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1 Introduction

In this paper we study the homogenisation of non-local Hamilton-Jacobi equations
modelling dislocations dynamics, we propose a scheme and provide numerical
simulations for several models.

1.1 Physical modelling of dislocations dynamics

In thiswork, we are interested in the collective behaviour of several dislocationsmoving
in a crystal. Dislocations are defects present in real crystals and are at the origin of
the plastic behaviour of metals, we refer to Hirth and Lothe (1992) for a physical
description of dislocations.

In our work and in the simplest case, we consider a particular geometry of parallel
dislocations lines moving in the same plane. This particular geometry can be modelled
by the following 1D problem:




∂u

∂t
(x, t) = c[u](x, t)

∣∣∣∣∂u

∂x
(x, t)

∣∣∣∣ in R × (0, +∞)

c[u](x, t) = A + c1(x) + cint[u](x, t)

cint[u](x, t) =
∫

R

c0(x′) u(x − x′, t) dx′

(1)

with initial condition

u(x, 0) = u0(x) on R. (2)

For similar model, we refer to Ghorbel and Monneau (2006) and Imbert et al. (2006).
Here the positions xi of the dislocations are defined by u(xi, t) = i for i ∈ Z. These

dislocations move with a velocity

ẋi(t) = −c[u](xi(t), t)

which corresponds to the equation (1) without absolute values on ∂u
∂x .

In the regime that we are interested in, the velocity c[u] is proportional to the force
acting on the dislocations. This velocity is then the sumof three contributions. The first
one is the exterior applied stressA ∈ R, assumed here to be constant. The second one is
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the force c1 createdby the other defects in the crystal. The last one and themost original
here is cint which is the force created by all the elastic interactions between dislocations.
This last contribution, in a simplified model, can be modelled by a convolution term
as in the last line of equation (1).

Physically, each dislocation i can have a positive or negative Burgers vector,
which corresponds to the sign of ∂u

∂x at the point xi. Here in equation (1), we allow
the annihilation of dislocations of opposite Burgers vectors. This is why we write
equation (1) with the absolute value |∂u

∂x | . Here we see that the function u has no
physical meaning in itself, but on the contrary what is physically meaningful is the set
where u takes integer values in this model (see Figure 1).

Figure 1 Choice of representation

Wewill studyproblem (1) and similar equations in the frameworkof viscosity solutions.
Let us recall that the notion of viscosity solution was first introduced by Crandall and
Lions (1981) for first order Hamilton-Jacobi equations. For an introduction to this
notion, see in particular the books ofBarles (1994), andofBardi andCapuzzo-Dolcetta
(1997), and the User’s guide of Crandall et al. (1992).

We assume that the kernel c0 satisfies

c0(x) = c0(−x) and
∫

R

c0(x) dx = 0. (3)

We also assume the periodicity and the regularity of the micro-stress c1

c1(x + 1) = c1(x) on R, and c1 is a Lipschitz continuous function. (4)
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1.2 Goal of the paper

We want to understand the properties of the solution of equation (1) for A = 0 at a
large scale. Define

uε(x, t) = ε u

(
x

ε
,
t

ε

)

where ε is the ratio between the mesoscopic scale and the microscopic scale associated
to dislocations (like distances between obstacles to the motion of dislocations).
Because we made a rescaling of the solution, the dislocations are now given by the
values such that uε = εk for k ∈ Z.

Homogenisation of Hamilton-Jacobi equations was studied by Lions et al. (1986)
and this work was followed by a large literature on the subject, that would be difficult
to cite here.

For this equation (see Imbert et al., 2006) and for a certain class of kernels c0, it is
known that uε converges to u0, solution of

∂u0

∂t
= H

(
I1u

0,
∂u0

∂x

)

where I1 is a non-local Levy operator, and H is the effective Hamiltonian given by the
following definition.

Definition 1.1 (Effective Hamiltonian): We assume (4). For (A, p) ∈ R × R, the
effective Hamiltonian H(A, p) is defined by

H(A, p) = lim
t→+∞

w(x, t)
t

(independent on x) (5)

where w solves the ‘cell problem’, i.e., w solves (1) with w(x, 0) = px.

The goal of the present paper is to compute numerically H(A, p) for equation (1) for
specific kernels c0. In particular, we numerically check that the ergodicity property (5)
holds for general kernels c0 (like for instance for the Peierls-Nabarro model, see
Subsection 5.2), even in the case where the equation has no comparison principle and
it is even not clear if equation (5) holds theoretically. We also do some simulations for
some similar equations or systems of equations. To this end, we implemented several
numerical schemes.

