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Abstract. We consider a (microscopic) car-following model in traffic flow that can be seen as a
semi-discrete scheme (discretization in space only) of a (macroscopic) Hamilton-Jacobi equation. For
this discrete model, and for general velocity laws satisfying a strict chord inequality, we construct
traveling solutions that are naturally associated to ”traveling shocks” for the conservation law derived
from the Hamilton-Jacobi equation. These shocks can be interpreted as a phase transition between
two states of different car densities. There is no smallness condition on the size of these shocks. This
existence and uniqueness of the solution is done at the level of the Hamilton-Jacobi equation using
the notion of viscosity solution. A surprising non-existence result of semi-discrete shocks for this
microscopic model is also presented in the case where a shock exists for the associated macroscopic
model, but the velocity law V satisfies a non strict chord inequality.
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1. Introduction. In this paper we are interested in a discrete car-following
model for traffic flow. In this model, the vehicles of positions (Xi)i∈Z, satisfying
Xi < Xi+1, move with the velocity

Ẋi = V (Xi+1 −Xi) (1.1)

where V is a given function describing the behaviour of the drivers. Usually V is
assumed to be a non-decreasing function, i.e. the velocity of the driver is higher if
its distance to the vehicle in front of him, is higher. We look for particular shock
solutions of (1.1) of the form

Xi(t) = h(i+
t

T
) + ct (1.2)

where h solves

c+
1

T
h′(y) = V (h(y + 1)− h(y)) (1.3)

and
{

h(y + 1)− h(y) −→ b as y → −∞
h(y + 1)− h(y) −→ a as y → +∞.

(1.4)

Notice that (1.2), (1.3) and (1.4) provide a solution of (1.1) which satisfies














Xi(t+ T ) = Xi+1(t) + c T
and
Xi+1(t)−Xi(t) −→ b as i → −∞
Xi+1(t)−Xi(t) −→ a as i → +∞.

(1.5)
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The first equation of (1.5) means that after a period of time T , each vehicle replaces
its neighboor in front of it, up to a shift of a distance cT . This means that if we have
an air plane view of the traffic and the cars are assumed to be not distinguishable,
then we realize that the discrete shock also moves with velocity c. Here b is the
limit interdistance between vehicles far before the shock, and a is the corresponding
one far after the shock. Therefore the interdistance function h(y + 1) − h(y) can
be interpreted as a phase transition between two states b and a and is then a sort
of discrete shock. Such solutions are also related to Hamilton-Jacobi equations (see
Section 2). Moreover our methods of proof are heavily based on the notion of viscosity
solutions for (1.3) (see Definition 3.1).

1.1. Main results. We assume that V satisfies the following properties

Assumption (A)
(A1) (Regularity)

V ∈ C1(R), V ′ ∈ L∞(R), V|R+ ∈ L∞(R+),
(A2) (Monotonicity)

V ′ > 0 on R ,

(A3) (Strict chord inequality)
There exists T > 0 and c ∈ R such that











p

T
+ c ≤ V (p) for p ∈ R if and only if p ∈ [a, b],

with equality if and only if p ∈ {a, b},

(A4) (Non-degeneracy)

V ′(b) <
1

T
< V ′(a).

The regularity assumption (A1) is natural in order to apply Cauchy-Lipschitz theorem
for ODEs. For simplification in the proofs, we assume that V is defined on R. The
monotonicity assumption on V plays a crucial role in maximum principle arguments,
and the strict monotonicity (A2) is essential for strong maximum principle arguments.
Assumption (A3) means that the graph of V has only two intersection points with the

straight line z =
p

T
+ c , and is above this straight line on the interval [a, b] (see (2.4)

and Figure 1.1). Assumption (A4) is a kind of non-degeneracy condition at the points
a and b, which allows us to get exponential asymptotics of the solution at infinity,
and then simplifies the analysis and the construction of solutions.
Our first main result is

Theorem 1.1. (Existence and uniqueness of a semi-discrete shock)
Assume that (A) holds for some a < b and T > 0.
i) (existence)
Then there exists a concave solution h ∈ C1(R) of (1.3) satisfying for some constants
γ > 0, C > 0:

∣

∣h(y)− h̄(y)
∣

∣ ≤ Ce−γ|y| with h̄(y) = by l1{y<0} + ay l1{y≥0} (1.6)



SEMI-DISCRETE SHOCKS 3

V (p)

pa b

z =
p

T
+ c

Fig. 1.1. Example of V

and

h′(+∞) = a ≤ h(y + 1)− h(y) ≤ b = h′(−∞) . (1.7)

ii) (uniqueness)
Moreover h is unique (up to translations and addition of constants) among the solu-
tions g ∈ C1(R) of (1.3) satisfying

∣

∣g − h̄
∣

∣ ≤ C for some constant C > 0.

Notice that (1.7) implies (1.4) and then the function h given by Theorem 1.1 corre-
sponds to the one we were looking for.
We emphasize the fact that Theorem 1.1 stays true if we only assume that V is defined
on [a, b] and satisfies (A) on this interval. This is related to the fact that, on the one
hand such a function V can always be extended as a function satisfying (A) on R, and
on the other hand the solution satisfies (1.7), and then does not see the part where
the function V has been extended. In this spirit, existence and uniqueness results can
be obtained under weaker assumptions (see Theorem 8.1).
We underline the fact that assumption (A3) is crucial for the existence. We may think
to relax assumption (A3) to the following condition:

(A′
3) (Non strict chord inequality)

There exists T > 0 and c ∈ R such that










p

T
+ c ≤ V (p) for p ∈ R if and only if p ∈ [a, b],

with equality at least for p = a, b, p0 with p0 ∈ (a, b).

Then we have the following surprising non-existence result:
Theorem 1.2. (Non-existence of semi-discrete shocks)

Assume that (A1), (A2), (A′
3) hold for some a < b and T > 0. Then there is no

solution h ∈ C1(R) of (1.3) satisfying

h′(+∞) = a and h′(−∞) = b. (1.8)
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A consequence of Theorem 1.2, is that if we consider a continuous family of functions
Vε for ε ∈ [0, 1] such that Vε satisfies (A) for ε > 0 and only (A1), (A2), (A′

3) for ε = 0,
then the solution hε will split as ε goes to zero, into (at least) two solutions h1 and h2

as above. This illustrates how condition (A3) is delicate. It would be very interesting
to identify the long time dynamics describing the separation of microscopic shocks in
the case of condition (A′

3), in a spirit similar to [10, 2].

Indeed, Theorem 1.2 is a straightforward consequence of the following classification
result:

Theorem 1.3. (Classification of solutions)
Assume (A1) and (A2). Let h ∈ C1(R) be a solution of (1.3) for some T > 0 and
c ∈ R, satisfying for some constant C > 0

|h(y + 1)− h(y)| ≤ C. (1.9)

Then there exists ã, b̃ ∈ R such that

h′(−∞) = b̃ and h′(+∞) = ã, (1.10)

we have h ∈ C2(R) and one of the following three cases holds.
Case 1: ã < b̃
Then h′′ < 0 and















c+
p

T
< V (p) for all p ∈ (ã, b̃),

with equality for p ∈
{

ã, b̃
}

.

(1.11)

Case 2: ã > b̃
Then h′′ > 0 and















c+
p

T
> V (p) for all p ∈ (b̃, ã),

with equality for p ∈
{

ã, b̃
}

.

