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Abstract

We study a coupled system of two parabolic equations in one space dimension. This system is singular

because of the presence of one term with the inverse of the gradient of the solution. Our system describes

an approximate model of the dynamics of dislocation densities in a bounded channel submitted to an

exterior applied stress. The system of equations is written on a bounded interval with Dirichlet conditions

and requires a special attention to the boundary. The proof of existence and uniqueness is done under

the use of two main tools: a certain comparison principle on the gradient of the solution, and a parabolic

Kozono-Taniuchi inequality.
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1 Introduction

1.1 Setting of the problem

In this paper, we are concerned in the study of the following singular parabolic system:





κt = εκxx +
ρxρxx

κx
− τρx on I × (0,∞)

ρt = (1 + ε)ρxx − τκx on I × (0,∞),
(1.1)

with the initial conditions:

κ(x, 0) = κ0(x) and ρ(x, 0) = ρ0(x), (1.2)
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and the boundary conditions:

{
κ(0, .) = κ0(0) and κ(1, .) = κ0(1),

ρ(0, .) = ρ(1, .) = 0,
(1.3)

where
ε > 0, τ ∈ R,

are fixed constants, and
I := (0, 1)

is the open and bounded interval of R.
The goal is to show the long-time existence and uniqueness of a smooth solution of

(1.1), (1.2) and (1.3). Our motivation comes from a problem of studying the dynamics
of dislocation densities in a constrained channel submitted to an exterior applied stress.
In fact, system (1.1) can be seen as an approximate model of the one described in [12].
This approximate model (presented in [12] for ε = 0) reads:





θ+
t = εθ+

xx +

[(
θ+
x − θ−x

θ+ + θ−
− τ

)
θ+

]

x

on I × (0,∞),

θ−t = εθ−xx −
[(

θ+
x − θ−x

θ+ + θ−
− τ

)
θ−
]

x

on I × (0,∞),

(1.4)

with τ representing the exterior stress field. System (1.4) can be deduced from (1.1), by
spatially differentiating (1.1), and by considering

ρ±x = θ±, ρ = ρ+ − ρ−, κ = ρ+ + ρ−, (1.5)

which explains the presence of the factor (1 + ε) in the second equation of (1.1). Here
θ+ and θ− represent the densities of the positive and negative dislocations respectively
(see [25, 16] for a physical study of dislocations).

The part II of this work will be presented in [18]. There, we will show some kind of
convergence of the solution (ρε, κε) as ε → 0.

1.2 Statement of the main result

The main result of this paper is:

Theorem 1.1 (Existence and uniqueness of a solution). Let ρ0, κ0 satisfying:

ρ0, κ0 ∈ C∞(Ī), ρ0(0) = ρ0(1) = κ0(0) = 0, κ0(1) = 1, (1.6)

{
(1 + ε)ρ0

xx = τκ0
x on ∂I

(1 + ε)κ0
xx = τρ0

x on ∂I,
(1.7)

and
κ0

x > |ρ0
x| on Ī . (1.8)
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Then there exists a unique global solution (ρ, κ) of system (1.1), (1.2) and (1.3) satisfying

(ρ, κ) ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(Ī × (0,∞)), ∀α ∈ (0, 1). (1.9)

Moreover, this solution also satisfies :

κx > |ρx| on Ī × [0,∞). (1.10)

Remark 1.2 Conditions (1.7) are natural here. Indeed, the regularity (1.9) of the solu-
tion of (1.1) with the boundary conditions (1.2) and (1.3) imply in particular (1.7).

Remark 1.3 Remark that the choice κ0(0) = 0 and κ0(1) = 1 does not reduce the
generality of the problem, because equation (1.1) does not see the constants and has the
following invariance: if (ρ, κ) is a solution, then (λρ, λκ) is also a solution for any λ ∈ R.

1.3 Brief review of the literature

To our knowledge, systems of equations involving the singularity in 1/κx as in (1.1)
has not been directly handled elsewhere in the literature. However, parabolic problems
involving singular terms have been widely studied in various aspects. Fast diffusion
equations:

ut − ∆um = 0, 0 < m < 1,

are examined, for instance, in [5, 7, 8]. These equations are singular at points where
u = 0. In dimension 1, setting u = vx we get, up to a constant of integration:

vt − mvm−1
x vxx = 0

which makes appear a singularity like 1/vx. Other class of singular parabolic equations
are for instance of the form:

ut = uxx +
b

x
ux, (1.11)

where b is a certain constant. Such an equation is related to axially symmetric problems
and also occurs in probability theory (see [6, 23]). An important type of equations that
can be indirectly related to our system are semilinear parabolic equations:

ut = ∆u + |u|p−1u, p > 1. (1.12)

Many authors have studied the blow-up phenomena for solutions of the above equation
(see for instance [24, 13]). Equation (1.12) can be somehow related to the first equation
of (1.1), but with a singularity of the form 1/κ. This can be formally seen if we first
suppose that u ≥ 0, and then we apply the following change of variables u = 1/v. In
this case, equation (1.12) becomes:

vt = ∆v − 2|∇v|2
v

− v2−p,

and hence if p = 3, we obtain:

vt = ∆v − 1

v
(1 + 2|∇v|2). (1.13)

Since the solution u of (1.12) may blow-up at a finite time t = T , then v may vanishes at
t = T , and therefore equation (1.13) faces similar singularity to that of the first equation
of (1.1), but in terms of the solution v instead of vx.
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1.4 Strategy of the proof

The existence and uniqueness is made by using a fixed point argument after a slight
artificial modification in the denominator κx of the first equation of (1.1) in order to
avoid dividing by zero. We will first show the short time existence, proving in particular
that

κx(x, t) ≥
√

γ2(t) + ρ2
x(x, t) ≥ γ(t) > 0,

for some well chosen initial data and a suitable function γ(t) > 0. The only, but danger-
ous, inconvenience is that the function γ depends strongly on ‖ρxxx(., t)‖L∞(I), roughly
speaking:

γ
′ ≃ −‖ρxxx‖L∞(I)γ. (1.14)

Let us mention that one of the key points here is that
∣∣∣ ρx

κx

∣∣∣ ≤ 1 which somehow linearize

the first equation of (1.1). Nevertheless, standard Sobolev and Hölder estimates for the
parabolic system (1.1) are not good enough to bound ‖ρxxx‖L∞(I) in order to prevent
γ (and as a consequence κx) from vanishing. On the contrary, a Sobolev logarithmic
estimate (see Section 2, the parabolic Kozono-Taniuchi inequality, Theorem 2.13) can be
used in order to obtain a sharp bound of ‖ρxxx‖L∞(I) of the form

‖ρxxx‖L∞(I) ≤ E

(
1 + log+ 1

γ

)
,

where E is an exponential function in time. This allows, with (1.14), to show that the
function γ > 0 does not vanish in finite time. After that, due to some a priori estimates,
we can prove the global time existence.

1.5 Organization of the paper

This paper is organized as follows: in Section 2, we present the tools needed throughout
this work, this includes a brief recall on the Lp, Cα and the BMO theory for parabolic
equations. In Section 3, we show a comparison principle associated to (1.1) that will
play a crucial rule in the long time existence of the solution as well as the positivity of
κx. In Section 4, we present a result of short time existence, uniqueness and regularity
of a solution (ρ, κ) of (1.1). Section 5 is devoted to give some exponential bounds on
(ρ, κ). In Section 6, we show a control of the W 2,1

2 norm of ρxxx. In a similar way, we
show a control of the BMO norm of ρxxx in Section 7. In Section 8, we use a parabolic
Kozono-Taniuchi inequality to control the L∞ norm of ρxxx. In Section 9, we prove our
main result: Theorem 1.1. Finally, Sections 10 and 11 are appendices where we present
the proofs of some technical results.

2 Tools: theory of parabolic equations

We start with some basic notations and terminology:

Abridged notation.
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• IT is the cylinder I × (0, T ); Ī is the closure of I; IT is the closure of IT ; ∂I is the
boundary of I.

• ‖.‖Lp(Ω) = ‖.‖p,Ω, Ω is an open set, p ≥ 1.

• ST is the lateral boundary of IT , or more precisely, ST = ∂I × (0, T ).

• ∂pIT is the parabolic boundary of IT , i.e. ∂pIT = ST ∪ (I × {t = 0}).

• Ds
yu = ∂su

∂ys , u is a function depending on the parameter y, s ∈ N.

• [l] is the floor part of l ∈ R.

• Qr = Qr(x0, t0) is the lower parabolic cylinder given by:

Qr = {(x, t); |x − x0| < r, t0 − r2 < t < t0}, r > 0, (x0, t0) ∈ IT .

• |Ω| is the n-dimensional Lebesgue measure of the open set Ω ⊂ R
n.

• mΩ(u) = 1
|Ω|

∫
Ω u is the average integral of the u ∈ L1(Ω) over Ω ⊂ R

n.

2.1 Lp and Cα theory of parabolic equations

A major part of this work deals with the following typical problem in parabolic theory:





ut = εuxx + f on IT

u(x, 0) = φ on I

u = Φ on ∂I × (0, T ),

(2.1)

where T > 0 and ε > 0. A wide literature on the existence and uniqueness of solutions
of (2.1) in different function spaces could be found for instance in [21], [11] and [22]. We
will deal mainly with two types of spaces:

The Sobolev space W 2,1
p (IT ), 1 < p < ∞ which is the Banach space consisting of the

elements in Lp(IT ) having generalized derivatives of the form Dr
t D

s
xu, with r and s two

non-negative integers satisfying the inequality 2r + s ≤ 2, also in Lp(IT ). The norm in
this space is defined as ‖u‖W 2,1

p (IT ) =
∑2

i=0

∑
2r+s=i ‖Dr

t D
s
xu‖p,IT

.