1.3 Brief presentation of our results

We present here properties of the effective Hamiltonian and the scheme used to
compute it numerically. We prove the following qualitative result on the effective
Hamiltonian.

Theorem 1.2 (Monotonicity of the effective Hamiltonian): For the choice c0 =
−δ0 + J with δ0 is the Dirac mass and J ∈ C∞(R) is given by:


J(−x) = J(x) ≥ 0;

∫
R

J(x) dx = 1 and
∫

R

|x|J(x) dx < +∞

c2 := inf
δ∈[0,1)

∫
R

min(J(z), J(z + δ)) dz > 0.
(6)



A Numerical Homogenisation of Models 5

Then the effective Hamiltonian given in Definition 1.1 satisfies

1 H(A, p) is non-decreasing in A,

2 If
∫

R
c1(x) dx = 0 then H(0, p) = 0 and AH(A, p) is non-decreasing in |p| and

satisfies

|A| +
(

1 +
2
c2

)
|c1|L∞(R) ≥ sgn(A)

∂H

∂|p| (A, p) ≥ 0.

Remark 1.3: This particular choice of J , as given in equation (6), is natural from the
mathematical point of view but is also physically relevant because J(x) = 1

|x|2 for |x|
large enough, is a good approximation of the physical kernel (see Alvarez et al., 2006).

We build a finite difference scheme of order one in space and time using an explicit
Euler scheme in time and an upwind scheme in space. Given a mesh size ∆x, ∆t
and a lattice Id = {(i∆x, n∆t); i ∈ Z, n ∈ N}, (xi, tn) denotes the node (i∆x, n∆t)
and vn = (vn

i )i the values of the numerical approximation of the continuous solution
u(xi, tn). We then consider the following numerical scheme (without absolute values
here, because we restrict our simulations to the case of increasing data):

v0
i = u0(xi), vn+1

i = vn
i + ∆t ci(vn) ×

{
D+

x vn
i if ci(vn) ≥ 0

D−
x vn

i if ci(vn) < 0
(7)

with D−
x vn

i = vn
i −vn

i−1
∆x and D+

x vn
i = vn

i+1−vn
i

∆x . The discrete velocity is

ci(vn) = A + c1(xi) + cint
i (vn). (8)

We approximate the non-local term c0 � u by:


cint
i (vn) = −vn

i +
∑
l∈Z

Jlv
n
i−l∆x

Ji =
1

∆x

∫
Ii

J(x) dx and Ii =
[
xi − ∆x

2
, xi +

∆x

2

]
.

(9)

Several works have been done for the discretisation of more general first order
Hamilton-Jacobi equations (even with boundary conditions). We refer in particular to
the works of Abgrall (2003), Alvarez et al. (2005, 2006a, 2006b), Barles and Souganidis
(1991), Crandall and Lions (1984), Falcone and Ferretti (2002) and Ghorbel and
Monneau (2006).

For problem (7)–(9), we have the following result aboutmonotonicity of the scheme
for the special kernel c0 = −δ0 + J .

Theorem 1.4 (Monotonicity of the scheme): We assume that

v0
i+1 ≥ v0

i , ∀ i ∈ Z (10)(
respectively w0

i+1 ≥ w0
i , ∀ i ∈ Z

)
. (11)



6 M-A. Ghorbel et al.

If the time step ∆t satisfies

∆t ≤
(

sup
j∈Z

|cj+1(vk) − cj(vk)|
∆x

)−1

, for 0 ≤ k ≤ n (12)

(
respectively ∆t ≤

(
sup
j∈Z

|cj+1(wk) − cj(wk)|
∆x

)−1

, for 0 ≤ k ≤ n

)
, (13)

then we have the monotonicity preservation:

vk
i+1 ≥ vk

i , ∀ i ∈ Z, ∀ 0 ≤ k ≤ n + 1 (14)(
respectively wk

i+1 ≥ wk
i , ∀ i ∈ Z, ∀ 0 ≤ k ≤ n + 1

)
. (15)

Assume moreover that

v0
i ≥ w0

i , ∀ i ∈ Z. (16)

Moreover, if the time step ∆t satisfies

∆t sup
j∈Z

{
max

(
vk

j+1 − vk
j

∆x
,
wk

j+1 − wk
j

∆x

)}
≤ 1

2
for 0 ≤ k ≤ n (17)

and

∆t

∆x
≤ 1

2

(
sup
j∈Z

{
max

(
|cj(vk)|, |cj(wk)|

)})−1

for 0 ≤ k ≤ n, (18)

then

vk
i ≥ wk

i , ∀ i ∈ Z for 0 ≤ k ≤ n + 1. (19)

Remark 1.5: There would be no monotonicity of the scheme if J would be negative.
We emphasise that, for instance, for the physical kernel of Peierls-Nabarro given in
Hirth and Lothe (1992) (see also Subsection 5.2 of the present paper), we are not able
to prove such monotonicity.