(1.12)

Case 3: ã = b̃
Then h′′ = 0.
As an interesting application to traffic, it seems that we never observe traffic flow going
to the right, with a shock where the traffic jam is on the left and the “fluid” traffic
is on the right, i.e. a case where a > b. Therefore condition (1.12) of Theorem 1.3
suggests strongly that the velocity function V has to be concave in traffic applications
in the range where V is increasing. Nevertheless we can find non concave velocity
function V and Fundamental diagrams in the literature on traffic (see Li et al.[15]).

1.2. Brief review of the literature. In the case of Newell’s model (see [17])
the velocity function is given by

V (p) = V0(1− e−γ(p−L)) (1.13)

for positive constants V0, γ, L. For this model, exact solutions are known (see formula
(11) in [21]) such that

Ẋi(t) = V (Xi+1(t)−Xi(t)) =
V (a) + V (b)

2
+

(

V (a)− V (b)

2

)

tanh

(

β

(

i+
t

T

))
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with


















1

T
=

V (a)− V (b)

a− b
,

β = γ

(

b− a

2

)

> 0.

We mention that the exact solutions exist for two models with delay: Newell original
model (1.13) and a version of Newell’s model where the exponential is replaced by a
hyperbolic tangent. The reader can consult [21, 11, 12, 20] for explicit solutions. Up
to our knowledge, it seems that no exact solutions are known for other models like
Bando et al. model [3]. Car-following models are related to the following Lighthill,
Whitham and Richards model (see [16],[19])

ρt + f(ρ)x = 0 with f(ρ) = ρV (
1

ρ
) .

In this framework of conservation laws, shocks arise naturally. Discrete shocks have
been constructed for fully discrete monotone schemes (with discretization in space
and time), by Jennings [14] using ”maximum principle” arguments and a fixed point
approach (see also Serre [18] for systems). Semi-discrete shocks for semi-discrete
schemes (with discretization in space only), have been constructed for systems of
conservation laws in the case of small shocks, by a center manifold approach (see [6, 5]
and also [7] for a study of the stability). In the case of Theorem 1.1, we construct large
semi-discrete shocks (associated to Xi+1 −Xi) using maximum principle arguments
and Perron’s method applied at the level of Hamilton-Jacobi equation (associated to
Xi) instead of the scalar conservation law (associated to Xi+1 −Xi).

1.3. Organization of the paper. In Section 2, we present the link of our
problem with Hamilton-Jacobi equations. Section 2 is not necessary for the proof
of our main results and can be skipped by the reader. In Section 3, we define a
viscosity solution and recall that any C1 solution is a viscosity solution and vice
versa. In Section 4, we give preliminary results that will be used later in the next
sections. In particular, we explain how equation (1.3) can be seen as an ODE with
delay and then can be solved towards the left (see Lemma 4.1). We also provide a
powerful self-contained proof of the exponential behaviour of the solution at−∞ which
is true for instance under assumption (A4) (see Proposition 4.2). This exponential
asymptotics will be used later to show the existence of a solution. In Section 5,
we prove qualitative concavity/convexity properties of the solutions which provide a
proof of the classification result (Theorem 1.3). In Section 6, we show the uniqueness
(and concavity) of solutions (see Proposition 6.2). Section 7 is devoted to the proof of
existence of a solution by Perron’s method (in the framework of viscosity solutions).
The difficult part is to construct the subsolution. After the presentation of the method
in a first subsection, we provide qualitative properties of the subsolution in the second
subsection. In the third and last subsection, we present the existence result and give
the proof of Theorem 1.1. In Section 8, we extend our existence, uniqueness result
and non-existence result to cases under weaker assumptions on the velocity function
V (respectively Theorems 8.1 and 8.3). Finally Section 9 is an appendix where we
recall the strong maximum principle (Lemma 9.1) used in the proofs.

1.4. Normalization. Notice that in Theorem 1.3, we can always come back
from case 2 to case 1 by a simple change of unknowns. Indeed, if h is solution of (1.3)
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satisfying (1.10) with ã > b̃ then ȟ(y) := −h(y) is solution of











č+
1

T
ȟ′(y) = V̌ (ȟ(y + 1)− ȟ(y)),

ȟ′(−∞) = b̌ and ȟ′(+∞) = ǎ,

with







V̌ (p) := −V (−p),

č = −c, ǎ = −ã, b̌ = −b̃,

where we have now the condition:

ǎ < b̌.

Still having equation (1.3) in mind, up to consider the new velocity function

Ṽ (p) = T (V (p)− c)

and replace V by Ṽ , we can assume that

T = 1 and c = 0 . (1.14)

From now on, except in Section 2 and part of Section 8, and up to the end of the
paper, we will use normalization (1.14) and then (1.3) can be rewritten as

h′(y) = V (h(y + 1)− h(y)). (1.15)

We will also assume that a < b.

2. Link with Hamilton-Jacobi equations. It is known (see [9]) that this
microscopic model is related to the following macroscopic model

Xt = V (Xy) (2.1)

which is a Hamilton-Jacobi equation, where t > 0 is the time and y ∈ R is a continuous

index of the vehicles and where Xt =
∂X

∂t
, Xy =

∂X

∂y
. We now define the viscosity

subsolution, supersolution and solution of (2.1).
Definition 2.1. (Viscosity solution for Hamilton-Jacobi equations)

Let T1 > 0 and X : (0, T1) × R → R be a locally bounded function. We denote
Ω = (0, T1)× R.

– A function X is a subsolution (resp. a supersolution) of (2.1) if X is upper
semi-continuous (resp. lower semi-continuous) and if for all test function
ψ ∈ C1(Ω) such that X −ψ attains a local maximum (resp. a local minimum)
at (t∗, y∗), we have

ψt ≤ V (ψy) (resp. ψt ≥ V (ψy)) at (t∗, y∗).

– A function X ∈ C(Ω) is a viscosity solution of (2.1) if it is both a viscosity
subsolution and a viscosity supersolution of (2.1).

Lemma 2.2. (A particular viscosity solution)
The function

X (t, y) = min(ay + tV (a), by + tV (b)) (2.2)

is a viscosity solution of (2.1).
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Proof of Lemma 2.2
We can see that for a < b, the function X is C1 except on the line

y = −
t

T
with

1

T
=

V (a)− V (b)

a− b

with

X (t, y) = X (0, y +
t

T
) + ct with c =

aV (b)− bV (a)

a− b
. (2.3)

We can check that X is a viscosity solution of (2.1) if and only if the following condition
is satisfied

c+
p

T
≤ V (p) for any p ∈ [a, b] . (2.4)

Indeed, X is a viscosity solution of (2.1) if and only if X is a subsolution on the line
y = − t

T for any test function ct+ φ(y + t
T ) with a ≤ φ′(0) ≤ b .

!

Our goal is to construct a discrete analogue of X for equation (1.1), which cor-
responds to a shock in traffic flow. Theorem 1.2 shows that even if X given in (2.2)
is a solution of the macroscopic equation (2.1), there is no corresponding solution of
(1.15) at the microscopic level. Indeed, when equality in assumption (A′

3) only arises
at the three points p = a, b, p0, then there are two solutions h1, h2 at the microscopic
level, such that the interdistance h1(y+1)−h1(y) provides a transition between b and
p0 and the interdistance h2(y+1)− h2(y) is a transition between p0 and a. Theorem
1.2 exhibits an important difference between the macroscopic model (2.1) and the
microscopic model (1.15).

3. Viscosity solutions. We define here viscosity solutions for advanced differ-
ential equation which includes the microscopic model (1.15). Let F : R2 → R be
globally Lipschitz function such that F (x1, x2) is increasing in x1.

