イロト (得) (日) (日) (日) (日)

# Convexity Theory for the Term Structure Equation

# Erik Ekström Joint work with Johan Tysk

#### Department of Mathematics, Uppsala University

October 15, 2007, Paris

#### **Convexity Theory for the Black-Scholes Equation**

Let 
$$F(x,t) = e^{-r(T-t)}E_{x,t}g(X_T)$$
, where

$$dX_t = rX_t dt + \sigma(X_t, t) dW$$

Alternatively, consider the Black-Scholes equation

$$\begin{cases} F_t + \frac{1}{2}\sigma^2 F_{xx} + rxF_x - rF = 0\\ F(x,T) = g(x). \end{cases}$$

General result:

If *r* is deterministic and  $\sigma = \sigma(x, t)$  is Hölder(1/2) in *x*, measurable in *t*, then

$$g(x)$$
 convex  $\implies F(x,t)$  convex in x for any  $t < T$ .

Several references:

- Merton: Theory of rational option pricing (1973).
- Bergman, Grundy, Wiener: General properties of option prices (1996).
- El Karoui, Jeanblanc-Picque, Shreve: Robustness of the Black-Scholes formula (1998).
- Hobson: Volatility misspecification, option pricing and superreplication via coupling (1998).
- Janson, Tysk: Volatility time and properties of option prices (2003).

## Why this interest in convexity?

- 1. Convexity is a fundamental property.
- 2. Parameter monotonicity: if convexity is preserved, then the price is increasing in the volatility.
- 3. Robustness: a delta hedger overestimating the volatility obtains a superhedge for the claim.

#### The Term Structure Equation

Consider

$$u(x,t) = E_{x,t} \left[ e^{-\int_t^T X_s \, ds} g(X_T) \right],$$

where the interest rate X is modelled under the pricing measure as

$$dX = \beta(X_t, t) dt + \sigma(X_t, t) dW.$$

The corresponding term structure equation is

$$\begin{cases} F_t + \frac{1}{2}\sigma^2 F_{xx} + \beta F_x - xF = 0\\ F(x, T) = g(x) \end{cases}$$

 $(g \equiv 1 \text{ in the case of bonds}).$ 

# Is convexity preserved?

Only one reference:

 Alvarez: On the form and risk-sensitivity of zero coupon bonds for a class of interest rate models (2001).

Reason 3 above to study convexity is no longer directly applicable since the short rate is not a traded asset. However, 1 and 2 remain valid.

# Log-Convexity and Log-Concavity

Convexity properties of the logarithm of the bond prices are also natural to consider. They are connected with the notion of duration:

duration 
$$= -\frac{u_x}{u} = -(\ln u)_x.$$

(The analogous concept for options is elasticity.) The price is log-convex if the logarithm of the price is convex, and analogously for log-concavity.

Log-convexity: The relative decline of bond prices decreases when x grows, which corresponds to a decreasing duration in x.

Log-concavity: The relative decline of bond prices increases when x grows, which corresponds to an increasing duration in x.

#### **Statements of the Main Results**

Recall that  $dX = \beta(X, t) dt + \sigma(X, t) dW$  under the pricing measure.

- If β<sub>xx</sub> ≤ 2, then the bond prices are convex in the current short rate x, increasing in the volatility and decreasing in the drift.
- Similar results hold for call options written on bonds.
- For models with regular coefficients, the condition β<sub>xx</sub> ≤ 2 is also necessary for preservation of convexity.
- If β is concave and σ<sup>2</sup> is convex, then bond prices are log-convex.
- If β is convex and σ<sup>2</sup> is concave, then bond prices are log-concave.

If we demand log-concavity and log-convexity we recover the condition  $\beta$  and  $\sigma^2$  being linear for admitting an <u>affine term structure</u>.

#### Some well-known models

| Model | Dynamics                                                                          | С   | LCV | LCC |
|-------|-----------------------------------------------------------------------------------|-----|-----|-----|
| V     | $dX = k(\theta - X)  dt + \sigma  dB$                                             | Yes | Yes | Yes |
| CIR   | $dX = k(\theta - X)  dt + \sigma \sqrt{X}  dB$                                    | Yes | Yes | Yes |
| D     | $dX = bX dt + \sigma X dB$                                                        | Yes | Yes | No  |
| EV    | $dX = X(\eta - a \ln X)  dt + \sigma X  dB$                                       | Yes | Yes | No  |
| HW    | $dX = k(\theta_t - X)  dt + \sigma  dB$                                           | Yes | Yes | Yes |
| BK    | $dX = X(\eta_t - a \ln X)  dt + \sigma X  dB$                                     | Yes | Yes | No  |
| MM    | $dX = X(\eta_t - (\lambda - \frac{\gamma}{1 + \gamma t}) \ln X) dt + \sigma X dB$ | Yes | Yes | No  |

Table: Vasicek, Cox-Ingersoll-Ross, Dothan, Exponential Vasicek, Hull-White, Black-Karinski, Mercurio-Moraleda. The parameters are positive and  $\lambda \geq \gamma$ .