We use this scheme to compute numerically an approximation H
num

(A, p) of H(A, p)
and we numerically check that H

num
(A, p) satisfies the monotonicity properties given

inTheorem1.2. We also compute the effectiveHamiltonian for other similar equations
(like for instance the case with Peierls-Nabarro kernel, see Subsection 5.2), and for
some systems of equations (see Section 6).

There are very few works on numerics for homogenisation. Up to our knowledge,
let us mention for first order Hamiltonians some works where are computed the
effective Hamiltonian: Gomes and Oberman (2004), Qian (2003) and the work of
Rorro (2006) using semi-Lagrangian schemes. Finally let us mention the work of
Capuzzo-Dolcetta and Ishii (2001) where are given some a priori estimates on the rate
of convergence for the homogenisation of Hamilton-Jacobi equation and the work of
Camilli et al. (2006) where are given error estimates for a scheme approximating to the
effective Hamiltonian.
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1.4 Organisation of the paper

In Section 2, we give the proof of Theorem 1.2. In Section 3, we study the numerical
scheme and prove Theorem 1.4. In Section 4, we give numerical simulations
corresponding to the scheme of Theorem 1.4. In Section 5, we present numerical
simulations for similar equations with for instance the Peierls-Nabarro kernel.
In Section 6, we present numerical simulations for systems of equations for two
types of dislocations. Finally in the Appendix we provide the proof of a technical
(Lemma 2.1) and give a brief derivation of the kernel for walls of dislocations.

2 Qualitative properties of the effective Hamiltonian

Before proving Theorem 1.2, we need the following lemma whose proof is given in the
Appendix.

Lemma 2.1 (Coercivity of the convolution): AssumeJ satisfies (6), and c0 = −δ0 + J .
If u ∈ C0

b (R) is maximal at Y ∈ R, minimal at y ∈ R and |Y − y| < 1, then

(c0 � u)(Y ) − (c0 � u)(y) ≤ −c2(u(Y ) − u(y)),

where c2 is given by equation (6).

To keep light notation in this section, we denote by M the operator defined by:

(Mv)(x) = (c0 � v)(x) = −v(x) +
∫

R

J(z)v(x − z) dz. (20)

We also need the following result.

Lemma 2.2 (Existence of sub and supercorrectors): For any p ∈ R and A ∈ R, there
exist λ ∈ R, a subcorrector v(x) and a supercorrector v̄(x) which are 1-periodic in x
and satisfy

λ ≤ |p + ∂xv|(c1 + A + Mv), with p(p + ∂xv) ≥ 0 on R,

λ ≥ |p + ∂xv̄|(c1 + A + Mv̄), with p(p + ∂xv̄) ≥ 0 on R

with

max v − min v ≤ 2
c2

|c1|L∞(R) and max v̄ − min v̄ ≤ 2
c2

|c1|L∞(R),

where c2 is given by equation (6).

The proof of Lemma 2.2 is a slight adaptation of the work of Imbert et al. (2006).
We give below a quick proof of this fact.

Sketch of the proof of Lemma 2.2: Let us work in the case p > 0 (the case p < 0 is
similar, and for the case p = 0, we have λ = 0 with a corrector equal to zero).
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Step 1

Using the theory developed in Imbert et al. (2006), let us consider (using the fact that∫
R

|x|J(x) dx < +∞) for p > 0, the solution u of:{
ut = |∂xu|(c1 + A + M(u − p·))
u(x, t = 0) = px

then ω̄(t) = inf
x

∂xu(t, x) formally satisfies:

ω̄t ≥ |ω̄|(∂xc1 + Mω̄) ≥ |ω̄|(∂xc1) with ω̄(0) = p > 0,

and therefore the lower-bound on the possible exponential decay of ω̄ implies that

∂xu ≥ 0.

This result can be justified rigorously using some classical viscosity arguments (as in
Imbert et al., 2006). Wealso know thatu(t, x) − px is 1-periodic inx. We alreadyknow
by Imbert et al. (2006) that there exists a unique λ ∈ R such that v(t, x) = u(t, x) −
px − λt is bounded. Moreover λ = H(A, p). Let us now define Yt and yt such that
M(t) := maxx v(t, x) = v(t, Yt) andm(t) := minx v(t, x) = v(t, yt) and |Yt − yt| < 1,
we get formally

λ + M ′(t) ≤ |p|(c1(Yt) + A + (Mv)(Yt)),
λ + m′(t) ≥ |p|(c1(yt) + A + (Mv)(yt))

which implies for p �= 0 that ω(t) = M(t) − m(t) satisfies:

ω′(t)/|p| − ((Mv)(Yt) − (Mv)(yt)) ≤ c1(Yt) − c1(yt).

