1 and we deduce that there exists a constant C3 such that we have

(6.12) |X̄n
j | ≤

C3

µn
(1 + j2) for j ∈ Qρn .
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and a constant C4 = C4(j) such that

(6.13) |X̄n
j′ − X̄n

j | <
C4

µn
(1 + |j − j′|2) for j′, j ∈ Qρn−1.

Step 4: Definition and equation verified by gnj
Let us define

gnj :=
fn
j+jn

εn
for all j ∈ Jn

ρn − jn,

we have
εn > Cn

1 sup
j∈Jn

ρn−jn
|fn

j+jn| = εnCn
1 sup

j∈Jn
ρn−jn

|gnj |,

then gnj satisfies

(6.14) |gnj | <
1

Cn
1

→ 0 as n→ +∞, for each j ∈ Z.

From (1.13) we deduce that

fn
j+jn,l +

∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (Xn
j+jn,l −Xn

j′+jn,l′) = 0 for all j ∈ Z, 0 ≤ l ≤ K − 1.

i.e.

εngnj,l+
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (εn(X̄n
j,l−X̄n

j′,l′)+X̂
∗,jn
j+jn,l−X̂

∗,jn
j′+jn,l′) = 0 for all j ∈ Z, 0 ≤ l ≤ K−1.

On the other hand, we have ∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

∇V (X̂∗,jn
j+jn,l − X̂∗,jn

j′+jn,l′) = 0.

Taking the difference, we get with

Zn
j,l(t) = tXn

j+jn,l + (1− t)X̂∗,jn
j+jn,l,

that

(6.15) gnj,l +

∫ 1

0

dt
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

D2V
(
Zn

j,l(t)− Zn
j′,l′(t)

)
· (X̄n

j,l − X̄n
j′,l′) = 0,

In order to pass to the limit in (6.15), we nead some further estimates. To this end, we will
estimate for any fixed j ∈ Qρn/2 separately a short distance contribution

Sn
j :=

∑
j′ ∈ (j +Qρn/2)
0 ≤ l′ ≤ K − 1

D2V
(
Zn

j,l(t)− Zn
j′,l′(t)

)
· (X̄n

j,l − X̄n
j′,l′),
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and for a far away contribution

F n
j :=

∑
j′ ∈ Z\(j +Qρn/2)

0 ≤ l′ ≤ K − 1

D2V
(
Zn

j,l(t)− Zn
j′,l′(t)

)
· (X̄n

j,l − X̄n
j′,l′).

Step 5: useful controls
Step 5-1: A long distance control of |X̄n

j,l − X̄n
j′,l′|

By the definition of X̄n
j , we have

|X̄n
j − X̄n

j′| =
1

εn
|Xn

j+jn −Xn
j′+jn − (X̂∗,jn

j+jn − X̂∗,jn
j′+jn)|.

By Proposition 4.5 applied both to Xn
jn+· and X̂

∗,jn
jn+·, we get that there exists a constant C4

such that

(6.16)

{
|Xn

j+jn,l −Xn
j′+jn,l′| ≤ C4(1 + |j − j′|)

|X̂∗,jn
j+jn,l − X̂∗,jn

j′+jn,l′| ≤ C4(1 + |j − j′|).

This implies

(6.17) |X̄n
j,l − X̄n

j′,l′ | ≤
2C4

εn
(1 + |j − j′|),

Step 5-2: Control on |Zn
j,l(t)− Zn

j′,l′(t)|
Recall that

sup
|α|≤q

|Xn
j+jn+α,l − X̂∗,jn

j+jn+α,l| ≤ δn0 ,

and
sup
j∈Z

Dj(X
n, θ∗, L∗) ≤ δn0 .

Therefore by definition of Zn
j,l(t) and by Proposition 4.6, there exists a constant C5 such that

we have

(6.18) |Zn
j,l(t)− Zn

j′,l′(t)| ≥ C5|j − j′| for |j − j′| ≥ 1

C5

> 0.

As a consequence, by assumption (H0), there exists a constant C6 such that we have

(6.19) |D2V
(
Zn

j,l(t)− Zn
j′,l′(t)

)
| ≤ C6

|j − j′|p+2
for |j − j′| ≥ 1

C5

Step 6: Passing to the limit
Up to extraction of convergent subsequences, by (6.12) , (6.14), (6.8) and (6.6) we can assume
that

(6.20)


X̄n

j → X̄∞
j

gnj → 0
Ln → L∗

θn → θ∗

X̂∗,jn
jn+· → X̂∗,∞ := X̂∗∗,∞ ∈ Ĉθ∗,L∗

∗ .
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Passing to the limit in (6.12) we get

(6.21) |X̄∞
j | ≤ C3(1 + |j|2).

We now want to pass to the limit in (6.15).
On the one hand from (6.17) and (6.19), there exist a constant C7 and a constant C8 such
that we have

|F n
j | ≤

∑
j′ ∈ Z\(j +Qρn/2)

0 ≤ l′ ≤ K − 1

C6

|j − j′|p+2

2C4

εn
(1 + |j − j′|) ≤ 2C4C6C7

εn(ρn)p
=
C8

Cn
2

→ 0,

where we have used the definition of ρn in (6.1) and the fact that Cn
2 → +∞.

On the other hand from (6.13), (6.19) and the dominated convergence theorem, we deduce
that for p > 1 we have

Sn
j → S∞

j :=
∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

D2V (X̂∗,∞
j,l − X̂∗,∞

j′,l′ ) · (X̄
∞
j,l − X̄∞

j′,l′).

Then we have (uniformly in t ∈ [0, 1])∑
j′ ∈ Z

0 ≤ l′ ≤ K − 1

D2V
(
tεn(X̄n

j,l−X̄n
j′,l′)+(X̂∗,n

j,l −X̂
∗,n
j′,l′)

)
·(X̄n

j,l−X̄n
j′,l′) = Sn

j +F
n
j → S∞

j .

Therefore we can pass to the limit in (6.15) and get that

0 = 0 +

∫ 1

0

dt S∞
j = S∞

j ,

and by Definition 2.2 of the hessian of the energy, we have

(E ′′
0 (X̂

∗,∞) · X̄∞)j,l = 0,

i.e.

(6.22) E ′′
0 (X̂

∗,∞) · X̄∞ = 0.

Step 7: Getting a contradiction
Because X̂∗,∞ ∈ Ĉθ∗,L∗

∗ , there exists (α∗, a∗) ∈ R× R3 such that

(6.23) X̂∗,∞
j − a∗ = (T θ∗,L∗

)j(Rα∗,L̂∗X ∗
0 (θ

∗, L∗)).

Using Lemma 13.5 and (6.22) we get

0 = E ′′
0 (X̂

∗,∞) · X̄∞ = Rα∗,L̂

{
E ′′

0 (X
∗) · (R−α∗,L̂(X̄

∞))
}

with X∗ := X ∗(θ∗, L∗).

Then using (6.21) and assumption (H2), we deduce that there exist two vectors u1, u2 ∈ R3,
(θ̄, L̄) ∈ R× R3 and Y ∈ ((R3)K)Z such that

(6.24)

{
R−α∗,L̂∗(X̄∞) = u1 + u2 ×X∗ + Y

Y = (θ, L) · ∇(θ,L)X ∗(θ∗, L∗).
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We recall (6.10), i.e.
inf

(θ,L)∈U0

Djn(X
n, θ, L) = εn.

Then we have
inf

(θ, L) ∈ U0

X̂∗ ∈ Ĉθ,L
∗

sup
|β|≤q

|εnX̄n
β + X̂∗,jn

jn+β − X̂∗
jn+β| = εn,

which implies

(6.25) sup
|β|≤q

∣∣∣∣X̄n
β +

1

εn
(X̂∗,jn

jn+β − X̂∗
jn+β)

∣∣∣∣ ≥ 1 for X̂∗ ∈ Ĉθ,L
∗ with (θ, L) ∈ U0.

Because X̂∗,jn
jn+· ∈ Ĉθn,Ln

∗ , there exists (αn, an) ∈ R× R3 such that

(6.26) X̂∗,jn
jn+β = (T θn,Ln

)β(Rαn,L̂n(X ∗
0 (θ

n, Ln))) + an,

where (6.20) and (θn, Ln) → (θ∗, L∗) imply that (αn, an) → (α∗, a∗), where (α∗, a∗) ∈ R×R3

is given in (6.23). We deduce

R−αn,L̂nX̂
∗,jn
jn+β = X ∗

β (θ
n, Ln) +R−αn,L̂na

n.

From Lemma 13.6 i), recall that

R−αn,L̂nX̂
∗
jn+· ∈ Ĉ θ,L̃

∗ with L̃ = R−αn,L̂n(L),

and
R−αn,L̂nX̂

∗,jn
jn+· ∈ Ĉ θn,Ln

∗ with Ln = R−αn,L̂n(L
n).

We set
X̃∗ = −R−αn,L̂n(a

n) +R−αn,L̂nX̂
∗
jn+· ∈ Ĉθ,L̃

∗ ,

with (θ, L̃) ∈ U0 (which is true for (θ, L) close to (θn, Ln)). We deduce from (6.25)

(6.27) 1 ≤ sup
|β|≤q

∣∣∣∣R−αn,L̂n(X̄
n
β ) +

1

εn
(X ∗

β (θ
n, Ln)− X̃∗

β)

∣∣∣∣ .
Choice of X̃∗

We choose

X̃∗
β = εnu1 +Rεn|u2|,û2(X ∗

β (θ, L̃)) with (θ, L̃) = (θn + εnθ̄, Ln + εnL̄).

Passing to the limit in (6.27), we get

1 ≤ sup
|β|≤q

∣∣∣R−α∗,L̂∗(X̄
∞
β )− (u1 + u2 ×X ∗

β (θ
∗, L∗) + (θ̄, L̄) · ∇(θ,L)X ∗

β (θ
∗, L∗)

∣∣∣ = 0 by (6.24).

Contradiction. This ends the proof of Theorem 2.13.
�

Proof of Corollary 2.14
We can apply Theorem 2.13 for J = Z, we deduce for µ ∈ (0, 1) that

NZ(X) ≤ µNZ(X),
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and then
NZ(X) = 0.

Given j ∈ Z, we consider (θj, Lj) ∈ U0, such that

inf
(θ,L)∈U0

Dj(X, θ, L) = Dj(X, θj, Lj),

we deduce that
Dj(X, θj, Lj) = 0.

Moreover we can apply Proposition 5.4 for ε = 0 and deduce that{
θj+1 = θj
Lj+1 = Lj,

and then X is a perfect nanotube.
�

Part II

Error estimates

7 Line tension and line torsion

In this section we introduce the notion of line tension (Definition 7.1) and line torsion
(Definition 7.7) for a general nanotube X. Those notions are formal but can be seen as
rigorous definitions if we assume for instance assumption (H0) and (1.7) with L0 6= 0 and
that

(7.1) Xj,l 6= Xk,m if (j, l) 6= (k,m).

When we will apply these notions in the next sections, we will assume (H1) i) and X locally
close to an X∗ ∈ Cθ∗,L∗

∗ which will imply (7.1).

We start to prove the regularity of W .
Proof of Proposition 2.7
With the notation λ = (θ, L), we write

W (λ) = W(λ,X ∗
0 (λ)).

We compute
W ′(λ) = W ′

λ(λ,X ∗
0 (λ)) +W ′

X0
(λ,X ∗

0 (λ)) · (X ∗
0 )

′
λ(λ).

By definition of X ∗
0 , we have W ′

X0
(λ,X ∗

0 (λ)) = 0, and then

W ′(λ) = W ′
λ(λ,X ∗

0 (λ)).

Because W is C2 and X ∗
0 (λ) is C

1 (see Proposition 2.1) we deduce that W ′ is C1, and then
W is C2 on U0.

�
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7.1 Line tension

In this section, we define the line tension of a nanotube as follows

Definition 7.1 (Line tension)
We define the line tension Ti of the nanotube X by

Ti =
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

∇V (Xα,l −Xβ,m).

The main result of this subsection is the following theorem that proves a relationship between
line tension and a partial derivative of the energy.

Theorem 7.2 (Line tension as a gradient of the energy)
Let (θ, L) ∈ U0 and X ∈ Cθ,L

∗ . Then we have the following relationship between the line
tension and the derivative of the energy

(7.2) Ti = W ′
L(θ, L).

In order to prove Theorem 7.2, we will need several lemmata.

Lemma 7.3 (Invariance of the energy by rotation)
Let (θ, L) ∈ U0 and R ∈ SO(3) such that (θ, RL) ∈ U0. We have W (θ,RL) = W (θ, L).

Proof of Lemma 7.3
We first compute (using convention (1.10))

W(θ, RL,RX0) =
1

2

∑
k∈Z

∑
0≤l,m≤K−1

V (kRL+Rkθ,RL̂(R(X0,l))−RX0,m)

=
1

2

∑
k∈Z

∑
0≤l,m≤K−1

V (R{kL+ (R−1Rkθ,RL̂R)(X0,l)−X0,m})

= W(θ, L,X0),

where in the third line we have used Lemma 13.6 ii) in the appendix and the fact that V (p)
only depends on |p|. From (2.13), we deduce using Lemma 13.6 i) that

W (θ,RL) = W(θ, RL,RX0) = W(θ, L,X0) =W (θ, L).

�

Corollary 7.4 (The direction of W ′
L(θ, L))

Let (θ, L) ∈ U0, if X ∈ Cθ,L
∗ , then W ′

L(θ, L) is parallel to L.

Proof of Corollary 7.4
Let us consider a vector ξ perpendicular to L̂ with |ξ| = 1. We set n = L̂× ξ.
We consider the rotation Rα,n ∈ SO(3) of angle α ∈ R and axis n ∈ S2.
In particular we have

(7.3) Rα,nL = |L|
(
(cosα)L̂+ (sinα)ξ

)
.
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By Lemma 7.3, for (θ, L) ∈ IntU0 , we also haveW (θ, Rα,nL) = W (θ, L) for any α ∈ R small
enough, from which we deduce

0 =
d

dα

(
W (θ, Rα,nL)

)
|α=0

= W ′
L(θ, L) ·

(
d

dα
(Rα,nL)|α=0

)
= W ′

L(θ, L) · (|L|ξ),

where in the third line we have used (7.3) to compute
d

dα
(Rα,nL).

Because W ′
L(θ, L) · ξ = 0 for any ξ ⊥ L̂, we deduce that W ′

L(θ, L) is parallel to L for
any (θ, L) ∈ IntU0. By continuity of W ′

L (using Proposition 2.7), this is also true for all
(θ, L) ∈ U0 (using (2.8)).

�

Lemma 7.5 (The rotation of the line tension)
If X ∈ Cθ,L, then we have Ti = Rθ,L̂(Ti−1).

Proof of Lemma 7.5
We have

Ti =
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

∇V (Xα,l −Xβ,m).

