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Abstract. In this article, we present briefly the mathematical study of the
dynamics of line defects called dislocations, in crystals. The mathematical
model is an eikonal equation describing the motion of the dislocation line with
a velocity which is a non-local function of the whole shape of the dislocation.
We present some partial existence and uniqueness results. Finally we also show
that the self-dynamics of a dislocation line at large scale is asymptotically
described by an anisotropic mean curvature motion.

1. Introduction

1.1. What are dislocations ?

The crystal defects called dislocations are lines whose typical length in metallic
alloys is of the order of 10−6m, with thickness of the order of 10−9m (see Figure
1 for an example of observations of dislocations by electron microscopy).

In the face centered cubic structure, dislocations move at low temperature
in well defined crystallographic planes (the slip planes), at velocities of the order
of 10 ms−1. We refer for instance to Hirth and Lothe [17] for a description at the
atomic level of these dislocations.

The concept of dislocations has been introduced and developed in the XXth
century, as the main microscopic explanation of the macroscopic plastic behaviour
of metallic crystals (see for instance the physical monographs Nabarro [20], Hirth
and Lothe [17], or Lardner [19] for a mathematical presentation). Since the begin-
ning of the 90’s, the research field of dislocations has enjoyed a new boom based
on the increasing power of computers, allowing simulations with a large number
of dislocations (see for instance Kubin et al. [18]). This simultaneously motivated
new theoretical developments for the modelling of dislocations. Recently Rodney,
Le Bouar and Finel introduced in [21] a new model that we present and study
mathematically in this paper. We also refer the reader to [6] and the references
therein for a more detailed introduction to dislocations dynamics. This model has
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Figure 1. Dislocations in a Al-Mg alloy (from [23])

also been numerically studied by Alvarez, Carlini, Monneau and Rouy in [3] and
[4]; see also Alvarez, Carlini, Hoch, Le Bouar and Monneau [2]

1.2. Mathematical modelling of dislocations dynamics

An idealization consists in assuming that the thickness of these lines is zero, and
in the case of a single line, in assuming that this line is contained and moves in
the x = (x1, x2) plane. The motion of the line Γt (where the subscript t denotes
the time) is simply given by the normal velocity c (see Figure 2).
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Figure 2. Schematic evolution of a dislocation line Γt by normal
velocity c between the times t and t+∆t with unit normal nΓt

.

The velocity c is proportional to the shear stress in the material. This stress
can be computed solving the equations of linearized elasticity where the shape of
the dislocation line appears as a source term. This gives a coupled system where
the dislocation line evolution is a function of the velocity c, and the velocity c is a
function of the dislocation line Γt itself. In the case of a single dislocation line it
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is possible to write the velocity c as a non-local quantity depending on the whole
shape of the dislocation line (see Alvarez et al. [6]):

c(x, t) = (c0 ? ρ(·, t)) (x) + c1(x, t)

where ρ is the characteristic function of an open set Ωt ⊂ R
2 whose the boundary

is the dislocation line Γt = ∂Ωt:

ρ(x, t) = 1Ωt
:=

{

1 if x ∈ Ωt

0 if x ∈ R
2\Ωt,

and c0(x) is a given kernel depending on the material. Here the convolution is only
done in space on R

2.
It can be easily checked (at least formally), that the evolution on the time inter-
val (0, T ) of the dislocation line Γt is described by the equation of dislocations
dynamics:

(1.1)











∂ρ

∂t
= (c0 ? ρ+ c1) |Dρ| on R

2 × (0, T )

ρ(·, 0) = ρ0(·) := 1Ω0
on R

2

where Ω0 is an open set whose boundary Γ0 = ∂Ω0 is the position of the dislocation
line at initial time t = 0.
In what follows, we will study this equation in the framework of discontinuous
voscosity solutions (see Barles [7] for an introduction to this notion). To simplify
the presentation we will state results in dimension n = 2, assuming smooth (C∞)
regularity of the initial position Γ0 of the dislocation line, of the kernel c0, and of
the velocity c1.
We also assume the following behaviour of the kernel at infinity (for some function
g)

(1.2) c0(x) =
1

|x|3 g

(

x

|x|

)

for |x| ≥ 1

which is a natural assumption for dislocations.
For considerably weakened assumptions and in any dimensions n, we refer the
reader to the original articles cited in the references.