Definition 3.1. (Viscosity solution for advanced differential equations)
– A function h ∈ L∞

loc
(R) is a subsolution (resp. supersolution) of

h′(y) = F (h(y + 1), h(y)) (3.1)

if h is upper semi-continuous (resp. lower semi-continuous) and if for all test
function ψ ∈ C1(R) such that h − ψ attains a local maximum (resp. a local
minimum) at y∗, we have

ψ′(y∗) ≤ F (ψ(y∗ + 1),ψ(y∗)) (resp. ψ′(y∗) ≥ F (ψ(y∗ + 1),ψ(y∗)) ).

– A function h ∈ C(R) is a viscosity solution of (3.1) if it is both a subsolution
and a supersolution of (3.1).

We will indeed work with viscosity solutions, and we refer the reader to [4, 8] for an
introduction to this notion using the definition of test functions.
We now give a regularity property of viscosity solution.

Proposition 3.2. (Regularity of viscosity solutions for (1.15))
Assume (A1). Let h be a viscosity solution of (1.15). Then h ∈ C2(R).
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Proof of Proposition 3.2
Step 1: h is locally Lipschitz.
Recall that by definition of viscosity solution h ∈ L∞

loc(R). Using equation (1.15) and
(A3), we see that for any R > 0, there exists a constant LR > 0 such that

|V (h(y + 1)− h(y))| ≤ LR for |y| < R .

Therefore, we deduce that h satisfies in the sense of viscosity solutions for Hamilton-
Jacobi equation (see Definition 3.1):

{

hy ≤ LR on (−R,R)
hy ≥ LR on (−R,R)

i.e. ḡ(y) = h(y)− LR and g(y) = h(y) + LR solve

{

ḡ′y ≤ 0 on (−R,R)
g′
y
≥ 0 on (−R,R)

From the comparison principle for Hamilton-Jacobi equation (see [4, 8]) (here g′y = 0
is a very particular Hamilton-Jacobi equation) we deduce that

{

ḡ(y + z) ≥ ḡ(y) for z ≥ 0 and y, y + z ∈ (−R,R)
g(y + z) ≤ g(y) for z ≥ 0 and y, y + z ∈ (−R,R)

This implies that

|h(y + z)− h(y)| ≤ LRz for z ≥ 0 and y, y + z ∈ (−R,R) (3.2)

Step 2: higher regularity of h.
Let g(y) = h(y)−

∫ y
0 (V (h(z+1)−h(z))) dz. Because g−h is C1(R), we deduce that

in the viscosity sense we have

g′ = 0 on R .

The comparison principle for Hamilton-Jacobi (see [4, 8]) implies that g(y) = constant =
g(0) for y ∈ R. This implies that h ∈ C1(R) and (1.15) holds for C1(R) functions.
Moreover V ∈ C1(R) implies that h ∈ C2(R).

!

4. Preliminaries: Cauchy problem and asymptotics. In a first subsection
we show how to propagate the solution to the left (Lemma 4.1), and in a second
subsection we provide exponential asymptotics of the solution (Proposition 4.2), which
can be seen as the main result of this section.

4.1. Propagation of the solution to the left. The following result shows
that we can solve the Cauchy problem (1.15) towards the left.

Lemma 4.1. (Existence and uniqueness of the construction on the left)
Assume (A1). Let us consider an “initial data” h0 ∈ C([0, 1]). Then there exists a
unique function h on (−∞, 1], with h ∈ C1(−∞, 0) ∩ C((−∞, 1]) solution of

{

h′(y) = V (h(y + 1)− h(y)) for −∞ < y < 0,
h(y) = h0(y) for 0 ≤ y ≤ 1.
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Proof of Lemma 4.1
The proof seems very classical, but we give it for the convenience of the reader. In
order to come back to a more familiar situation solving the equations in the direction
of positive coordinates (as in a standard Cauchy problem), we set h̃(y) := h(−y),
h̃0(y) = h0(−y). Then h̃ satisfies

{

h̃′(y) = −V (h̃(y − 1)− h̃(y)) for 0 ≤ y < +∞,
h̃(y) = h̃0(y) for − 1 ≤ y ≤ 0.

(4.1)

For δ > 0, we set

A(h̃)(y) :=











h̃0(y)−

∫ y

0
V (h̃(z − 1)− h̃(z)) dz if 0 < y ≤ δ,

h̃0(y) if − 1 ≤ y ≤ 0.

The operator A is more generally defined on the following set

X =
{

h̃ ∈ C([−1, δ]) with h̃ = h̃0 on [−1, 0]
}

which is a closed subset of the Banach space C([−1, δ]). We easily have

∣

∣

∣
A(h̃)−A(g̃)

∣

∣

∣

L∞(−1,δ)
≤ 2δ|V ′|L∞(R) |h̃− g̃|L∞(−1,δ)

which shows that A is a contraction on X for δ small enough. This shows the existence
and uniqueness of a fixed point h̃ ∈ X of A and provides a solution on the interval
[0, δ) of the delayed equation (4.1) . By a classical iteration argument where we replace
successively the interval [0, δ) (for instance by intervals [k δ

2 , (k + 2) δ2 ) with k ∈ N),
we then extend uniquely the solution on [−1,+∞). !

4.2. Asymptotics. We have
Proposition 4.2. (Asymptotics close to −∞)

Assume (A1), V ′(b) )= 1 and consider a solution g ∈ C1(−∞, 0) ∩ C((−∞, 1]) of

{

g′(y) = V (g(y + 1)− g(y)) for −∞ < y < 0,
g given on [0, 1],

(4.2)

with

g′(y) −→ b as y −→ −∞ . (4.3)

Then there exist K, γ > 0 and c1 ∈ R such that

|g(y)− by − c1| ≤ Keγy for y ≤ 0 . (4.4)

This result is different, but related to Lemma 1 in [7]. We provide here a self-contained
and elementar proof of Proposition 4.2, which has an interest in itself and can be
adapted to other frameworks. Our proof is in the same spirit as the proof of Propo-
sition 2.1 in [13].
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In order to prove Proposition 4.2, we will use Lemma 4.3 below. For the convenience
of the authors and the reader, we prefer to work with positive coordinates. To this
end, we make a change of function, setting

u(y) = g(−y) + by. (4.5)

From (4.3) and (4.2), we deduce that

b = V (b).

As a consequence, a simple computation shows that we have
{

u′(y) = V (b)− V (b+ u(y − 1)− u(y)) for 0 < y < +∞,
u given on [−1, 0],

(4.6)

and

u′(y) −→ 0 as y → +∞ . (4.7)

We define

N(u, y) := inf
α∈R

(
∫ y+1

y−1
(u(z)− α)2 dz

)1/2

(4.8)

and

M(u, y) := sup
z≥y

N(u, z). (4.9)

Lemma 4.3. (Basic estimate)
Assume (A1) and V ′(b) )= 1. Then there exists M0 > 0, L > 1, µ ∈ (0, 1), such that
if u ∈ C1(0,+∞) ∩ C([−1,+∞)) solves (4.6), then we have

M(u, 0) ≤ M0 =⇒ M(u, y + L) ≤ µM(u, y) for all y ≥ 0 .

The proof of Lemma 4.3 is postponed in this subsection. We now prove Proposition
4.2.

Proof of Proposition 4.2
Step 1: Normalization
We use definition (4.5). From the definitions of M and N (see (4.8) and (4.9)), we
have as y → +∞, N(u, y) −→ 0 and M(u, y) −→ 0, because of (4.7). In particular
there exists y1 > 0 such that

M(u, y1) ≤ M0 .

