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Introduction

Convexity Theory for the Black-Scholes Equation

Let F(x,t) = e "T-UE, ;g(X7), where
dXt = rXt at+ G(Xt, t) aw
Alternatively, consider the Black-Scholes equation

{ Fi+ 30%Fxx+ XFx—rF =0
F(x, T)=9(x).

General result:
If r is deterministic and o = o (x, t) is H6lder(1/2) in x,
measurable in ¢, then

g(x) convex = F(x,t) convexin x forany t < T.
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Several references:

>

>

Merton: Theory of rational option pricing (1973).
Bergman, Grundy, Wiener: General properties of option
prices (1996).

El Karoui, Jeanblanc-Picque, Shreve: Robustness of the
Black-Scholes formula (1998).

Hobson: Volatility misspecification, option pricing and
superreplication via coupling (1998).

Janson, Tysk: Volatility time and properties of option prices
(2003).



Introduction

Why this interest in convexity?

. Convexity is a fundamental property.

Parameter monotonicity: if convexity is preserved, then the
price is increasing in the volatility.

Robustness: a delta hedger overestimating the volatility
obtains a superhedge for the claim.



Introduction

The Term Structure Equation

Consider .
u(x,1) = Exs e~ Xe5g(X7)]

where the interest rate X is modelled under the pricing
measure as
dX = B(X,t)dt+o(X;, t)dW.

The corresponding term structure equation is

{ Ft+%02Fxx+ﬁFx_XF:0
F(x,T)=g(x)

(g =1 in the case of bonds).



Introduction

Is convexity preserved?

Only one reference:

» Alvarez: On the form and risk-sensitivity of zero coupon
bonds for a class of interest rate models (2001).

Reason 3 above to study convexity is no longer directly
applicable since the short rate is not a traded asset. However, 1
and 2 remain valid.



Introduction

Log-Convexity and Log-Concavity

Convexity properties of the logarithm of the bond prices are
also natural to consider. They are connected with the notion of
duration:
: Ux
duration = T —(Inu)x.
(The analogous concept for options is elasticity.)

The price is log-convex if the logarithm of the price is convex,
and analogously for log-concavity.
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Log-convexity: The relative decline of bond prices decreases
when x grows, which corresponds to a decreasing duration in x.

Log-concavity: The relative decline of bond prices increases
when x grows, which corresponds to an increasing duration in
X.




Main Results

Statements of the Main Results

Recall that dX = B(X,t) dt+ o(X,t) dW under the pricing
measure.

» If Byx < 2, then the bond prices are convex in the current
short rate x, increasing in the volatility and decreasing in
the drift.

» Similar results hold for call options written on bonds.

» For models with regular coefficients, the condition By <2
is also necessary for preservation of convexity.

» If B is concave and o2 is convex, then bond prices are
log-convex.

» If B is convex and o2 is concave, then bond prices are
log-concave.

If we demand log-concavity and log-convexity we recover the
condition B and &2 being linear for admitting an
affine term structure.




Main Results

Some well-known models

| Model | Dynamics | C |LCV]LCC
\'% dX =k(6—X)dt+ocdB Yes | Yes | Yes
CIR dX = k(6 — X)dt+ovXdB Yes | Yes | Yes
D dX=bXdt+ocXdB Yes | Yes | No
EV dX=X(n—-alnX)dt+ocXdB Yes | Yes | No
HW dX =k(6;—X)dt+ocdB Yes | Yes | Yes
BK dX = X(n:—alnX)dt+ocXdB Yes | Yes | No
MM | dX=X(ni— (A - +/3)InX)di+0XdB | Yes | Yes | No

Table: Vasicek, Cox-Ingersoll-Ross, Dothan, Exponential Vasicek,
Hull-White, Black-Karinski, Mercurio-Moraleda. The parameters are
positive and A > 7.



Main Results

Where does the condition 3« < 2 come from?

After a change of variables t — T — t we have

Ut = OtUxx + Bux — xu 1
{ oo (=39

2
Assume all coefficients are regular enough and that convexity is
about to be lost, i.e. that u(x, t) is convex for 0 < t < f; and

Oy = 02Ur = 92(tlyy + By — XU)
= OUxxxx + (20 + B) Uxxx + (Oxx +2Bx — X) Uxx + (Bxx — 2) Ux

Since x — uxx(X, ty) has a minimum at x = x, we have
Uxxxx > Uxxx = Uxx =0 at (Xo, o).



Main Results

We find
Otlxx > (Bxx —2)ux > 0

provided that Bxx < 0 (since uy < 0).