Moreover, by Lemma 2.1, we get that

ω′(t)/|p| + c2ω(t) ≤ c1(Yt) − c1(yt) with ω(0) = 0.

This inequality can be justified rigorously by routine viscosity arguments. We deduce
that for every t ≥ 0

ω(t) = max
x

v(t, x) − min
x

v(t, x) ≤ 2
c2

|c1|L∞(R).

Step 2

Considering the semi-relaxed limits of u(t, x) − px − λt with the suppremum (resp.
the infimum) in time, we build a subsolution v (resp. a supersolution v̄) of the following
equation

λ = |p + ∂xv|(c1 + A + Mv)

which satisfies the expected properties, and this ends the proof of the Lemma. �
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Proof of Theorem 1.2:

1 We first prove the monotonicity of H(A, p) in A. Let us consider A2 > A1,
λi = H(Ai, p), i = 1, 2 and a subcorrector v1 for (A, p) then we have

λ1 ≤ |p + ∂xv1|(c1 + A1 + Mv1)
≤ |p + ∂xv1|(c1 + A2 + Mv1).

This shows that v1(x) + px + λ1t is a subsolution to the cell problem which
implies that λ2 ≥ λ1 i.e., H(A2, p) ≥ H(A1, p).

2 We now prove that H(0, p) = 0 in the case
∫
(0,1) c1 = 0. Let us define v0 as the

periodic solution of

Mv0 = −c1 on R (21)

such that
∫
(0,1) v0 = 0. We notice that v0 is a corrector for the cell problem with

λ = 0 = H(0, p).

3 Let us now show the monotonicity in |p| in the case
∫
(0,1) c1 = 0. Indeed, for

p2 > p1 > 0 and A > 0 such that λ1 > 0 with λi = H(A, pi), i = 1, 2 (the other
cases are similar), let us consider a subcorrector v1 satisfying:

0 < λ1 ≤ (p1 + ∂xv1)
(
c1 + A + Mv1

)
with p1 + ∂xv1 ≥ 0

and a supercorrector v̄1 satisfying

λ1 ≥ (p1 + ∂xv̄1)
(
c1 + A + Mv̄1

)
with p1 + ∂xv̄1 ≥ 0.

From Lemma 2.2, we also know that we can bound these sub/supercorrectors by
2
c2

|c1|L∞(R). Therefore

0 ≤ c1 + A + Mv1 and
(

1 +
2
c2

)
|c1|L∞(R) ≥ c1 + Mv1.

Then

λ1 ≤ λ1 + (p2 − p1)
(
c1 + A + Mv1

)
≤ (p2 + ∂xv1)

(
c1 + A + Mv1

)
,

which implies that λ2 ≥ λ1 > 0.
Similarly, we have

λ1 +
((

1 +
2
c2

)
|c1|L∞(R) + A

)
(p2 − p1) ≥ λ1 + (p2 − p1)(c1 + A + Mv̄1)

≥ (p2 + ∂xv̄1)(c1 + A + Mv̄1),

which implies that λ2 ≤ λ1 +
((

1 + 2
c2

)
|c1|L∞(R) + A

)
(p2 − p1) and gives the

result. �
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3 Monotonicity of the scheme

In this section we prove Theorem 1.4. We will use the following result (consequence
of Lemma 2.5.2 in Ghorbel and Monneau, 2006).

Lemma3.1 (Amonotonicity preserving schemefor prescribed velocity): Assume that

vn+1
i = vn

i +
∆t

∆x
cn
i ×

{
vn

i+1 − vn
i if cn

i ≥ 0

vn
i − vn

i−1 if cn
i < 0

and

∆t ≤ 1
2

(
sup
j∈Z

|ck
j+1 − ck

j |
∆x

)−1

for 0 ≤ k ≤ n. (22)

If

v0
i+1 ≥ v0

i , ∀ i ∈ Z,

then

vk
i+1 ≥ vk

i , ∀ i ∈ Z, for 0 ≤ k ≤ n + 1.