Step 2: Decay estimate on M
Using Lemma 4.3, for L > 1, we have with M(y) := M(u, y) and l ∈ N

M(y1 + lL) ≤ µlM(y1).

If lL ≤ y − y1 < (l + 1)L then

M(y) ≤ M(y1 + lL)

≤ µlM(y1)

≤ M(y1)e
(lnµ)(

y−y1
L

−1)

≤ (µ
1
L )yM(y1)e

(lnµ)(−
y1
L

−1)

≤ e−γyK1
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where e−γ := µ
1
L , γ > 0 and K1 := M(y1)elnµ(−

y1
L

−1). Up to increase K1, we can
assume that

M(y) ≤ e−γyK1 for all y ≥ 0. (4.10)

Step 3: Control of u(y + 1)− u(y)
On the one hand, we first deduce from (4.6) that

|u′(y)| ≤ |V ′|L∞(R) |u(y − 1)− u(y)|. (4.11)

On the other hand, we have by Cauchy-Schwarz inequality

|u(y + 1)− u(y)| ≤

∣

∣

∣

∣

∫ y+1

y
u′(s) ds

∣

∣

∣

∣

≤

√

∫ y+1

y
|u′(s)|2 ds (4.12)

and using (4.11), we get
√

∫ y+1

y
|u′(s)|2 ds

≤ |V ′|L∞(R)

√

∫ y+1

y
|(u(s− 1)− α)− (u(s)− α)|2 ds

≤ |V ′|L∞(R)

(

√

∫ y+1

y
|u(s− 1)− α|2 ds+

√

∫ y+1

y
|u(s)− α|2 ds

)

≤ 2|V ′|L∞(R)N(u, y)

for a value α which reaches the infimum in the definition of N(u, y), which implies
√

∫ y+1

y
|u′(s)|2 ds ≤ 2|V ′|L∞(R)M(y). (4.13)

From (4.12) and (4.13), we get using (4.10)

|u(y + 1)− u(y)| ≤ e−γyK2 for all y ≥ 0, with K2 := 2|V ′|L∞(R)K1. (4.14)

We conclude this step with the following inequality of independent interest (as a
consequence of (4.11), (4.12) and (4.13))

|u′(y + 1)| ≤ 2(|V ′|L∞(R))
2M(y). (4.15)

Step 4: Conclusion
If u(+∞) exists, then we have

|u(+∞)− u(y)| ≤
∑

k≥0

|u(y + k + 1)− u(y + k)|

≤
∑

k≥0

K2e
−γ(y+k)

≤
K2

1− e−γ
e−γy.
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Indeed from the absolute convergence of the serie in the previous computation, we can
also deduce that u(+∞) does exist and also this shows the exponential convergence
of u(y) to its limit in y = +∞. This implies (4.4) through (4.5). !

We now give the proof of Lemma 4.3.

Proof of Lemma 4.3
Step 1: Construction of sequences
By contradiction, we suppose that there exist a sequence (un)n and some sequences















Mn −→ 0
Ln −→ +∞
(0, 1) + µn −→ 1
yn ≥ 0

such that

M(un, 0) ≤ Mn and M(un, yn + Ln) > µnM(un, yn). (4.16)

We set

εn := M(un, yn + Ln) = sup
z≥yn+Ln

N(un, z). (4.17)

Then there exists zn ≥ yn + Ln such that

εn
1 + 1

n

≤ N(un, zn) =

√

∫ zn+1

zn−1
|un(z)− αn|2 dz ≤ εn (4.18)

for some αn. Moreover from (4.16), we get that εn ≤ Mn → 0. Let us consider a
rescaling of the functions un, that we call

vn(y) =
un(y + zn)− αn

εn
.

From the definition of εn, we deduce that















1 ≥ N(vn, 0) ≥
1

1 + 1
n

M(vn,−Ln) <
1

µn

(4.19)

where in the first line we have used (4.18), and in the second line we have used (4.16)
and the fact that yn ≤ zn − Ln.
Step 2: ODE satisfied by vn and a priori bounds
We have

v′n(y) =
1

εn
{V (b)− V (b+ εn(vn(y − 1)− vn(y)))} (4.20)

which can be written as

v′n(y) = −
1

εn

{
∫ 1

0
ds V ′(b+ sεn(vn(y − 1)− vn(y)))

}

εn(vn(y − 1)− vn(y)).



SEMI-DISCRETE SHOCKS 13

Then

|v′n(y)| ≤ |V ′|L∞(R) |vn(y − 1)− vn(y)|. (4.21)

A computation similar to Step 3 of the proof of Proposition 4.2, implies that we get
an inequality analogous to (4.15), i.e. for y ≥ −Ln

|v′n(y + 1)| ≤ 2(|V ′|L∞(R))
2M(vn, y).

Using (4.19), we deduce for y ≥ −Ln

|v′n(y + 1)| ≤
2

µn
(|V ′|L∞(R))

2 (4.22)

and we recall that

1 ≥

√

∫ 1

−1
|vn(y)|2 dy = N(vn, 0) ≥

1

1 + 1
n

. (4.23)

Step 3: Passage to the limit
From (4.22) and (4.23), we deduce that vn is bounded in C1

loc(R) uniformly as n →
+∞. So vn −→ v locally uniformly, and passing to the limit in (4.20), we get

v′(y) = −β (v(y − 1)− v(y)) in D′(R), with β := V ′(b) )= 1. (4.24)

And from (4.19) and (4.22) we obtain respectively as n → ∞ and for almost every
y ∈ R

1 ≤ N(v, 0) ≤ M(v,−∞) ≤ 1 and |v′(y)| ≤ 2(|V ′|L∞(R))
2 (4.25)

because µn → 1. Note that M(v,−∞) does exist because of the monotonicity of
M(v, ·).
Step 4: Getting a contradiction
Because of (4.25), we have v ∈ S ′(R) and we can apply Fourier transform to equation
(4.24), and get

iξv̂(ξ) = −β(e−iξ − 1)v̂(ξ)

i.e.

A(ξ)v̂(ξ) = 0 with A(ξ) := β(cos ξ − 1) + i(ξ − β sin ξ).

It is easy to see that A(ξ) = 0 if and only if ξ = 0, which implies supp v̂ = {0}.
Therefore v̂ =

∑

finite aγ∂
γδ0 and coming back to the real space, we deduce that v is

a polynomial. Because v′ is bounded, we deduce that v(y) = c1y + c2. Plugging this
expression in (4.24), and using the fact that β )= 1, we deduce that c1 = 0. Therefore
v(y) = c2 =constant. But N(v, 0) = 1. Contradiction. !

5. Qualitative properties of solutions. In a first subsection, we prove a very
nice monotonicity property of the interdistance function h(y + 1)− h(y) (see Propo-
sition 5.1), that can be seen as the main result of this section. As a consequence, we
prove the classification result (Theorem 1.3) in a second subsection.
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5.1. Monotonicity properties of the interdistance function G. We first
notice that given any solution h of (1.15), the function G(y) := h(y+1)− h(y) solves
the following equation:

G′(y) = V (G(y + 1))− V (G(y)) for y ∈ R. (5.1)

We now present a monotonicity result for the solutions of this equation.
Proposition 5.1. (Monotonicity of G)

Assume (A1) and (A2). Let G ∈ C1(R) be a bounded solution of (5.1). Then we have
the following three cases:
either

G′ > 0 on R,

or

G′ < 0 on R,

or

G′ = 0 on R.