The Hölder spaces Cℓ(Ī) and Cℓ,ℓ/2(IT ), ℓ > 0 a nonintegral positive number. We do
not recall the definition of the space Cℓ(Ī) which is very standard. The Hölder space
Cℓ,ℓ/2(IT ) is the Banach space of functions v(x, t) that are continuous in IT , together

with all derivatives of the form Dr
t D

s
xv for 2r + s < ℓ, and have a finite norm |v|(ℓ)IT

=

〈v〉(ℓ)IT
+
∑[ℓ]

j=0〈v〉
(j)
IT

, where

〈v〉(0)IT
= |v|(0)IT

= ‖v‖∞,IT
, 〈v〉(j)IT

=
∑

2r+s=j

|Dr
t D

s
xv|(0)IT

, 〈v〉(ℓ)IT
= 〈v〉(ℓ)x,IT

+ 〈v〉(ℓ/2)
t,IT

,
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and

〈v〉(ℓ)x,IT
=

∑

2r+s=[ℓ]

〈Dr
t D

s
xv〉(ℓ−[ℓ])

x,IT
, 〈v〉(ℓ/2)

t,IT
=

∑

0<ℓ−2r−s<2

〈Dr
t D

s
xv〉(

ℓ−2r−s
2 )

t,IT
,

with

〈v〉(α)
x,IT

= inf{c; |v(x, t) − v(x′, t)| ≤ c|x − x′|α, (x, t), (x′, t) ∈ IT }, 0 < α < 1,

〈v〉(α)
t,IT

= inf{c; |v(x, t) − v(x, t′)| ≤ c|t − t′|α, (x, t), (x, t′) ∈ IT }, 0 < α < 1.

The above definitions could be found in details in [21, Section 1]. Now, we write down
the compatibility conditions of order 0 and 1. These compatibility conditions concern
the given data φ, Φ and f of problem (2.1).

Compatibility condition of order 0. Let φ ∈ C(Ī) and Φ ∈ C(ST ). We say that the
compatibility condition of order 0 is satisfied if

φ
∣∣
∂I

= Φ
∣∣
t=0

. (2.2)

Compatibility condition of order 1. Let φ ∈ C2(Ī), Φ ∈ C1(ST ) and f ∈ C(IT ).
We say that the compatibility condition of order 1 is satisfied if (2.2) is satisfied and in
addition we have:

(εφxx + f)
∣∣
∂I

=
∂Φ

∂t

∣∣∣
t=0

. (2.3)

We state two results of existence and uniqueness adapted to our special problem. We
begin by presenting the solvability of parabolic equations in Hölder spaces.

Theorem 2.1 (Solvability in Hölder spaces, [21, Theorem 5.2]). Suppose
0 < α < 2, a non-integral number. Then for any

φ ∈ C2+α(Ī), Φ ∈ C1+α/2(ST ) and f ∈ Cα,α/2(IT )

satisfying the compatibility condition of order 1 (see (2.2) and (2.3)), problem (2.1) has
a unique solution u ∈ C2+α,1+α/2(IT ) satisfying the following inequality:

|u|(2+α)
IT

≤ cH
(
|f |(α)

IT
+ |φ|(2+α)

I + |Φ|(1+α/2)
ST

)
, (2.4)

for some cH = cH(ε, α, T ) > 0.

Remark 2.2 (Estimating the term cH of (2.4)). The constant appearing in the
above Hölder estimate (2.4) can be estimated, using some time iteration, as cH(ε, α, T ) ≤
ec(T+1), where c = c(ε, α) > 0 is a positive constant.

We now present the solvability in Sobolev spaces. Recall the norm of fractional Sobolev
spaces. If f ∈ W s

p (a, b), s > 0 and 1 < p < ∞, then

‖f‖W s
p (a,b) = ‖f‖

W
[s]
p (a,b)

+

(∫ b

a

∫ b

a

|f ([s])(x) − f ([s])(y)|p
|x − y|1+(s−[s])p

)1/p

. (2.5)
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Theorem 2.3 (Solvability in Sobolev spaces, [21, Theorem 9.1]). Let p > 1,

ε > 0 and T > 0. For any f ∈ Lp(IT ), φ ∈ W
2−2/p
p (I) and Φ ∈ W

1−1/2p
p (ST ), with

p 6= 3/2 (p = 3/2 is called the singular index) satisfying in the case p > 3/2 the com-
patibility condition of order zero (see (2.2)), there exists a unique solution u ∈ W 2,1

p (IT )
of (2.1) satisfying the following estimate:

‖u‖
W 2,1

p (IT )
≤ c

(
‖f‖p,IT

+ ‖φ‖
W

2−2/p
p (I)

+ ‖Φ‖
W

1−1/2p
p (ST )

)
, (2.6)

for some c = c(ε, p, T ) > 0.

For a better understanding of the spaces stated in the above two theorems, especially
fractional Sobolev spaces, we send the reader to [1] or [21]. The dependence of the
constant c of Theorem 2.3 on the variable T will be of notable importance and this what
is emphasized by the next lemma.

Lemma 2.4 (The constant c given by (2.6): case φ = 0 and Φ = 0). Under the
same hypothesis of Theorem 2.3, with φ = 0 and Φ = 0, the estimate (2.6) can be written
as:

‖u‖p,IT

T
+

‖ux‖p,IT√
T

+ ‖uxx‖p,IT
+ ‖ut‖p,IT

≤ c‖f‖p,IT
, (2.7)

where c = c(ε, p) > 0 is a positive constant depending only on p and ε.

The proof of this lemma will be done in Appendix A. Moreover, We will frequently make
use of the following two lemmas also depicted from [21].

Lemma 2.5 (Sobolev embedding in Hölder spaces, [21, Lemma 3.3]).
(i) (Case p > 3). For any function u ∈ W 2,1

p (IT ), if α = 1 − 3/p > 0, i.e. p > 3, then

u ∈ C1+α, 1+α
2 (IT ) with |u|(1+α)

IT
≤ c‖u‖W 2,1

p (IT ), c = c(p, T ) > 0. However, in terms of

ux, we have that ux ∈ Cα,α/2(IT ) satisfies the following estimates:

‖ux‖∞,IT
≤ c

{
δα(‖ut‖p,IT

+ ‖uxx‖p,IT
) + δα−2‖u‖p,IT

}
, c = c(p) > 0, (2.8)

〈ux〉(α)
IT

≤ c

{
‖ut‖p,IT

+ ‖uxx‖p,IT
+

1

δ2
‖u‖p,IT

}
, c = c(p) > 0.

(ii) (Case p > 3/2). If u ∈ W 2,1
p (IT ) with p > 3/2, then u ∈ C(IT ), and we have the

following estimate:

‖u‖∞,IT
≤ c

{
δ2−3/p(‖ut‖p,IT

+ ‖uxx‖p,IT
) + δ−3/p‖u‖p,IT

}
, c = c(p) > 0. (2.9)

In the above two cases δ = min{1/2,
√

T}.

Lemma 2.6 (Trace of functions in W 2,1
p (IT ), [21, Lemma 3.4]). If u ∈ W 2,1

p (IT ),

p > 1, then for 2r + s < 2 − 2/p, we have Dr
t D

s
xu
∣∣
t=0

∈ W
2−2r−s−2/p
p (I) with

‖u‖
W

2−2r−s−2/p
p (I)

≤ c(T )‖u‖W 2,1
p (IT ).

In addition, for 2r + s < 2 − 1/p, we have Dr
t D

s
xu
∣∣
ST

∈ W
1−r−s/2−1/2p
p (ST ) with

‖u‖
W

1−r−s/2−1/2p
p (ST )

≤ c(T )‖u‖W 2,1
p (IT ).
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A useful technical lemma will now be presented. The proof of this lemma will be done
in Appendix A.

Lemma 2.7 (L∞ control of the spatial derivative). Let p > 3 and let 0 < T ≤ 1/4
(this condition is taken for simplification). Then for every u ∈ W 2,1

p (IT ) with u = 0 on
∂p(IT ) in the trace sense (see Lemma (2.6)), there exists a constant c(T, p) > 0 such that

‖ux‖∞,IT
≤ c(T, p)‖u‖W 2,1

p (IT ), with c(T, p) = c(p)T
p−3
2p → 0 as T → 0.

2.2 BMO theory for parabolic equation

A very useful tool in this paper is the limit case of the Lp theory, 1 < p < ∞, for parabolic
equations, which is the BMO theory. Roughly speaking, if the function f appearing in
(2.1) is in the Lp space for some 1 < p < ∞, then we expect our solution u to have
ut and uxx also in Lp. This is no longer valid in the limit case, i.e. when p = ∞. In
this case, it is shown that the solution u of the parabolic equation have ut and uxx in
the parabolic/anisotropic BMO (bounded mean oscillation) space that is convenient to
present some of its related theories.

Definition 2.8 (Parabolic/Anisotropic BMO spaces). A function u ∈ L1
loc(IT ) is

said to be of bounded mean oscillation, u ∈ BMO(IT ), if the quantity

sup
Qr⊂IT

(
1

|Qr|

∫

Qr

|u − mQr(u)|
)

is finite. Here the supremum is taken over all parabolic lower cylinders Qr.

Remark 2.9 The parabolic BMO(IT ) space, which will be refereed, for simplicity, as
the BMO(IT ) space, and sometimes, where there is no confusion, as BMO space, is a
Banach space (whose elements are defined up to an additive constant) equipped with the
norm

‖u‖BMO(IT ) = sup
Qr⊂IT

(
1

|Qr|

∫

Qr

|u − mQr(u)|
)

.

We move now to the two main theorems of this subsection, the BMO theory for parabolic
equations, and the Kozono-Taniuchi parabolic type inequality. To be more precise, we
have the following:

Theorem 2.10 (BMO theory for parabolic equations in the periodic case).
Take 0 < T1 ≤ T . Consider the following Cauchy problem:

{
ut = εuxx + f on R × (0, T ),

u(x, 0) = 0.
(2.10)

If f ∈ L∞(R × (0, T )) and f is a 2I-periodic function in space, i.e. f(x + 2, t) =
f(x, t), then there exists a unique solution u ∈ BMO(R × (0, T )) of (2.10) with
ut, uxx ∈ BMO(R × (0, T )). Moreover, there exists c > 0 that may depend on T1

but independent of T such that:

‖ut‖BMO(R×(0,T )) + ‖uxx‖BMO(R×(0,T )) ≤ c
[
‖f‖BMO(R×(0,T )) + m2I×(0,T )(|f |)

]
. (2.11)
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The proof of this theorem will be presented in Appendix B. Our next tool (see Theorem
2.13) shows an estimate involving parabolic BMO spaces. This estimate is a control of
the L∞ norm of a given function by its BMO norm and the logarithm of its norm in a
certain Sobolev space. It can also be considered as the parabolic version on a bounded
domain IT of the Kozono-Taniuchi inequality (see [20]) that we recall here.