Using the fact that our nanotube is a special perfect nanotube, we compute

Xα,l = αL+Rαθ,L̂(X0,l),

then

Ti =
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

∇V
(
(α− β)L+Rαθ,L̂(X0,l)−Rβθ,L̂(X0,m)

)
= Rθ,L̂

( ∑
α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

∇V
(
(α− β)L+R(α−1)θ,L̂(X0,l)−R(β−1)θ,L̂(X0,m)

))

= Rθ,L̂

( ∑
α ≥ i

β ≤ i− 1

∑
0≤l,m≤K−1

∇V
(
(α− β)L+Rαθ,L̂(X0,l)−Rβθ,L̂(X0,m)

))
= Rθ,L̂(Ti−1),

where in the second line we use Lemma 13.4 in the appendix.

�

Lemma 7.6 (Line tension and the external force)
If X is a solution of equation (1.13) with our definition (1.6) of fj,l, then we have the
following relationship between the line tension and the external force

Ti − Ti−1 = f 0
i .
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This result holds true if equation (1.13) and the Ti are well defined.
This is for instance the case under assumption (H0) assuming (1.7) with L0 6= 0 and (7.1).

Proof of Lemma 7.6
We have

Ti =
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

∇V (Xα,l −Xβ,m)

=
∑
α ≥ i
β ≤ i

∑
0≤l,m≤K−1

∇V (Xα,l −Xβ,m)−
∑
α = i
β ≤ i

∑
0≤l,m≤K−1

∇V (Xα,l −Xβ,m).

Similarly we have

Ti−1 =
∑
α ≥ i
β ≤ i

∑
0≤l,m≤K−1

∇V (Xα,l −Xβ,m)−
∑
α ≥ i
β = i

∑
0≤l,m≤K−1

∇V (Xα,l −Xβ,m).

We deduce

(7.4)

Ti − Ti−1 =
∑
α≥i

∑
0≤l,m≤K−1

∇V (Xα,l −Xi,m)−
∑
α≤i

∑
0≤l,m≤K−1

∇V (Xi,l −Xα,m)

=
∑
α≥i

∑
0≤l,m≤K−1

∇V (Xα,l −Xi,m) +
∑
α≤i

∑
0≤l,m≤K−1

∇V (Xα,l −Xi,m)

=
∑
α∈Z

∑
0≤l,m≤K−1

∇V (Xα,l −Xi,m) + A

=
∑

0≤m≤K−1

∑
α ∈ Z

0 ≤ l ≤ K − 1

∇V (Xα,l −Xi,m) + 0

=
∑

0≤m≤K−1

fi,m = f0
i ,

where in the second term of the first line we have changed β in α, in the second line we have
used the antisymmetry of ∇V and exchanged l and m, in the third line we have set

A :=
∑

0≤l,m≤K−1

∇V (Xi,l −Xi,m).

In the fourth line of (7.4), we have used the fact that A = 0. This follows from the anti-
symmetry of ∇V and from the fact that l and m play a symmetric role. In the last line of
(7.4) we have used the equation of equilibrium (1.13), the definition of the forces (1.6) and
the antisymmetry of ∇V .

�
Proof of Theorem 7.2
From the definition of Cθ,L

∗ , X solves (1.13) with fi = 0, and satisfies Xα,l = αL+Rαθ,L̂(X0,l).
Then from Lemma 7.6 we have Ti = Ti−1, and from Lemma 7.5, Ti = Rθ,L̂(Ti), and because
θ 6= 0 mod(2π), we deduce that Ti is parallel to L.

From Corollary 7.4, we see that it suffices to show that L̂ · Ti = L̂ ·W ′
L(θ, L).
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Therefore we compute

L̂ · Ti = L̂ ·
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

∇V ((α− β)L+Rαθ,L̂(X0,l)−Rβθ,L̂(X0,m))

=
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

L̂ ·Rβθ,L̂

(
∇V ((α− β)L+R(α−β)θ,L̂(X0,l)−X0,m)

)
=

∑
α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

L̂ · ∇V ((α− β)L+R(α−β)θ,L̂(X0,l)−X0,m),

where in the second line we get out the rotation Rβθ,L̂ using Lemma 13.4.
We now call q = α− β and get

(7.5) L̂ · Ti =
∑
q≥1

∑
0≤l,m≤K−1

qL̂ · ∇V (qL+Rqθ,L̂(X0,l)−X0,m).

From this expression we deduce

L̂ · Ti =
∑
q≥1

∑
0≤l,m≤K−1

qL̂ ·Rqθ,L̂

(
∇V (qL−R−qθ,L̂(X0,m) +X0,l)

)
=

∑
−q≥1

∑
0≤l,m≤K−1

−qL̂ · ∇V (−qL−Rqθ,L̂(X0,m) +X0,l),

where in the first line we get out the rotation Rqθ,L̂ using again Lemma 13.4, and in the
second line we have changed −q in q.
Now using the antisymmetry of ∇V and exchanging the position of l and m, we get

(7.6) L̂ · Ti =
∑
q≤−1

∑
0≤l,m≤K−1

qL̂ · ∇V (qL+Rqθ,L̂(X0,l)−X0,m),

which is an expression similar to (7.5) but with q ≤ −1.
Summing (7.5) and (7.6) we get

L̂ · Ti = L̂ ·

{
1

2

∑
q∈Z

∑
0≤l,m≤K−1

q∇V (qL+Rqθ,L̂(X0,l)−X0,m)

}
,

where for q = 0 and l = m we use convention (1.10), for which we have ∇V (0) = 0. Then,

using Lemma 13.7 which shows that L̂ · ∇L(Rqθ,L̂) = 0, we get

(7.7) L̂ · Ti = L̂ · W ′
L(θ, L,X0).

On the one hand, we have W (θ, L) = W(θ, L,X0) with X0 = X ∗
0 (θ, L). Then we have

(7.8) W ′
L(θ, L) = ∇L{W(θ, L,X ∗

0 (θ, L))} = W ′
L(θ, L,X0) +W ′

X0
(θ, L,X0) · (X ∗

0 )
′
L(θ, L).

On the other hand by Proposition 3.3 we have

W ′
X0
(θ, L,X0) = 0.

This shows with (7.7), (7.8) that

L̂ · Ti = L̂ ·W ′
L(θ, L),

from which we conclude that
Ti = W ′

L(θ, L).

�
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7.2 Line torsion

In this section, we define the line torsion (as a moment) for a nanotube as follows

Definition 7.7 (Line torsion of a nanotube)
We define the line torsion Mi of a nanotube X ∈ ((R3)K)Z at a point A ∈ R3 by

Mi(A) =
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

(Xα,l − A)×∇V (Xα,l −Xβ,m).

In the sequel we set Mi =Mi(0).

Then we have the following straightforward property (whose we skip the proof):

Proposition 7.8 (Torsor)
The couple (Ti,Mi) defines a torsor, i.e. for any A,B ∈ R3, we have

Mi(B) =Mi(A) +
−→
BA× Ti.

The main result of this subsection is the following theorem that proves a relationship between
line torsion and a partial derivative of the energy.

Theorem 7.9 (Line torsion and the gradient of the energy)
Let (θ, L) ∈ U0 and X ∈ Cθ,L

∗ . Then we have the following relationship between the line
torsion and the derivative of the energy

(7.9) Mi =W ′
θ(θ, L)L̂.

In order to prove Theorem 7.9, we will need several Lemmata. We first start to prove a
subcase of Theorem 7.9, namely:

Lemma 7.10 (Projected line torsion as a gradient of the energy)
Let (θ, L) ∈ U0 and X ∈ Cθ,L

∗ . Then we have the following relationship between the line
torsion and the derivative of the energy

(7.10) L̂ ·Mi =W ′
θ(θ, L).

Proof of Lemma 7.10
We compute

L̂ ·Mi = L̂ ·
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

Xα,l ×∇V (Xα,l −Xβ,m)

= L̂ ·
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

(αL+Rαθ,L̂(X0,l))×∇V ((α− β)L+Rαθ,L̂(X0,l)−Rβθ,L̂(X0,m))

= L̂ ·
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

(Rαθ,L̂(X0,l))×Rβθ,L̂

(
∇V ((α− β)L+R(α−β)θ,L̂(X0,l)−X0,m))

= L̂ ·
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

(R(α−β)θ,L̂(X0,l))×∇V ((α− β)L+R(α−β)θ,L̂(X0,l)−X0,m),
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where in the second line we have used the fact that X is a special perfect nanotube, in the
third line we have used Lemma 13.4 to get the rotation, and in the fourth line we have used
Lemma 13.2.
Therefore we get with q = α− β

(7.11) L̂ ·Mi = L̂ ·
∑
q≥1

∑
0≤l,m≤K−1

q(Rqθ,L̂(X0,l))×∇V (qL+Rqθ,L̂(X0,l)−X0,m).

From this expresion we get

L̂ ·Mi

= L̂ ·
∑
q≥1

∑
0≤l,m≤K−1

−q(Rqθ,L̂(X0,l))×∇V (−qL+X0,m −Rqθ,L̂(X0,l))

= L̂ ·
∑
q≥1

∑
0≤l,m≤K−1

−qX0,l ×∇V (−qL+R−qθ,L̂(X0,m)−X0,l)

= L̂ ·
∑
q≤−1

∑
0≤l,m≤K−1

qX0,m ×∇V (qL+Rqθ,L̂(X0,l)−X0,m)

= L̂ ·
∑
q≤−1

∑
0≤l,m≤K−1

q(X0,m − qL−Rqθ,L̂(X0,l) +Rqθ,L̂(X0,l))×∇V (qL+Rqθ,L̂(X0,l)−X0,m),

.

where in the first equality we have used the antisymmetry of ∇V , in the second equality we
have used Lemma 13.4 and Lemma 13.2 to eliminate the rotation Rqθ,L̂, in the third equality
we have changed q in −q and exchanged the position of m and l.
Using the fact that ∇V (p) is parallel to p we obtain

(7.12) L̂ ·Mi = L̂ ·
∑
q≤−1

∑
0≤l,m≤K−1

qRqθ,L̂(X0,l)×∇V (qL+Rqθ,L̂(X0,l)−X0,m).

which is an expression similar to (7.11) but with q ≤ −1.
Summing (7.11) and (7.12) we obtain

(7.13) L̂ ·Mi =
1

2

∑
q∈Z

∑
0≤l,m≤K−1

q L̂ ·
(
Rqθ,L̂(X0,l)×∇V (qL+Rqθ,L̂(X0,l)−X0,m)

)
.

Using Lemma 13.3 we obtain

L̂ ·Mi =
1

2

∑
q∈Z

∑
0≤l,m≤K−1

q

((
Rqθ+π

2
,L̂(X0,l)

)⊥
L̂ · ∇V (qL+Rqθ,L̂(X0,l)−X0,m)

)
.

Notice that
d

dθ
Rqθ,L̂(X0,l) = q

(
Rπ

2
+qθ,L̂(X0,l)

)⊥
L̂ .

Therefore

(7.14) L̂ ·Mi = W ′
θ(θ, L,X0).

On the one hand, we have W (θ, L) = W(θ, L,X0) with X0 = X ∗
0 (θ, L). Then we have

(7.15) W ′
θ(θ, L) = ∇θ{W(θ, L,X ∗

0 (θ, L))} = W ′
θ(θ, L,X0) +W ′

X0
(θ, L,X0) · (X ∗

0 )
′
θ(θ, L).
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On the other hand by Proposition 3.3 we have

W ′
X0
(θ, L,X0) = 0.

This shows with (7.14) and (7.15) that

L̂ ·Mi =W ′
θ(θ, L).

�

Lemma 7.11 (Mi in terms of Mi−1 and Ti−1 for a special perfect nanotube)
If X ∈ Cθ,L, then we have

Mi = Rθ,L̂(Mi−1 + L× Ti−1).

Proof of Lemma 7.11
We have

Mi =
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

Xα,l ×∇V (Xα,l −Xβ,m)

=
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

(αL+Rαθ,L̂(X0,l))×∇V
(
(α− β)L+Rαθ,L̂(X0,l)−Rβθ,L̂(X0,m)

)
=

∑
α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

(αL+Rαθ,L̂(X0,l))×Rβθ,L̂

(
∇V ((α− β)L+R(α−β)θ,L̂(X0,l)−X0,m)

)
=

∑
α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

Rβθ,L̂

{
(αL+R(α−β)θ,L̂(X0,l))×∇V ((α− β)L+R(α−β)θ,L̂(X0,l)−X0,m)

}
,

where in the third line we have used Lemma 13.4 and in the fourth line we have used Lemma
13.1. Let us define {

ᾱ := α− 1
β̄ := β − 1,

then we compute

Mi

=
∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

R(β̄+1)θ,L̂

{
(ᾱL+R(ᾱ−β̄)θ,L̂(X0,l))×∇V ((ᾱ− β̄)L+R(ᾱ−β̄)θ,L̂(X0,l)−X0,m)

}
+

∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

R(β̄+1)θ,L̂

{
L×∇V ((ᾱ− β̄)L+R(ᾱ−β̄)θ,L̂(X0,l)−X0,m)

}

= Rθ,L̂



∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

Rβ̄θ,L̂

{
...
}

+
∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

Rβ̄θ,L̂

{
...
}

.
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Then we have

Mi

= Rθ,L̂



∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

(ᾱL+Rᾱθ,L̂(X0,l))×Rβ̄θ,L̂

(
∇V ((ᾱ− β̄)L+R(ᾱ−β̄)θ,L̂(X0,l)−X0,m)

)
+

∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

L×Rβ̄θ,L̂

(
∇V ((ᾱ− β̄)L+R(ᾱ−β̄)θ,L̂(X0,l)−X0,m)

)


= Rθ,L̂



∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

(ᾱL+Rᾱθ,L̂(X0,l))×∇V ((ᾱ− β̄)L+Rᾱθ,L̂(X0,l)−Rβ̄θ,L̂(X0,m))

+L×
∑
ᾱ ≥ i

β̄ ≤ i− 1

∑
0≤l,m≤K−1

∇V ((ᾱ− β̄)L+Rᾱθ,L̂(X0,l)−Rβ̄θ,L̂(X0,m))


= Rθ,L̂

(
Mi−1 + L× Ti−1

)
,

where in the first equality we have used Lemma 13.1 and in the second equality we have
used Lemma 13.4.

�

Lemma 7.12 (Line torsion and external force for a general nanotube)
Let X be a solution of equation (1.13) and with our definition (1.6) of fj,l. Then we have the
following relationship between the line torsion, the barycenter bi of the cell Xi (see Definition
5.3) and the external force

Mi −Mi−1 = bi × f 0
i .

This result holds true if equation (1.13) and the Mi are well defined.
This is for instance the case under assumption (H0) assuming (1.7) with L0 6= 0 and (7.1).

Proof of Lemma 7.12
Step 1 : Main computation.
We have

Mi =
∑

α ≥ i+ 1
β ≤ i

∑
0≤l,m≤K−1

Xα,l ×∇V (Xα,l −Xβ,m).

Then

Mi =
∑

α ≥ i+ 1
β ≤ i− 1

∑
0≤l,m≤K−1

Xα,l×∇V (Xα,l−Xβ,m) +
∑

α ≥ i+ 1
β = i

∑
0≤l,m≤K−1

Xα,l×∇V (Xα,l−Xβ,m).