Proof of Proposition 5.1
Step 1: if G has a global maximum, then G is constant
Assume that G has a global maximum at y0. Comparing G to the constant function
equal to G(y0), and using the strict monotonicity of V (see (A2)), we deduce from
Lemma 9.1 that

G(y) = G(y0) for all y ∈ R.

Step 2: case where G has a local maximum at y0
Assume by contradiction that G is not non decreasing on [y0,+∞).
Then either we have






G′(y0) = 0,

and for every ε > 0, there exists yε ∈ (y0, y0 + ε) such that G(yε) < G(y0),
(5.2)

or G is constant on some interval [y0, y0 + ε0] for some ε0 > 0. In this last case, let
us define

ȳ0 = sup {x0 ≥ y0, G is non decreasing on [y0, x0]} .

Then we have y0 < y0 + ε0 ≤ ȳ0 < +∞. This implies that ȳ0 satisfies property (5.2),
and up to replace y0 by ȳ0, we can now assume (5.2).
Step 2.1: definition of a sequence
By (5.2), we have

0 = G′(y0) = V (G(y0 + 1))− V (G(y0)).

The strict monotonicity of V (see (A2)) implies that

G(y0 + 1) = G(y0).
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Up to redefine z0, let us call z0 a point of minimum of G on [y0, y0+1] which satisfies

G(z0) < G(y0) and G′(z0) = 0.

Therefore G(z0 + 1) = G(z0) and y0 + 1 ∈ (z0, z0 + 1). We deduce that a maximum
y1 of G on [z0, z0 + 1] satisfies

G(y1) ≥ G(y0 + 1) = G(y0) and G′(y1) = 0.

Similarly, we can consider a minimum z1 of G on [y1, y1 + 1] + z0 + 1 which satisfies

G(z1) ≤ G(z0 + 1) = G(z0) and G′(z1) = 0.

More generally, we define for n ≥ 1

yn+1 ∈ Argmax[zn,1+zn]G and then zn+1 ∈ Argmin[yn+1,1+yn+1]G

which satisfy






G(yn+1) ≥ G(yn) ≥ G(y0) > G(z0) ≥ G(zn) ≥ G(zn+1),

y0 < z0 < y1 < zn < yn+1 < zn+1.

Notice that G is Lipschitz (let us say of constant L), because G is bounded and solves
(5.1). Therefore

1 ≥ yn+1 − zn ≥ d and 1 ≥ zn+1 − yn+1 ≥ d with d :=
G(y0)−G(z0)

L
> 0.

This shows that G(y) oscillates as y → +∞. Moreover the sequence G(yn) is non
decreasing and bounded, and then converges.
Step 2.2: further properties (5.3) and (5.4)
We now need a further property. Let us call

y′n ∈ Argmax[yn,1+yn)G and z′n ∈ Argmax[zn,1+zn)G.

Then G(y′n) = G(1 + y′n) and then






if y′n ≥ zn, then G(y′n) ≤ G(yn+1),

if y′n < zn, then G(y′n) = G(1 + y′n) ≤ G(yn+1), because 1 + y′n < 1 + zn.

Therefore

sup
[yn,1+yn]

G ≤ G(yn+1). (5.3)

Similarly, we show that

inf
[zn,1+zn]

G ≥ G(zn+1). (5.4)

Step 2.3: contradiction, passing to the limit
This implies that (up to pass to the limit on a subsequence)

Gn(y) := G(y + yn) → G∞(y) and zn − yn → d∞ ∈ [d, 1]
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where G∞ solves (5.1) and we deduce from (5.3) that

G∞(y) ≤ G∞(0) (5.5)

and

G∞(d∞) ≤ G(z0) < G(y0) ≤ G∞(0). (5.6)

Then Step 1 applied to (5.5) implies that G∞ is constant which is in contradiction
with (5.6). This implies that G has to be non decreasing on [y0,+∞).
Step 3: case where G has a local minimum at z0
As in Step 2, we conclude to a contradiction.
Step 4: monotonicity of G
Steps 2 and 3 imply that G is monotone.
Step 5: ±G′ > 0 or G′ = 0
Assume by contradiction that there exists y0 ∈ R such that

G′(y0) = 0 .

As above, we deduce that

G(y0 + 1) = G(y0) .

Because G is monotone, this implies that

G(y) = G(y0) on [y0, y0 + 1]

and therefore

G′(y0 + 1) = 0 .

Iterating the argument, we deduce that

G(y) = G(y0) for y ≥ y0 .

Applying a Cauchy-Lipschitz type argument (like in the proof of Lemma 4.1), we
deduce that

G(y) = G(y0) for all y ∈ R.

!

5.2. Qualitative properties of h: proof of Theorem 1.3. We now prove
Theorem 1.3.

Proof of Theorem 1.3
Step 1: sign of G′ and h′′

We define G(y) := h(y+1)−h(y). Recall that h′ ∈ C1(R) and solves (1.15). Therefore
h ∈ C2(R). Using (1.9), we get from Proposition 5.1 that G′ > 0, G′ < 0 or G′ = 0.
Deriving (1.15), we get

h′′(y) = V ′(G(y))G′(y)
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and then h′′ > 0, h′′ < 0 or h′′ = 0.
Step 2: coming back to a Hamilton-Jacobi equation
Using again (1.9), we deduce the existence of ã, b̃ ∈ R such that

h′(−∞) = b̃ and h′(+∞) = ã.

Defining

u(t, y) := h(y +
t

T
) + ct

we see that u is a C1 solution (and then a viscosity solution) of

ut = V (uy). (5.7)

We now define

uε(t, y) = εu

(

t

ε
,
y

ε

)

.

We have as ε→ 0

uε(t, y) → u0(t, y) = h̃(y +
t

T
) + ct with h̃(y) = b̃y l1{y<0} + ãy l1{y≥0}.

By stability of viscosity solutions (see [4, 8]), we deduce that u0 is still a viscosity
solution of (5.7).
Step 3: necessary conditions
Case 1: ã < b̃
Then testing the viscosity solution u0 from above with any test function of the form

ϕ(y +
t

T
) + ct where ã ≤ ϕ′(0) ≤ b̃

we deduce that

c+
p

T
≤ V (p) for all p ∈ [ã, b̃]

with equality for p = ã, b̃.
Because we have h′′ < 0, we deduce that

ã < p := h(y + 1)− h(y) < h′(y) < b̃.

Therefore, we deduce from (1.15) that

c+
p

T
< V (p) for all p ∈ (ã, b̃).

Case 2: ã > b̃
Similarly, we get (1.12). !
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6. Uniqueness. The main result of this section is the uniqueness result, namely
Proposition 6.2. We start with the following result:

Lemma 6.1. (Asymptotics of concave functions)
Let h be a concave function satisfying |h− h̄| ≤ C for h̄(y) = min(ay, by) with a < b.
Then there exist constants α, β such that

lim
|y|→+∞

(h̃(y)− h̄(y)) = 0 with h̃(y) = α+ h(y + β) (6.1)

and

h′(+∞) = a ≤ h(y + 1)− h(y) ≤ b = h′(−∞). (6.2)

where h′(±∞) are the limits of h′(y) at the points y where h is derivable.

Proof of Lemma 6.1
Step 1: limits at infinity
Up to a change the variables, we can reduce the problem to a function φ (associated
to h on R+ or R−), such that







φ′′ ≥ 0

0 ≤ φ ≤ C

∣

∣

∣

∣

∣

∣

on R+ .