Theorem 2.11 (The Kozono-Taniuchi inequality in the elliptic case, [20, The-
orem 1]). Let 1 < p < ∞ and let s > n/p. There is a constant C = C(n, p, s) such
that, for all f ∈ W s

p (Rn), the following estimate holds:

‖f‖∞,Rn ≤ C
(
1 + ‖f‖BMOe(Rn)

(
1 + log+ ‖f‖W s

p (Rn)

))
, log+ = max(0, log). (2.12)

Remark 2.12 It is worth mentioning that the BMOe norm appearing in (2.12) is the
elliptic BMOe norm, i.e. the one where the supremum is taken over ordinary balls

Br(X0) = {X ∈ R
n; |X − X0| < r}.

The original type of the logarithmic Sobolev inequality was found in [3, 4] (see also [9]),
where the authors investigated the relation between L∞, W k

r and W s
p and proved that

there holds the embedding

‖u‖L∞(Rn) ≤ C
(
1 + log

r−1
r

(
1 + ‖u‖W s

p (Rn)

))
, sp > n

provided ‖u‖W k
r
≤ 1 for kr = n. This estimate was applied to prove existence of global

solutions to the nonlinear Schrödinger equation (see [3, 14]).
In our work, we need to have an estimate similar to (2.12), but for the parabolic

BMO space and on the bounded domain IT . This will be essential, on one hand, to
show a suitable positive lower bound of κx (κ given by Theorem 1.1), and on the other
hand, to show the long time existence of our solution. Indeed, there is a similar inequality
and this is what will be illustrated by the next theorem.

Theorem 2.13 (A parabolic Kozono-Taniuchi inequality, [17, Appendix B2],
[19]). Let v ∈ W 2,1

2 (IT ), then there exists a constant c = c(T ) > 0 such that the estimate
holds

‖v‖∞,IT
≤ c‖v‖BMO(IT )

(
1 + log+ ‖v‖W 2,1

2 (IT )

)
, (2.13)

where BMO(IT ) = BMO(IT ) ∩ L1(IT ), and for v ∈ BMO(IT ),

‖v‖BMO(IT ) = ‖v‖BMO(IT ) + ‖v‖L1(IT ).

This inequality is first shown over Rx × Rt, then it is deduced over IT .

3 A comparison principle

Proposition 3.1 (A comparison principle for system (1.1)). Let

(ρ, κ) ∈
(
C3+α, 3+α

2

(
IT

) )2
for some 0 < α < 1,
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be a solution of (1.1), (1.2) and (1.3) with κx > 0, and the initial conditions ρ0, κ0

satisfying:

κ0
x ≥

√
γ2
0 + (ρ0

x)2 on I, γ0 ∈ (0, 1). (3.1)

Choose β = β(ε, τ) > 0 large enough. Let the function γ(t) satisfies:





γ′(t)

γ(t)
≤ −

(
c0 + ‖ρxxx(., t)‖L∞(I)

)
, c0 = c0(ε, β, τ),

γ(0) = γ0/2.

(3.2)

Define M(x, t) := cosh(βx){κx(x, t) −
√

γ2(t) + (ρx(x, t))2} for (x, t) ∈ IT and T > 0.
Then m(t) := min

x∈I
M(x, t) satisfies m(t) ≥ γ2(t) for all t ∈ [0, T ]. In particular, we have

κx(x, t) ≥
√

γ2(t) + ρ2
x(x, t), in IT . (3.3)

Proof. Throughout the proof, we will extensively use the following notation:

Ga(y) =
√

a2 + y2, a, y ∈ R.

Without loss of generality (up to a change of variables in (x, t) and a re-definition of τ),
assume in the proof that

I = (−1, 1).

Define the quantity M by:

M(x, t) = κx(x, t) − Gγ(t)(ρx(x, t)), (x, t) ∈ IT ,

γ(t) > 0 is a function to be determined. The proof could be divided into five steps.

Step 1. (Partial differential inequality satisfied by M)

We first do the following computations on IT :

Mt = κxt − G
′

γ(ρx)ρxt −
γγ

′

√
γ2 + ρ2

x

, (3.4)

Mx = κxx − G
′

γ(ρx)ρxx, Mxx = κxxx − G
′′

γ(ρx)ρ2
xx − G

′

γ(ρx)ρxxx. (3.5)

Deriving (1.1) with respect to x, we deduce that





κxt = εκxxx +
ρ2

xx

κx
+

ρxρxxx

κx
− ρxρxxκxx

κ2
x

− τρxx,

ρxt = (1 + ε)ρxxx − τκxx.

(3.6)

We set

Γ =
γγ

′

√
γ2 + ρ2

x

, Fγ(y) = y − γ arctan(y/γ).
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Doing again some direct computations, and using (3.4), (3.5) and (3.6), we obtain

Mt = εMxx +

(
τG

′

γ(ρx) − ρxρxx

κ2
x

)
Mx +

(
ρ2

xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx

)
M

+ εG
′′

γ(ρx)ρ2
xx +

ρ2
xx

κ2
x

[Gγ(ρx) − G
′

γ(ρx)ρx] − τ(1 − F
′

γ(ρx))ρxx − Γ.

(3.7)

Using Young’s inequality 2ab ≤ a2 + b2, we have:

τγ2|ρxx|
γ2 + ρ2

x

≤ εγ2ρ2
xx

(γ2 + ρ2
x)3/2

+
γ2τ2

4ε
√

γ2 + ρ2
x

. (3.8)

Plugging (3.8) into (3.7), and using some properties of Gγ and Fγ , we get:

Mt ≥ εMxx +

(
τG

′

γ(ρx) − ρxρxx

κ2
x

)
Mx +

(
ρ2

xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx

)
M

− γ2τ2

4ε
√

γ2 + ρ2
x

− γγ
′

√
γ2 + ρ2

x

.

Step 2. (The boundary conditions for M)

The boundary conditions (1.3), and the PDEs of system (1.1) imply the following equal-
ities on the boundary (using the smoothness of the solution up to the boundary),





εκxx +
ρxρxx

κx
− τρx = 0 on ∂I × [0, T ]

(1 + ε)ρxx − τκx = 0 on ∂I × [0, T ].
(3.9)

In particular (3.9) implies

Mx = − τ

1 + ε
G

′

γ(ρx)M on ∂I × [0, T ]. (3.10)

To deal with the boundary condition (3.10), we now introduce the following change of
unknown function:

M(x, t) = cosh(βx)M(x, t), (x, t) ∈ IT .

We calculate M on the boundary of I to get:

Mx =

(
β tanh(βx) − τ

1 + ε
G

′

γ(ρx)

)
M on ∂I × [0, T ]. (3.11)

We claim that, for any fixed time t, it is impossible for M to have a positive minimum
at the boundary of I. Indeed we have the following two cases:

M has a positive minimum at x = 1 ⇒ Mx ≤ 0;

M has a positive minimum at x = −1 ⇒ Mx ≥ 0.
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Both cases violate the equation (3.11) in the case of the choice of β = β(ε, τ) large enough,
and hence the minimum of M is attained inside the interval I. Direct computations give:

M t ≥ εMxx +

[
τG

′

γ(ρx) − ρxρxx

κ2
x

− 2βε tanh(βx)

]
Mx − cosh(βx)γ2τ2

4ε
√

γ2 + ρ2
x

− cosh(βx)γγ
′

√
γ2 + ρ2

x

+

[
ρ2

xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx
− β tanh(βx)

(
τG

′

γ(ρx) − ρxρxx

κ2
x

)
+ εβ2(2 tanh2(βx) − 1)

]
M.

(3.12)
Step 3. (The inequality satisfied by the minimum of M)

Let
m(t) = min

x∈I
M (x, t).

Since the minimum is attained inside I, and since M is regular, there exists x0(t) ∈ I
such that m(t) = M(x0(t), t). We remark that we have:

Mx(x0(t), t) = 0, and Mxx(x0(t), t) ≥ 0,

and hence, using (3.12), we can write down the equation satisfied by m, we get (indeed
in the viscosity sense):

mt ≥

R︷ ︸︸ ︷(
ρ2

xx

κ2
x

−
ρxxxG

′

γ(ρx)

κx
− β tanh(βx)

(
τG

′

γ(ρx) − ρxρxx

κ2
x

)
+ εβ2(2 tanh2(βx) − 1)

)
m

− cosh(βx)γ2τ2

4ε
√

γ2 + ρ2
x

− cosh(βx)γγ
′

√
γ2 + ρ2

x

at x = x0(t).

(3.13)
Step 4. (Estimate of the term R)

We turn our attention now to the term R from (3.13). Using elementary identities, we
get

R ≥ −
ρxxxG

′

γ(ρx)

κx
− β2 tanh2(βx)

4

ρ2
x

κ2
x

− τ2

8ε
(G

′

γ(ρx))2 − εβ2. (3.14)

By (3.1), we know that
m(0) ≥ γ2(0),

and the continuity of m preserves its positivity at least for short time. Then, as long as
m is positive, we have

κx ≥
√

γ2 + ρ2
x. (3.15)

Let
c̃(t) = ‖ρxxx(., t)‖∞,I .

By using (3.15) and some basic identities, inequality (3.14) implies:

R ≥ − c̃√
γ2 + ρ2

x

− c1, c1 =
β2

4
+

τ2

8ε
+ εβ2. (3.16)
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Step 5. (The choice of γ and conclusion)

When γ
′ ≤ 0, we deduce from (3.13) and (3.16) that the function m is a viscosity

super-solution of:

mt = −
(

c̃√
γ2 + ρ2

x

+ c1

)
m − c2γ

2

√
γ2 + ρ2

x

− γγ
′

√
γ2 + ρ2

x

, c2 =

(
τ2 cosh β

4ε

)
. (3.17)

We remind the reader that ρx = ρx(x0(t), t). Take the function γ satisfying:




γ
′

γ
≤ −(c0 + c̃), c0 = min(c1, c2),

γ(0) = γ0/2

Plug m = γ2 into (3.17), we directly deduce that γ2 is a viscosity sub-solution of (3.17),
and the result follows by comparison. 2

4 Short time existence, uniqueness, and regularity

In this section, we will prove a result of short time existence, uniqueness and regularity
of a solution of problem (1.1), (1.2) and (1.3).