Similarly we have

Mi−1 =
∑

α ≥ i+ 1
β ≤ i− 1

∑
0≤l,m≤K−1

Xα,l×∇V (Xα,l−Xβ,m) +
∑
α = i

β ≤ i− 1

∑
0≤l,m≤K−1

Xα,l×∇V (Xα,l−Xβ,m).
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Then we have

Mi −Mi−1

=
∑

α ≥ i+ 1
β = i

∑
0≤l,m≤K−1

Xα,l ×∇V (Xα,l −Xβ,m)−
∑
α = i

β ≤ i− 1

∑
0≤l,m≤K−1

Xα,l ×∇V (Xα,l −Xβ,m)

=
∑

α≥i+1

∑
0≤l,m≤K−1

Xα,l ×∇V (Xα,l −Xi,m) +
∑

α≤i−1

∑
0≤l,m≤K−1

Xi,m ×∇V (Xα,l −Xi,m)

=
∑

α≥i+1

∑
0≤l,m≤K−1

(Xα,l −Xi,m +Xi,m)×∇V (Xα,l −Xi,m) +
∑

α≤i−1

∑
0≤l,m≤K−1

Xi,m ×∇V (Xα,l −Xi,m)

=
∑

α≥i+1

∑
0≤l,m≤K−1

Xi,m ×∇V (Xα,l −Xi,m) +
∑

α≤i−1

∑
0≤l,m≤K−1

Xi,m ×∇V (Xα,l −Xi,m)

=
∑
α 6=i

∑
0≤l,m≤K−1

Xi,m ×∇V (Xα,l −Xi,m),

where in the second term of the second equality we have replaced β by α, used the anti-
symmetry of ∇V and exchanged l and m. In the fourth equality we have used the fact that
∇V (p) is parallel to p.
We have the following result which will be proven later:

Claim :
∑

0≤l,m≤K−1

Xi,m ×∇V (Xi,l −Xi,m) = 0.

Using this claim we obtain

Mi −Mi−1 =
∑
α∈Z

∑
0≤l,m≤K−1

Xi,m ×∇V (Xα,l −Xi,m)

=
∑

0≤m≤K−1

(
Xi,m ×

∑
α∈Z

∑
0≤l≤K−1

∇V (Xα,l −Xi,m)

)
=

∑
0≤m≤K−1

Xi,m × fi,m

=

( ∑
0≤m≤K−1

Xi,m

)
× 1

K
f 0
i

= bi × f 0
i .

where in the third line we have used (1.13), in the fourth line we have used (1.6), and in the
fifth line we have used the definition of the barycenter bi of the cell Xi.
Step 2 : Proof of the claim
We compute

A :=
∑

0≤l,m≤K−1

Xi,m ×∇V (Xi,l −Xi,m)

=
∑

0≤l,m≤K−1

(Xi,m −Xi,l +Xi,l)×∇V (Xi,l −Xi,m)

=
∑

0≤l,m≤K−1

Xi,l ×∇V (Xi,l −Xi,m)

=
∑

0≤l,m≤K−1

Xi,m ×∇V (Xi,m −Xi,l)

= −
∑

0≤l,m≤K−1

Xi,m ×∇V (Xi,l −Xi,m)

= −A,
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where in the third line we have used the fact that ∇V (p) is parallel to p, in the fourth line
we have exchanged l and m, and in the fifth line we have used the antisymmetry of ∇V .
Therfore we get A=0.

�
Proof of Theorem 7.9
Step 1: Mi = Rθ,L̂(Mi−1)
By Corollary 7.4 and by Theorem 7.2, we deduce that L× Ti−1 = 0.
Then by Lemma 7.11 we get

(7.16) Mi = Rθ,L̂(Mi−1).

Step 2: Conclusion
By Lemma 7.12 and the fact that X ∈ Cθ,L

∗ , we have f0
i = 0 and

Mi =Mi−1,

and by Step 1, we deduce that
Mi = Rθ,L̂(Mi).

Because θ 6= 0 (2π) for any (θ, L) ∈ U0, we deduce that Mi is parallel to L̂, and finally by
Lemma 7.10, we get

Mi = (L̂ ·Mi)L̂ =W ′
θ(θ, L)L̂.

�

8 The mean fiber

The goal of this section is to define the mean fiber ãi of a general nanotube and to prove
geometric estimates (see Theorem 8.2).

Definition 8.1 (Mean fiber ãi)

Let X be a nanotube. Let (θi, Li) ∈ U0 and X̂∗,i ∈ Ĉθi,Li
∗ such that

Di(X, θi, Li) = sup
|α|≤q

|Xi+α − X̂∗,i
i+α|.

Then there exists a unique ai ∈ L⊥
i and X∗,i ∈ Cθi,Li

∗ such that X̂∗,i = ai +X∗,i. We define
the mean fiber ãi by

(8.1) ãi = ai + (b∗,ii · L̂i)L̂i,

where b∗,ii =
1

K

K∑
l=0

X∗,i
i,l is the barycenter of the cell X∗,i

i .

For an illustration of the mean fiber, see Figure 11.
Notice that for a special perfect nanotube, the mean fiber is simply the projection of the
barycenter of the cell on the axis of the nanotube. Notice also that for a general nanotube
the mean fiber may be not unique.
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Figure 11: Mean fiber ãj of a nanotube

Theorem 8.2 (An estimate on ãi)
There exists a constant C > 0 such that if a nanotube X satisfies for some ε ∈ (0, 1) and for
fixed i0 ∈ Z

(8.2) Di(X, θi, Li) ≤ ε for i ∈ {i0, i0 + 1},

then for any mean fiber ãi0, ãi0+1 given by Definition 8.1, we have

(8.3) |bi0 − ãi0 | ≤ C,

(8.4) |X ′
i0
| ≤ C,

(8.5) |(ãi0+1 − ãi0)
⊥

L̂i0+1 | ≤ C ε,

(8.6) |ãi0+1 − ãi0 − Li0 | ≤ C ε,

(8.7) |bi0+1 − ãi0+1 −Rθi0 ,L̂i0
(bi0 − ãi0)| ≤ C ε,

(8.8) |X ′
i0+1 −Rθi0 ,L̂i0

(X ′
i0
)| ≤ Cε,

with the centrered cell X ′
i = Xi − bi and the barycenter bi =

1

N

∑
0≤l≤K−1

Xi,l.

Proof of Theorem 8.2
As a preliminary, we use the fact that U0 is closed (in Proposition 2.1) to recall (for later
use) that

(8.9) U0 = U0 ⊂ (0, 2π)× (R3\{0}).

On the other hand, because of (8.2), we can apply Proposition 5.4 and deduce that there
exists a constant C0 > 0 such that we have

(8.10) |θi0+1 − θi0 | ≤ C0ε,
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and

(8.11) |Li0+1 − Li0 | ≤ C0ε.

Step 1: Proof that bi0 − ãi0 and X ′
i0

are bounded

Let X∗,i0 ∈ Cθi0 ,Li0
∗ and ai0 ∈ L⊥

i0
such that X̂∗,i0 = ai0+X

∗,i0 minimizes the infimum defining
the distance Di0(X, θi0 , Li0) as in Definition 8.1. We know that there exists a constant C1 > 0
such that

|(X∗,i0
j )

⊥
L̂i0 | ≤ C1,

and by (8.2), we have

(8.12) |Xi0 − ai0 −X∗,i0
i0

| ≤ ε.

Then
|(Xi0 − ai0)

⊥
L̂i0 | ≤ C1 + ε.

In particular we deduce that

|(bi0 − ai0)
⊥

L̂i0 | ≤ C1 + ε,

i.e.

(8.13) |bi0 − (bi0 · L̂i0)L̂i0 − ai0 | ≤ C1 + ε.

We deduce from (8.12) that

(8.14) |(bi0 · L̂i0)L̂i0 − (b∗,i0i0
· L̂i0)L̂i0| ≤ ε.

Using moreover (8.13), we get

|bi0 − ãi0 | ≤ C1 + 2ε ≤ C2,

which proves (8.3). On the other hand, (8.12) implies for the centered cells

|X ′
i0
− (X∗,i0

i0
)′| ≤ ε,

and we deduce (8.4) from the fact that (X∗,i0
i0

)′ is bounded.
Step 2: Proof of |ãi0+1 − ãi0 − Li0 | ≤ C7ε

Step 2-1: Proof of |(ãi0+1 − ãi0)
⊥Li0+1 | ≤ C4ε

We compute

|bi0+1 − ai0 −Rθi0 ,L̂i0
(bi0 − ai0)− Li0 |

= |bi0+1 − ai0 − (b∗,i0i0
· L̂i0)L̂i0 −Rθi0 ,L̂i0

(bi0 − ai0 − (b∗,i0i0
· L̂i0)L̂i0)− Li0 |

= |bi0+1 − ãi0 −Rθi0 ,L̂i0
(bi0 − ãi0)− Li0 |

Using (8.2) in case i = i0, we get{
|Xi0+1 − ai0 −X∗,i0

i0+1| ≤ ε

|Xi0 − ai0 −X∗,i0
i0

| ≤ ε,
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i.e. {
|Xi0+1 − ai0 −Rθi0 ,L̂i0

(X∗,i0
i0

)− Li0 | ≤ ε

|Rθi0 ,L̂i0
(Xi0 − ai0)−Rθi0 ,L̂i0

(X∗,i0
i0

)| ≤ ε.

Substracting the two last lines, we get

(8.15) |Xi0+1 − ai0 −Rθi0 ,L̂i0
(Xi0 − ai0)− Li0| ≤ 2ε,

which implies

(8.16) |bi0+1 − ãi0 −Rθi0 ,L̂i0
(bi0 − ãi0)− Li0 | ≤ 2ε.

Similarly using (8.2) in case i = i0 + 1, we get

|Xi0+1 − ai0+1 −Rθi0+1,L̂i0+1
(Xi0 − ai0+1)− Li0+1| ≤ 2ε,

which implies

(8.17) |bi0+1 − ãi0+1 −Rθi0+1,L̂i0+1
(bi0 − ãi0+1)− Li0+1| ≤ 2ε.

Substracting (8.16) and (8.17), we get (using (8.11))

|ãi0+1 − ãi0 + (Rθi0+1,L̂i0+1
−Rθi0 ,L̂i0

)(bi0 − ãi0)−Rθi0+1,L̂i0+1
(ãi0+1 − ãi0)| ≤ (4 + C0)ε.

Using (8.3) to bound bi0 − ãi0 and Lemma 13.8 to bound Rθi0+1,L̂i0+1
− Rθi0 ,L̂i0

(with (8.10)

and (8.11)), we deduce that there exists a constant C3 such that we have

|(I −Rθi0+1,L̂i0+1
)(ãi0+1 − ãi0)| ≤ C3ε.

Using (8.9), we get that there exists a constant C4 > 0 such that

|(ãi0+1 − ãi0)
⊥

L̂i0+1 | ≤ C4ε

Step 2-2: |((ãi0+1 − ãi0) · L̂i0+1)L̂i0+1 − Li0 | ≤ C6ε
We compute

(bi0+1 − ãi0+1 −Rθi0+1,L̂i0+1
(bi0 − ãi0+1)− Li0+1) · L̂i0+1

= (bi0+1 − ãi0+1) · L̂i0+1 − (bi0 − ãi0+1) · L̂i0+1 − |Li0+1|
= (bi0+1 − ãi0+1) · L̂i0+1 − (bi0 − ãi0) · L̂i0+1 + (ãi0+1 − ãi0) · L̂i0+1 − |Li0+1|
= (bi0+1 − ãi0+1) · L̂i0+1 − (bi0 − ãi0) · L̂i0 − (bi0 − ãi0) · (L̂i0+1 − L̂i0)

+(ãi0+1 − ãi0) · L̂i0+1 − |Li0+1|.

Using (8.14), notice that (bi0 − ãi0) · L̂i0 = O(ε) and similarly (bi0+1 − ãi0+1) · L̂i0+1 = O(ε).
Using moreover the fact that bi0 − ãi0 is bounded (see (8.3)) joint to Lemma 13.9 ii), and
(8.17), we deduce that there exists a constant C5 such that

|(ãi0+1 − ãi0) · L̂i0+1 − |Li0+1|| ≤ C5ε,

and then
|((ãi0+1 − ãi0) · L̂i0+1)L̂i0+1 − Li0+1| ≤ C5ε.
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Because |Li0+1 − Li0 | ≤ C0ε, we deduce that there exists a constant C6 such that

(8.18) |((ãi0+1 − ãi0) · L̂i0+1)L̂i0+1 − Li0 | ≤ C6ε.

Step 2-3: Conclusion
By (8.5) and (8.18), we see that we control both parallel and orthogonal parts of ãi0+1 − ãi0
and then there exists a constant C7 > 0 such that we have

|ãi0+1 − ãi0 − Li0 | ≤ C7ε.

Step 3: Proof of (8.7) and (8.8)
Inequality (8.7) is a consequence of (8.16) and (8.6). Moreover (8.8) is implied by (8.15).

�

9 An estimate about the line tension, the line torsion

and the partial derivatives of the energy

The goal of this section is to prove the following theorem which indicates an accurate estimate
for the difference between line tension and a partial derivative of the energy and the difference
between line torsion and a another partial derivative of the energy.

Theorem 9.1 (An estimate about the line tension and the line torsion)
Let us consider a nanotube X under the assumptions of Theorem 2.15. Then there exists a
constant C > 0 (independent on X) such that for all i ∈ Z there exist (θi, Li) ∈ U0, and a
mean fiber ãi ∈ R3 given by Definition 8.1 such that we have with the notation of Definitions
7.1 and 7.7, for all i ∈ Z

(9.1) Di(X, θi, Li) ≤ Cε,

and

(9.2) |Ti −W ′
L(θi, Li)| ≤ Cε

p−1
p+1 ,

and

(9.3) |Mi(ãi)−W ′
θ(θi, Li)L̂i| ≤ Cε

p−2
p ,

where p > 2 appears in assumption (H0).

Remark 9.2
Notice that ε

p−2
p = ε

q−1
q+1 with q = p− 1. This difference between the error estimate (9.2) and

(9.3) comes from the fact the line torsion Mi has the following homogeneity

Mi ' length× Ti.

This explains the difference of exponent q = p− 1 (in order to estimate the rest of the series
defining Mi and Ti).

In a first subsection, we state and prove two results on two-body interactions, that are used
in a second subsection to prove Theorem 9.1.
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9.1 Preliminary estimates on two-body interactions

In this subsection we present two estimates on two-body interactions: Proposition 9.3 and
Proposition 9.5.

Proposition 9.3 (A uniform estimate on two-body interactions )
Assume (H0). Then there exists ε0 > 0 small enough and a constant C > 0, such that for
every nanotube X and (θ∗, L∗) ∈ U0, such that

sup
j∈Z

Dj(X, θ
∗, L∗) ≤ ε0,

we have

(9.4) |∇V (Xj,l −Xj′,l′)| ≤
C

|j − j′|p+1
for |j − j′| ≥ 1,

and

(9.5) |Xj −Xj′| ≤ C(1 + |j − j′|) for all j, j′ ∈ Z.

Remark 9.4
Notice that under assumption (H1), we automatically have (θ∗, L∗) ∈ U0 by Proposition 2.1.