#### Where does the condition $\beta_{XX} \leq 2$ come from?

After a change of variables  $t \rightarrow T - t$  we have

$$\begin{cases} u_t = \alpha u_{xx} + \beta u_x - xu \\ u(x,0) = g(x) \end{cases} \qquad (\alpha = \frac{1}{2}\sigma^2)$$

Assume all coefficients are regular enough and that convexity is about to be lost, i.e. that u(x,t) is convex for  $0 \le t \le t_0$  and  $u_{xx}(x_0,t_0) = 0$ . Then

$$\partial_t u_{xx} = \partial_x^2 u_t = \partial_x^2 (\alpha u_{xx} + \beta u_x - xu)$$
  
=  $\alpha u_{xxxx} + (2\alpha_x + \beta)u_{xxx} + (\alpha_{xx} + 2\beta_x - x)u_{xx} + (\beta_{xx} - 2)u_x$ 

Since  $x \mapsto u_{xx}(x, t_0)$  has a minimum at  $x = x_0$  we have  $u_{xxxx} \ge u_{xxx} = u_{xx} = 0$  at  $(x_0, t_0)$ .

イロト (得) (日) (日) (日) (日)

#### We find

$$\partial_t u_{xx} \ge (\beta_{xx} - 2) u_x \ge 0$$

provided that  $\beta_{xx} \leq 0$  (since  $u_x \leq 0$ ).

This suggests that convexity is preserved if  $\beta_{xx} \leq 2$ . Theorem 5.1of the paper makes this argument rigorous: Convexity is preserved for decreasing pay-off functions if  $\beta_{xx} \leq 2$ .

#### **Parameter Monotonicity**

Assume that  $\beta(x,t) \leq \tilde{\beta}(x,t)$  and  $|\sigma(x,t)| \geq |\tilde{\sigma}(x,t)|$ . Let

$$dX_t = \beta(X_t, t) dt + \sigma(X_t, t) dW,$$

$$d\tilde{X}_t = \tilde{eta}(\tilde{X}_t, t) dt + \tilde{\sigma}(\tilde{X}_t, t) dW$$

and define

$$\begin{split} u(x,t) &= E_{x,t} \left[ e^{-\int_t^T X_s \, ds} g(X_T) \right], \\ \tilde{u}(x,t) &= E_{x,t} \left[ e^{-\int_t^T \tilde{X}_s \, ds} g(\tilde{X}_T) \right]. \end{split}$$

If either  $\beta_{xx} \leq 2$  or  $\tilde{\beta}_{xx} \leq 2$  and g is convex and decreasing, then  $\tilde{u}(x,t) \leq u(x,t)$ .

◆□> ◆圖> ◆目> ◆目> 目 のQ@

Assume that  $(x_0, t_0)$  is a first point where  $\tilde{u} \le u$  is about to be lost, i.e.  $\tilde{u}(x, t) \le u(x, t)$  for all  $0 \le t \le t_0$  and  $\tilde{u}(x_0, t_0) = u(x_0, t_0)$ . Then

$$\partial_t(u-\tilde{u})=(\alpha u_{xx}+\beta u_x-xu)-(\tilde{\alpha}\tilde{u}_{xx}+\tilde{\beta}\tilde{u}_x-x\tilde{u}).$$

Since  $x \mapsto u(x, t_0) - \tilde{u}(x, t_0)$  has a minimum at  $x = x_0$ , we have  $(u - \tilde{u})_{xx} \ge (u - \tilde{u})_x = u - \tilde{u} = 0$  at  $(x_0, t_0)$ . Thus

$$\partial_t (u - \tilde{u}) = \alpha u_{xx} - \tilde{\alpha} \tilde{u}_{xx} + (\beta - \tilde{\beta}) u_x \ge 0$$

provided  $u_{xx}$  or  $\tilde{u}_{xx}$  is non-negative (since  $u_x \leq 0$ ).

This indicates that the inequality  $\tilde{u} \le u$  is preserved. The argument is made precise in Theorem 6.1.

◇ □ ◇ → ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

#### **Bond call options**

The price of a bond call option is

$$C(x,t;T_1,T_2) = E_{x,t} \left[ e^{-\int_t^{T_1} X_s \, ds} (u(X_{T_1},T_1) - K)^+ \right],$$

where u is the pricing function of a  $T_2$ -bond.