Under those conditions, we deduce that φ′ ≤ 0 on R+ (otherwise we would get a
contradiction with the boundedness of φ, using the convexity of φ). Therefore φ(+∞)
exists. Using this argument, we deduce that

(h− h̄)(y) −→ c±, as y → ±∞ . (6.3)

Step 2: normalization
Assuming (6.3), we set

h̃(y) = α+ h(y + β) = ”

{

α+ c− + b(y + β) = by as y → −∞
α+ c+ + a(y + β) = ay as y → +∞

”

which implies (6.1) for a good choice of the constants α,β.
Step 3: proof of (6.2)
From (6.1) and the concavity of h, we deduce easily that

h′(+∞) = a ≤ h′(y) ≤ b = h′(−∞)

which implies (6.2). !

We have the following result.
Proposition 6.2. (Uniqueness and concavity)

Assume (A1) and (A2). Let a < b. If h ∈ C1(R) is a solution of (1.15) satisfying

∣

∣h− h̄
∣

∣ ≤ C with h̄(y) = min(ay, by) (6.4)

then h is unique up to translation and addition of constants and satisfies on R

h′′ < 0 and h′(+∞) = a ≤ h(y + 1)− h(y) ≤ b = h′(−∞).
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Proof of Proposition 6.2
Step 1: concavity of h
From Theorem 1.3 and (6.4), we deduce that h′′ < 0.
Step 2: uniqueness
Let h1 and h2 be two solutions of (1.15) satisfying (6.4). Apply Lemma 6.1 and up to
replace hi by h̃i, we can assume that |h̃i − h̄| −→ 0 as |y| → +∞ for i = 1, 2, which
implies

|h̃1 − h̃2| −→ 0 as |y| → +∞. (6.5)

Assume by contradiction that we do not have h̃2 ≤ h̃1.
Let y0 be such that

M = sup
y
(h̃2 − h̃1)(y) = (h̃2 − h̃1)(y0) > 0 . (6.6)

From assumptions (A1) and (A2), using Lemma 9.1 applied to h̃2 − M ≤ h̃1 with
equality at y0, we conclude that

h̃2 −M = h̃1

which is a contradiction with (6.5) and (6.6). Therefore we have

h̃2 ≤ h̃1 .

Similarly we show that h̃1 ≤ h̃2, which implies h̃1 = h̃2. !

7. Existence of a solution. The goal of this section is to show the existence of
a solution of (1.15) by Perron’s method. In a first subsection, we propose a natural
supersolution and a general construction of subsolutions. The second subsection is
devoted to prove further properties of the subsolution (in particular of its extension
towards −∞) which will be crucial in the third subsection to show that we can set this
subsolution below the supersolution. The solution is then constructed in the third
subsection where we also give the proof of Theorem 1.1.

7.1. Sub and supersolutions. Our goal is to construct a solution of (1.15) in
between a sub and a supersolution, using Perron’s method. Indeed, the supersolution
is easily given by the following result.

Lemma 7.1. (supersolution)
Assume (A1) and (A3) with a < b. Let

h̄(y) = by l1{y<0} + ay l1{y≥0} . (7.1)

Then h̄ := min(ay, by) is a viscosity supersolution of (1.15) in the sense of Definition
3.1.

Proof of Lemma 7.1
Because of (A3), we know that the functions y ,→ ay and y ,→ by are two solutions of
(1.15). Then the result follows from the fact that the minimum of two solutions is a
viscosity supersolution (see [4]). !

The delicate part is the construction of a subsolution (such that it is below our su-
persolution). We indicate below a way to do it, and will need further developments
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on the subsolution in the next subsections in order to construct the solution.

For some y0 ∈ R, let us now consider a function g satisfying



































g ∈ C1 ([y0,+∞)) ,

d

dy
(g(y + 1)− g(y)) ≤ 0,

g′(y) < V (g(y + 1)− g(y)),

ay − δ ≤ g(y) < ay for δ > 0,

∣

∣

∣

∣

∣

∣

∣

∣

∣

for y > y0.
(7.2)

Using Lemma 4.1, we extend by continuity g on y ≤ y0 as the solution of

g′(y) = V (g(y + 1)− g(y)) for y ≤ y0. (7.3)

Then we have the following lemma.
Lemma 7.2. (A subsolution)

Assume (A1) and (A2). If g satisfies (7.2) and is extended on {y ≤ y0} by (7.3), then
g is a viscosity subsolution of (1.15) on R in the sense of Definition 3.1.

Proof of Lemma 7.2
This is clear that g is a subsolution on R \ {y0}. Let us assume that ϕ ∈ C1 is a test
function such that

{

g ≤ ϕ on R ,
g(y0) = ϕ(y0) .

(7.4)

Then we have

ϕ′(y0) ≤ g′(y−0 ) = V (g(y0 + 1)− g(y0)) ≤ V (ϕ(y0 + 1)− ϕ(y0))

where the last inequality follows from (7.4) and the monotonicity of V (see (A2)).
This shows that g is a viscosity subsolution at y = y0 and finally g is a viscosity
subsolution on R. !

7.2. Qualitative properties of our subsolution. We have the following result
which is analogous to the monotonicity for solutions (see Proposition 5.1).

Lemma 7.3. (Monotonicity property for G associated to our subsolu-
tion)
Let us assume (A1), (A2) and (7.2). Let us define

G(y) := g(y + 1)− g(y) (7.5)

where g is the subsolution given by Lemma 7.2. Then G is nonincreasing on R.

Proof of Lemma 7.3
Recall that by construction, g and G are continuous on R. Let us define

y∗ = inf{z0 ∈ (−∞, y0] : G is non increasing on (z0,+∞)} ≤ y0 .

Assume by contradiction that y∗ > −∞.
Case 1: G(y∗ + 1) < G(y∗) or y∗ ∈ (y0 − 1, y0]
By (7.2), we have G′(y) ≤ 0 if y > y0. In both cases y∗ +1 = y0 or y∗ +1 )= y0, there
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exists η > 0 small enough such that y + 1 )= y0 if y ∈ (y∗ − η, y∗). Therefore for such
y, we have

G′(y) = g′(y + 1)− g′(y) ≤ V (G(y + 1))− V (G(y)) =: F (y) (7.6)

and (using the third line of (7.2))

{

G′(y∗) < F (y∗) if y∗ ∈ (y0 − 1, y0],
F (y∗) ≤ 0 because G(y∗ + 1) ≤ G(y∗).

(7.7)

Because V is increasing (assumption (A2)), we deduce that

F (y∗) < 0 if G(y∗ + 1) < G(y∗). (7.8)

From the continuity of F and using either (7.7) or (7.8), we deduce that we have in
all cases (up to reduce η > 0)

G′(y) ≤ F (y) < 0 for y ∈ (y∗ − η, y∗).

Contradiction with the definition of y∗.
Case 2: G(y∗ + 1) = G(y∗) and y∗ ≤ y0 − 1
Step A: We show that G(y) = G(y∗) for all y ∈ [y∗, y0 + 1]
Because G is nonincreasing on (y∗,+∞) and G(y∗ + 1) = G(y∗), we deduce that

G = G(y∗) on [y∗, y∗ + 1].

Therefore, we have for any y1 ∈ (y∗, y∗ + 1) \ ({y0 − 1} ∪ [y0,+∞))

0 = G′(y1) ≤ V (G(y1 + 1))− V (G(y1)) .

This implies

V (G(y1 + 1)) ≥ V (G(y1)) for y1 ∈ (y∗, y∗ + 1) \ ({y0 − 1} ∪ [y0,+∞)) .