Proof of Theorem 1.4: Let (vn
i )i∈Z,n∈N and (wn

i )i∈Z,n∈N be two discrete solutions

such that v0
i and w0

i are non-decreasing in i ∈ Z. We set Mn(v) := sup
i∈Z

vn
i+1−vn

i

∆x and

Mn(w) := sup
i∈Z

wn
i+1−wn

i

∆x . One writes the numerical scheme for v (and the same for w):

vn+1
i = vn

i +
∆t

∆x
ci(vn) ×

{
vn

i+1 − vn
i if ci(vn) ≥ 0

vn
i − vn

i−1 if ci(vn) < 0
(23)

with ci(vn) defined in equations (8) and (9). Let us assume that vk
i ≥ wk

i for every
i ∈ Z and every 0 ≤ k ≤ n. We will prove that it is still true for k = n + 1.

Case 1: We assume that ci(vn) ≥ 0 and ci(wn) ≥ 0.
We have

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x

(
ci(vn)

(
vn

i+1 − vn
i

)
− ci(wn)

(
wn

i+1 − wn
i

))
.

One can add and substract ∆t
∆xci(wn)(vn

i+1 − vn
i ) to obtain

vn+1
i − wn+1

i = (vn
i − wn

i )
(

1 − ∆t

∆x
ci(wn)

)
+

∆t

∆x
ci(wn)(vn

i+1 − wn
i+1)

+
∆t

∆x
(ci(vn) − ci(wn))(vn

i+1 − vn
i )

≥ (vn
i − wn

i )
(

1 − ∆t

∆x
ci(wn)

)
+

∆t

∆x
(ci(vn) − ci(wn))(vn

i+1 − vn
i ),
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where we have used the fact that vn
i+1 ≥ wn

i+1. Since

ci(vn) = A + c1(xi) − vn
i +

∑
j∈Z

Jjv
n
i−j ∆x, (24)

the difference between the discrete velocities can be written as

ci(vn) − ci(wn) = −(vn
i − wn

i ) +
∑
j∈Z

Jj(vn
i−j − wn

i−j) ∆x, (25)

and then we get (using Jj ≥ 0 and vn
i−j − wn

i−j ≥ 0):

vn+1
i − wn+1

i ≥ (vn
i − wn

i )
(

1 − ∆t

∆x
ci(wn)

)
− ∆t

∆x
(vn

i − wn
i )(vn

i+1 − vn
i )

≥ (vn
i − wn

i )
(

1 − ∆t

∆x
ci(wn) − Mn(u)∆t

)
. (26)

Therefore we have

vn+1
i − wn+1

i ≥ (vn
i − wn

i )
(

1 − ∆t

∆x
ci(wn) − Mn(u)∆t

)
. (27)

It is then sufficient to have the following two restrictions on the time step

∆t

∆x
≤

(
2 sup

j∈Z

|cj(vn)|
)−1

and Mn(u)∆t ≤ 1
2
,

to deduce, in this case, that the scheme is monotone.

Case 2: We assume that ci(vn) ≤ 0 and ci(wn) ≤ 0.
We compute

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x
ci(vn)(vn

i − vn
i−1) − ∆t

∆x
ci(wn)(wn

i − wn
i−1).

One can add and substract ∆t
∆xci(vn)(wn

i − wn
i−1) to obtain

vn+1
i − wn+1

i = (vn
i − wn

i )
(

1 +
∆t

∆x
ci(vn)

)
+

∆t

∆x
(ci(vn) − ci(wn))(wn

i − wn
i−1)

− ∆t

∆x
ci(vn)(vn

i−1 − wn
i−1).

Since ci(vn) < 0 and vn
i−1 ≥ wn

i−1, we get:

vn+1
i − wn+1

i ≥ (vn
i − wn

i )
(

1 +
∆t

∆x
ci(vn)

)
+

∆t

∆x
(ci(vn) − ci(wn))(wn

i − wn
i−1)

≥ (vn
i − wn

i )
(

1 +
∆t

∆x
ci(vn) − Mn(w)∆t

)
≥ 0,

if ∆t
∆x ≤

(
2 sup

j∈Z

|cj(un)|
)−1

and Mn(v)∆t ≤ 1
2 .
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Case 3: We assume that ci(vn) ≥ 0 and ci(wn) < 0.
We compute

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x
ci(vn)(vn

i+1 − vn
i ) − ∆t

∆x
ci(wn)(wn

i − wn
i−1)

≥ vn
i − wn

i

because vn
i+1 − vn

i ≥ 0 and wn
i − wn

i−1 ≥ 0. It is then sufficient to assume that

∆t ≤
(

sup
j∈Z

|cj+1(vk) − cj(vk)|
∆x

)−1

for 0 ≤ k ≤ n (28)

and

∆t ≤
(

sup
j∈Z

|cj+1(wk) − cj(wk)|
∆x

)−1

for 0 ≤ k ≤ n (29)

to guarantee the monotonicity of v and the monotonicity of w using Lemma 3.1.