Proof of Proposition 9.3
Step 1: Preliminary
From Proposition 4.5, we deduce estimate (9.5) and that there exists a constant C1 > 0 such
that

(9.6) |Xj′,l′ −Xj,l| ≥ (|L| − C1ε0)|j′ − j| − C1,

and moreover that there exists X̂∗,j ∈ Ĉθ∗,L∗
∗ such that

(9.7) |Xj′,l′ −Xj,l − (X̂∗,j
j′,l′ − X̂∗,j

j,l )| ≤ C1ε0(1 + |j′ − j|).

Step 2: Proof of (9.4)
Case 1: |j − j′| ≥ C3

Using (9.6) there exists a constant C2 > 0 and a constant C3 (large enough) such that we
have

|Xj,l −Xj′,l′ | ≥ C2|j − j′| for |j − j′| ≥ C3.

Case 2: 1 ≤ |j − j′| ≤ C3

Notice that there exists a constant δ such that

|X̂∗,j
j,l − X̂∗,j

j′,l′| ≥ δ > 0 if j 6= j′.

From (9.7), we get
|Xj,l −Xj′,l′| ≥ δ − C1ε0(1 + |j − j′|).

For ε0 <
δ

4C1C3

, we get

|Xj,l −Xj′,l′| ≥
δ

2
for 1 ≤ |j − j′| ≤ C3.

Using the conclusions of case 1 and case 2 and assumption (H0), we see that there exists a
constant C > 0 such that (9.4) holds.

�
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Proposition 9.5 (A short distance estimate on the two-body interactions)
Assume (H0). Then there exist constants C > 0 and ε1 > 0 such that for every nanotube X
and any ε ∈ (0, 1), if

inf
(θ,L)∈U0

Dj(X, θ, L) ≤ ε for j ∈ Z,

then the following holds.
If for some (θ0, L0) ∈ U0, we have X̂∗ ∈ Ĉθ0,L0

∗ and sup
|α|≤q

|Xα − X̂∗
α| ≤ ε,

then for j, j′ ∈ Qρ where ρ > 1 is such that ερ2 ≤ ε1, we have

(9.8) |∇V (Xj,l −Xj′,l′)−∇V (X̂∗
j,l − X̂∗

j′,l′)| ≤
Cερ2

|j − j′|p+2
.

Proof of Proposition 9.5
Step 1: Definition of X̄ and Taylor expansion
We define

X̄ :=
X − X̂∗

ε
.

Then we can apply Theorem 5.1 and deduce that there exists a constant C1 such that we
have

|X̄j| ≤ C1(1 + |j|2) for j ∈ Z.

Therefore for j ∈ Qρ with ρ > 1, there exists a constant C2 > 0 such that we have

(9.9) |X̄j| ≤ C2ρ
2.

By the definition of X̄j, we have

Xj,l −Xj′,l′ = X̂∗
j,l − X̂∗

j′,l′ + ε(X̄j,l − X̄j′,l′).

Using the Taylor expansion with integral rest, we get

(9.10) ∇V (Xj,l −Xj′,l′) = ∇V (X̂∗
j,l − X̂∗

j′,l′) + ε(X̄j,l − X̄j′,l′)

∫ 1

0

D2V (A(t)) dt,

with
A(t) = Zj,l(t)− Zj′,l′(t) and Zj,l(t) = X̂∗

j,l + tεX̄j,l.

Step 2: Conclusion
From Proposition 4.6, we deduce that there exist constants C3, C4 such that

(9.11) |A(t)| ≥ C4|j − j′| if |j − j′| ≥ C3.

Case 1: |j − j′| > C3

Then by assumption (H0), there exists a constant C5 > 0 such that

|D2V (A(t))| ≤ C5

|j − j′|p+2
.

Case 2: 1 ≤ |j − j′| ≤ C3

Assume that 1 ≤ |j − j′| ≤ C3. Because of (9.9), we deduce

|X̄j,l − X̄j′,l′| ≤ 2C2ρ
2.
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Then we compute

|A(t)− (X̂∗
j,l − X̂∗

j′,l′)| = |tε(X̄j,l − X̄j′,l′)|
≤ 2C2ερ

2,

and because |X̂∗
j,l − X̂∗

j′,l′| ≥ δ > 0 if (j, l) 6= (j′, l′), we deduce for the choice ερ2 ≤ ε1 (for ε1
small enough) that there exists a constant C6 such that

|A(t)| ≥ C6.

Using moreover assumption (H0), there exists a constant C7 > 0 such that

|D2V (A(t))| ≤ C7 ≤
C7

|j − j′|p+2
.

Using the conclusions of case 1 and case 2, we deduce that there exists a constant C8 > 0
such that ∣∣∣∣∫ 1

0

D2V (A(t))dt

∣∣∣∣ ≤ C8

|j − j′|p+2
.

Moreover because of (9.9) and (9.10), we deduce that there exists a constant C > 0 such
that we have (9.8).

�

9.2 Proof of Theorem 9.1

Proof of Theorem 9.1
Step 1: Control of NZ(X) and Di(X, θi, Li)
We apply our Saint-Venant principle (2.15) of Theorem 2.13 with J = Z and we get

NZ(X) ≤ C1

1− µ
sup
j∈Z

|fj|.

We compute
sup
j∈Z

|fj| = sup
j∈Z

sup
0≤l≤K−1

|fj,l|

= sup
j∈Z

| 1
K
f0
j |

=
1

K
sup
j∈Z

|
∫ ε(j+ 1

2
)

ε(j− 1
2
)

f̄(x)dx|

≤ ε

K
sup
x

|f̄(x)|,

where in the second line we have used (1.6) and in the third line we have used (1.14). Using
(2.18) to bound f̄ , we deduce that for some constant C0 > 0, we have

(9.12) NZ(X) ≤ ε̄ with ε̄ := C0ε.

Given i ∈ Z, we consider (θi, Li) ∈ U0, such that

inf
(θ,L)∈U0

Di(X, θ, L) = Di(X, θi, Li),
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and X̂∗,i ∈ Ĉθi,Li
∗ such that

Di(X, θi, Li) = sup
|α|≤q

|Xi+α − X̂∗,i
i+α|.

Using (9.12), we have

(9.13) Di(X, θi, Li) ≤ ε̄.

For later use, we write (uniquely) X̂∗,i = ai +X∗,i with ai ∈ L⊥
i and X∗,i ∈ Cθi,Li

∗ .
Step 2: Error estimate on the line tension
We recall the definition of the line tension

Ti[X] := Ti =
∑

j ≥ i+ 1
j′ ≤ i

∑
0≤l,l′≤K−1

∇V (Xj,l −Xj′,l′),

where we show the dependence of Ti on X. We write

Ti[X] = Si(X) + Fi(X),

with the short distance contribution for ρ ≥ 1:

Si(X) =
∑

i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

∇V (Xj,l −Xj′,l′),

and the far away contribution

Fi(X) =
∑

j > i+ ρ
j′ ≤ i

∑
0≤l,l′≤K−1

∇V (Xj,l −Xj′,l′) +
∑

i+ 1 ≤ j ≤ i+ ρ
j′ < i− ρ

∑
0≤l,l′≤K−1

∇V (Xj,l −Xj′,l′).

Step 2-1: Error estimate on Si(X)
Assuming that ε̄ρ2 < 1 (see later on our choice (9.18)), we can apply (9.8) in Proposition
9.5 and deduce that there exists a constant C2 such that for |j − i|, |j′ − i| ≤ ρ:

(9.14) |∇V (Xj,l −Xj′,l′)−∇V (X̂∗,i
j,l − X̂∗,i

j′,l′)| ≤
C2ε̄ρ

2

|j − j′|p+2
.

Then we compute

|Si(X)− Si(X̂
∗,i)| ≤

∑
i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

|∇V (Xj,l −Xj′,l′)−∇V (X̂∗,i
j,l − X̂∗,i

j′,l′)|

≤
∑

i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

C2ε̄ρ
2

|j − j′|p+2

≤
∑

i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

K2C2ε̄ρ
2

|j − j′|p+2

≤ K2C2ε̄ρ
2

∑
1 ≤ j̄ ≤ ρ
0 ≤ j̄′ ≤ ρ

1

|j̄ + j̄′|p+2

≤ K2C2ε̄ρ
2
∑
j̄ ≥ 1
j̄′ ≥ 0

1

|j̄ + j̄′|p+2
,
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where j̄ := j − i and j̄′ := i− j′.
By Lemma 13.12 (with ρ = 1) with p > 0, there exists a constant C3 such that we have

(9.15) |Si(X)− Si(X̂
∗,i)| ≤ C3ε̄ρ

2.

Step 2-2: Error estimate on Fi(X)
By (2.18) we have

sup
j∈Z

Dj(X, θ
∗, L∗) ≤ ε0.

Using (9.4) in Proposition 9.3, we deduce that there exists a constant C4 > 0 such that

(9.16) |∇V (Xj,l −Xj′,l′)| ≤
C4

|j − j′|p+1
for |j − j′| ≥ ρ ≥ 1.

Then
(9.17)

|Fi(X)| ≤ C4

( ∑
j > i+ ρ
j′ ≤ i

∑
0≤l,l′≤K−1

1

|j − j′|p+1
+

∑
i+ 1 ≤ j ≤ i+ ρ

j′ < i− ρ

∑
0≤l,l′≤K−1

1

|j − j′|p+1

)

≤ K2C4

( ∑
j̄ > ρ
j̄′ ≥ 0

1

(j̄ + j̄′)p+1
+

∑
1 ≤ j̄ ≤ ρ
j̄′ > ρ

1

(j̄ + j̄′)p+1

)

≤ 2K2C4

∑
j̄ > ρ
j̄′ ≥ 0

1

(j̄ + j̄′)p+1
.

where j̄ := j − i and j̄′ := i − j′. By Lemma 13.12 with p > 1, there exists a constant C5

such that

|Fi(X)| ≤ C5

ρp−1
.

Similarly we have

|Fi(X̂
∗,i)| ≤ C5

ρp−1
.

Step 2-3: Conclusion
We compute ∣∣Ti[X]− Ti[X̂

∗,i]
∣∣ ≤ |Si(X)− Si(X̂

∗,i)|+ |Fi(X)|+ |Fi(X̂
∗,i))|

≤ C3ε̄ρ
2 +

C5 + C5

ρp−1

≤ C6(ε̄ρ
2 +

1

ρp−1
),

with C6 = max(C3, 2C5). With the choice

(9.18) ε̄ρp+1 = 1,

which is optimal up to a numerical constant, the right hand side becomes 2C6ε̄
p−1
p+1 and we

get ∣∣Ti[X]− Ti[X̂
∗,i]
∣∣ ≤ C7ε̄

p−1
p+1 ,
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with C7 = 2C6. Finally by Theorem 7.2 we have Ti[X̂
∗,i] = Ti[X

∗,i] = W ′
L(θi, Li). Therefore

|Ti −W ′
L(θi, Li)| ≤ Cε

p−1
p+1 ,

with C ≥ C7C
p−1
p+1

0 .
Step 3: Error estimate on the line torsion
We recall the definition of the line torsion

Mi[X] :=Mi =
∑

j ≥ i+ 1
j′ ≤ i

∑
0≤l,l′≤K−1

Xj,l ×∇V (Xj,l −Xj′,l′).

where we show the dependence of Mi on X. The goal of this step is to prove (9.3) with the
mean fiber (see Definition 8.1)

ãi = ai + (b∗,ii · L̂i)L̂i.

We write (from Definition 7.7 and Proposition 7.8)

(9.19) Mi[X] =Mi[X](0) =Mi[X](ãi)+ ãi ×Ti[X] = Si(X − ãi)+Fi(X − ãi)+ ãi ×Ti[X],

with the short distance contribution for ρ ≥ 1

Si(X − ãi) =
∑

i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

(Xj,l − ãi)×∇V (Xj,l −Xj′,l′),

and the far away contribution

Fi(X − ãi) =
∑

j > i+ ρ
j′ ≤ i

∑
0≤l,l′≤K−1

(Xj,l − ãi)×∇V (Xj,l −Xj′,l′)

+
∑

i+ 1 ≤ j ≤ i+ ρ
j′ < i− ρ

∑
0≤l,l′≤K−1

(Xj,l − ãi)×∇V (Xj,l −Xj′,l′).

Step 3-0: Definition and properties of X̃∗,i

We define for j ∈ Z
X̃∗,i

j := X∗,i
j − (b∗,ii · L̂i)L̂i.

Then we have

(9.20) X̃∗,i ∈ Cθi,Li
∗ .

We compute

Xi − X̂∗,i
i = Xi − ai −X∗,i

i = Xi − (ai + (b∗,ii · L̂i)L̂i)− (X∗,i
i − (b∗,ii · L̂i)L̂i) = Xi − ãi − X̃∗,i

i .

By (9.13) we deduce

(9.21) |Xi − ãi − X̃∗,i
i | ≤ ε̄,

and then (with b̃∗,ii the barycenter of X̃∗,i
i )

(9.22) |bi − ãi − b̃∗,ii | ≤ ε̄.
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Using (8.3) we deduce that b̃∗,ii is bounded. Moreover because the centered cell (X̃∗,i
i,l )

′
l =

(X̃∗,i
i,l − b̃∗,ii )l is bounded, we deduce that there exists a constant C8 > 0 such that

(9.23) |X̃∗,i
i | ≤ C8.

Step 3-1: Error estimate on Si(X − ãi)

We compute (using the fact that X̃∗,i
j,l − X̃∗,i

j′,l′ = X̂∗,i
j,l − X̂∗,i

j′,l′)

Si(X − ãi)− Si(X̃
∗,i)

=
∑

i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

(
(Xj,l − ãi)×∇V (Xj,l −Xj′,l′)− X̃∗,i

j,l ×∇V (X̃∗,i
j,l − X̃∗,i

j′,l′)
)

=
∑

i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

(
(Xj,l − ãi)×∇V (Xj,l −Xj′,l′)− X̃∗,i

j,l ×∇V (X̂∗,i
j,l − X̂∗,i

j′,l′)
)

= S1
i + S2

i + S3
i ,

with

S1
i =

∑
i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

(Xj,l − ãi − X̃∗,i
j,l )×∇V (Xj,l −Xj′,l′)

S2
i =

∑
i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

(
R(j−i)θi,L̂i

(X̃∗,i
i,l )
)
×
(
∇V (Xj,l −Xj′,l′)−∇V (X̂∗,i

j,l − X̂∗,i
j′,l′)

)
S3
i =

∑
i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

(j − i)Li ×
(
∇V (Xj,l −Xj′,l′)−∇V (X̂∗,i

j,l − X̂∗,i
j′,l′)

)
,

where we have used (9.20).
Using (9.16) and (9.21), we deduce that there exists a constant C9 such that we have

|S1
i | ≤

∑
i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

C4ε̄

|j − j′|p+1
≤

∑
i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

C4K
2ε̄ ≤ C9ε̄ρ

2.