This suggests that convexity is preserved if By < 2.
Theorem 5.10f the paper makes this argument rigorous:
Convexity is preserved for decreasing pay-off functions if
ﬁxx < 2.



Main Results

Parameter Monotonicity

Assume that B(x,t) < B(x,t) and |o(x,t)| > |6(x,1)|. Let
dXi = B(X;, t)dt+o (X, t) dW,
dX; = B(X;,t) dt+&(X;, t) AW

and define .
u(x,t) = Exe [ Xe%g(X7)|

U(x,t) = Exy [e*ffoSdsg(f(T)} .

If either Bxx < 2 or 3XX <2 and g is convex and decreasing, then
u(x,t) <u(x,t).



Main Results

Assume that (xg, ty) is a first point where & < u is about to be
lost, i.e. U(x,t) <u(x,t)forall 0 <t<tyand U(xp,ty) = u(xp,ty).
Then

O (U— ) = (CtUyx + By — XU) — (&lxx + By — XT).

Since x — u(x,fy) — U(x, ) has a minimum at x = xo, we have
(U—U)xx > (U—T)x=u—U=0at (xp,t). Thus

O(U— 1) = atlyy — Gy + (B —B)ux >0

provided uyy Or Uyy iS NON-negative (since uy < 0).

This indicates that the inequality & < u is preserved. The
argument is made precise in Theorem 6.1.



Main Results

Bond call options
The price of a bond call option is
-T-
Clx,t: Ty, T) = Ex | €70 X% (u(Xy,, 1) — K)* |,

where u is the pricing function of a T»>-bond.

Theorem

Assume that Bxx < 2. Then the bond option price is convex in x
at all times t < Ty. Moreover, decreasing the drift and
increasing the volatility gives a higher option price.

Proof.

It follows from Theorem 5.1 that u(x, Ty) is convex and
decreasing. Therefore C(x, T1; Tq, T2) = (u(x, T1) — K) ™" is also
convex and decreasing. Convexity follows from another
application of Theorem 5.1.

Parameter monotonicity is similar. O



Main Results

Log-Convexity and Log-Concavity

Let F =Inu(x,t). Then F satisfies the non-linear equation

Ft:anx‘i_aF)g‘i‘ﬁFx—X
F(x,0)=0.

Assume that (xp, ty) is a first point where convexity is about to
be lost, i.e. x — F(x,t) is convex for 0 < t < {p and

= OFxxxx + (20x + B) Fxxx + (0xx +2Bx) Fxx + Bxx Fx
+axxF3+4(XXFXFXX+2(X(FXFXXX+F)gx)'

Again, Fyxxx > Fxxx = Fxx =0 at (xo, f).



Main Results

We obtain
OtFxx > Bxxe‘FOCxxF)?a

which suggests that B concave and a convex implies F being
CONVex.

Similarly, B convex and a concave implies F being concave.

These results are made precise in Theorems 8.1, 9.1 and 9.3.



Technical Remarks

More about the precise assumptions

dXt = B(Xt, t) at+ G(Xt, t) aw

where ,0: R x [0, T] — R are continuous functions, f3 is locally
Lipschitz in x and o is locally Holder(1/2) in x. Moreover,

lo(x, )] < D1 +xT)

IB(x,0)] < D(1+[x]).

The bound on ¢ implies that bond prices are finite.
The pay-off functions we consider satisfy

0 < g(x) < Mmax{e " 1}.



Technical Remarks

» If g is as above, then the corresponding option price is
finite.

» Continuity in the model parameters: if B, — g and 6, — ©
uniformly on compact sets with uniform bounds on the
growth, then

lim u"(x,t) = u(x,t)

N—oo

(this follows using a result by Bahlali, Mezerdi, Ouknine
(2001)).



Technical Remarks

Technical Remarks

We often study the function V that solves the parabolic problem
{ Vl‘: aVXx+ﬁVX_fV
V(x,0) = g(x).

This corresponds to the stochastic representation
V(X, t) — Ex,t |:e_ jo f(Xs) dSQ(XT) .

Here

F(x) = X if x <K
"] constant if x > K.

We then define
W(x,t) = ey (x t)

where h(t) = (eP'—1)/D+ KeP".



Technical Remarks

The function W is shown to be a bounded solution of the
equation
{ Wi = OCWxx+BWx+YW
W(x,0) = 9(x).

where .

B =B —2fah,

y = (Df — fyB)h+ f2ah?® — fixah

g=2e"Mg(x).

Standard theory can then be applied to estimate the derivatives
of W.



Technical Remarks

Thank you for your attention!
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