4.1 Short-time existence and uniqueness of a truncated system

We denote
Ia,b := I × (a, a + b), a, b ≥ 0.

Fix T0 ≥ 0. Consider the following system defined on IT0,T by:





κt = εκxx +
ρxρxx

κx
− τρx on IT0,T

ρt = (1 + ε)ρxx − τκx on IT0,T ,
(4.1)

with the initial conditions:

κ(x, T0) = κT0(x) and ρ(x, T0) = ρT0(x), (4.2)

and the boundary conditions:
{

κ(0, .) = 0 and κ(1, .) = 1 for T0 < t < T0 + T

ρ(0, .) = ρ(1, .) = 0, for T0 < t < T0 + T.
(4.3)

Remark 4.1 (The terms p and α). In all what follows, and unless otherwise precised,
the terms p and α ∈ (0, 1) are two fixed positive real numbers such that

p > 3 and α = 1 − 3/p.

Concerning system (4.1), (4.2) and (4.3), we have the following existence and uniqueness
result.
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Proposition 4.2 (Short time existence and uniqueness). Let p > 3, and T0 ≥ 0.
Let

ρT0 , κT0 ∈ C∞(Ī × {T0})
be two given functions such that ρT0(0) = ρT0(1) = κT0(0) = 0, and κT0(1) = 1. Suppose
furthermore that

κT0
x ≥ γ0 on I × {t = T0},

and
‖(Ds

xρT0 ,Ds
xκT0)‖∞,I ≤ M0 on I × {t = T0}, s = 1, 2,

where γ0 > 0 and M0 > 0 are two given positive real numbers. Then there exists

T = T ∗ = T ∗(M0, γ0, ε, τ, p) > 0, (4.4)

such that the system (4.1), (4.2) and (4.3) admits a unique solution

(ρ, κ) ∈ (W 2,1
p (IT0,T ))2.

Moreover, this solution satisfies

κx ≥ γ0/2 on IT0,T , (4.5)

and
|ρx| ≤ 2M0 on IT0,T . (4.6)

Proof. The short time existence is done by using a fixed point argument. Since we are
looking for solutions satisfying (4.5) and (4.6), we artificially modify (4.1), and look for
a solution of





κt = εκxx +
ρxxT2M0(ρx)

(γ0/2) + (κx − γ0/2)+
− τρx in IT0,T

ρt = (1 + ε)ρxx − τκx in IT0,T ,

(4.7)

with the truncation function Tζ(x) = x11(−ζ,ζ)+ζ11{x≥ζ}−ζ11{x≤−ζ}, ζ > 0, and satisfying
the same initial and boundary data (4.2), (4.3). Denote

Y = W 2,1
p (IT0,T ).

For any constant λ > 0, let us define Dρ
λ and Dκ

λ as the two closed subsets of Y given
by:

Dρ
λ = {u ∈ Y ; ‖ux‖p,IT0,T

≤ λ, u = ρT0 on ∂pIT0,T}
and

Dκ
λ = {v ∈ Y ; ‖vx‖p,IT0,T

≤ λ, v = κT0 on ∂pIT0,T }.
We choose λ large enough such that these sets are nonempty. Define the application Ψ
by:

Ψ : Dρ
λ × Dκ

λ 7−→ Dρ
λ × Dκ

λ

(ρ̂, κ̂) 7−→ Ψ(ρ̂, κ̂) = (ρ, κ),
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where (ρ, κ) is a solution of the following system:




κt = εκxx +
ρxxT2M0(ρ̂x)

(γ0/2) + (κ̂x − γ0/2)+
− τ ρ̂x in IT0,T ,

ρt = (1 + ε)ρxx − τ κ̂x in IT0,T ,

(4.8)

with the same initial and boundary conditions given by (4.2) and (4.3) respectively.
The existence of the solution of (4.8), (4.2) and (4.3) is a direct consequence of Theo-
rem 2.3. Taking ρ̄(x, t) = ρ(x, t) − ρT0(x) and κ̄(x, t) = κ(x, t) − κT0(x), we can easily
check that (ρ̄, κ̄) satisfies a parabolic system similar to (4.8) with (ρ̄, κ̄) = 0 on ∂pIT0,T .
Using Sobolev estimates for parabolic equations to the system satisfied by (ρ̄, κ̄), par-
ticularly (2.7), we deduce that for sufficiently small T > 0, we have ‖ρx‖p,IT0,T

≤ λ,
‖κx‖p,IT0,T

≤ λ, and hence the application Ψ is well defined.

The application Ψ is a contraction map. Let Ψ(ρ̂, κ̂) = (ρ, κ) and Ψ(ρ̂′, κ̂′) = (ρ′, κ′).
Direct computations, using in particular (2.7), give:

‖ρ − ρ′‖Y ≤ c
√

T‖κ̂ − κ̂′‖Y , (4.9)

and
‖κ − κ′‖Y ≤ c‖F‖p,IT0,T

, (4.10)

with the function F satisfying:

F + τ(ρ̂ − ρ̂′)x =

A1︷ ︸︸ ︷
T2M0(ρ̂x)

(γ0/2) + (κ̂x − γ0/2)+
(ρxx − ρ′xx) +

A2︷ ︸︸ ︷
ρ′xx(T2M0(ρ̂x) − T2M0(ρ̂

′
x))

(γ0/2) + (κ̂x − γ0/2)+

+

A3︷ ︸︸ ︷
ρ′xxT2M0(ρ̂

′
x)

(
1

(γ0/2) + (κ̂x − γ0/2)+
− 1

(γ0/2) + (κ̂′
x − γ0/2)+

)
.

(4.11)
In order to prove the contraction for some small T > 0, we need to estimate all the terms
appearing in (4.11). The term A1 can be easily handled. However, for the term A2, we
proceed as follows. We apply the L∞ control of the spatial derivative (see Lemma 2.7)
to the function ρ̂ − ρ̂′, we get:

‖(ρ̂ − ρ̂′)x‖∞,IT0,T
≤ cT

p−3
2p ‖ρ̂ − ρ̂′‖Y . (4.12)

For the term ρ′xx, we apply (2.7), and hence we deduce that

‖ρ′xx‖p,IT0,T
≤ c(M0 + λ). (4.13)

From (4.12) and (4.13), we deduce that

‖A2‖p,IT0,T
≤ c

(M0 + λ)

γ0
T

p−3
2p ‖ρ̂ − ρ̂′‖Y .

The term A3 could be treated in a similar way as the term A2. The above ar-
guments, particularly (4.9) and (4.10), give the contraction of Ψ for small time
T = T ∗(M0, γ0, ε, τ, p) > 0. Finally, inequalities (4.5) and (4.6) directly follow using
the Sobolev embedding in Hölder spaces (Lemma 2.5). 2
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4.2 Regularity of the solution

This subsection is devoted to show that the solution of (4.1), (4.2) and (4.3) enjoys
more regularity than the one indicated in Proposition 4.2. This will be done using a
special bootstrap argument, together with the Hölder regularity of solutions of parabolic
equations.

Proposition 4.3 (Regularity of the solution: bootstrap argument). Under the
same hypothesis of Proposition 4.2, let ρT0 and κT0 satisfy:

{
(1 + ε)ρT0

xx = τκT0
x at ∂I,

(1 + ε)κT0
xx = τρT0

x at ∂I.
(4.14)

Then the unique solution (ρ, κ) given by Proposition 4.2 is in fact more regular. Precisely,
it satisfies for α = 1 − 3/p:

ρ, κ ∈ C3+α, 3+α
2 (IT0,T ) ∩ C∞(Ī × (T0, T0 + T )), (4.15)

where T is the time given by Proposition 4.2.

Proof. For the sake of simplicity, let us suppose that T0 = 0.

The Hölder regularity. Since κ ∈ W 2,1
p (IT ), we use Lemma 2.5 to deduce that κx ∈

Cα,α/2(IT ). We apply the Hölder theory for parabolic equations Theorem 2.1, to the
second equation of (4.1) (using in particular the regularity of the initial data ρ0), we
deduce that:

ρ ∈ C2+α,1+α/2(IT ). (4.16)

Here the compatibility condition is satisfied by (4.14). Using (4.16) and (4.5), we deduce
that ρxρxx

κx
− τρx ∈ Cα,α/2(IT ) and similar arguments as above give that:

κ ∈ C2+α,1+α/2(IT ). (4.17)

Repeating the above arguments, using this time (see (4.17)) that κx ∈ C1+α, 1+α
2 (IT ),

and hence
ρ ∈ C3+α, 3+α

2 (IT ), (4.18)

where (4.18) directly implies that ρxρxx

κx
− τρx ∈ C1+α, 1+α

2 (IT ), and therefore

κ ∈ C3+α, 3+α
2 (IT ). (4.19)

The compatibility condition of order 1 which is needed to apply Theorem 2.1 is always
satisfied by (4.14). The Hölder regularity of (ρ, κ) directly follows from (4.18) and (4.19).

The C∞ regularity. In order to get the C∞ regularity, we argue as in the case of
the Hölder regularity (bootstrap argument). In this case the compatibility condition is
replaced by multiplying by a test function that vanishes near t = 0. 2.
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5 Exponential bounds

In this section, we will give some exponential bounds of the solution given by Proposition
4.2, and having the regularity shown by Proposition 4.3. It is very important, throughout
all this section, to precise our notation concerning the constants that may certainly vary
from line to line. Let us mention that a constant depending on time will be denoted by
c(T ). Those which do not depend on T will be simply denoted by c. In all other cases,
we will follow the changing of the constants in a precise manner.

Proposition 5.1 (Exponential bound in time for ρx and κx). Let

ρ, κ ∈ C3+α, 3+α
2 (Ī × [0,∞)) ∩ C∞(Ī × (0,∞)),

be a solution of (1.1), (1.2) and (1.3), with ρ0(0) = ρ0(1) = 0, κ0(0) = 0 and κ0(1) = 1.
Suppose furthermore that the function

B =
ρx

κx
satisfies ‖B‖L∞(I×(0,∞)) ≤ 1.