Using (9.14) and (9.23), we deduce that

|S2
i | ≤

∑
i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

∑
0≤l,l′≤K−1

C8C2ε̄ρ
2

|j − j′|p+1
≤ C8C2K

2ε̄ρ2
∑

1 ≤ j̄ ≤ ρ
0 ≤ j̄′ ≤ ρ

1

|j̄ + j̄′|p+1

≤ C8C2K
2ε̄ρ2

∑
j̄ ≥ 1
j̄′ ≥ 0

1

|j̄ + j̄′|p+1
,

where j̄ = j − i and j̄′ = i− j′. By Lemma 13.12 (with ρ = 1) with p > 1, we deduce that
there exists a constant C10 such that

|S2
i | ≤ C10ε̄ρ

2.
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Using (9.14), we deduce that there exists a constant C11 such that we have

|S3
i | ≤ C11ε̄ρ

2
∑

i+ 1 ≤ j ≤ i+ ρ
i− ρ ≤ j′ ≤ i

|j − i|
|j − j′|p+2

= C11ε̄ρ
2

∑
1 ≤ j̄ ≤ ρ
0 ≤ j̄′ ≤ ρ

j̄

(j̄ + j̄′)p+2
≤ C11ε̄ρ

2
∑
j̄ ≥ 1
j̄′ ≥ 0

j̄

(j̄ + j̄′)p+2
,

where j̄ := j − i and j̄′ := i− j′.
By Lemma 13.12 (with ρ = 1) with p > 1, then there exists a constant C12 such that we
have

|S3
i | ≤ C12ε̄ρ

2.

Finally we get

(9.24) |Si(X − ãi)− Si(X̃
∗,i)| ≤ C13ε̄ρ

2,

with C13 = C9 + C10 + C12.
Step 3-2: Error estimate on Fi(X − ãi)
Using (9.5), (9.21) and (9.23), we deduce that

|Xj − ãi| ≤ |Xj −Xi|+ |Xi − ãi − X̃∗,i
i |+ |X̃∗,i

i |
≤ C14(1 + |j − i|),

with C14 > 0. Using moreover (9.16), we get

|Fi(X − ãi)| =

∣∣∣∣∣∣∣∣∣∣∣

∑
j > i+ ρ
j′ ≤ i

∑
0≤l,l′≤K−1

(Xj,l − ãi)×∇V (Xj,l −Xj′,l′)

+
∑

i+ 1 ≤ j ≤ i+ ρ
j′ < i− ρ

∑
0≤l,l′≤K−1

(Xj,l − ãi)×∇V (Xj,l −Xj′,l′)

∣∣∣∣∣∣∣∣∣∣∣
≤ K2C4

 ∑
j > i+ ρ
j′ ≤ i

C14(1 + |j − i|)
|j − j′|p+1

+
∑

i+ 1 ≤ j ≤ i+ ρ
j′ < i− ρ

C14(1 + |j − i|)
|j − j′|p+1


≤ K2C4C14

( ∑
j̄ > ρ
j̄′ ≥ 0

1 + j̄

(j̄ + j̄′)p+1
+

∑
1 ≤ j̄ ≤ ρ
j̄′ > ρ

1 + j̄

(j̄ + j̄′)p+1

)
,

with j̄ = j − i and j̄′ = i− j′. Using Lemmata 13.11 and 13.12 with p > 2, we deduce that
there exists a constant C15 such that we have

|Fi(X − ãi)| ≤
C15

ρp−2
.

Similarly, we have

(9.25) |Fi(X̃
∗,i)| ≤ C15

ρp−2
.
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Step 3-3: Conclusion
We compute∣∣∣∣Mi[X]− ãi × Ti[X]−Mi[X̃

∗,i]

∣∣∣∣ ≤ |S(X − ãi)− S(X̃∗,i)|+ |Fi(X − ãi)|+ |Fi(X̃
∗,i)|

≤ C16

(
ε̄ρ2 +

1

ρp−2

)
,

with C16 = max{C13, 2C15}. With the choice of ρ such that

ε̄ρp = 1,

which is optimal up to numerical constant, we have ε̄ρ2 ≤ ε1 (using p > 2) and the right

hand side becomes C17ε̄
p−2
p , which gives∣∣∣∣Mi[X]− ãi × Ti[X]−Mi[X̃

∗,i]

∣∣∣∣ ≤ C17ε̄
p−2
p .

Finally using Lemma 7.9, we get Mi[X̃
∗,i] = W ′

θ(θi, Li)L̂i and then∣∣∣∣Mi[X]− ãi × Ti[X]−W ′
θ(θi, Li)L̂i

∣∣∣∣ ≤ C17ε̄
p−2
p ,

that we can write (using (9.19))∣∣Mi[X](ãi)−W ′
θ(θi, Li)L̂i

∣∣ ≤ Cε
p−2
p ,

with C ≥ C17C
p−2
p

0 , which means exactly (9.3).

�

10 An estimate about the scalar line torsion

In order to use later (in Section 11) the estimates of Theorem 9.1 about Ti and Mi(ãi), we
need first to compute these quantities. Recall that we have Ti − Ti−1 = f 0

i , and a simple

iteration is sufficient to get Ti = T0 +
i∑

j=1

f 0
i . But a simple similar raisoning for the line

torsion Mi(ãi) is not possible. The goal of this section is to solve this problem and to this
end we introduce the following scalar line torsion.

Definition 10.1 (Scalar line torsion)
Given a nanotube X ∈ ((R3)K)Z, we define a scalar line torsion as

mi :=Mi(ãi) · L̂i,

where Li and ãi are introduced in Definition 8.1.

The main result of this section is the following estimate about the scalar line torsion
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Theorem 10.2 (Almost constant scalar line torsion)
Let us consider a nanotube X under the assumptions of Theorem 2.15. Then there exist
constants m̄0 ∈ R and C > 0 such that we have for all i ∈ Z

(10.1) |mi − m̄0| ≤ Cεγ with γ = min

(
1

3
,
p− 2

p

)
.

Notice that (10.1) means that the scalar line torsion mi is almost constant which is the
discrete analogue of the second equation of (1.5).
In order to prove Theorem 10.2 we first need the following lemma:

Lemma 10.3 (Estimate on mi −mi−1)
Let us consider a nanotube X under the assumptions of Theorem 2.15. Then we have for all
i ∈ Z

(10.2) mi −mi−1 = −(bi − ãi) · (L̂i × f0
i ) +O(ε1+

¯̄γ),

with ¯̄γ =
p− 2

p
.

Proof of Lemma 10.3
By Theorem 9.1, we have (9.1), i.e.

(10.3) Di(X, θi, Li) ≤ Cε.

We also have the general relations
Mi −Mi−1 = bi × f 0

i

Mi(ãi) =Mi − ãi × Ti
Ti − Ti−1 = f0

i .

Then we compute

Mi(ãi)−Mi−1(ãi−1) = bi × f0
i − ãi × Ti + ãi−1 × Ti−1

= bi × (Ti − Ti−1)− ãi × Ti + ãi−1 × Ti−1

= (bi − ãi)× Ti − (bi − ãi−1)× Ti−1,

which implies

L̂i ·Mi(ãi)− L̂i ·Mi−1(ãi−1) = L̂i ·
(
(bi − ãi)× Ti

)
− L̂i ·

(
(bi − ãi−1)× Ti−1

)
,

and then

(10.4) L̂i ·Mi(ãi)− L̂i ·Mi−1(ãi−1) = −(bi − ãi) · (L̂i × Ti) + (bi − ãi−1) · (L̂i × Ti−1).

We compute with γ̄ =
p− 1

p+ 1

(bi − ãi−1) · (L̂i × Ti−1) = (bi − ã
⊥

L̂i
i−1 ) · (L̂i × Ti−1)

= (bi − ã
⊥

L̂i
i +O(ε)) · (L̂i × Ti−1)

= (bi − ãi) · (L̂i × Ti−1) +O(ε) · ((L̂i−1 +O(ε))× Ti−1)

= (bi − ãi) · (L̂i × Ti−1) +O(ε2) +O(ε) · (L̂i−1 × Ti−1)

= (bi − ãi) · (L̂i × Ti−1) +O(ε2) +O(ε) ·O(εγ̄)
= (bi − ãi) · (L̂i × Ti−1) +O(ε1+γ̄),
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where in the second line we have used (8.5), in the third line we have used (10.3), Lemma 5.4
and Lemma 13.9 ii), and in the fifth line we have used (9.2) and the fact that W ′

L(θi−1, Li−1)
is parallel to Li−1 (see Corollary 7.4). Therefore from (10.4), we get

L̂i ·Mi(ãi)− L̂i ·Mi−1(ãi−1) = −(bi − ãi) · (L̂i × Ti) + (bi − ãi) · (L̂i × Ti−1) +O(ε1+γ̄)

= −(bi − ãi) · (L̂i × (Ti − Ti−1)) +O(ε1+γ̄)

= −(bi − ãi) · (L̂i × f 0
i ) +O(ε1+γ̄).

On the other hand we compute

(L̂i − L̂i−1) ·Mi−1(ãi−1) = (L̂i − L̂i−1) · (W ′
θ(θi−1, Li−1)L̂i−1 +O(ε¯̄γ))

= W ′
θ(θi−1, Li−1)(L̂i · L̂i−1 − 1) +O(ε1+¯̄γ)

= O(ε2) +O(ε1+¯̄γ) = O(ε1+¯̄γ),

where in the first line we have used (9.3) and in the last line we have used the square of the

relation L̂i − L̂i−1 = O(ε). We compute

mi −mi−1 = L̂i ·Mi(ãi)− L̂i−1 ·Mi−1(ãi−1)

= L̂i ·Mi(ãi)− L̂i ·Mi−1(ãi−1) + (L̂i − L̂i−1) ·Mi−1(ãi−1)

= −(bi − ãi) · (L̂i × f 0
i ) +O(ε1+γ̄) +O(ε1+¯̄γ),

and finally, because ¯̄γ < γ̄, we deduce (10.2).

�
Proof of Theorem 10.2
We recall that by Lemma 5.4, there exists a constant C1 > 0 such that we have

(10.5)

{
|θi+1 − θi| ≤ C1ε
|Li+1 − Li| ≤ C1ε.

Step 1: Proof of mi −mi−1 = −(bi − ãi) · (L̂0 × f 0
0 ) +O(iε2 + ε1+¯̄γ)

We recall (10.2) in Lemma 10.3, i.e.

mi −mi−1 = −(bi − ãi) · (L̂i × f0
i ) +O(ε1+

¯̄γ).

By (1.14) and the fact that f̄ is Lipschitz, we have

f 0
i = f0

0 +O(iε2),

and because f̄ is bounded in L∞, we get

f 0
0 = O(ε).

From (10.5) and Lemma 13.9 ii) we have L̂i = L̂i−1 + O(ε), and we get by iteration L̂i =

L̂0 +O(iε). We compute for 0 ≤ i ≤ 1

ε

mi −mi−1 = −(bi − ãi) ·
(
(L̂0 +O(iε))× (f0

0 +O(iε2))
)
+O(ε1+¯̄γ)

= −(bi − ãi) · (L̂0 × f0
0 ) +O(iε2 + ε1+¯̄γ).
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Step 2: A refined estimate on bi − ãi
We already know from (8.3) that bi − ãi is bounded, but for later use it is crucial to get a
refined algebraic expression for bi − ãi. From (8.7), we have

bi − ãi = Rθi−1,L̂i−1
(bi−1 − ãi−1) +O(ε)

= Rθ0,L̂0
(bi−1 − ãi−1) + (Rθi−1,L̂i−1

−Rθ0,L̂0
)(bi−1 − ãi−1) +O(ε).

Because bi−1 − ãi−1 is bounded (see (8.3)) , θi−1 = θ0 +O((i− 1)ε), Li−1 = L0 +O((i− 1)ε),
using Lemma 13.8 and Lemma 13.9 ii), we deduce for i ≥ 1

bi − ãi = Rθ0,L̂0
(bi−1 − ãi−1) +O(iε).

We compute for i ≥ 1

bi − ãi = Rθ0,L̂0
(bi−1 − ãi−1) +O(iε)

= Rθ0,L̂0

(
Rθ0,L̂0

(bi−2 − ãi−2) +O((i− 1)ε)
)
+O(iε)

= R2θ0,L̂0
(bi−2 − ãi−2)) +O((i− 1)ε) +O(iε)

= Riθ0,L̂0
(b0 − ã0) +O

(
i(i+ 1)

2
ε

)
and then we have for i ≥ 0

(10.6) bi − ãi = Riθ0,L̂0
(b0 − ã0) +O(i2ε).

Step 3: An estimate on mi −mi−1

By Step 1 and (10.6), using f 0
0 = O(ε), b0 − ã0 = O(1) and γ̄ ≤ 1 , for i ≥ 0 we compute

mi −mi−1 = −
(
Riθ0,L̂0

(b0 − ã0) +O(i2ε)
)
·
(
L̂0 × f0

0

)
+O(iε2 + ε1+¯̄γ)

= −Riθ0,L̂0
(b0 − ã0) · (L̂0 × f 0

0 ) +O(iε2 + i2ε2 + ε1+¯̄γ)

= −(b0 − ã0) ·R−iθ0,L̂0
(L̂0 × f 0

0 ) +O(i2ε2 + ε1+¯̄γ)

= −(b0 − ã0) · (L̂0 ×R−iθ0,L̂0
(f 0

0 )) +O(i2ε2 + ε1+¯̄γ),

then we have for i ≥ 0

mi −mi−1 = −
(
(b0 − ã0)× L̂0

)
· (R−iθ0,L̂0

(f 0
0 ))

⊥
L̂0 +O(i2ε2 + ε1+

¯̄γ),

More generally, we have for i ≥ 0 and j ∈ Z

(10.7) mj+i −mj+i−1 = −
(
(bj − ãj)× L̂j

)
· (R−iθj ,L̂j

(f 0
j ))

⊥
L̂j +O(i2ε2 + ε1+

¯̄γ).

Step 4: An estimate on m̄i

We define for some N to choose later

m̄j =
1

N

N∑
k=1

mj+k,

which is an average of the scalar line torsion on a window of length N . We rewrite (10.7) as

mj+k −mj+k−1 = −
(
(bj − ãj)× L̂j

)
· (R−kθj ,L̂j

(f 0
j ))

⊥
L̂j +O(k2ε2 + ε1+

¯̄γ),
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and we compute

m̄j − m̄j−1

=
1

N

N∑
k=1

(
mj+k −mj+k−1

)
= −

(
(bj − ãj)× L̂j

)
·
(

1

N

N∑
k=1

R−kθj ,L̂j
(f 0

j )

)⊥
L̂j

+
1

N

N∑
k=1

O(k2ε2 + ε1+
¯̄γ)

= A+B,

with 
A = −

(
(bj − ãj)× L̂j

)
· (Qf 0

j )
⊥

L̂j with Q =
1

N

N∑
k=1

R−kθj ,L̂j
,

B =
1

N

N∑
k=1

O(k2ε2 + ε1+
¯̄γ).

Step 4-1: An estimate on the matrix Q
We consider a direct orthonormal basis (g1, g2, g3) with g3 = L̂j, and we write

x =
3∑

k=1

xk gk and Qx =
3∑

k=1

yk gk. Then we get with i ∈ C such that i2 = −1:


y3 = x3

y1 + iy2 = q (x1 + ix2) with q =
1

N

N∑
k=1

e−ikθj .