Case 4: We assume that ci(vn) < 0 and ci(wn) ≥ 0.
We compute

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x
ci(vn)(vn

i − vn
i−1) − ∆t

∆x
ci(wn)(wn

i − wn
i−1).

But

0 > ci(vn) − ci(wn) = −(vn
i − wn

i ) +
∑

l

Jl(vn
i−l − wn

i−l)

≥ −(vn
i − wn

i )

and for general c+ ≥ 0, c− ≤ 0 and a, b ≥ 0 we have

|c−a − c+b| ≤ max(a, b)|c+ − c−|

and then

|ci(vn)(vn
i − vn

i−1) − ci(wn)(wn
i − wn

i−1)| ≤ ∆xmax(Mn(v), Mn(w))
× |ci(vn) − ci(wn)|

≤ ∆xmax(Mn(v), Mn(w))(vn
i − wn

i ).

Therefore

vn+1
i − wn

i ≥ (vn
i − wn

i )(1 − ∆t max(Mn(v), Mn(w)))
≥ 0,

if we assume ∆t max(Mn(v), Mn(w)) ≤ 1 and equations (28)–(29). �
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4 Computation of the effective Hamiltonian for equation (1)

We recall here that the effective Hamiltonian is given in Definition 1.1. Numerically,
we compute H(A, p) for

p =
P

Q
for a fixed Q ∈ N\{0} and P ∈ Z. (30)

Because p is given by equation (30), we know that the solution w of equation (1) with
initial value w(x, 0) = px satisfies:

w(x + Q, t) = w(x, t) + P.

For this reason, numerically, we restrict the computation on the interval
[
−Q

2 , Q
2

]
with

periodic boundary conditions for w̄(x, t) = w(x, t) − px and we write the equation for
w̄. In particular, we also choose ∆x such that Q

∆x ∈ N\{0}.
We then use the numerical scheme of Theorem 1.4 with ∆t satisfying the CFL

conditions stated in Theorem 1.4, which guarantees the monotonicity of the scheme.

4.1 The method to compute the effective Hamiltonian

Here we describe two possible strategies to compute numerically the effective
Hamiltonian H

num
(A, p).

Method 1: Using the numerical solutionwn of equation (7), we take its values at two
discrete times t1 > 0 and t2 > 0 at a discrete point xref and we define H

num
(A, p) =

v(xref ,t2)−v(xref ,t1)
t2−t1

for t2 − t1 large enough, which is difficult to fix in practice.

Method 2: We follow the position of a dislocation (as a marker) starting from a
point xref at time t1 and waiting until it passes a second time (in the ‘periodic’ interval
[−Q/2, Q/2]) at the same point at time t2, and we define H

num
(A, p) = |P |

t2−t1
with

p = P
Q (see Figure 2). Here H

num(A,p)
p can be interpreted as an effective velocity.

Figure 2 Tracking the trajectory of a dislocation until it comes back to the initial position

In practice we prefer to use the Method 2 in general, because, given a time t1 large
enough, it provides naturally a time t2. On the contrary, the result given by the
Method 1 can be more sensitive to the choice of t2 with respect to t1.
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Figure 3 H
num

(A, p) for p = 0.3125 and a monotone kernel c0 = −δ0 + J

4.2 Results of the numerical simulations

Let us recall that the convolution is written as

c0 �
R

w = c0 �
R

(w − px)

= −w̄ + J �
R

w̄ (31)

= −w̄ + J∗ �
[− Q

2 , Q
2 )

w̄,

with

J∗(x) =
∑
k∈Z

J(x + kQ). (32)

For the present simulations we choose

J∗(x) =
1
Q

for x ∈
[
−Q

2
,
Q

2

)
(33)
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and

c1(x) = B sin(2πkx) with k ∈ N\{0}. (34)

For the simulations we have the following particular choices.

Figure 4 H
num

(A, p) as a function of the density p for a monotone kernel c0 = −δ0 + J

Figure 5 H
num

(A, p) as a function of A and a monotone kernel c0 = −δ0 + J

In Figure 3, we present the numerical effective Hamiltonian H
num

(A, p) which is
monotone in A as expected from the first property of Theorem 1.2. Moreover, this
reveals the existence of a threshold effect, i.e., the effective Hamiltonian is zero on
a whole interval of the parameter A. In addition, H

num
(A, p) is antisymmetric in A

because of the symmetries of c1. For |A| � B = 1, the effective Hamiltonian is linear
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and can be approximated here byApwhich is the classical Orowan law (see Kratochvil
et al., 2003). In addition, wenote thatH

num
(A, p)behaves like the square-root function

of A in a neighbourhood of the zero-plateau of H
num

.
In Figure 4, the effective Hamiltonian H

num
(A, p) is represented as a function of

p for some values of A. We note here the monotonicity of H
num

with respect to p.
For a large density of dislocations, the effective Hamiltonian H

num
is linear and can

again be approximated by Ap.

