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Convexity Theory for the Black-Scholes Equation

Let F (x , t) = e−r(T−t)Ex ,tg(XT ), where

dXt = rXt dt +σ(Xt , t)dW

Alternatively, consider the Black-Scholes equation{
Ft + 1

2σ2Fxx + rxFx − rF = 0
F (x ,T ) = g(x).

General result:
If r is deterministic and σ = σ(x , t) is Hölder(1/2) in x ,
measurable in t , then

g(x) convex =⇒ F (x , t) convex in x for any t < T .
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Several references:
I Merton: Theory of rational option pricing (1973).
I Bergman, Grundy, Wiener: General properties of option

prices (1996).
I El Karoui, Jeanblanc-Picque, Shreve: Robustness of the

Black-Scholes formula (1998).
I Hobson: Volatility misspecification, option pricing and

superreplication via coupling (1998).
I Janson, Tysk: Volatility time and properties of option prices

(2003).
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Why this interest in convexity?

1. Convexity is a fundamental property.
2. Parameter monotonicity: if convexity is preserved, then the

price is increasing in the volatility.
3. Robustness: a delta hedger overestimating the volatility

obtains a superhedge for the claim.
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The Term Structure Equation

Consider
u(x , t) = Ex ,t

[
e−

∫ T
t Xs dsg(XT )

]
,

where the interest rate X is modelled under the pricing
measure as

dX = β (Xt , t)dt +σ(Xt , t)dW .

The corresponding term structure equation is{
Ft + 1

2σ2Fxx +βFx −xF = 0
F (x ,T ) = g(x)

(g ≡ 1 in the case of bonds).
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Is convexity preserved?
Only one reference:

I Alvarez: On the form and risk-sensitivity of zero coupon
bonds for a class of interest rate models (2001).

Reason 3 above to study convexity is no longer directly
applicable since the short rate is not a traded asset. However, 1
and 2 remain valid.
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Log-Convexity and Log-Concavity

Convexity properties of the logarithm of the bond prices are
also natural to consider. They are connected with the notion of
duration:

duration =−ux

u
=−(lnu)x .

(The analogous concept for options is elasticity.)
The price is log-convex if the logarithm of the price is convex,
and analogously for log-concavity.
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Log-convexity: The relative decline of bond prices decreases
when x grows, which corresponds to a decreasing duration in x .

Log-concavity: The relative decline of bond prices increases
when x grows, which corresponds to an increasing duration in
x .
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Statements of the Main Results

Recall that dX = β (X , t)dt +σ(X , t)dW under the pricing
measure.

I If βxx ≤ 2, then the bond prices are convex in the current
short rate x , increasing in the volatility and decreasing in
the drift.

I Similar results hold for call options written on bonds.
I For models with regular coefficients, the condition βxx ≤ 2

is also necessary for preservation of convexity.
I If β is concave and σ2 is convex, then bond prices are

log-convex.
I If β is convex and σ2 is concave, then bond prices are

log-concave.

If we demand log-concavity and log-convexity we recover the
condition β and σ2 being linear for admitting an
affine term structure.
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Some well-known models

Model Dynamics C LCV LCC
V dX = k(θ −X )dt +σ dB Yes Yes Yes

CIR dX = k(θ −X )dt +σ
√

X dB Yes Yes Yes
D dX = bX dt +σX dB Yes Yes No

EV dX = X (η−a lnX )dt +σX dB Yes Yes No
HW dX = k(θt −X )dt +σ dB Yes Yes Yes
BK dX = X (ηt −a lnX )dt +σX dB Yes Yes No
MM dX = X (ηt − (λ − γ

1+γt ) lnX )dt +σX dB Yes Yes No

Table: Vasicek, Cox-Ingersoll-Ross, Dothan, Exponential Vasicek,
Hull-White, Black-Karinski, Mercurio-Moraleda. The parameters are
positive and λ ≥ γ.
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Where does the condition βxx ≤ 2 come from?

After a change of variables t → T − t we have{
ut = αuxx +βux −xu
u(x ,0) = g(x)

(α =
1
2

σ
2)

Assume all coefficients are regular enough and that convexity is
about to be lost, i.e. that u(x , t) is convex for 0≤ t ≤ t0 and
uxx(x0, t0) = 0. Then

∂tuxx = ∂
2
x ut = ∂

2
x (αuxx +βux −xu)

= αuxxxx +(2αx +β )uxxx +(αxx +2βx −x)uxx +(βxx −2)ux

Since x 7→ uxx(x , t0) has a minimum at x = x0 we have
uxxxx ≥ uxxx = uxx = 0 at (x0, t0).
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We find
∂tuxx ≥ (βxx −2)ux ≥ 0

provided that βxx ≤ 0 (since ux ≤ 0).