We compute

q =
1

N

N∑
k=1

e−ikθj =
1

N

(
1− e−iNθj

1− e−iθj

)
e−ikθj .

Because U0 = U0 ⊂ (0, 2 π) × (R3\{0}), we have inf
k∈Z

|θj − 2kπ| ≥ δ > 0 and there exists a

constant C > 0 such that

|q| ≤ C

N
,

and then

|(Qx)⊥L̂j | ≤ C

N
|x|.

Step 4-2: An estimate on B
We compute

B =
1

N

N∑
k=1

O(k2ε2 + ε1+
¯̄γ)

=
1

N
O

(
N(N + 1)(2N + 1)

6
ε2 +Nε1+

¯̄γ

)
= O

(
(N + 1)(2N + 1)

6
ε2 + ε1+

¯̄γ

)
= O

(
N2ε2 + ε1+¯̄γ

)
.
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Step 4-3: An estimate on m̄j

From Step 4-1 and 4-2, we deduce

m̄j − m̄j−1 = O
( ε
N

+N2ε2 + ε1+
¯̄γ
)
.

With the choice

1 << N =
1

ε
1
3

<<
1

ε
,

we get
m̄j − m̄j−1 = O

(
ε

4
3 + ε1+

¯̄γ
)
.

This implies
m̄j − m̄j−1 = O(ε1+γ),

with

γ = min

(
1

3
, ¯̄γ

)
=


1

3
if p ≥ 3

¯̄γ if p ∈ (2, 3).

By iteration, we get for 0 ≤ j ≤ 1

ε

(10.8) m̄j = m̄0 +O(εγ).

Step 5: An estimate on mi

Using (9.3) in Theorem 9.1, we get that

(10.9) mi =W ′
θ(θi, Li) +O(ε

¯̄γ).

We compute

|m̄i −mi| =

∣∣∣∣∣ 1N
N∑
k=1

(mi+k −mi)

∣∣∣∣∣
=

∣∣∣∣∣ 1N
N∑
k=1

(W ′
θ(θi+k, Li+k)−W ′

θ(θi, Li) +O(ε
¯̄γ))

∣∣∣∣∣
≤ O(ε¯̄γ) +

1

N

N∑
k=1

|W ′
θ(θi+k, Li+k)−W ′

θ(θi, Li)|

≤ O(ε¯̄γ) +
C

N

N∑
k=1

O(kε) with C = |W ′′|∞

≤ O(ε¯̄γ) + C
N + 1

2
ε

= O(ε¯̄γ) +O(ε
2
3 ),

where in the second line we have used (10.9) and in the fourth line we have used Proposition
2.1 which implies that W is C2 using its definition (2.13) (i.e. W ′′ is C0) in the closed set

U0, i.e. W
′′ is bounded. Using (10.8) and the

1

ε
-periodicity, we get

mi = m̄0 +O(εγ) for all i ∈ Z.

�
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11 Estimate between discrete and continuous forces

The goal of this section is to prove the following Theorem 11.1, giving an error estimate
between the discrete and the continuous forces.

Theorem 11.1 (Error estimate between discrete and continuous forces)
There exists a constant C > 0 such that the following holds. Let us consider a nanotube X
under the assumptions of Theorem 2.15 with p > 2 and (θi, Li) ∈ U0 as in Theorem 9.1.
There exists ε1 > 0, such that if

|θ0 − θ∗| ≤ ε1 and |L0 − L∗| ≤ ε1,

then there exists (α,Φ) solution of (1.1) and (1.5) and constants Σ0 ∈ R3, σ0 ∈ R such that
we have for any x ∈ [(i− 1

2
)ε, (i+ 1

2
)ε]

(11.1) |Σ0 +W ′
L(α

′(x),Φ′(x))−W ′
L(θi, Li)| ≤ Cεγ̄

and

(11.2) |σ0 +W ′
θ(α

′(x),Φ′(x))−W ′
θ(θi, Li)| ≤ Cεγ.

where γ̄ =
p− 1

p+ 1
and γ = min

(
1

3
,
p− 2

p

)
.

In order to prove Theorem 11.1 we need the following Proposition 11.2 giving the existence
of a solution of the Euler-Lagrange system (1.5).

Proposition 11.2 (Existence of a solution of the Euler-Lagrange system)
Assume (H4) and let f̄ : R → R3 satisfying (1.2) and (1.4). Then there exists ε1 > 0 such
that if |(θ0, L0) − (θ∗, L∗)| ≤ ε1 and |f̄ |L∞(R) ≤ ε1 then there exists (α,Φ) : R → R × R3

with (α,Φ) ∈ W 2,∞(R,R× R3), such that (α′,Φ′) : R → U0, solution of the Euler-Lagrange
system (1.5), namely {

(W ′
Φ′(α′,Φ′))′ = f̄ on R

(W ′
α′(α′,Φ′))′ = 0 on R,

satisfying the periodic conditions (1.1).
Moreover there exists a constant C > 0 such that

(11.3) |(α′,Φ′)− (θ0, L0)|L∞(R) ≤ C|f̄ |L∞(R).

Proof of Proposition 11.2
We look for Λ = (α, φ) ∈ W 1,∞(R,R4) solution of (1.1) and (1.5) and we will show later that
Λ = (α, φ) ∈ W 2,∞(R,R4).
Step 1: Preliminaries
Without loss of generality, we can assume that

(11.4) Λ(0) = 0.

Then let us define
λ0 = (θ0, L0),
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and
V1 = {Λ ∈ W 1,∞(R,R4); Λ(x+ 1) = Λ(x) + λ0 with (11.4) }
V2 = {g = h′ with h ∈ L∞(R,R4); h(x+ 1) = h(x)} .

We embed the space V2 with the norm

|g|V2 = inf
c∈R

|h− c|L∞(R) with g = h′ and h(x+ 1) = h(x),

and notice that (V2, | · |V2) is a Banach space. Let us define

U1 = {Λ ∈ V1; ∃δ > 0, Bδ(0) + Λ′(x) ⊂ U0, for almost every x ∈ R},

where we easily check that U1 is an open set in V1. We call λ = (θ, L) ∈ U0 and let us
consider the map

Ψ : U1 −→ V2

Λ 7→ (W ′
λ(Λ

′))′.

Step 2: Ψ is C1

We compute
|Ψ(Λ2)−Ψ(Λ1)|V2 ≤ |W ′

λ(Λ
′
2)−W ′

λ(Λ
′
1)|L∞(R)

≤ |D2W |L∞(U0)|Λ′
2 − Λ′

1|L∞(R)
≤ |D2W |L∞(U0)|Λ2 − Λ1|W 1,∞(R).

We compute
DΛΨ(Λ) · Λ̄ = (D2W (Λ′) · Λ̄′)′.

Therefore

|DΛΨ(Λ2) · Λ̄2 −DΛΨ(Λ1) · Λ̄1|V2

≤ |D2W (Λ′
2) · Λ̄′

2 −D2W (Λ′
1) · Λ̄′

1|L∞(R)

≤ |D2W (Λ′
2)−D2W (Λ′

1)|L∞(U0)|Λ̄′
2|L∞(R) + |D2W |L∞(U0)|Λ̄′

2 − Λ̄′
1|L∞(R)

−→ 0 as |(Λ2, Λ̄2)− (Λ1, Λ̄1)|V1×V1 −→ 0,

where we have used the fact that W is C2 by Proposition 2.7. This shows the continuity of
DΨ. Therefore Ψ is C1.
Step 3: Inverse function theorem
Let Λ0(x) = xλ0 for x ∈ R. We have

DΛΨ(Λ0) · Λ̄ = (D2W (λ0) · Λ̄′)′.

Let g ∈ V2, then there exists h ∈ L∞(R,R4) with h(x + 1) = h(x) such that g = h′ and
|g|V2 = inf

c∈R
|h− c|L∞ = |h|L∞ .

This shows that

(11.5) DΛΨ(Λ0) · Λ̄ = g,

means
D2W (λ0) · Λ̄′ = h+ k for some constant k ∈ R.
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Integrating on (0, 1), this implies k = −
∫ 1

0

h(x) dx.

Recall that by assumption (H4)

A = D2W (λ∗) is invertible with λ∗ = (θ∗, L∗).

Therefore there exists ε0 > 0, such that for |λ0 − λ∗| < ε0, A
0 = D2W (λ0) is still invertible

and
Λ̄′ = (A0)−1(h+ k).

This shows that

Λ̄(x) =

∫ x

0

(A0)−1(h(y) + k) dy

satisfies Λ̄ ∈ V1 and is the unique solution of (11.5) satisfying (11.4). Moreover there exists
a constant C > 0 such that

|Λ̄|W 1,∞(R) ≤ C|(A0)−1|L∞|h+ k|L∞(R)
≤ 2C|(A0)−1|L∞|h|L∞(R)
≤ 2C|(A0)−1|L∞|g|V2 .

This shows that (DΛΨ(Λ0))
−1 exists and is continous from V2 to W 1,∞(R). We have

(11.6) Ψ(Λ0) = 0.

Therefore we can apply the inverse function theorem in Banach spaces. This shows that (up

to reduce ε1 > 0) for every f̄ such that |f̄ |L∞ < ε1 with f̄(x + 1) = f̄(x) and

∫
R/Z

f̄ = 0,

there exists Λ ∈ U1 such that

(11.7) Ψ(Λ) = (0, f̄).

Step 4: Conclusion
Therefore

(W ′
λ(Λ

′))′ = (0, f̄),

and then for some constant k̄ ∈ R4

W ′
λ(Λ

′) = (0,

∫ x

0

f̄(y) dy) + k̄.

Again D2W (λ0) is inversible and the inverse function theorem applies toW ′
λ and gives (again

up to reduce ε1 > 0)

Λ′ = (W ′
λ)

−1

(
(0,

∫ x

0

f̄(y) dy) + k̄

)
,

which shows that Λ′′ ∈ L∞(R) and Λ ∈ W 2,∞(R).
Step 5: Proof of (11.3)
Because of (11.6) and (11.7) and the fact that Ψ is invertible, we deduce

Λ = Ψ−1((0, f̄)) and Λ0 = Ψ−1((0, 0)).

Using moreover the fact that Ψ−1 is C1, we deduce that there exists a constant C such that

|Λ− Λ0|W 1,∞(R) ≤ C|(0, f̄)− (0, 0)|V2 ≤ C|f̄ |L∞(R),
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which implies (11.3).
�

Proof of Theorem 11.1
By Proposition 11.2, given f̄ satisfying (1.2) and (1.4), and given any (θ0, L0) satisfying
|(θ0, L0) − (θ∗, L∗)| ≤ ε1, there exists a solution (α,Φ) of the Euler-Lagrange system (1.5)
namely {

(W ′
Φ′(α′,Φ′))′ = f̄ on R

(W ′
α′(α′,Φ′))′ = 0 on R,

satisfying the periodic conditions (1.1).
Step 1: Proof of (11.1)
We have (W ′

Φ′(α′,Φ′))′ = f̄ , then there exists a constant Σ̃0 ∈ R3 such that

(11.8) W ′
Φ′(α′(x),Φ′(x)) = Σ̃0 +

∫ x

0

f̄(y) dy.

On the other hand, we have Ti = T0 +
i∑

j=1

f0
j which shows using (1.14)

Ti = T0 +
i∑

j=1

∫ ε(j+ 1
2
)

ε(j− 1
2
)

f̄(y) dy = T0 +

∫ ε(i+ 1
2
)

ε
2

f̄(y) dy.

From (9.2), we get

|T0 +
∫ ε(i+ 1

2
)

ε
2

f̄(y) dy −W ′
L(θi, Li)| ≤ C1ε

p−1
p+1 .

Using (11.8), we get for x ∈ [(i− 1
2
)ε, (i+ 1

2
)ε] (using the fact that f̄ is bounded in L∞)

(11.9) |T0 − Σ̃0 +W ′
Φ′(α′(x),Φ′(x))−W ′

L(θi, Li)| ≤ C2ε
p−1
p+1 .

This implies (11.1) with Σ0 = T0 − Σ̃0.
Step 2: Proof of (11.2)
We have (W ′

α′(α′,Φ′))′ = 0, then there exists a constant σ̃0 ∈ R such that

(11.10) W ′
α′(α′,Φ′) = σ̃0.

From (9.3), there exists a constant C3 > 0 such that we have for mi =Mi(ãi) · L̂i

|mi −W ′
θ(θi, Li)| ≤ C3ε

¯̄γ.

Using (10.1), we get
|m̄0 −W ′

θ(θi, Li)| ≤ C4ε
γ.

Using (11.10), we get for x ∈ [(i− 1
2
)ε, (i+ 1

2
)ε]

(11.11) |m̄0 − σ̃0 +W ′
α′(α′(x),Φ′(x))−W ′

θ(θi, Li)| ≤ C4ε
γ.

which implies (11.2) with σ0 = m̄0 − σ̃0.

�
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12 Proof of error estimates: Theorem 2.15 and Corol-

lary 2.16

The goal of this section is to prove Theorem 2.15 and Corollary 2.16.

Proof of Theorem 2.15
Step 1: Definition of (α̃, Φ̃) and (α,Φ)
Step 1-1: Definition of (α̃, Φ̃)
Let us define an approximation (α̃, Φ̃) (that we think to be close to (α,Φ) to define later)
by setting

(12.1)

{
α̃′(x) = (1− t)θi + tθi+1

Φ̃′(x) = (1− t)Li + tLi+1

∣∣∣∣ with t =
x− iε

ε
for iε ≤ x ≤ (i+ 1)ε.

where (θi, Li) are given in Theorem 11.1. Notice that because of (1.7), we can choose (θi, Li)
and ãi given in Theorem 8.2 such that we have{

(θi+Nε , Li+Nε) = (θi, Li)
ãi+Nε = ãi +NεL

0.

From (8.6) we have ãi+1 − ãi − Li = O(ε). With L0 defined in (1.7), we get

NεL
0 =

Nε−1∑
i=0

ãi+1 − ãi = O(Nεε) +
Nε−1∑
i=0

Li,

which implies

L0 = O(ε) + ε
Nε−1∑
i=0

Li.

We compute∫ 1

0

Φ̃′(x) dx =
Nε−1∑
i=0

∫ iε+ε

iε

Φ̃′(x) dx =
Nε−1∑
i=0

∫ 1

0

(
(1− t)Li + tLi+1

)
ε dt

= ε
Nε−1∑
i=0

[
(t− t2

2
)Li +

t2

2
Li+1

]1
0
= ε

Nε−1∑
i=0

1

2
(Li + Li+1).

Using the Nε-periodicity of Li and the fact that Nε =
1

ε
, we get

(12.2)

∫ 1

0

Φ̃′(x) dx = O(ε) + ε

Nε−1∑
i=0

Li = L0 +O(ε).

Similarly we have

(12.3)

∫ 1

0

α̃′(x) dx = O(ε) + ε

Nε−1∑
i=0

θi := θ0.
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Step 1-2: Properties of (θ0, L0)
By (9.1) and (2.18) we deduce that there exists a constant C > 0 such that we have respec-
tively

Di(X, θi, Li) ≤ Cε0,

and
Di+1(X, θ

∗, L∗) ≤ Cε0.