Figure 6 Graph of H
num

(A, p) for monotone kernel c0 = −δ0 + J

Figure 7 Level sets of the effective Hamiltonian H
num

(A, p)
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In Figure 5, we present the effective Hamiltonian H
num

(A, p) as a function of A
for several densities of dislocations p. Again we check numerically the qualitative
properties of the effective Hamiltonian.

In Figure 6, we represent the graph of the effective Hamiltonian H
num

. The X-axis
(respectively Y-axis and Z-axis) corresponds to the density of dislocations p
(respectively the parameter A and the effective Hamiltonian H

num
). The projection of

this graph on the plane (A, p) gives Figure 7 which represents the level sets of H
num

.
In Figure 7, the central region is the set where there is a pinning of the dislocations

on the defects represented by the field c1, i.e., where the effectiveHamiltonian vanishes.
Moreover the monotonicity of H

num
in p reveals that in this model, the ability of

the dislocations to pass the obstacles is increased when we increase the density of
dislocations. This is typically a collective behaviour.

5 Computation of the effective Hamiltonian for other equations

In this section we study numerically the effective Hamiltonian for models where in
equation (1) the non-local velocity cint[u] is replaced by

cint[u] = c0 � 	u
 (35)

where 	·
 is the floor function.

Figure 8 Linear trajectories

Here the positions of dislocations are given by the jumps of 	u
 (see Ghorbel and
Monneau, 2006). Let us mention that even for monotone kernel c0, the theoretical
existence of an effective Hamiltonian is not known, we numerically check that this
effective Hamiltonian exists in two cases: the monotone kernel (Subsection 5.1) and
the Peierls-Nabarro kernel (Subsection 5.2).
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5.1 The monotone kernel with one type of dislocations

In this subsection we set c0 = −δ0 + J with J∗ = 1
Q with the notation of Section 4.

This case is strongly related to the homogenisation of a Slepčev formulation
(see Forcadel et al., xxxx).

Figure 9 Pinning of dislocations

Figure 10 The motion of the dislocations becomes periodic in time

First, we represent in Figure 8 the trajectories of three dislocations (initially located
at x = −1/3, x = 0, x = 1/3) in the case where there are no obstacles (i.e., c1 = 0).
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In this case the trajectories of dislocations are straight lines. A different situation
happens (see Figure 9), when we add sufficient obstacles in order to obtain the pinning
of dislocations (with B ≥ A). This case corresponds to the situation where H

num
is

equal to zero.

Figure 11 Effective Hamiltonian H
num

(A, p) as a function of A for c0 � �u�, c0 = −δ0 + J

Figure 12 Graph of H
num

(A, p) for Peierls-Nabarro model with one type of edge dislocations

Now, if we increase the parameterA, without changing the obstacles, i.e., with the same
c1, we observe a persistent motion of dislocations (see Figure 10). Numerically, this
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motion becomes periodic in time. Moreover, we also present in Figure 11 the effective
Hamiltonian whose behaviour is similar to the case of Section 4.

5.2 The Peierls-Nabarro kernel with one type of edge dislocations

In this subsection, we consider the Peierls-Nabarro kernel (see Hirth and Lothe, 1992;
Alvarez et al., 2006) given by:

c0(x) =
−µ

∣∣�b∣∣2
2π(1 − ν)

x2 − ζ2

(x2 + ζ2)2
. (36)

where ν = λ
2(λ+µ) is the Poisson ratio and λ and µ > 0 are the Lamé coefficients

for isotropic elasticity and�b is the Burgers vector. We choose µ|�b|2
2π(1−ν) = 1 and ζ = 0.01

for our simulations.
Againwecompute the effectiveHamiltonian inFigure12which turnsout toprovide

a behaviour similar to the one of Section 4.