This suggests that convexity is preserved if βxx ≤ 2.
Theorem 5.1of the paper makes this argument rigorous:
Convexity is preserved for decreasing pay-off functions if
βxx ≤ 2.
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Parameter Monotonicity

Assume that β (x , t)≤ β̃ (x , t) and |σ(x , t)| ≥ |σ̃(x , t)|. Let

dXt = β (Xt , t)dt +σ(Xt , t)dW ,

dX̃t = β̃ (X̃t , t)dt + σ̃(X̃t , t)dW

and define
u(x , t) = Ex ,t

[
e−

∫ T
t Xs dsg(XT )

]
,

ũ(x , t) = Ex ,t

[
e−

∫ T
t X̃s dsg(X̃T )

]
.

If either βxx ≤ 2 or β̃xx ≤ 2 and g is convex and decreasing, then
ũ(x , t)≤ u(x , t).
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Assume that (x0, t0) is a first point where ũ ≤ u is about to be
lost, i.e. ũ(x , t)≤ u(x , t) for all 0≤ t ≤ t0 and ũ(x0, t0) = u(x0, t0).
Then

∂t(u− ũ) = (αuxx +βux −xu)− (α̃ũxx + β̃ ũx −xũ).

Since x 7→ u(x , t0)− ũ(x , t0) has a minimum at x = x0, we have
(u− ũ)xx ≥ (u− ũ)x = u− ũ = 0 at (x0, t0). Thus

∂t(u− ũ) = αuxx − α̃ũxx +(β − β̃ )ux ≥ 0

provided uxx or ũxx is non-negative (since ux ≤ 0).

This indicates that the inequality ũ ≤ u is preserved. The
argument is made precise in Theorem 6.1.
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Bond call options

The price of a bond call option is

C(x , t ;T1,T2) = Ex ,t

[
e−

∫ T1
t Xs ds(u(XT1 ,T1)−K )+

]
,

where u is the pricing function of a T2-bond.

Theorem
Assume that βxx ≤ 2. Then the bond option price is convex in x
at all times t ≤ T1. Moreover, decreasing the drift and
increasing the volatility gives a higher option price.

Proof.
It follows from Theorem 5.1 that u(x ,T1) is convex and
decreasing. Therefore C(x ,T1;T1,T2) = (u(x ,T1)−K )+ is also
convex and decreasing. Convexity follows from another
application of Theorem 5.1.

Parameter monotonicity is similar.
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Log-Convexity and Log-Concavity

Let F = lnu(x , t). Then F satisfies the non-linear equation{
Ft = αFxx +αF 2

x +βFx −x
F (x ,0) = 0.

Assume that (x0, t0) is a first point where convexity is about to
be lost, i.e. x 7→ F (x , t) is convex for 0≤ t ≤ t0 and
Fxx(x0, t0) = 0. Then

∂tFxx = ∂
2
x Ft = ∂

2
x (αFxx +αF 2

x +βFx −x)
= αFxxxx +(2αx +β )Fxxx +(αxx +2βx)Fxx +βxxFx

+αxxF 2
x +4αxFxFxx +2α(FxFxxx +F 2

xx).

Again, Fxxxx ≥ Fxxx = Fxx = 0 at (x0, t0).
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We obtain
∂tFxx ≥ βxxFx +αxxF 2

x ,

which suggests that β concave and α convex implies F being
convex.

Similarly, β convex and α concave implies F being concave.

These results are made precise in Theorems 8.1, 9.1 and 9.3.
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More about the precise assumptions

dXt = β (Xt , t)dt +σ(Xt , t)dW

where β ,σ : R× [0,T ]→ R are continuous functions, β is locally
Lipschitz in x and σ is locally Hölder(1/2) in x . Moreover,

|σ(x , t)| ≤ D(1+x+)

|β (x , t)| ≤ D(1+ |x |).

The bound on σ implies that bond prices are finite.
The pay-off functions we consider satisfy

0≤ g(x)≤M max{e−Kx ,1}.
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I If g is as above, then the corresponding option price is
finite.

I Continuity in the model parameters: if βn → β and σn → σ

uniformly on compact sets with uniform bounds on the
growth, then

lim
n→∞

un(x , t) = u(x , t)

(this follows using a result by Bahlali, Mezerdi, Ouknine
(2001)).
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Technical Remarks

We often study the function V that solves the parabolic problem{
Vt = αVxx +βVx − fV
V (x ,0) = g(x).

This corresponds to the stochastic representation

V (x , t) = Ex ,t

[
e−

∫ T
t f (Xs)dsg(XT )

]
.

Here

f (x) =
{

x if x ≤ K
constant if x > K .

We then define
W (x , t) = ef (x)h(t)V (x , t)

where h(t) = (eDt −1)/D +KeDt .
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The function W is shown to be a bounded solution of the
equation {

Wt = αWxx + β̂Wx + γW
W (x ,0) = ĝ(x).

where
β̂ = β −2fx αh,

γ = (Df − fx β )h + f 2
x αh2− fxx αh

ĝ = eKf (x)g(x).

Standard theory can then be applied to estimate the derivatives
of W .
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Thank you for your attention!
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