1.3. Organization of the paper

Altought equation (1.1) seems very simple, general results of existence and unique-
ness are unkown up to our knowledge. Technically, the main difficulty comes from
the fact that we have no sign conditions on the kernel c0, and then that there is
no inclusion principle for this evolution.

In this paper we present some partial results. In section 2, we give a short time
existence (and uniqueness) result for a smooth initial dislocation loop. In section
3, we give a long time existence (and uniqueness) result for a smooth initial curve
with non-negative velocity. Finally in section 4, we consider the “monotone case”
where the kernel satisfies c0 ≥ 0. In this particular case, a Slepčev “level sets”
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formulation of equation (1.1) is available. In this framework, we show that at large
scales, the dislocation dynamics is asymptotically described by an (anisotropic)
mean curvature motion related to the behaviour of the kernel c0(x) as |x| → +∞.

2. Short time existence results in the general case

We will make the following global assumptions on the smooth velocity c1(x, t) and
the smooth kernel c0(x, t) := c0(x), for i = 0, 1 and some constants M,L0, L1:
(2.1)






i) |ci(y, t)| ≤M ∀(y, t) ∈ R
2 × [0,+∞)

ii) |ci(y2, t)− ci(y1, t)| ≤ L0|y2 − y1| ∀(y1, y2, t) ∈ R
2 × R

2 × [0,+∞)
iii) |Dci(y2, t)−Dci(y1, t)| ≤ L1|y2 − y1| ∀(y1, y2, t) ∈ R

2 × R
2 × [0,+∞)

To state our results, we first need to recall the notion of discontinuous vis-
cosity solution. We recall that for a function ρ locally bounded on R

2× [0, T ), the
function ρ∗ designates its upper-semicontinuous envelope (i.e. the smallest u.s.c.
function ≥ ρ), and the function ρ∗ its lower semi-continuous envelope.

Definition 2.1. i)We say that a function ρ ∈ C
(

[0, T );L1(R2)
)

∩L∞
(

R
2 × (0, T )

)

is a discontinuous viscosity subsolution (resp. supersolution) of (1.1), if

ρ∗(·, 0) ≤ (ρ0)∗ (resp. ρ∗(·, 0) ≥ (ρ0)∗)

and for every point (x, t) ∈ R
2× (0, T ) and every test function φ ∈ C1(R2× (0, T ))

satisfying

ρ∗ ≤ φ (resp. ρ∗ ≥ φ) in R
2 × (0, T ) and ρ∗(x, t) = φ(x, t),

we have with c = c0 ? ρ+ c1:

∂φ

∂t
(x, t) ≤ c(x, t)|Dφ(x, t)|

(

resp.
∂φ

∂t
(x, t) ≤ c(x, t)|Dφ(x, t)|

)

ii) We say that ρ is a discontinuous viscosity solution of (1.1), if it is a discontinuous
viscosity subsolution and a discontinuous viscosity supersolution.

We are now able to state the first result

Theorem 2.2. [Short time existence and uniqueness, [5], [6]]
Let us assume (1.2)-(2.1), and that Ω0 is a smooth bounded open set in R

2. Then
there exists a time T ∗ > 0 and let us consider functions ρ ∈ C

(

[0, T ∗);L1(R2)
)

with 0 ≤ ρ ≤ 1, solutions of equation (1.1) on the interval of time (0, T ∗) with
initial data ρ(·, 0) = 1Ω0

. Then
i) (existence) : There exists such a solution ρ.
ii) (uniqueness) : The solution is unique, where the uniqueness has the following
meaning: if ρ1 and ρ2 are two such solutions, then (ρ1)

∗ = (ρ2)
∗, (ρ1)∗ = (ρ2)∗

and for every t ∈ [0, T ∗), ρ1(·, t) = ρ2(·, t) a.e. on R
2.
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Let us remark that on the time interval (0, T ∗) where the Theorem is proved
to hold, the solution can be written ρ(·, t) = 1Ωt

where Ωt is a Lipschitz open set.
Theorem 2.2 says nothing when Ωt ceases to be a Lipschitz open set. This is for
instance the case when the topology of Ωt changes.