#### Theorem

Assume that  $\beta_{xx} \le 2$ . Then the bond option price is convex in x at all times  $t \le T_1$ . Moreover, decreasing the drift and increasing the volatility gives a higher option price.

#### Proof.

It follows from Theorem 5.1 that  $u(x, T_1)$  is convex and decreasing. Therefore  $C(x, T_1; T_1, T_2) = (u(x, T_1) - K)^+$  is also convex and decreasing. Convexity follows from another application of Theorem 5.1.

Parameter monotonicity is similar.



#### Log-Convexity and Log-Concavity

Let  $F = \ln u(x, t)$ . Then F satisfies the non-linear equation

$$\begin{cases} F_t = \alpha F_{xx} + \alpha F_x^2 + \beta F_x - x \\ F(x,0) = 0. \end{cases}$$

Assume that  $(x_0, t_0)$  is a first point where convexity is about to be lost, i.e.  $x \mapsto F(x, t)$  is convex for  $0 \le t \le t_0$  and  $F_{xx}(x_0, t_0) = 0$ . Then

$$\partial_t F_{xx} = \partial_x^2 F_t = \partial_x^2 (\alpha F_{xx} + \alpha F_x^2 + \beta F_x - x)$$
  
=  $\alpha F_{xxxx} + (2\alpha_x + \beta) F_{xxx} + (\alpha_{xx} + 2\beta_x) F_{xx} + \beta_{xx} F_x$   
 $+ \alpha_{xx} F_x^2 + 4\alpha_x F_x F_{xx} + 2\alpha (F_x F_{xxx} + F_{xx}^2).$ 

Again,  $F_{xxxx} \ge F_{xxx} = F_{xx} = 0$  at  $(x_0, t_0)$ .

#### We obtain

$$\partial_t F_{xx} \geq \beta_{xx} F_x + \alpha_{xx} F_x^2,$$

which suggests that  $\beta$  concave and  $\alpha$  convex implies F being convex.

Similarly,  $\beta$  convex and  $\alpha$  concave implies *F* being concave.

These results are made precise in Theorems 8.1, 9.1 and 9.3.

#### More about the precise assumptions

$$dX_t = \beta(X_t, t) \, dt + \sigma(X_t, t) \, dW$$

where  $\beta, \sigma : \mathbb{R} \times [0, T] \to \mathbb{R}$  are continuous functions,  $\beta$  is locally Lipschitz in *x* and  $\sigma$  is locally Hölder(1/2) in *x*. Moreover,

$$|\sigma(x,t)| \le D(1+x^+)$$

 $|\boldsymbol{\beta}(\boldsymbol{x},t)| \leq \boldsymbol{D}(1+|\boldsymbol{x}|).$ 

The bound on  $\sigma$  implies that bond prices are finite. The pay-off functions we consider satisfy

$$0 \leq g(x) \leq M \max\{e^{-Kx}, 1\}.$$

- If g is as above, then the corresponding option price is finite.
- ► Continuity in the model parameters: if  $\beta_n \rightarrow \beta$  and  $\sigma_n \rightarrow \sigma$  uniformly on compact sets with uniform bounds on the growth, then

$$\lim_{n\to\infty} u^n(x,t) = u(x,t)$$

(this follows using a result by Bahlali, Mezerdi, Ouknine (2001)).

1

#### **Technical Remarks**

We often study the function V that solves the parabolic problem

$$\begin{cases} V_t = \alpha V_{xx} + \beta V_x - fV \\ V(x,0) = g(x). \end{cases}$$

This corresponds to the stochastic representation

$$V(x,t) = E_{x,t} \left[ e^{-\int_t^T f(X_s) \, ds} g(X_T) \right].$$

Here

$$f(x) = \begin{cases} x & \text{if } x \le K \\ \text{constant} & \text{if } x > K. \end{cases}$$

We then define

$$W(x,t) = e^{f(x)h(t)}V(x,t)$$

where  $h(t) = (e^{Dt} - 1)/D + Ke^{Dt}$ .

◆□> ◆圖> ◆目> ◆目> 目 のQ@

# The function W is shown to be a bounded solution of the equation

$$\begin{cases} W_t = \alpha W_{xx} + \hat{\beta} W_x + \gamma W \\ W(x,0) = \hat{g}(x). \end{cases}$$

where

$$\hat{\beta} = \beta - 2f_x \alpha h,$$
  

$$\gamma = (Df - f_x \beta)h + f_x^2 \alpha h^2 - f_{xx} \alpha h$$
  

$$\hat{g} = e^{Kf(x)}g(x).$$

Standard theory can then be applied to estimate the derivatives of *W*.

▲□▶ ▲圖▶ ▲圖▶ ★圖▶ - 圖 - のへ⊙

## Thank you for your attention!