Therefore we can apply Proposition 5.4 and deduce for ε ≤ ε0 with ε0 small enough that

(12.4)

{
|θi − θ∗| ≤ Cε0
|Li − L∗| ≤ Cε0.

Using (12.2) and (12.3), this implies (2.19), i.e.

(12.5)

{
|θ0 − θ∗| ≤ Cε0
|L0 − L∗| ≤ Cε0.

Step 1-3: Definition of (α,Φ)
For ε0 small enough, we deduce from (12.5) that |θ0 − θ∗| ≤ ε1 and |L0 − L∗| ≤ ε1 and then
we can apply Theorem 11.1 which shows the existence of a solution (α,Φ) of (1.1), (1.5).
We get in particular

(12.6)


∫ 1

0

Φ̃′(x) dx =

∫ 1

0

Φ′(x) dx+O(ε)∫ 1

0

α̃′(x) dx =

∫ 1

0

α′(x) dx.

Step 2: Estimate on the differences of W ′

By (12.1) we have {
α̃′ = θi + t(θi+1 − θi)

Φ̃′ = Li + t(Li+1 − Li).

By (9.1) and (5.8), we have θi+1 − θi = O(ε) and Li+1 − Li = O(ε), and then{
|α̃′ − θi| = O(ε)

|Φ̃′ − Li| = O(ε).

Using the regularity of W , we deduce from (11.1) and (11.2) that there exists a constant C1

such that we have

(12.7)

{
|Σ0 +W ′

L(α
′(x),Φ′(x))−W ′

L(α̃
′(x), Φ̃′(x))| ≤ C1ε

γ̄

|σ0 +W ′
θ(α

′(x),Φ′(x))−W ′
θ(α̃

′(x), Φ̃′(x))| ≤ C1ε
γ.

For simplicity, we denote 
u0 = (θ0, L0)
c0 = (σ0,Σ0)

ũ(x) = (α̃′(x), Φ̃′(x))
u(x) = (α′(x),Φ′(x)).

Because γ̄ > γ, we see that there exists a constant C2 such that for λ = (θ, L)

(12.8) |c0 +W ′
λ(u(x))−W ′

λ(ũ(x))| ≤ C2ε
γ.
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Step 3: Estimate on u− ũ
We consider the Taylor expansion

W ′
λ(ũ(x)) = W ′

λ(u(x)) +D2W (u(x)) · (ũ(x)− u(x)) +O
(
|ũ(x)− u(x)|ω(|ũ− u|L∞)

)
,

where ω is the modulus of continuity of D2W on U0.
Taking into account the invertibility of D2W (u(x)), which follows from assumption (H4) (for
u close to u0 and u0 close to (θ∗, L∗)), we deduce

(12.9) |ũ(x)− u(x)−
(
D2W (u(x))

)−1
(c0)| ≤ O

(
εγ + |ũ(x)− u(x)|ω(|ũ− u|L∞)

)
,

and then we deduce that there exists a constant C3 such that we have
(12.10)

|ũ(x)− u(x)−
(
D2W (u0)

)−1
(c0)| ≤ C3

(
εγ + |ũ− u|L∞ω(|ũ− u|L∞) + |c0|ω(|u− u0|L∞)

)
.

Using (12.6), we deduce∫ 1

0

ũ(x) dx =

∫ 1

0

(α̃′(x), Φ̃′(x)) dx =

∫ 1

0

(α′(x),Φ′(x)) dx+O(ε) =

∫ 1

0

u(x) dx+O(ε).

Then integrating (12.10) on the interval (0, 1), we get

|
(
D2W (u0)

)−1
(c0)| ≤ C3(ε

γ + |ũ− u|L∞ω(|ũ− u|L∞) + |c0|ω(|u− u0|L∞) +O(ε).

Up to reduce ε0, we can choose |u− u0|L∞ small enough using (11.3), and then there exists
a constant C4 such that

|c0| ≤ C4(ε
γ + |ũ− u|L∞ω(|ũ− u|L∞)).

Hence (12.9) implies that there exists a constant C5 such that we have

|ũ− u|L∞ ≤ C5ε
γ,

where we have used the fact that |ũ− u|L∞ is small because u(x) and ũ(x) are both close to
u0, respectively by (11.3) and (12.4), for ε0 small enough.
Step 4: Conclusion
Then we have {

|α̃′ − α′|L∞ ≤ C5ε
γ

|Φ̃′ − Φ′|L∞ ≤ C5ε
γ.

For the choice x = jε, we get that there exists a constant C6 such that

(12.11)

{
|θj − α′(jε)| ≤ C6ε

γ

|Lj − Φ′(jε)| ≤ C6ε
γ.

Using (8.3) and (8.4), we deduce that there exists a constant C7 such that we have

(12.12) |Xj − ãj| ≤ C7.

Using (8.7) and (8.8), we deduce that there exists a constant C8 such that

|Xj+1 − ãj+1 −Rθj ,L̂j
(Xj − ãj)| ≤ C8ε.

83



Using (12.11), (12.12), Lemma 13.8 and Lemma 13.9 ii), we deduce that there exists a
constant C9 such that we have

(12.13) |Xj+1 − ãj+1 −R
α′(jε),Φ̂′(jε)

(Xj − ãj)| ≤ C9ε
γ.

Using (8.6) and (12.11), we deduce that there exists a constant C10 such that we have

(12.14) |ãj+1 − ãj − Φ′(jε)| ≤ C10ε
γ.

Finally (12.13), (12.14),(12.12) and the choice C = max(C7, C9, C10) prove (2.21).
Step 5: Proof of (2.20)
By Theorem 9.1 we have (9.1), i.e. there exists a constant C11 such that

Dj(X, θj, Lj) ≤ C11ε.

Therefore there exists X̂∗,j ∈ Ĉθj ,Lj such that

(12.15) sup
|β|≤q

|Xj+β − X̂∗,j
j+β| ≤ C11ε.

We can write X̂∗,j = aj + X∗,j with aj ∈ L⊥
j and X∗,j ∈ Cθj ,Lj . Moreover there exists

(δ, η) ∈ R× R such that X∗,j
j = Rδ,L̂j

(X ∗
0 (θj, Lj)) + ηL̂j. Then we can write

X̂∗,j
j = Y ∗,j

j + cj with Y ∗,j
j := Rδ,L̂j

(X ∗
0 (θj, Lj)) and cj = ηL̂j + aj.

We define

̂̄X∗,j
j = Ȳ ∗,j

j + cj with Ȳ ∗,j
j := R

δ,̂̄Lj
(X ∗

0 (θ̄j, L̄j)) and

{
θ̄j := α′(jε)
L̄j := Φ′(jε),

with

(12.16) ̂̄X∗,j
∈ Ĉ θ̄j ,L̄j .

For |β| ≤ q, we compute

̂̄X∗,j
j+β − X̂∗,j

j+β

= Ȳ ∗,j
j+β − Y ∗,j

j+β

= R
βθ̄j ,

̂̄Lj

(
R

δ,̂̄Lj
(X ∗

0 (θ̄j, L̄j))
)
+ βL̄j −Rβθj ,L̂j

(
Rδ,L̂j

(X ∗
0 (θj, Lj))

)
+ βLj

= R
βθ̄j+δ,̂̄Lj

(
X ∗

0 (θ̄j, L̄j)−X ∗
0 (θj, Lj)

)
+
(
R

βθ̄j+δ,̂̄Lj
−Rβθj+δ,L̂j

)
(X ∗

0 (θj, Lj)) + β(L̄j − Lj).

We deduce

| ̂̄X∗,j
j+β − X̂∗,j

j+β| ≤ |X ∗
0 (θ̄j, L̄j)−X ∗

0 (θj, Lj)|+ |R
βθ̄j+δ,̂̄Lj

−Rβθj+δ,L̂j
||X ∗

0 (θj, Lj)|+ |β||L̄j −Lj|.

Using the Lipschitz regularity of the map X ∗
0 , Lemma 13.8 and (12.11), we deduce that there

exists a constant C12 > 0 such that

| ̂̄X∗,j
j+β − X̂∗,j

j+β| ≤ C12(|θ̄j − θj|+ |L̄j − Lj|) ≤ C12ε
γ.
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From (12.15), we deduce that there exists a constant C > 0 such that

sup
|β|≤q

|Xj+β − ̂̄X∗,j
j+β| ≤ Cεγ,

which proves (2.20). This ends the proof of Theorem 2.15.
�

Proof of Corollary 2.16
Step 1: Proof of (12.17)
We recall the second line in (2.21)

|ãj+1 − ãj − Φ′(jε)| ≤ Cεγ.

Then we get
|εãj+1 − εãj − εΦ′(jε)| ≤ Cε1+γ.

On the other hand we deduce by Proposition 11.2 that Φ ∈ W 2,∞, and then

|Φ((j + 1)ε)− Φ(jε)− εΦ′(jε)| ≤ Cε2.

Using the two last inequalities, we get

|ej+1 − ej| ≤ Cε1+γ with ej := εãj − Φ(jε),

and then by iteration for 0 ≤ j ≤ 1

ε
− 1, we get

|ej − e0| ≤ Cεγ,

i.e.

(12.17) |εãj − Φ(jε)− a| ≤ Cεγ,

with a = e0.
Step 2: Conclusion
Using the first line of (2.21) and (12.17), we obtain (2.22).

�

13 Appendix

This appendix is composed of four independent subsections. In Subsection 13.1, we present
miscellaneous results about the action of rotations. In Subsection 13.2, we give some esti-
mates on rotations. In the Subsection 13.3, we give a few estimates on some series. Finally in
Subsection 13.4, we propose an axiomatic approach to the introduction of perfect nanotubes,
which is not necessary for the proof of the results in this paper, but which should shed some
light on the notion of perfect nanotubes.
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13.1 Action of rotations

Lemma 13.1 (Rotation and cross product)
Let us consider a rotation R ∈ SO(3). Then for every x, y ∈ R3, we have

R(x)×R(y) = R(x× y).

Proof of Lemma 13.1
Let z ∈ R3, then we have

Rz · (Rx×Ry) = det(Rz,Rx,Ry) = det(R)det(z, x, y) = z · (x× y) = Rz ·R(x× y).

This is true for all Rz ∈ R3, and then R(x)×R(y) = R(x× y).

�

Lemma 13.2 (Elimination of the rotation)
Let us set R = Rθ,L̂. Then for every x, y ∈ R3 we have

L · (R(x)×R(y)) = L · (x× y).

Proof of Lemma 13.2
This is a straightforward consequence of Lemma 13.1.

�

Lemma 13.3 (Rewriting the mixed product)
Let L 6= 0 and x, y ∈ R3. Then we have

L̂ · (x× y) = (Rπ
2
,L̂(x))

⊥
L̂ · y,

where (Rπ
2
,L̂(x))

⊥
L̂ is the component of (Rπ

2
,L̂(x)) orthogonal to L̂.

Proof of Lemma 13.3
We compute

L̂ · (x× y) = (L̂× x) · y = (Rπ
2
,L̂(x))

⊥
L̂ · y.

�

Lemma 13.4 (Composition of a rotation with the gradient of the potential)
For every x ∈ R3 and any rotation R, and with our definition (1.9) of V we have

∇V (R(x)) = R(∇V (x)).

Proof of Lemma 13.4
We have V (x) = V0(|x|), then ∇V (x) = V ′

0(|x|).
x

|x|
, and we have:

∇V (R(x)) = V ′
0(|R(x)|).

R(x)

|R(x)|
= R

(
V ′
0(|x|) ·

x

|x|

)
= R(∇V (x)).

�
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Lemma 13.5 (Composition of a rotation with the hessian of the potential)
For every x ∈ R3 and any rotation R, and with our definition (1.9) of V we have

RD2V (R−1x) = D2V (x)R.

Proof of Lemma 13.5
By Lemma 13.4 and for every y ∈ R3, we have ∇V (Ry) = R(∇V (y)), which can be
written in coordinates (with the Einstein convention of summation on repeated indices)

Rij(∇jV (y)) = ∇iV (Ry)),

and by derivation we have

RijD
2
jkV (y) = D2

ij′V (Ry)Rj′k,

i.e.
RD2V (y) = D2V (Ry)R.

Finally setting x = Ry, we deduce

RD2V (R−1x) = D2V (x)R.

�

Lemma 13.6 (Rotation of a special perfect nanotube)
Let θ ∈ R, L ∈ R3\{0}. Then for any rotation R ∈ SO(3) we have
i) X ∈ Cθ,RL if and only if X = RY with Y ∈ Cθ,L.
ii)we have

(13.1) R−1Rθ,RL̂R = Rθ,L̂.

Proof of Lemma 13.6
Proof of ii)

Let us consider a direct orthonormal basis (e1, e2, e3) of R3 with e3 = L̂.

Then we know that (Re1, Re2, Re3 = RL̂) is also a direct orthonormal basis.
To show (13.1), it suffices to show that

(13.2)
(
R−1Rθ,RL̂R

)
(ei) = Rθ,L̂(ei) for i ∈ {1, 2, 3}.

For e3 = L̂, we have(
R−1Rθ,RL̂R

)
(L̂) = R−1

(
Rθ,RL̂(RL̂)

)
= R−1(RL̂) = L̂ = Rθ,L̂(L̂).

We do the computation for e1(
R−1Rθ,RL̂R

)
(e1) = R−1

(
Rθ,RL̂(Re1)

)
= R−1

(
(cos θ)Re1 + (sin θ)Re2

)
= (cos θ)R−1(Re1) + (sin θ)R−1(Re2)
= (cos θ)e1 + (sin θ)e2
= Rθ,L̂(e1),
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where in the second line we have used the fact that (Re1, Re2, Re3 = RL̂) is a direct or-
thonormal basis, joint to the definition of Rθ,RL̂.
For e2, a similar computation shows (13.2) for i = 2.
Proof of i)
Let us consider X = RY .

X ∈ Cθ,RL iff Xj+1 = RL+Rθ,R̂L(Xj)

iff RYj+1 = RL+Rθ,R̂L(RYj)

iff Yj+1 = L+R−1Rθ,R̂LRYj
iff Yj+1 = L+Rθ,L̂(Yj)

iff Y ∈ Cθ,L,

where we have used (13.1) in the fourth line.
�

We have the following result whose proof is straightforward.

Lemma 13.7 (Derivative of rotations)
For u ∈ R3, we have

(13.3) Rθ,L̂(u) = (u.L̂)L̂+ (cos θ)(u− (u.L̂)L̂) + (sin θ)(L̂× u).

We also have

(13.4) L̄.∇L(Rθ,L̂(u)) =
(
(u. ¯̄L)L̂+ (u.L̂) ¯̄L

)
(1− cos θ) + (sin θ)( ¯̄L× u),

with

(13.5) ¯̄L := L̄.∇L(L̂) =
L̄

|L|
− L

|L|3
(L.L̄).

13.2 Estimates on rotations

Lemma 13.8 (Control of rotations by angles and axes)

Let us consider two angles θ2, θ1 ∈ R and two axes L̂2, L̂1 ∈ R3, then we have

|Rθ2,L̂2
−Rθ1,L̂1

| ≤ 5|L̂2 − L̂1|+ |θ2 − θ1|.