The proof of Theorem 2.2 is based on the application of a fixed point theorem
in the framework of viscosity solutions.

Up to our knowledge, existence and uniqueness for all times (excepted in the
case of non-negative velocities (see Theorem 3.1 below)) is still an open problem
in general.

3. Long time existence for non-negative velocities

In this section we make the following assumption

(3.1) c1(y, t) ≥ ||c0||L1(R2) ∀(y, t) ∈ R
2 × [0,+∞)

Because we are interested in solutions ρ satisfying 0 ≤ ρ ≤ 1, we see that condition
(3.1) implies that c = c0 ? ρ+ c1 ≥ 0.

Theorem 3.1. [existence and uniqueness for all time for non-negative velocity,
[1]] Let us assume (1.2)-(2.1)-(3.1), and that Ω0 is a smooth bounded open set in
R
2. Then there exists a unique function ρ ∈ C

(

[0,+∞);L1(R2)
)

with 0 ≤ ρ ≤ 1,
solution of equation (1.1) on the interval of time (0,+∞) with initial data ρ(·, 0) =
1Ω0

.

In [1], Alvarez et al. used a geometrical proof. A similar result was also proved
by Barles and Ley [8] using a level sets approach and arguments based on a nice
L1 estimate on the level sets of the solution. We also refer to Cardaliaguet, Marchi
[11] for a geometrical study of a similar problem on a bounded set in the plane
with Neumann boundary conditions. The proof of Theorem 3.1 in [1] uses strongly
the following monotonicity formula that we state in any dimension N :

Theorem 3.2. [Monotonicity formula, [1]]
Let K be a compact subset of R

N , and dK the distance to the set K. Then for any
t2 > t1 > 0, we have

1

tN−12

HN−1 ({dK(x) = t2}) ≤
1

tN−11

HN−1 ({dK(x) = t1})

Here HN−1 stands for the (N − 1)-dimensional Hausdorff measure.

Main formal arguments in the proof of Theorem 3.1
Argument 1 : interior ball condition: Let us call R(t) > 0 the radius of the largest
ball included in Ωt and tangent at any point of the boundary ∂Ωt. Then we can
easily check (at least formally) that this radius satisfies the following ODE:

Ṙ = c−R (n ·Dc) +R2
(

D2ττ c
)
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where n is the outward unit normal to Ωt and τ is a tangent unit vector to Γt =
∂Ωt. Using the fact that c ≥ 0, we deduce that

R(t) ≥ C1e
−γt

for some constants C1, γ > 0.
Argument 2 : length of the dislocation: We denote by |Γt| the length of Γt. Then
using the fact that the curvature K of Γt satisfies K ≤ 1/R(t), we deduce

d

dt
|Γt| =

∫

Γt

cK ≤
∫

Γt

c

R(t)
≤ ||c||L∞

R(t)
|Γt|

which gives an estimate |Γt| ≤ l(t) < +∞.
Argument 3 : error estimate: based on the monotonicity formula Theorem 4.2,
this is possible to show that if ρi satisfy for i = 1, 2

(3.2)











∂ρi
∂t

= ci |Dρi| on R
2 × (0, T )

ρi(·, 0) = 1Ω0
on R

2

then we have for any t small enough and some constant C2 > 0:

||ρ2(·, t)− ρ2(·, t)||L∞(R2) ≤ C2 l(t)||c2 − c1||L∞(R2×(0,T ))

(

eL0t − 1

L0

)

Combined with the fact that for dislocation dynamics ci = c0 ? ρi + c1, we get

||ρ2(·, t)− ρ2(·, t)||L1(R2) ≤ α(t)||ρ2 − ρ1||L∞((0,T );L1(R2))

with α(t) = C2 l(t)||c0||L∞(R2)

(

eL0t−1
L0

)

. This shows in particular the uniqueness

of the solution for small time, which can also be used as a contraction argument
for a fixed point theorem.