6 Computation of the effective Hamiltonian for systems of equations

In this section, we consider systems of equations describing the motion of dislocations
of opposite Burgers vector (+�b) and (−�b). More precisely we study numerically the
following system:




∂u+

∂t
(x, t) = −c[u+, u−](x, t)

∣∣∣∣∂u+

∂x
(x, t)

∣∣∣∣ in R × (0, +∞)

∂u−

∂t
(x, t) = c[u+, u−](x, t)

∣∣∣∣∂u−

∂x
(x, t)

∣∣∣∣ in R × (0, +∞)

u+(x, 0) = p+x on R

u−(x, 0) = p−x on R

(37)

where

c[u+, u−](x, t) = A + c0 � (	u+(·, t)
 − 	u−(·, t)
). (38)

Figure 13 Opposite motion of dislocations + and −
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Figure 14 Graph of H
num

(A, p) as a function of A for p = p+ = p− with the monotone kernel

Figure 15 Effective velocity H
num(A,p)

p
as a function of A for p = p+ = p− in the case of

Peierls-Nabarro kernel

Here the positions of dislocations of Burgers vector (+�b) (respectively (−�b)) are
represented by the jumps of 	u+(·, t)
 (respectively 	u−(·, t)
). The motion is
schematically represented on Figure 13.

In the following three subsections we will compute the numerical effective
Hamiltonian for the two types of dislocations H

num
(A, p) with the same densities

p = p+ = p− (or the velocity H
num(A,p)

p ) using a numerical method similar to the one
used in Sections 4 and 5. We present successively our result in the case of monotone
kernel, Peierls-Nabarro kernel for edge dislocations, and the kernel describing the
motion of walls of dislocations.
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Figure 16 Walls of dislocations + and walls of dislocations −

6.1 Monotone kernel

Here we take c0 = −δ0 + J with J∗ = 1
Q with the notation of Section 4. We present in

Figure 14 the effectiveHamiltonianH
num

(A, p). Weobserve a thresholdphenomenon,
similar to the one of Section 4. Here the dislocations of type− can be seen as obstacles
to the motion of the dislocations of type + and vice-versa.

6.2 Peierls-Nabarro kernel for edge dislocations

In this case we take the kernel c0 given in equation (36) and the numerical values of
Subsection 5.2. We observe in Figure 15 the mean velocity and a threshold effect
which increases (apparently linearly) where we increase the density p = p+ = p− of
dislocations, as physically expected.

6.3 Kernel for walls of dislocations

Here we take

c0(x) =
∂σ̄

∂x
(x) with σ̄(x) =

µ|�b|2π
1 − ν

x
ε(

cosh(2π x
ε ) − 1

) (39)

with µ is a Lamé coefficient, ν is the Poisson ratio,�b is the Burgers vector and ε is the
distance between dislocations along the y direction (see Figure 16 and Appendix B).
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Here we take µb2π
1−ν = 1 and ε = 1. We present the effective velocity H

num(A,p)
p in

Figure 17, and get similar result as in Subsection 6.2 and in Ghorbel et al. (2006).

Figure 17 Effective velocity H
num(A,p)

p
as a function of A for p = p+ = p− with the kernel for

walls of dislocations
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Appendix

A Proof of Lemma 2.1

With the notation of Lemma 2.1, we set c = Y +y
2 and δ = Y −y

2 ∈
]
− 1

2 , 1
2

[
. Then we

compute

(c0 � u)(Y ) − (c0 � u)(Y ) =
∫

dz J(z)(u(Y + z) − u(Y ))

−
∫

dz J(z)(u(y + z) − u(y))

=
∫

dz̄ J(z̄ − δ)(u(c + z̄) − u(Y ))

−
∫

dz̃ J(z̃ + δ)(u(c + z̃) − u(y))

≤ −
∫

dz inf(J(z − δ), J(z + δ))

× (u(Y ) − u(c + z) + u(c + z) − u(y))
≤ −(u(Y ) − u(y))c2

where we have used the change of variables z̄ = z + δ, z̃ = z − δ in the second line and
used the fact that u(c + z̄) − u(Y ) ≤ 0 and u(c + z̃) − u(y) ≥ 0 to get the third line.

B Computation of the kernel for walls of dislocations

We recall (see Hirth and Lothe, 1992) that the stress created by one dislocation at the
origin is given by:

σ0
xy(x, y) =

µb

2π(1 − ν)
x(x2 − y2)
(x2 + y2)2

. (40)

Now the stress created by awall of dislocations at the positions x = 0, y = kε for k ∈ Z

is given by:

σxy(x, y) =
∑
k∈Z

σ0
xy(x, y − kε)

=
µbπ

1 − ν

x
ε

(
cosh

(
2π x

ε

)
cos

(
2π y

ε

)
− 1

)
(
cosh

(
2π x

ε

)
− cos

(
2π y

ε

))2 . (41)

(see Hirth and Lothe, 1992, p.733, formula (19–73)). Then

c0(x) = b
∂σxy

∂x
(x, 0) =

∂σ̄

∂x
(x) (42)

with σ̄(x) = bσxy(x, 0).