Proof of Lemma 13.8
Step 1: Control by axes
For x ∈ R3, we recall that

Rθ2,L̂i
(x) = (x · L̂i)L̂i + (x− (x · L̂i)L̂i) cos θ2 + (L̂i × x) sin θ2 for i = 1, 2.

Then we have for x ∈ R3

(13.6) (Rθ2,L̂2
−Rθ2,L̂1

)(x) = ((x · L̂2)L̂2 − (x · L̂1)L̂1)(1− cos θ2) + ((L̂2 − L̂1)× x) sin θ2.

But we have

(x · L̂2)L̂2 − (x · L̂1)L̂1 = (x · L̂2)L̂2 − (x · L̂1)L̂2 + (x · L̂1)L̂2 − (x · L̂1)L̂1

= (x · (L̂2 − L̂1))L̂2 + (x · L̂1)(L̂2 − L̂1),
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and then
|(x · L̂2)L̂2 − (x · L̂1)L̂1| ≤ 2|x||L̂2 − L̂1|.

Using (13.6), we deduce

|(Rθ2,L̂2
−Rθ2,L̂1

)(x)| ≤ 2|x||L̂2 − L̂1||1− cos θ2|+ |x||L̂2 − L̂1|| sin θ2|
≤ 5|x||L̂2 − L̂1|,

and finally we deduce
|Rθ2,L̂2

−Rθ2,L̂1
| ≤ 5|L̂2 − L̂1|.

Step 2: Control by angles
We have

(Rθ2,L̂2
−Rθ1,L̂2

)(x)

= (cos θ2 − cos θ1)(x− (x · L̂2)L̂2) + (sin θ2 − sin θ1)(L̂2 × x)

= −2 sin

(
θ2 + θ1

2

)
sin

(
θ2 − θ1

2

)
(x− (x · L̂2)L̂2) + 2 cos

(
θ2 + θ1

2

)
sin

(
θ2 − θ1

2

)
(L̂2 × x)

= 2 sin

(
θ2 − θ1

2

)(
− sin

(
θ2 + θ1

2

)
(x− (x · L̂2)L̂2) + cos

(
θ2 + θ1

2

)
(L̂2 × x)

)
.

But we have {
|x− (x · L̂2)L̂2| ≤ |x|
|L̂2 × x| ≤ |x|.

Using the fact that x− (x · L̂2)L̂2 and L̂2 × x are orthogonal with the same length, we get

|(Rθ2,L̂2
−Rθ1,L̂2

)(x)| ≤ 2| sin(θ2 − θ1
2

)||x|
≤ |θ2 − θ1||x|.

And finally we have
|Rθ2,L̂2

−Rθ1,L̂2
| ≤ |θ2 − θ1|.

Step 3: General control
We deduce

|Rθ2,L̂2
−Rθ1,L̂1

| ≤ |Rθ2,L̂2
−Rθ1,L̂2

|+ |Rθ1,L̂2
−Rθ1,L̂1

|
≤ |θ2 − θ1|+ 5|L̂2 − L̂1|,

where in the last line we have used Step 1 and Step 2.
�

Lemma 13.9 (A control of the axes)
Let us consider two axes L and L′ such that

(13.7) |L| ≥ δ > 0 for some δ > 0.

If
|L− L′| ≤ ε,

then there exists a constant C = C(δ) such that we have
i)
∣∣|L| − |L′|

∣∣ ≤ ε,

ii) |L̂− L̂′| ≤ Cε.
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Proof of Lemma 13.9
Proof of i)
We notice that the map L 7→ |L| is 1−Lipschitz.
Proof of ii)

|L− L′| =
∣∣|L|L̂− |L′|L̂′

∣∣
=

∣∣|L|L̂− |L|L̂′ + |L|L̂′ − |L′|L̂′
∣∣

=
∣∣|L|(L̂− L̂′) + (|L| − |L′|)L̂′

∣∣
≥ |L||L̂− L̂′| −

∣∣|L| − |L′|
∣∣.

Then we deduce
|L||L̂− L̂′| ≤

∣∣|L| − |L′|
∣∣+ |L− L′| ≤ 2ε.

Using (13.7), we deduce

|L̂− L̂′| ≤ Cε with C =
2

δ
.

�
Lemma 13.10 (Error estimate on rotations)
Let vi ∈ R3, i = 1, 2 two vectors satisfying:

(13.8) |v1|, |v2| ≤
1

c0
, |v1 × v2| ≥ c0 > 0,

for some constant c0 > 0. Then there exists c = c(c0) > 0, such that the following holds.
Let R, R∗ ∈ SO(3), then

|(R−R∗)(vi)| ≤ ε for i = 1, 2 implies |R−R∗| ≤ c ε.

If R∗ = Rθ∗,L̂∗ with π ≥ θ∗ ≥ δ > 0, then there exists cδ = cδ(c0) such that we can write

R = R
θ̃,̂̃L with (θ̃, L̃) ∈ R× (R3\{0}), and

(13.9)

{
|̂̃L− L̂∗| ≤ cδε

|θ̃ − θ∗| ≤ cδε.

Proof of Lemma 13.10
Step 1: Proof of |R−R∗| ≤ c1 ε
If R = R∗, we have nothing to prove. So we assume now that R 6= R∗.
Then (up to change l̂ in −l̂) there exists an angle α ∈ (0, π] such that

Rα,l̂ = R−1R∗.

Let us consider an orthonormal basis (e1, e2, e3) of R3 with e3 = l̂ , and a vector x =
x1e1 + x2e2 + x3e3 ∈ R3.
We have

(13.10)

|(R−R∗)(x)| = |(I −Rα,l̂)(x)|

=

∣∣∣∣∣∣

 1 0 0

0 1 0
0 0 1

−

 cosα − sinα 0
sinα cosα 0
0 0 1


 x1

x2
x3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 (1− cosα)x1 + (sinα)x2

(− sinα)x1 + (1− cosα)x2
0

∣∣∣∣∣∣
= 2

(
sin

α

2

)√
x21 + x22.
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Then we have

(13.11) |(R−R∗)(x)| ≤ 2
(
sin

α

2

)
|x|.

Because of (13.8), we know that v1 and v2 generate a plane which contains at least a vector

perpendicular to l̂, that we can call e2 without loss of generality.
Therefore, we can write

e2 = a1v1 + a2v2.

We have for i = 1, 2, e2 × vi = ajvj × vi for j ∈ {1, 2}\{i}.
Therefore

|aj| ≤
|vi|

|v1 × v2|
≤ 1

(c0)2
.

From (13.10), we deduce

2 sin
α

2
= |(R−R∗)(e2)| ≤ (|a1|+ |a2|)ε ≤

2

(c0)2
ε,

i.e.

(13.12) 2 sin
α

2
≤ c1 ε.

with c1 =
2

(c0)2
.

Then by (13.11), we deduce
|(R−R∗)(x)| ≤ c1 ε|x|,

and finally we have

(13.13) |R−R∗| ≤ c1 ε.

Step 2: Control of the axis of rotation
Let β ∈ [0, π] be the angle between L̂ and L̂∗. From (13.13), we have

|(Rθ,L̂ −Rθ∗,L̂∗)(L̂)| ≤ c1ε|L̂|,

i.e.
|L̂−Rθ∗,L̂∗(L̂)| ≤ c1ε.

We define u as the orthogonal projection of L̂ on RL∗ by u = (L̂ · L̂∗)L̂∗ and set u′ = L̂− u.
Then we have

|u′| = sin β ≤ 1.

Case 1: β ∈
[
0,
π

2

]
We compute

c1ε ≥ |L̂−Rθ∗,L̂∗(L̂)| = |u′ −Rθ∗,L̂∗(u
′)| = 2

∣∣∣∣sin θ∗2
∣∣∣∣ |u′|.

Using the fact that θ∗ ∈ [0, π] and |θ∗| ≥ δ > 0, we get∣∣∣∣sin θ∗2
∣∣∣∣ ≥ θ∗

π
≥ δ

π
.
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We deduce that
sin β = |u′| ≤ πc1

2δ
ε.

Because β ∈
[
0,
π

2

]
, we have

|L̂− L̂∗| = 2 sin
β

2
≤ β ≤ π

2
sin β ≤ c3ε,

with c3 =
(π
2

)2 c1
δ
.

Case 2: β ∈
[π
2
, π
]

Let θ̄ = 2π − θ ∈ [π, 2π], β̄ = π − β ∈
[
0,
π

2

]
and L̄ = −L.

Notice that β̄ is the angle between L̂∗ and ̂̄L and Rθ,L̂ = R
θ̄,̂̄L.

Applying case 1, we get

|L̂∗ − ̂̄L| = 2 sin
β̄

2
≤ β̄ ≤ c3ε.

Finally we set

(θ̃, L̃) =

 (θ, L) if β ∈
[
0,
π

2

]
(θ̄, L̄) if β ∈

(π
2
, π
]
,

and we have proved that there exists a constant c3 > 0 such that

(13.14) |̂̃L− L̂∗| ≤ c3ε.

Step 3: Control on the angle of rotation
Then we can compute∣∣∣∣∣2 sin

(
θ̃ − θ∗

2

)∣∣∣∣∣ = |Rθ̃,L̂∗ −Rθ∗,L̂∗ |

≤ |Rθ̃,L̂∗ −R
θ̃,̂̃L|+ |R

θ̃,̂̃L −Rθ∗,L̂∗|

≤ 5|L̂∗ − ̂̃L|+ |Rθ,L̂ −Rθ∗,L̂∗ |
≤ 5c3ε+ c1ε
≤ c4ε,

where in the third line we have used Lemma 13.8 , in the fourth line we have used (13.13)
and (13.14) and in the last line we set c4 = 5c3 + c1.

Let γ ∈
[
0,
π

2

]
such that sin γ =

∣∣∣∣∣sin
(
θ̃ − θ∗

2

)∣∣∣∣∣.
We have

0 ≤ γ ≤ π

2
sin γ ≤ 1

2
c5ε,

with c5 =
π

2
c4. Then we have

θ̃ − θ∗

2
= ±γ mod(π).
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This implies that there exists k ∈ Z such that

|θ̃ − θ∗ − 2kπ| ≤ c5ε.

Up to change θ̃ in θ̃ − 2kπ we deduce (13.9).
�

13.3 Convergent series

Lemma 13.11 (Convergent series)
Let n ∈ {0, 1, 2}, q > 1 and ρ ≥ 1. Then there exists a constant C = C(q, n) such that∑

1 ≤ j ≤ ρ
j′ ≥ ρ

1 + jn

(j + j′)q+n
≤ C

ρq−2
.

The proof of Lemma 13.11 is easy and is left to the reader.

Lemma 13.12 (Convergent series)
Let n ∈ {0, 1, 2}, q > 2 and ρ ≥ 1. Then there exists a constant C = C(q, n) such that∑

j ≥ ρ
j′ ≥ 0

1 + jn

(j + j′)q+n
≤ C

ρq−2
.

Proof of Lemma 13.12
Case ρ ≥ 3:
For j ≥ ρ and j′ ≥ 0, for x ∈ [j, j + 1] and y ∈ [j′, j′ + 1] we have 3 ≤ ρ ≤ x+ y ≤ j + j′ + 2
and

1 + jn

(j + j′)q+n
≤ 1 + xn

(x+ y − 2)q+n
.

Therefore ∑
j ≥ ρ
j′ ≥ 0

1 + jn

(j + j′)q+n
≤

∑
j ≥ ρ
j′ ≥ 0

∫
(j,j′)+[0,1]2

1 + xn

(x+ y − 2)q+n
dxdy

=

∫
x≥ρ,y≥0

1 + xn

(x+ y − 2)q+n
dxdy

=

∫
x≥ρ

1 + xn

(q + n− 1)(x− 2)q+n−1
dx

≤ C1

∫
x̄≥ρ−2

1

(q + n− 1)x̄q−1
dx̄

≤ C2

(ρ− 2)q−2

≤ C

ρq−2
,

where in the fourth line we have set x− 2 = x̄ and expanded the polynomial xn = (x̄+ 2)n,
and where C1 is a constant which depends on n and C2 is a constant which depends on n
and q.
Case ρ ≥ 1:
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We split the series as
∑
j ≥ ρ
j′ ≥ 0

=
∑
j ≥ 3
j′ ≥ 0

+
∑

j = 1, 2
j′ ≥ 0

, where we bounded the last series directly.

�

13.4 Axiomatic approach to perfect nanotubes

Definition 13.13 (Axioms for a perfect nanotube)
A perfect nanotube Y of axis L0 ∈ R3\{0} is a collection of atoms i.e. Y = {yj ∈ R3, j ∈ Z}
satisfying the following axioms
i) (Tube shape)

there exists a constant C such that d(yj,RL0) ≤ C for all j ∈ Z
ii) (Maximum density)

there exists a constant c > 0 such that inf
j 6=k

|yj − yk| ≥ c > 0

iii) (Minimum density)
there exists ρ > 0, such that for all b ∈ RL0, we haveB(b, ρ) ∩ Y 6= ∅
whereB(b, ρ) is the closed ball of center b and radius ρ,

and such that there exists an even isometry T : R3 → R3 which leaves Y invariant, i.e.

(13.15) T (Y ) = Y,

and which has no fixed point, i.e.

(13.16) T (x) 6= x for all x ∈ R3.

We recall that an even isometry T is a map such that |T (x) − T (0)| = |x − 0|, and which
transforms a direct orthonormal basis (ei)1≤i≤3 into a direct orthonormal basis (T (ei) −
T (0))1≤i≤3. Then it is possible to show the following result (whose proof is left to the reader,
see [29] for a proof).

Proposition 13.14 (Perfect nanotubes)
Given a perfect nanotube Y of axis L0 ∈ R3\{0} (in the sense of Definition 13.13), there
exists an angle θ ∈ [0, 2π), a vector L ∈ RL0\{0} and a vector a ∈ R3 such that we have

T (Y ) = a+ T θ,L(Y − a),

where T (Y ) = {T (yj), j ∈ Z} and Y − a = {yj − a, j ∈ Z}.
Then X := Y − a is perfect nanotube of axis L0 that satisfies

T θ,L(X) = X.

Moreover, there exists K ∈ N\{0} and a set of K distinct atoms {X0,0, · · · , X0,K−1} ⊂ X
such that

X0,l 6= (T θ,L)j(X0,m) for all j ∈ Z\{0} and m ∈ {0, · · · , K − 1},

and
Xj,l = (T θ,L)j(X0,l) for all j ∈ Z and l ∈ {0, · · · , K − 1},

such that
X =

⋃
j ∈ Z

0 ≤ l ≤ K − 1

{
Xj,l

}
.

94



Notice that we can replace the set X by our standard notation for a nanotube (as it is given
in the introduction of this paper)

X = (Xj)j∈Z = ((Xj,l)0≤l≤K−1)j∈Z,

where each Xj = (Xj,l)0≤l≤K−1 in (R3)K is a cell of K atoms Xj,l in R3.
Notice also that the choice of the cell X0 is not unique.
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