4. Convergence to the mean curvature motion at large scale for
nonnegative kernels

In this section we assume that the kernel c0 satisfies the following condition

(4.1) c0(−x) = c0(x) ≥ 0 ∀x ∈ R
2

and consider solutions ρ of (1.1) with c1 = − 12
∫

R2 c0. This particular choice of c1
insures the equilibrium of straight dislocations lines and is physically relevant for
the description at large scales of isolated dislocations lines without exterior stress.

In this section, we are interested in the dynamics of dislocations lines of large
diameter of the order of 1/ε and in the limit as ε→ 0. To this end, we define for
ε > 0 the rescalled characteristic function

ρε(x, t) = ρ

(

x

ε
,

t

ε2| ln ε|

)

.
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which satisfies the following equation

(4.2)
∂ρε

∂t
=

(

cε0 ? ρ
ε − 1

2

∫

R2

cε0

)

|Dρε|

with the rescalled kernel

cε0(x) =
1

ε3| ln ε| c0
(x

ε

)

.

¿From the fact that cε0 ≥ 0, it can be seen (at least formally) that equation
(4.2) preserves the inclusion principle. In this section we do not study directly
equation (4.2), but prefer to use the following Slepčev “level sets” formulation for
a continuous function uε:
(4.3)














∂uε

∂t
=

(

(

cε0 ? 1{uε(·,t)>uε(x,t)}

)

(x)− 1

2

∫

R2

cε0

)

|Duε| on R
2 × (0, T )

uε(·, 0) = u0 on R
2

In this new formulation each level set {uε = λ} represents a dislocation line asso-
ciated to a function ρελ = 1{uε>λ} which satisfies (4.2) (at least formally).

In the limit ε → 0, this dynamics is well approximated by the following
anisotropic mean curvature motion (see for instance Crandall, Ishii, Lions [12] for
a definition of viscosity solutions of the second order equation (4.4)):

(4.4)











∂u0

∂t
+ F (D2u0, Du0) = 0 on R

2 × (0, T )

u0(·, 0) = u0 on R
2

with

F (M,p) = −g
(

p⊥

|p|

)

trace

(

M ·
(

Id− p

|p| ⊗
p

|p|

))

where g is introduced in (1.2). In particular we see that equation (4.4) describes
the anisotropic mean curvature motion with velocity

g(τ) κ

where κ is the curvature of the level line of u0 and τ is a unit tangent vector to
the level line of u0.

Before to state our convergence result as ε → 0, we need to give the precise
definition of viscosity solutions we use for the non-local equation (4.3) which is
less standard. This definition has been introduced by Slepčev [22] (see also Da Lio,
Kim, Slepčev [13]).

Definition 4.1. (Viscosity sub/super/solution for the non-local eikonal equation)
A locally bounded upper semicontinuous (usc) function uε is a viscosity subsolution
of (4.3) if it satisfies:
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(i) uε(x, t = 0) ≤ u0(x) in R
2,

(ii) for every (x0, t0) ∈ R
2×(0,∞) and for every test function Φ ∈ C∞

(

R
2 × [0,∞)

)

,
that is tangent from above to uε at (x0, t0), the following holds:

(4.5) Φε
t (x0, t0) ≤

(

(cε0 ? 1{uε(·,t0)≥uε(x0,t0)})(x0)−
1

2

∫

R2

cε0

)

|DΦε(x0, t0)|

A locally bounded lower semicontinuous (lsc) function uε is a viscosity supersolu-
tion of (4.3) if it satisfies:

(i) uε(x, t = 0) ≥ u0(x) in R
2,

(ii) for every (x0, t0) ∈ R
2×(0,∞) and for every test function Φ ∈ C∞

(

R
2 × [0,∞)

)

,
that is tangent from below to uε at (x0, t0), the following holds:

(4.6) Φε
t (x0, t0) ≥

(

(cε0 ? 1{uε(·,t0)>uε(x0,t0)})(x0)−
1

2

∫

R2

cε0

)

|DΦε(x0, t0)|

A locally bounded continuous function uε is a viscosity solution of (4.3) if, and
only if, it is a sub and a supersolution of (4.3).