Because V is increasing (assumption (A2)), we deduce that

G(y1 + 1) ≥ G(y1) for all y1 ∈ [y∗, y∗ + 1] \ [y0,+∞)

where we have used the continuity of G to add (when it is useful) the point y0−1 and
the endpoints {y∗, y∗+1}. Since G is nonincreasing on [y∗,+∞), we get in particular
that

G = G(y1) = G(y∗) on [y1, y1 + 1].

If y1 < y0, we can repeat the argument with y1 replaced by some y2 ∈ (y1, y1 + 1) \
({y0 − 1} ∪ [y0,+∞)) , and so on, and get that

G(y) = G(y∗) =: C1 for all y ∈ [y∗, y0 + 1]. (7.9)

Step B: Consequences
In particular, the equation on g and the fact that y∗ ≤ y0 − 1 imply that

g(y) = g(y0) + V (C1)(y − y0) for y ∈ [y0 − 1, y0]
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and by uniqueness of the extention on (−∞, y0 − 1] (see Lemma 4.1), we deduce that

g(y) = g(y0) + V (C1)(y − y0) for y ≤ y0

and then G is constant on (−∞, y0 − 1], i.e.

G(y) = G(y0 − 1) = G(y∗) on (−∞, y0 − 1)

where we have used again the fact that y∗ ≤ y0 − 1. Joint to (7.9), we deduce that
G is constant on (−∞, y∗] and then G is globally nonincreasing on R. Contradiction
with the definition of y∗.
Conclusion
In cases 1 and 2, we get a contradiction. This implies that y∗ = −∞. !

Corollary 7.4. (Bound and limit of G)
Assume (A1), (A2), (A3) and (7.2). For G defined in Lemma 7.3 by (7.5), we have

|G(y)| ≤ M1 := max(| sup
R+

V |, |V (G(y0))|) for y ≤ y0 − 1 (7.10)

and
{

G(y) −→ b as y → −∞,
G(y) −→ a as y → +∞ .

Proof of Corollary 7.4
Step 1: limit of G
We recall that g′(y) = V (G(y)) for y < y0 . Because G is nonincreasing and V ′ ≥ 0,
we deduce that

sup
R+

V ≥ g′(y) = V (G(y)) ≥ V (G(y0)) for y < y0 .

Then we have

|G(y)| = |g(y + 1)− g(y)| ≤ Lip(g) ≤ M1 for y ≤ y0 − 1

with M1 defined in (7.10). But G is nonincreasing, which implies that the following
limit exists

lim
y→−∞

G(y) = A (7.11)

Step 2: A ∈ {a, b}
Using the equation satisfied by g for y < y0, we get

G(y) = g(y+1)−g(y) =

∫ 1

0
g′(y+s) ds =

∫ 1

0
V (G(y+s)) ds −→ V (A) as y → −∞.

where we have used (7.11) for the passage to the limit. This shows that G(−∞) =
A = V (A), and then A ∈ {a, b} by (A3).
Step 3: G(+∞) = a
From the last line of (7.2), we deduce that

a− δ ≤ G(y) ≤ a+ δ for y > y0
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and as in Step 1, we deduce that G has a limit in +∞.
We define for k ∈ N \ {0}

Ik(y) =
1

k

k−1
∑

l=0

G(y + l).

From the definition of G, we get

Ik(y) =
1

k
(g(y + k)− g(y)).

Then (7.2) implies for y ≥ y0

1

k
(ak − δ) ≤ Ik(y) ≤

1

k
(ak + δ)

i.e.

|Ik(y)− a| ≤
δ

k
.

On the other hand, we have

Ik(y) −→ G(+∞) as y → +∞ .

This shows that

|G(+∞)− a| ≤
δ

k
.

Taking the limit k → +∞, we get

G(+∞) = a .

Step 4: A = b
Assume by contradiction that A = a. Then G(−∞) = a = G(+∞) and because G is
nonincreasing , we have

G(y) = a on R .

This means that the function

k(y) = g(y)− ay

is 1-periodic. On the other hand, by the third line of (7.2), we get

a+ k′(y) = g′(y) < V (g(y + 1)− g(y)) = V (G(y)) = V (a) = a for y > y0

i.e.

k′(y) < 0 for all y > y0

which is impossible for a periodic function k. Contradiction, and then A = b. !
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7.3. Construction of a solution. We start with:
Lemma 7.5. (Candidate for g)

Assume (A1), (A4). Then, there exists a constant γ > 0 such that the function

g(y) := ay − δe−γy

satisfies (7.2) for y0 = 0 and δ > 0 small enough.

Proof of Lemma 7.5
We have to check the following properties for y ≥ 0.

(H1)
d

dy
(g(y + 1)− g(y)) < 0 ,

(H2) g′(y) < V (g(y + 1)− g(y)) ,
(H3) ay − δ ≤ g(y) < ay with δ > 0,
where (H3) is obvious.
i) Checking (H1)
We have

G(y) = g(y + 1)− g(y) = a+ δe−γy(1− e−γ).

Therefore G′(y) < 0.
ii) Checking (H2)
On the one hand, we have

g′(y) = a+ γδe−γy = V (a) + γδe−γy.

On the other hand, we have

V (G(y)) = V (a+ δe−γy(1− e−γ))

= V (a) + V ′(ξ)δe−γy(1− e−γ)

for some ξ ∈ [a,G(y)]. To check (H2), it is enough to check

γδe−γy < V ′(ξ)δe−γy(1− e−γ) . (7.12)

Then it is enough to check

F (γ) :=
γ

1− e−γ
< V ′(a) (7.13)

which will implies (7.12) for δ small enough (by continuity of V ′). We have

F ′ > 0 and F (0) = 1.

Therefore to check (7.13), it is sufficient to have

F (0) = 1 < V ′(a)

which is true by (A4). !

We have the following
Corollary 7.6. (Existence)

Assume (A). Let g be given by Lemmata 7.5 and 7.2 and let h̄ given by (7.1). Then
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there exist two constants α,β ∈ R and a constant C > 0 and a viscosity solution h of
(1.15) in the sense of Definition 3.1 such that

h(y) ≤ h(y) ≤ h̄(y) for all y ∈ R

with h(y) := α+ g(y + β) and

|h− h̄| ≤ h̄(y)− h(y) ≤ Ce−γ|y|. (7.14)

Proof of Corollary 7.6
Step 1: preliminaries on g
By Lemma 7.3 and Corollary 7.4, we have for G(y) := g(y + 1)− g(y)

G is nonincreasing and a = G(+∞) ≤ G(y) ≤ G(−∞) = b.

From the equation g′ = V (G) for y ≤ y0 = 0, we deduce that g is concave on (−∞, 0].
On the other hand g is concave on [0,+∞). Passing to the limit y → 0 = y0 with
y > 0 in the last line of (7.2), and using equation (7.3) to evaluate g′(0−), we get

g′(0+) ≤ g′(0−).

This implies that g is globally concave. Moreover

g′(−∞) = V (G(−∞)) = V (b) = b.

Then we can apply Proposition 4.2 to conclude that g is asymptotic to the straight
line z = by + c1 as y → −∞, for some suitable constant c1 ∈ R. On the other hand
the expression of g is explicit on [0,+∞). We conclude that

|g − h̄| ≤ C ′.

Step 2: consequences
From Lemma 6.1, we deduce that we can find α,β ∈ R such that h(y) := α+ g(y+β)
satisfies

lim
|y|→+∞

(h̄− h)(y) = 0.