Then, for small T ∗ = T ∗(ε, τ, p) > 0, and A = 1 + ‖ρ0‖
W

2−2/p
p (I)

+ ‖κ0‖
W

2−2/p
p (I)

, we

have for all t ≥ 0:

|ρx|(α)
It,T∗

, |κx|(α)
It,T∗

≤ cAect, (5.1)

and c is a fixed constant independent of the initial data.

Proof. We use the special coupling of the system (1.1) to find our a priori estimate.
Roughly speaking, the fact that κx appears as a source term in the second equation of
system (1.1) permits, by the Lp theory for parabolic equations, to have Lp bounds, in
terms of ‖κx‖p,IT

, on ρx and ρxx which in their turn appear in the source terms of the
first equation of (1.1) satisfied by κ. All this permit to deduce our estimates. To be more
precise, let T > 0 an arbitrarily fixed time, the proof is divided into four steps:

Step 1. (estimating κx in the Lp norm)

Let κ
′

be the solution of the following equation:

{
κ

′

t = κ
′

xx on IT

κ
′

= κ on ∂pIT .
(5.2)

As a solution of a parabolic equation, we use the Lp parabolic estimate (2.6) to the
function κ

′

to deduce that:

‖κ′‖W 2,1
p (IT ) ≤ c(T )

(
‖κ0‖

W
2−2/p
p (I)

+ 1
)

, (5.3)

where the term 1 comes from the value of κ′ = κ on ST . Take

κ̄ = κ − κ
′

, (5.4)
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then the system satisfied by κ̄ reads:




κ̄t = κ̄xx − (κ
′

t − εκ
′

xx) +
ρxρxx

κx
− τρx on IT

κ̄ = 0 on ∂pIT .

Using the special version (2.7) of the parabolic Lp estimate to the function κ̄, we obtain:

‖κ̄x‖p,IT
≤ c

√
T
(
‖κ′

t‖p,IT
+ ‖κ′

xx‖p,IT
+ ‖ρxx‖p,IT

+ ‖ρx‖p,IT

)
, (5.5)

where we have plugged into the constant c the terms ε, τ , p and ‖B‖∞. Combining (5.3),
(5.4) and (5.5), we get:

‖κx‖p,IT
≤ c(T )

(
‖κ0‖

W
2−2/p
p (I)

+ 1
)

+ c
√

T‖ρ‖W 2,1
p (IT ). (5.6)

The term ‖ρ‖W 2,1
p (IT ) appearing in the previous inequality is going to be estimated in

the next step.

Step 2. (estimating ρ in the W 2,1
p norm)

As in Step 1, let ρ
′

, ρ̄ be the two functions defined similarly as κ
′

, κ̄ respectively (see
(5.2) and (5.4)). The function ρ

′

satisfies an inequality similar to (5.3) that reads:

‖ρ′‖
W 2,1

p (IT )
≤ c(T )‖ρ0‖

W
2−2/p
p (I)

. (5.7)

The term 1 disappeared here because ρ
′

= ρ = 0 on ST . We write the system satisfied
by ρ̄, we obtain:

{
ρ̄t = (1 + ε)ρ̄xx + ((1 + ε)ρ

′

xx − ρ
′

t) − τκx on IT

ρ̄(x, 0) = 0 on ∂pIT ,

hence the following estimate on ρ̄, due to the special Lp interior estimate (2.7), holds:

‖ρ̄‖
W 2,1

p (IT )
≤ c

(
‖ρ′

t‖p,IT
+ ‖ρ′

xx‖p,IT
+ ‖κx‖p,IT

)
. (5.8)

Again, we have plugged ε, τ and p into the constant c, and we have assumed that T ≤ 1.
Combining (5.7) and (5.8), we get in terms of ρ:

‖ρ‖W 2,1
p (IT ) ≤ c(T )‖ρ0‖

W
2−2/p
p (I)

+ c‖κx‖p,IT
. (5.9)

We will use this estimate in order to have a control on ‖κx‖p,IT
for sufficiently small time.

Step 3. (Estimate on a small time interval)

From (5.6) and (5.9), we deduce that:

‖κx‖p,IT
≤ c(T )

(
‖κ0‖

W
2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)

+ c
√

T‖κx‖p,IT
. (5.10)
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Let us remind the reader that all constants c and c(T ) have been changing from line to
line. In fact, the important thing is whether they depend on T or not. Let

T ∗ =
1

2c2
, c is the constant appearing in (5.10),

we deduce, from (5.10), that

‖κx‖p,IT∗
≤ c3

(
‖κ0‖

W
2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)

,

where c3 = c3(T
∗) > 0 is a positive constant which depends on T ∗. Recall the special

coupling of system (1.1), together with the above estimate, we can deduce that:

‖(ρ, κ)‖W 2,1
p (IT∗ ) ≤ c4

(
‖κ0‖

W
2−2/p
p (I)

+ ‖ρ0‖
W

2−2/p
p (I)

+ 1
)

, (5.11)

with c4 = c4(T
∗) > 0 is also a positive constant depending on T ∗ but independent of the

initial data.

Step 4. (The exponential estimate by iteration)

Now we move to show the exponential bound. Set

f(t) = ‖(ρ, κ)‖W 2,1
p (I×(t,t+T ∗)), and g(t) = ‖κ(·, t)‖

W
2−2/p
p (I)

+ ‖ρ(·, t)‖
W

2−2/p
p (I)

.

Using estimate (5.11) of Lemma 2.6, together with estimate (5.11) of Step 3, we get

g(T ∗) ≤ c5f(0) ≤ c5c4(g(0) + 1), c5 = c5(T
∗).

In this case, the Sobolev embedding in Hölder spaces (see Lemma 2.6), and the time
iteration give immediately the result. 2

Proposition 5.2 (Exponential bound in time for ρxx). Under the same hypothesis
of Proposition 5.1, and for some T ∗ = T ∗(ε, τ, p) > 0, we have:

|ρ|(2+α)
It,T∗

≤ cAect, t ≥ 0, (5.12)

where A = 1 + ‖ρ0‖
W

2−2/p
p (I)

+ ‖κ0‖
W

2−2/p
p (I)

+ |ρ0|(2+α)
I , and c > 0 is a fixed positive

constant independent of the initial data.

Proof. The proof is very similar to the proof of Proposition 5.1. It uses in particular
the Hölder estimate for parabolic equations (namely (2.4)), the Hölder embedding in
Sobolev spaces (Lemma 2.5), and finally the iteration in time. 2

Remark 5.3 We can not obtain, using similar arguments as in the proof of Proposition

5.2, a similar exponential bound (5.12) for the term |κ|(2+α)
It,T∗

. This is due to the presence

of the term 1/κx in the equation involving κ.
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6 An upper bound for the W
2,1
2 norm of ρxxx

This section is devoted to give a suitable upper bound for the W 2,1
2 norm of ρxxx. This

result will be a consequence of the control of the W 2,1
2 norm of κt and κxx. The goal

is to use this upper bound in the parabolic Kozono-Taniuchi inequality (see inequality
(2.13) of Theorem 2.13) in order to control the L∞ norm of ρxxx.

Let us fix T1 > 0. In this section (Section 6) and in the following section (Section 7),
we will obtain some estimates on the solution (ρ, κ) on the time interval (0, T ), with

T > T1 > 0. (6.1)

In these estimates, we will precise the dependence on T which involves some constants
depending on T1 that may blow up as T1 goes to zero. Consider the following hypothesis:

(H1) The function κx satisfies:

κx(x, t) ≥ γ(t) > 0,

where γ(t) is a positive decreasing function with γ(0) = γ0/2, γ0 ∈ (0, 1).

Let
D = IT ,

we start with the following lemma.

Lemma 6.1 (W 2,1
2 bound for κt and κxx). Under hypothesis (H1), and under the

same hypothesis of Proposition 5.1, we have:

‖κt‖W 2,1
2 (D), ‖κxx‖W 2,1

2 (D) ≤
E

γ4
,

where
γ := γ(T ) and E := dedT ,

with d ≥ 1 is a positive constant depending on the initial conditions but independent of
T , and will be given at the end of the proof.

Remark 6.2 (The constant E depending on time). Let us stress on the fact that,
throughout the proof and in the rest of the paper, the term E = dedT of Lemma 6.1 might
vary from line to line. In other words, the term d in the expression of E might certainly
vary from line to line, but always satisfying the fact of just being dependent on the initial
data of the problem. The different E’s appearing in different estimates can be made the
same by simply taking the maximum between them. Therefore they will all be denoted by
the same letter E.

Proof of Lemma 6.1. Define the functions u and v by:

u(x, t) = ρt(x, t) and v(x, t) = κt(x, t).
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We write down the equations satisfied by u and v respectively:




ut = (1 + ε)uxx − τvx on D,

u|ST
= 0,

u|t=0 = u0 := (1 + ε)ρ0
xx − τκ0

x on I,

(6.2)





vt = εvxx +
ρxx

κx
ux + Buxx − B

ρxx

κx
vx − τux on D,

v|ST
= 0,

v|t=0 = v0 := εκ0
xx +

ρ0
xρ0

xx

κ0
x

− τρ0
x on I.

(6.3)

The proof could be divided into three steps. As a first step, we will estimate the L∞(D)
norm of the term vx = κtx. In the second step, we will control the W 2,1

2 (D) norm of
v = κt. Finally, in the third step, we will show how to deduce a similar control on the
W 2,1

2 (D) norm of κxx.

Step 1. (Estimating ‖κxt‖∞,D)

It is worth recalling the equation satisfied by κ:

κt = εκxx +
ρxρxx

κx
− τρx.