Then the main result of this section is

Theorem 4.2. [Convergence of dislocations dynamics to mean curvature motion,
[14]]
There exists a constant C0 > 0 only depending on ||c0||L∞(R2). Given ε ∈ (0, 1)

and a bounded and globally Lipschitz continuous function u0, there exists a unique
viscosity solution uε ∈ L∞loc

(

R
2 × [0,+∞)

)

of problem (4.3). The function uε sat-
isfies

||Duε||L∞(R2×[0,+∞)) ≤ ||Du0||L∞(R2)

and for every ε ∈ (0, 1/2):

|uε(x, t+ s)− uε(x, s)| ≤ C0||Du0||L∞(R2)

√
t, ∀(x, s, t) ∈ R

2 × [0,+∞)× [0, 1]

Moreover, the solution uε converges locally uniformly in compact sets of R
2 ×

[0,+∞) to the unique solution u0 of (4.4) with the same initial condition u0.

Remark 4.3. In a future work, we will apply this result to propose a numerical
scheme for anisotropic mean curvature motion or crystalline motion.

While the proof of this convergent result is quite simple in the case where
the gradient of the limit function u0 is non-zero, the case where the gradient of u0

vanishes is quite delicate and requires more attention.

We will now present a further property of the limit mean curvature motion.
To this end, we need the following:
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Definition 4.4. Let g ∈ C∞(R2\ {0}) satisfying g(λp) = g(p)

|λ|3 , ∀λ ∈ R\{0}, ∀p ∈ R
2.

We then associate to g a temperate distribution Lg defined by

〈Lg, ϕ〉 =
∫

R2

dx
g
(

x
|x|

)

|x|3
(

ϕ(x)− ϕ(0)− x ·Dϕ(0)1B1(0)(x)
)

for ϕ ∈ S(R2), where S(R2) is the Schwarz space of test functions on R
2, and

B1(0) denotes the unit ball centered in zero.
We define the Fourier transform

ϕ̂(ξ) =

∫

R2

dx ϕ(x)e−iξ·x

Then we have

Theorem 4.5. [Variational origin of the anisotropic mean curvature motion, [14]]

Let g ∈ C∞(R2\ {0}) satisfying g(λp) = g(p)

|λ|3 , ∀λ ∈ R\{0}, ∀p ∈ R
2. Let

(4.7) G := − 1

2π
L̂g

where L̂g is the Fourier transform of Lg. Then G(λp) = |λ|G(p), ∀λ ∈ R\ {0},
∀p ∈ R

2, and

(4.8) g

(

p⊥

|p|

)

p⊥

|p| ⊗
p⊥

|p| = D2G

(

p

|p|

)

In particular, we see that G is convex if and only if g ≥ 0. Moreover (4.8)
means that in (4.4), we have

−F (D2u0, Du0) = div

(

∇G
(

Du0

|Du0|

))

|Du0|,

i.e. this anisotropic mean curvature motion derives from a convex energy
∫

G
(

Du0)
)

.

Remark 4.6. Physically the quantity L̂g is naturally given, and then the function
g can be computed using (4.7)-(4.8) where we can check if g is non negative or
not.
In the simplest case of applications for dislocation dynamics, the crystal is de-
scribed by isotropic elasticity. When the Burgers vector is along the x1 direction,
we have

G(p) =
p22 +

1
1−ν

p21

|p| with ν ∈ (−1, 1
2
)

where ν is the Poisson ratio of the material, and

g(θ) =
(2γ − 1)(θ1)

2 + (2− γ)(θ2)
2

|θ|5 ≥ 0 with γ =
1

1− ν
∈ (

1

2
, 2).
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Our result is very natural for dislocation dynamics. Indeed, in many refer-
ences in physics, the authors describe dislocations dynamics by line tension terms
deriving from an energy associated to the dislocation line. See for instance Brown
[10], Barnet, Gavazza [9] for physical references and Garroni, Müller [16] for a
variational approach. We also refer to Forcadel [15] for the study of dislocation
dynamics with a mean curvature term. As far as we know, Theorem 4.2, completed
by Theorem 4.5, is the first rigourous proof for the convergence of dislocations dy-
namics to mean curvature motion.
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