Applying the reasoning of Step 2 of the proof of Proposition 6.2, we also conclude
that

h ≤ h̄

and then the right inequality of (7.14) holds true.
Step 3: Perron’s method
We are now ready to apply Perron’s method in the framework of viscosity solutions
(see for instance [4, 8]) and to conclude to the existence of a solution h of (1.15) as
in the statement of the corollary. !

Proof of Theorem 1.1
i) Uniqueness
This follows from Proposition 6.2.
ii) Existence
This follows from Corollary 7.6. !
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8. Results under weaker assumptions. In this section, we give generaliza-
tions of Theorems 1.1 and 1.2, under weaker assumptions. In particular, we show in
Theorem 8.1 below, that the existence of solutions is very robust (under the strict
chord inequality (A3)). In general, we can always relax C1 regularity of V to Lips-
chitz, and remove condition (A2), assuming that V is increasing. For some results,
we can even have weaker assumptions, as it is shown below in Theorems 8.1 and 8.3.

Theorem 8.1. (Existence and uniqueness under weak assumptions)
Let a < b and assume that V ∈ C([a, b]) in a nondecreasing function on [a, b], satis-
fying for some T > 0 and c ∈ R











p

T
+ c < V (p) for p ∈ (a, b),

with equality for p ∈ {a, b}.

(8.1)

i) (existence)
Then there exists a concave function h ∈ C1(R) solution of (1.15) satisfying

h′(+∞) = a ≤ h′(y) ≤ b = h′(−∞) . (8.2)

ii) (uniqueness)
Moreover, if V ∈ Lip([a, b]) and V is increasing on [a, b], then such a function h is
unique (up to translations and to addition of constants).

Remark 8.2. (Logarithmic branches without (A4))
For V smooth such that V ′(b) = 1/T and V ′′(b) > 0, we expect to loose the exponential
asymptotics. More precisely we expect that h will have a logarithmic branch (and then
will no longer be asymptotic to a straight line as y → −∞). Similarly if V ′(a) = 1/T
and V ′′(a) > 0, we also expect a logarithmic branch of h as y → +∞.

Proof of Theorem 8.1
We do the proof with the normalization T = 1 and c = 0.
i) (existence)
We approximate V by a function Vε that satisfies assumption (A), and get by Theorem
1.1 a solution hε of

h′
ε(y) = Vε(hε(y + 1)− hε(y))

which a concave function satisfying (8.2). Up to redefine hε, we can fix the origin
such that

hε(0) = 0 and h′
ε(0) = (a+ b)/2.

Let us call h the limit of hε as ε goes to zero. By construction h is concave, satisfies

a ≤ a′ := h′(+∞) ≤ h′(y) ≤ h′(−∞) =: b′ ≤ b

and solves

h′(y) = V (h(y + 1)− h(y)).

Thefere we have

a′ = V (a′), b′ = V (b′) and a ≤ a′ ≤ (a+ b)/2 ≤ b′ ≤ b.
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Condition (8.1) implies that a′ = a and b′ = b, which shows (8.2).
ii) (uniqueness)
We notice that Proposition 5.1 is still true if we only assume that V ∈ Lip([a, b]) and
V is increasing on [a, b], because those are the conditions used in the strong maximum
principle (see Lemma 9.1). Then the proof of uniqueness given in Step 2 of the proof
of Proposition 6.2 still applies. !

When we are not able to apply the true strong maximum principle, we can still
get a non-existence result as shows the following

Theorem 8.3. (Non-existence under weak assumptions)
Let a < b and assume that V ∈ C([a, b]) is an increasing function on [a, b], satisfying
for some T > 0 and c ∈ R











p

T
+ c ≤ V (p) for p ∈ (a, b),

with equality at least for p = a, b, p0, with p0 ∈ (a, b).

(8.3)

Then there is no solution h ∈ C1(R) of (1.15) satisfying a ≤ h(y + 1)− h(y) ≤ b and

|h− h̄| ≤ C with h̄(y) := min(ay, by). (8.4)

Proof of Theorem 8.3
We do the proof with the normalization T = 1 and c = 0.
Step 1: exclusion of the case V linear
Let us assume that V (p) = p. Then the equation is

h′(y) = h(y + 1)− h(y)

and we can apply the Fourier transform argument of Step 4 of the proof of Lemma
4.3 (because the function h is globally Lipschitz) to show that

h(y) = c1y + c2.

Therefore there is no solution satisfying (8.4).
Step 2: existence of another candidate
Up to shift h, we can deduce from (8.4) that for some C0 > 0

h̄ ≥ h ≥ h̄− C0. (8.5)

From (8.3) and Step 1, we know that we can assume that there exists an interval
[a′, b′] ⊂ [a, b] with a′ < b′ and (a′, b′) )= (a, b) such that







p < V (p) for p ∈ (a′, b′),

with equality if and only if p ∈ {a′, b′}.

Then Theorem 8.1 shows the existence of a concave solution g of

g′(y) = V (g(y + 1)− g(y))

satisfying

g′(+∞) = a′ ≤ g′(y) ≤ b′ = g′(−∞).
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As a consequence, up to shift g, we can assume that

g ≥ 1 + h with h(y) := min(a′y, b′y) ≥ h̄(y). (8.6)

Moreover, up to add the same linear function to g and h, we can assume that a > 0.
Step 3: getting a contradiction
The idea of the proof is to shift the graph of h below the graph of g in order to get a
contact point, and then to conclude to a contradiction using a sort of weak version of
the strong maximum principle. We will avoid to get a contact point at infinity, using
in a suitable way the behaviour of the functions at infinity.
We start with the following inequalities

g ≥ 1 + h ≥ 1 + h̄ ≥ 1 + h. (8.7)

Case 1: a < a′

Let us define the function hλ whose the graph is the translation of the graph of h of
vector λ(1, b), i.e.

hλ(y) := λb+ h(y − λ).

We set

λ0 := sup
{

λ1 ∈ [0,+∞), g ≥ hλ1
}

≥ 0

where the bound from below of λ0 also follows from (8.7). If λ0 = +∞, then we would
deduce from (8.5) that g(y) ≥ by − C0, which is impossible because g′(+∞) = a′ <
b′ ≤ b. Therefore λ0 < +∞. We also have (with a similar definition of h̄λ0)







g − hλ0 ≥ g − h̄λ0 = g − h̄ ≥ 1 on (−∞, 0],

(g − hλ0)(y) ≥ (h− h̄λ0)(y) ≥ −C1 + (a′ − a)y for y ∈ [0,+∞)
(8.8)

for some constant C1 > 0. From the definition of λ0, and from (8.8) with a′ − a > 0,
we then deduce that there exists y0 ∈ R such that

g − hλ0 ≥ 0 = (g − hλ0)(y0).

Because V is increasing, from the equation satisfied by g and hλ0 , we deduce that

(g − hλ0)(y0) = (g − hλ0)(y0 + 1) = (g − hλ0)(y0 + k) for all k ∈ N.

Contradiction with (8.8).
Case 2: b′ < b
We get a contradiction similarly as in case 1.
Step 4: conclusion
There is no solution h as stated in the theorem. !

9. Appendix. We now give the following result which is a special case of Lemma
6.2 b) given in [1].

Lemma 9.1. (Strong maximum principle)
Let F : R2 → R be a globally Lipschitz function such that F (x1, x2) is increasing in
x1. We consider the following equation

h′(y) = F (h(y + 1), h(y)) for y ∈ R (9.1)
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Let h1, h2 be respectively a viscosity sub and supersolution of (9.1) in the sense of
Definition 3.1. Assume that

{

h1 ≤ h2 on R

h2(y0) = h1(y0) .

Then we have

h1 = h2 for all y ∈ R.
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