In Proposition 4.3, we have shown that κ ∈ C3+α, 3+α
2 . Therefore, writing the parabolic

Hölder estimate (see (2.4)), we obtain:

‖κtx‖∞,D ≤ |κ|(3+α)
D ≤ cH

(
1 +

∣∣∣∣
ρxρxx

κx

∣∣∣∣
(1+α)

D

+ |ρx|(1+α)
D

)
, (6.4)

where the term 1 comes from the boundary conditions, and cH > 0 is a positive constant
that can be estimated as cH ≤ E (see Remark 2.2). We use the elementary identity

|fg|(1+α)
D ≤ ‖f‖∞,D|g|(1+α)

D + ‖g‖∞,D|f |(1+α)
D + ‖fx‖∞,D|g|(α)

D + ‖gx‖∞,D|f |(α)
D ,

to the term
∣∣∣ρxρxx

κx

∣∣∣
(1+α)

D
with f = ρx

κx
and g = ρxx, we get:

∣∣∣∣
ρxρxx

κx

∣∣∣∣
(1+α)

D

≤ 3|ρ|(3+α)
D + ‖ρxx‖∞,D

〈
ρx

κx

〉(1+α)

D

+ ‖ρxxx‖∞,D

〈
ρx

κx

〉(α)

D

+
2|ρ|(2+α)

D

γ
(‖ρxx‖∞,D + ‖κxx‖∞,D), (6.5)

where we have used the fact that κx ≥ γ and κx ≥ |ρx|. We plug (6.5) in (6.4), we
obtain:

‖κtx‖∞,D ≤ E

(
1 + |ρ|(3+α)

D +

〈
ρx

κx

〉(1+α)

D

+ |ρ|(3+α)
D

〈
ρx

κx

〉(α)

D

+
1

γ

(
1 + |κ|(2+α)

D

))
,

(6.6)
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where we have used used the fact that the term |ρ|(2+α)
D has an exponential bound (see

Proposition 5.2) of the form |ρ|(2+α)
D ≤ E.

Step 1.1.

(
Estimating

〈
ρx

κx

〉(1+α)

D

)

From the definition of the Hölder norm, we see that in order to control
〈

ρx

κx

〉(1+α)

D
, it

suffices to control the three quantities:

〈
ρx

κx

〉( 1+α
2 )

t,D

,

〈(
ρx

κx

)

x

〉(α)

x,D

, and

〈(
ρx

κx

)

x

〉(α
2 )

t,D

.

We use the the following identity:

〈
f

g

〉(α)

t,D

≤
∥∥∥∥

f

g

∥∥∥∥
∞,D

∥∥∥∥
1

g

∥∥∥∥
∞,D

〈g〉(α)
t,D +

∥∥∥∥
1

g

∥∥∥∥
∞,D

〈f〉(α)
t,D ,

with f = ρx and g = κx, we get

〈
ρx

κx

〉( 1+α
2 )

t,D

≤ 1

γ

(
〈ρx〉(

1+α
2 )

t,D + 〈κx〉(
1+α

2 )
t,D

)
. (6.7)

Similarly, we obtain:

〈
ρxx

κx

〉(α)

x,D

≤ ‖ρxx‖∞,D

γ2
〈κx〉(α)

x,D +
〈ρxx〉(α)

x,D

γ
. (6.8)

We also use the inequality:

〈fg〉(α)
x,D ≤ ‖f‖∞,D〈g〉(α)

x,D + ‖g‖∞,D〈f〉(α)
x,D,

with f = κxx
κx

and g = ρx

κx
, we get:

〈
κxxρx

κ2
x

〉(α)

x,D

≤
〈κxx〉(α)

x,D

γ
+

‖κxx‖∞,D

γ2
〈ρx〉(α)

x,D +
‖κxx‖∞,D

γ2
〈κx〉(α)

x,D. (6.9)

Similarly, we get
〈

ρxx

κx

〉(α
2 )

t,D

≤ ‖ρxx‖∞,D

γ2
〈κx〉(

α
2 )

t,D +
〈ρxx〉(

α
2 )

t,D

γ
, (6.10)

and

〈
κxxρx

κ2
x

〉(α
2 )

t,D

≤
〈κxx〉(

α
2 )

t,D

γ
+

‖κxx‖∞,D

γ2
〈ρx〉(

α
2 )

t,D +
‖κxx‖∞,D

γ2
〈κx〉(

α
2 )

t,D . (6.11)

Collecting the above inequalities (6.7), (6.8), (6.9), (6.10), and (6.11) yield:

〈
ρx

κx

〉(1+α)

D

≤ E

γ2

(
1 + |κ|(2+α)

D + ‖κxx‖∞,D〈κx〉(α)
D

)
, (6.12)
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where we have used the fact that 1 ≤ E
γ , γ ≤ 1 and |ρ|(2+α)

D ≤ E (see Proposition 5.2).

Step 1.2.
(
Estimating |ρ|(3+α)

D and |κ|(2+α)
D

)

Using Hölder estimate for parabolic equations (estimate (2.4) of Proposition 2.1), and
similar computations to that of the previous step, we deduce that:

|κ|(2+α)
D ≤ E

γ

(
1 + |κx|(α)

D

)
, (6.13)

and

|ρ|(3+α)
D ≤ E

γ

(
1 + |κx|(α)

D

)
. (6.14)

Step 1.3. (The estimate for ‖κtx‖∞,D)

By combining (6.6), (6.12), (6.13), (6.14), and by using the fact that |κx|(α)
D has an

exponential estimate (see estimate (5.1) of Proposition 5.1), we deduce that:

|κ|(3+α)
D ≤ E

γ3
, (6.15)

which will be useful later, and as a particular subcase, we have:

‖κtx‖∞,D ≤ E

γ3
, (6.16)

where we have frequently used that γ ≤ 1, and we have always taken the maximum of
all the exponential bounds of the E = dedT form.

Step 2. (Estimating ‖κt‖W 2,1
2 (D))

Step 2.1. (Estimating ‖u‖W 2,1
2 (D))

We use the L2 estimates for parabolic equations (Theorem 2.3) to the function u satisfying
(6.2), we obtain:

‖u‖W 2,1
2 (D) ≤ E(1 + ‖vx‖2,D). (6.17)

The term 1 in (6.17) comes from estimating the initial data u0. Since vx = κtx, we plug
the estimate (6.16) obtained in Step 1.3 into (6.17), we get

‖u‖W 2,1
2 (D) ≤

E

γ3
. (6.18)

Step 2.2. (Estimating ‖v‖
W 2,1

2 (D)
)

Arguing in a similar manner as in the previous step, we obtain the following estimate
for the function v, the solution of the parabolic equation (6.3):

‖v‖W 2,1
2 (D) ≤ E

(
1 +

∥∥∥ρxx

κx

∥∥∥
∞,D

‖ux‖2,D + ‖B‖∞,D‖uxx‖2,D

+‖B‖∞,D

∥∥∥ρxx

κx

∥∥∥
∞,D

‖vx‖2,D + ‖ux‖2,D

)
, (6.19)
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and hence, from (6.16), (6.18), and doing some computations, we deduce from (6.19)
that:

‖v‖W 2,1
2 (D) ≤

E

γ4
. (6.20)

The goal of Step 2 follows since v = κt.

Step 3. (Estimating ‖κxx‖W 2,1
2 (D))

The estimate of ‖κxx‖W 2,1
2 (D) requires a special attention. We will mainly use the equa-

tions on ρ and κ. The four parts ‖κxx‖2,D, ‖κxxt‖2,D, ‖κxxx‖2,D and ‖κxxxx‖2,D of the
above norm will be estimated separately.

Step 3.1. (Estimate of ‖κxx‖2,D)

Inequality (6.13) directly implies that

‖κxx‖∞,D ≤ E

γ
, (6.21)

hence ‖κxx‖2,D ≤ E
γ .

Step 3.2. (Estimate of ‖κxxxx‖2,D)

We first derive the equation on ρ two times in x, we deduce (using (6.18)) that ‖ρxxxx‖2,D

has the same upper bound as ‖κxxx‖2,D, i.e.

‖ρxxxx‖2,D ≤ E

γ3
. (6.22)

We derive the equation on κ two times with respect to the variable x, we obtain:

κtxx = εκxxxx +
2ρxxρxxx

κx
− κxxρ2

xx

κ2
x

+
ρxρxxxx

κx
− ρxρxxxκxx

κ2
x

− ρ2
xxκxx

κ2
x

− ρxρxxκxxx

κ2
x

− ρxκxxρxxx

κ2
x

+
2κ2

xxρxρxx

κ3
x

− τρxxx,

and we use (6.22) and our controls obtained in the previous steps, in order to deduce
that:

‖κxxxx‖2,D ≤ E

γ4
.

In fact, the highest power comes from estimating the following term:
∥∥∥∥

κ2
xxρxρxx

κ3
x

∥∥∥∥
2,D

≤
∥∥∥∥
κ2

xxρxx

κ2
x

∥∥∥∥
∞,D

√
T ≤ E

γ4
,

where we have used the L∞ estimate of ‖κxx‖∞,D. All other estimates are easily deduced.
Let us just state how to estimate the other term were ‖κxx‖∞,D interferes. In fact, we
have: ∥∥∥∥

ρxρxxxκxx

κ2
x

∥∥∥∥
2,D

≤
∥∥∥∥

κxx

κx

∥∥∥∥
∞,D

‖ρxxx‖2,D ≤ E

γ3
.
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Step 3.3. (Estimate of ‖κxxt‖2,D and ‖κxxx‖2,D)

As an immediate consequence of (6.20), we get

‖κxxt‖2,D ≤ E

γ4
.

Deriving the equation on κ with respect to x, we obtain:

κtx = εκxxx +
ρ2

xx

κx
+

ρxρxxx

κx
− ρxκxxρxx

κ2
x

− τρxx. (6.23)

The estimate (6.14) gives

‖ρxxx‖2,D ≤ E

γ
,

which, together with (6.21) and (6.23), give ‖κxxx‖2,D ≤ E
γ3 . We deduce as a conclusion

that:

‖κxx‖W 2,1
2 (D)

≤ E

γ4
,

and this terminates the proof. 2

We move now to the main result of this section.

Lemma 6.3 (W 2,1
2 bound for ρxxx )

Under the same hypothesis of Lemma 6.1, we have:

‖ρxxx‖W 2,1
2 (D) ≤

E

γ4
. (6.24)

Proof. Set
κ̄ =

τ

(1 + ε)2
κt +

τ

1 + ε
κxx

and
w = ρxxx − κ̄.

We write down, after doing some computations, the equation satisfied by w:




wt = (1 + ε)wxx − τ

(1 + ε)2
κtt on D

wx|ST
= 0 on ST

w|t=0 := w0 = ρ0
xxx − τ(1 + 2ε)

(1 + ε)2
κ0

xx − τ

(1 + ε)2
ρ0

xρ0
xx

κ0
x

+
τ2

(1 + ε)2
ρ0

x.

(6.25)

Here wx|ST
= 0 can be checked by deriving the equation satisfied by ρ with respect to x

and then with respect to t, and by using the equality (1 + ε)ρxx = τκx satisfied on the
boundary ∂I (which is a consequence of the compatibility conditions). Applying the L2

theory with Neumann conditions (see for instance [21, Chapter 4, Section 10]) to (6.25),
we get that ρxxx = w + κ̄ satisfies

‖ρxxx‖W 2,1
2 (D) ≤ E

(
1 + ‖κtt‖2,D + ‖κt‖W 2,1

2 (D) + ‖κxx‖W 2,1
2 (D)

)
, (6.26)

and eventually (6.26) with Lemma 6.1 gives immediately the result. 2
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7 An upper bound for the BMO norm of ρxxx

This section is devoted to give a suitable upper bound for the BMO norm of ρxxx. This
result will be a consequence of the control of the BMO norm of a suitable extension
of κxx. The goal is to use this upper bound in the Kozono-Taniuchi inequality (see
inequality (2.13) of Theorem 2.13) in order to control the L∞ norm of ρxxx. We first
give some useful definitions.

Definition 7.1 (The “symmetric and periodic” extension of a function). Let
f ∈ C(IT ), we define f sym (constructed out of f) over R×(0, T ), first by the symmetry of
f with respect to the line x = 0 over the interval (−1, 0), and then by spatial periodicity.

Definition 7.2 (The “antisymmetric and periodic” extension of a function).
We define the function fasym in a similar manner as f sym, where we take the antisym-
metry of f instead of the symmetry.

We start with the following lemma that reflects a useful relation between the BMO norm
of f sym and fasym.

Lemma 7.3 (A relation between f sym and fasym). Let f ∈ C(IT ), then:

‖f sym‖BMO(R×(0,T )) ≤ c
(
‖fasym‖BMO(R×(0,T )) + m2I×(0,T ) (|f sym|)

)
,

where c > 0 is a universal constant.

The proof of this lemma will be presented in Appendix B. The next lemma gives a control
of the BMO norm of (κxx)asym.

Lemma 7.4 (BMO bound for (κxx)asym). Under hypothesis (H1), and under the
same hypothesis of Proposition 5.1, we have:

‖(κxx)asym‖BMO(R×(0,T )) ≤ cecT , (7.1)

where c > 0 is a constant depending on the initial conditions (but independent of T ).
The function (κxx)asym is given via Definition 7.2.

Proof. Let κ̄(x, t) = κ(x, t) − κ0(x). We notice that κ̄|ST
= 0, therefore κ̄asym satisfies:





κ̄asym
t − εκ̄asym

xx =
(ρx)asymρasym

xx

(κx)asym
− τ(ρx)asym + ε(κ0

xx)asym on R × (0, T )

κ̄asym(x, 0) = 0.

(7.2)

We already know that the right hand side of (7.2) is bounded in L∞ by E = cecT , and
hence (using Theorem 2.10) the result follows. 2

We now present the principal result of this section.

Lemma 7.5 (BMO bound for ρxxx). Under the same hypothesis of Lemma 7.4, we
have:

‖ρxxx‖BMO(D) ≤ E. (7.3)
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Proof. Take
v = ρx − τκ

1 + ε
,

the equation satisfied by v reads:





vt = (1 + ε)vxx − ετ

1 + ε
κxx − τ

1 + ε

ρxρxx

κx
+

τ2

1 + ε
ρx on D

v|t=0 = v0 := ρ0
x − τ

1 + ε
κ0 on I

vx|ST
= 0,

where we have used the compatibility conditions to check that vx|ST
= 0. We can assume,

without loss of generality, that the initial condition v0 = 0. This is because being non-
zero just adds a constant depending on the initial conditions in the final estimate that
we are looking for. From the fact that vx|ST

= 0, we can easily deduce that the function
vsym satisfies:





vsym
t = (1 + ε)vsym

xx +

g︷ ︸︸ ︷
τ2

1 + ε
(ρx)sym − τ

1 + ε

(ρx)sym(ρxx)sym

(κx)sym
− ετ

1 + ε
(κxx)sym

on R × (0, T )

vsym(x, 0) = 0 on R,

therefore, using the BMO estimate (2.11) for parabolic equations, to the function v, one
gets:

‖vsym
xx ‖BMO(R×(0,T )) ≤ c

[
‖g‖BMO(R×(0,T )) + m2I×(0,T )(|g|)

]
,

where c = c(T1) > 0 with 0 < T1 ≤ T . From Propositions 5.1, 5.2, we deduce that

‖g‖BMO(R×(0,T )) ≤ E + ‖(κxx)sym‖BMO(R×(0,T )),

and
m2I×(0,T )(|g|) ≤ E + m2I×(0,T )(|(κxx)sym|).

Recall the definition of the term E from Remark 6.2. At this stage, we write the following
estimate:

‖(κxx)sym‖BMO(R×(0,T )) ≤ c
[
‖(κxx)asym‖BMO(R×(0,T )) + m2I×(0,T )(|(κxx)sym|)

]
, (7.4)

which can be deduced using Lemma 7.3. The constant c > 0 appearing in (7.4) is
independent of T . Finally, we deduce that:

‖vsym
xx ‖BMO(R×(0,T )) ≤ c

(
E + T−1/p‖κxx‖p,D

)
.

From (6.1), (5.11), we know that T−1/p‖κxx‖p,D ≤ T
−1/p
1 E. From the previous two

inequalities, and since vxx = ρxxx − τκxx
1+ε , we easily arrive to our result. 2
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8 L∞ bound for ρxxx

In this section, we use the results of Sections 5, 6 and 7, in order to give an L∞ bound
for ρxxx via the Kozono-Taniuchi inequality.

Proposition 8.1 (L∞ bound for ρxxx). Under hypothesis (H1), and under the same
hypothesis of Proposition 5.1, we have ∀T > 0:

‖ρxxx‖∞,IT
≤ E

(
1 + log+ 1

γ

)
. (8.1)

Proof. For T < T1 = T ∗, where T ∗ is the short time existence result (see Theorem 4.2)
given by (4.4), inequality (8.1) directly follows. In the other case where T ≥ T1, we apply
the parabolic Kozono-Taniuchi estimate (2.13) to the function ρxxx, together with (7.3)
and (6.24). Remark that the ‖ρxxx‖L1(IT ) can be easily estimated by the term E. 2

Proposition 8.2 (A priori estimates). Under the same hypothesis of Proposition

3.1, the solution (ρ, κ) ∈ C3+α, 3+α
2 (IT ) satisfies for every 0 ≤ t ≤ T :

κx(., t) ≥ e−eeb(t+1)

> 0, (8.2)

|ρ(., t)|(3+α)
I ≤ eeeb(t+1)

and |κ(., t)|(3+α)
I ≤ eeeb(t+1)

. (8.3)

Here b > 0 is a positive constant depending on the initial conditions and the fixed terms
of the problem, but independent of time.

Proof. Remark that if we consider a function γ satisfying (3.2), then the right hand
side of (3.2) can be estimated using (8.1) as follows:

−(c0 + ‖ρxxx(., t)‖L∞(I)) ≥ −E(1 + | log γ(t)|), E = E(T ) = dedT . (8.4)

This is the motivation to consider the solution γT of the following ordinary differential
equation: {

γ
′

T = −E(1 + | log γT |)γT , t ∈ (0, T )

γT (0) = γ0/2,
(8.5)

where γ0 is given by (3.1). Then, using a continuity argument, joint to the fact that
m(t) ≥ γ2(t) (see Proposition 3.1), it is easy to check that both (8.4) and (3.2) are
satisfied with γ = γT . Let us now define

γ̃(T ) := γT (T ) ≤ γT (t) for t ∈ [0, T ].

Then we deduce from (3.3) that

κx(., T ) ≥
√

γ̃2(T ) + (ρx(., T ))2 ≥ γ̃(T ), ∀T > 0,

and finally, solving (8.5) explicitly, inequality (8.2) directly follows. Therefore, from
(6.14) and (6.15), we easily deduce (8.3). 2
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9 Long time existence and uniqueness

Now we are ready to show the main result of this paper, namely Theorem 1.1.

Proof of Theorem 1.1. Define the set B by:

B =

{
T > 0; ∃ ! solution (ρ, κ) ∈ C3+α, 3+α

2 (IT ) of

(1.1), (1.2) and (1.3), satisfying (1.10)

}
.

This set is non empty by the short time existence result (Theorem 4.2). Set

T∞ = supB.

We claim that T∞ = ∞. Assume, by contradiction that T∞ < ∞. In this case, let
δ > 0 be an arbitrary small positive constant, and apply the short time existence result
(Theorem 4.2) with T0 = T∞ − δ. Indeed, by the tri-exponential bounds (8.2) and
(8.3), we deduce that the time of existence T ∗ given by (4.4) is in fact independent of δ.
Hence, choosing δ small enough, we obtain T0 + T ∗ ∈ B with T0 + T ∗ > T∞ and hence a
contradiction. 2

10 Appendix A: miscellaneous parabolic estimates

A1. Proof of Lemma 2.4 (Lp estimate for parabolic equations)

As a first step, we will prove the result in the case where ε = 1, and in a second step, we
will move to the case ε > 0. It is worth noticing that the term c may take several values
only depending on p.

Step 1. (The estimate: case ε = 1)

Suppose ε = 1. Since u = 0 on ∂I × [0, T ], we take ũ = uasym (see Definition 7.2). Also
consider the function f̃ = fasym. Define ū by

ū = ũφn,

with {
φn(x) = 1 if x ∈ (0, 2n)

φn(x) = 0 if x ≥ 2n + 1 or x ≤ −1.

This function satisfies
{

ūt = ūxx + f̄ , on R × (0, T )

ū(x, 0) = 0, on R,

with
f̄ = f̃φn − ũφn

xx − 2ũxφn
x .
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The proof that
‖ut‖p,IT

+ ‖uxx‖p,IT
≤ c‖f‖p,IT

(10.1)

can be easily deduced by applying the Calderon-Zygmund estimates to the function ū
satisfying the above equation, and passing to the limit n → ∞. Now, since u ∈ W 2,1

p (IT )
with u|t=0 = 0, we use [21, Lemma 4.5, page 305] to get

‖u‖p,IT
≤ cT (‖ut‖p,IT

+ ‖uxx‖p,IT
) (10.2)

and
‖ux‖p,IT

≤ c
√

T (‖ut‖p,IT
+ ‖uxx‖p,IT

). (10.3)

Combining (10.1), (10.2) and (10.3), we deduce that

1

T
‖u‖p,IT

+
1√
T
‖ux‖p,IT

+ ‖uxx‖p,IT
+ ‖ut‖p,IT

≤ c‖f‖p,IT
.

Step 2. (The estimate: general case ε > 0)

To get the general inequality, we consider the following rescaling of the function u:

û(x, t) = u(x, t/ε), (x, t) ∈ IεT ,

which allows to get the desired result. 2

A2. Proof of Lemma 2.7 (L∞ control of the spatial derivative)

Since u ∈ W 2,1
p (IT ) for p > 3, we know from Lemma 2.5 that ux ∈ Cα,α/2(IT ) for

α = 1 − 3
p . In this case, we use the estimate (2.8) with δ =

√
T , we obtain

‖ux‖∞,IT
≤ c(p){T α

2 (‖ut‖p,IT
+ ‖uxx‖p,IT

) + T
α
2
−1‖u‖p,IT

}. (10.4)

Remark that the fact that u = 0 on the parabolic boundary ∂pIT , and that it obviously
satisfies the equation:

{
ut = uxx + f, with f = ut − uxx

u = 0 on ∂pIT ,

then we can apply estimate (2.7) to bound the term ‖u‖p,IT
. Hence (10.4) becomes (with

a different constant c(p)):

‖ux‖∞,IT
≤ c(p){T α

2 ‖ut − uxx‖p,IT
+ T

α
2
−1T‖ut − uxx‖p,IT

}
≤ c(p)T

α
2 ‖u‖W 2,1

p (IT )

≤ c(p)T
p−3
2p ‖u‖W 2,1

p (IT ),

and the result follows. 2
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11 Appendix B: parabolic BMO theory

B1. Proof of Theorem 2.10 (A BMO estimate in the periodic case)

Let f be a bounded function defined on R × (0, T ) satisfying f(x + 2, t) = f(x, t). We
extend the function f to R×R+, first by symmetry with respect to the line {t = T} and
after that by time periodicity of period 2T . Call this function f̃ . Set ū as the solution
of the following equation:

{
ūt = εūxx + f̃ on R × R+

ū(x, 0) = 0.
(11.1)

We apply the standard result of BMO theory for parabolic equations. Since
f ∈ L∞(R × (0, T )), then f̃ ∈ BMO(R × R+), and hence we obtain
that ūt, ūxx ∈ BMO(R × R+), with the following estimate:

‖ūt‖BMO(R×R+) + ‖ūxx‖BMO(R×R+) ≤ c‖f̃‖BMO(R×R+), (11.2)

and hence (from the definition of the BMO space),

‖ūt‖BMO(R×(0,T ) + ‖ūxx‖BMO(R×(0,T )) ≤ c‖f̃‖BMO(R×R+). (11.3)

The BMO theory for parabolic equations, particularly estimate (11.2) is rather classical.
This is due to the fact that the solution of (11.1) can be expressed in terms of the heat
kernel Γ defined by:

Γ(x, t) =

{
(4πεt)−1/2e−

x2

4εt , for t > 0

0 for t ≤ 0,

in the following way:

ū(x, t) =

∫

R×R+

Γ(x − ξ, t − s)f̃(ξ, s) dξ ds.

As a matter of fact, it is shown in [10] that Γxx is a parabolic Calderon-Zygmund kernel
(here we are working in nonhomogeneous metric spaces in which the variable t accounts
for twice the variable x). Therefore Γxx : BMO → BMO is a bounded linear operator.
This result is quite technical and can be adapted from its elliptic version (see [2, Theorem
3.4]). It is less difficult to show that Γxx : L∞ → BMO, a bounded linear operator (see
for instance [15, Lemma 3.3]).

Having (11.3) in hands, it remains to show that

‖f̃‖BMO(R×R+) ≤ c
(
‖f‖BMO(R×(0,T )) + m2I×(0,T )(|f |)

)
,

with c > 0 independent of T . This can be divided into two steps:

Step 1. (Treatment of small parabolic cubes)
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We consider parabolic cubes Qr = Qr(x0, t0), (x0, t0) ∈ R × R+, with r ≤
√

T . Let us
estimate the term

1

|Qr|

∫

Qr

|f̃ − mQr f̃ |.

Assume, without loss of generality, that T ≤ t0 < 2T . In fact, any other case can be
done in a similar way because of the time symmetry of the function f̃ . Two cases can be
considered. If r2 < t0 − T then the cube Qr lies in the strip R× (T, 2T ) and in this case

1

|Qr|

∫

Qr

|f̃ − mQr f̃ | ≤ ‖f‖BMO(R×(0,T )).

The other case is when r2 ≥ t0 − T . In this case, define Qa
r and Qb

r, the above and the
below parabolic cubes, as follows:

Qa
r = Qr(x0, T + r2) and Qb

r = Qr(x0, T ).

Since
T − r2 < t0 − r2 ≤ T < t0 ≤ T + r2,

then Qr ⊂ (Qa
r ∪ Qb

r). Moreover, we have |Qr| = |Qa
r | = |Qb

r|. We compute:

1

|Qr|

∫

Qr

|f̃ − mQr f̃ | ≤ 2

|Qr|

∫

Qr

|f̃ − 2mQb
r
f̃ + mQa

r
f̃ |

≤ 4

|Qr|

∫

Qa
r

|f̃ − mQb
r
f̃ | + 4

|Qr|

∫

Qb
r

|f̃ − mQb
r
f̃ |

+
2

|Qr|

∫

Qa
r

|f̃ − mQa
r
f̃ | + 2

|Qr|

∫

Qb
r

|f̃ − mQa
r
f̃ |.

We remark (from the symmetry-in-time of the function f̃) that mQa
r
f̃ = mQb

r
f , and

∫

Qa
r

|f̃ − c| =

∫

Qb
r

|f − c|, ∀c ∈ R.

Therefore the above inequalities give:

1

|Qr|

∫

Qr

|f̃ − mQr f̃ | ≤ 16‖f‖BMO(R×(0,T )).

Step 2. (Treatment of big parabolic cubes)

Consider now parabolic cubes Qr ⊂ R×R+, r >
√

T . Suppose first that r > 1. Because
of the symmetry-in-time of the function f̃ , and its spatial periodicity, we compute:

1

|Qr|

∫

Qr

|f̃ − mQr f̃ | ≤
2

|Qr|

∫

Qr

|f̃ | ≤ 2N

|Qr|

∫

2I×(0,T )
|f |,

where N is the minimum number of domains D of the form D = (k, k+2)×(nT, (n+1)T ),
k ∈ Z and n ∈ N , that cover Qr. Here

|Qr| ∼ N × |2I × (0, T )|, N > 1.
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Therefore, the above inequalities give:

1

|Qr|

∫

Qr

|f̃ − mQr f̃ | ≤ cm2I×(0,T )(|f |).

Now suppose that
√

T < r ≤ 1. In this case we use the fact that 0 < T1 ≤ T , we
compute:

1

|Qr|

∫

Qr

|f̃ − mQr f̃ | ≤
2

|Qr|

∫

Qr

|f̃ | ≤ 2N

|Qr|

∫

2I×(0,T )
|f | ≤ N

T
3/2
1

∫

2I×(0,T )
|f |.

Here N . 1
T , and hence

1

|Qr|

∫

Qr

|f̃ − mQr f̃ | ≤ c(T1)m2I×(0,T )(|f |).

Steps 1 and 2 give the required result. 2

B2. Proof of Lemma 7.3. We divide the proof into two steps.

Step 1. (Treatment of small parabolic cubes)

Let us consider parabolic cubes Q = Qr(x0, t0) ⊂ R × (0, T ) with 0 < r ≤ 1
2 . Assume,

without loss of generality, that 1 < x0 < 2 (the other cases can be treated similarly).
Define the left and the right neighbor cubes of Qr(x0, t0) by Q− = Q−

r (1 − r, t0), and
Q+ = Q+

r (1 + r, t0) respectively. Since 2r ≤ 1, then

Q− ⊂ (0, 1) × (0, T ) and Q+ ⊂ (1, 2) × (0, T ).

Using the fact that for any function g ∈ L1(Ω):
∫

Ω
|g − mΩ(g)| ≤ 2

∫

Ω
|g − c|, ∀c ∈ R,

We compute:

1

|Q|

∫

Q
|f sym − mQ(f sym)| ≤ 2

|Q|

∫

Q
|f sym + mQ+(fasym)|

≤ 2

|Q−|

∫

Q−

|f sym + mQ+(fasym)|

+
2

|Q+|

∫

Q+

|f sym + mQ+(fasym)|. (11.4)

We know that from the properties of f sym and fasym that mQ+(fasym) = −mQ−(f sym),
and

f sym = −fasym on Q+, and f sym = fasym on Q−.

Using the above two inequalities in (11.4), we get:

1

|Q|

∫

Q
|f sym − mQ(f sym)| ≤ 4‖fasym‖BMO(R×(0,T )).
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Step 2. (Treatment of big parabolic cubes)

Consider parabolic cubes Q = Qr ⊂ R×(0, T ) such that r > 1
2 . In this case, we compute:

1

|Q|

∫

Q
|f sym − mQ(f sym)| ≤ 2

|Q|

∫

Q
|f sym| ≤ 2N

|Q|

∫

2I×(0,T )
|f sym|,

with
|Q| ∼ N × |2I × (0, T )|,

therefore
1

|Q|

∫

Q
|f sym − mQ(f sym)| ≤ cm2I×(0,T )(|f sym|),

where c is a universal constant. Steps 1 and 2 directly implies the result. 2
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The authors would like to thank Jérôme Droniou for his valuable remarks while reading
the manuscript of the paper.

References

[1] R. A. Adams, Sobolev spaces, Academic Press, New York-London, 1975. Pure and
Applied Mathematics, Vol. 65.

[2] M. Bramanti and L. Brandolini, Estimates of BMO type for singular integrals
on spaces of homogeneous type and applications to hypoelliptic PDEs, Rev. Mat.
Iberoamericana, 21 (2005), pp. 511–556.
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