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Examples of non-local operators

» A non-singular integral operator
Ju](x) = /u(z)c(x, z)dz
with ¢ > 0 et [ ¢(x,z)dz < +o0

» The fractional Laplacian

—(-0)2(x) = /(U(X +2) = u(x) = Du(x) - ZIB(Z))|ZdNZ+a

with a € (0, 2).

4/ 35



Lévy-Ito operators

hlul(x) = /(U(X +J(x.2)) — u(x) = Du(x) - j(x,2)1s(2))11(dz)

with 1 singular measure and j(x, z) regular enough.

Singular integral operators have different order.
We focus on order in (0, 2).
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Non-local non-linear elliptic equations

» A non-linear diffusion equation from continuum mechanics
(dislocations)

d:u + H(Du,(~A)zu) =0

with H(p, I) continuous and non-decreasing in /

» A (possibly degenerate) non-linear diffusion equation

1
inf sup {u — bg.o(x) - Du— Etr(ag@ (x)D?u) — /jﬁﬁ[u]} =0

BEB e A

Bellman-Isaacs equations in stochastic control

These operaters appear in many applications

(biology, continuum mechanics, plasma models, combustion etc.)
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Lévy processes

» Stochastic processes, generalization of the Brownian motion
» Discontinuous paths

\fi\}

«

» Small jumps and large jumps : “jump” diffusion?

» Characterized by a drift, a diffusion matrix and a singular
measure

» The infinitesimal generator is a Lévy operator

A step further

» Notion of Lévy-1td jump processes
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Viscosity solution theory and non-local operators

Key papers
» Soner (1986) : first definition of viscosity solution
for a 1st-order integro-diff eq with bounded measures

» Sayah (1991) : theory for a large class of 1st-order equation
and Perron's method

> Ishii-Koike (1993/1994)

» Alvarez-Tourin (1996) : 2nd-order eq + bounded measures
and Perron’s method

» Jakobsen-Karlsen (2006) : theory for a large class of
2nd-order eq and singular measures
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(ENL) F(x,u, Du, D?u, (Z2[u]),) =0 dans RN

Fundamental assumption: (degenerate) ellipticity

X<Y & lh<my = F(...X,0)>F(...Y,m).

Notion of sub-jets:
T? " u(x) = {(D¢(x), D?*¢(x)) : ¢ touchs u from below}.
Notion of limiting sub-jets:

2

For local equations, limiting sub-jets can be used to get a viscosity inequality

T u(x) = {Iirr;n(p,,,A,,) € J%>7(x,) with x, — x, u(x,) — u(x)}.
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Notion(s) of viscosity solution

A Isc function u is a super-solution of (ENL) if,

when a smooth test-function ¢ “integrable” for
1 “integrable”for 11

that touches u from below x globally globatty,

and any subjet X < D?¢(x)

then
F(x, u(x), Dé(x), D*6(x) D2(x)" X, )

with
| = / _(6x+2) = 90 Do) - Aa()(a)
+ / (6 ulx+2) =9 () — Do) - 215(2))ul)
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Existence and uniqueness of solutions

» Uniqueness via comparison principles

» Compare sub-solutions with super-solutions.
» To prove comparison principle

1. The dedoubling variable technique
2. Jensen-Ishii's lemma: a famous and useful block box
(Jakobsen-Karlsen'06, Barles-1.'07) adapted with care!!

» Existence via Perron’s method
Comparison principle i ) )
P p. P = the solution = maximal subsolution
+ existence
» To get existence

1. Consider the maximal subsolution
2. prove it is a supersolution by contradiction
(bump construction ... with carell)

13/ 35



Local equations and transport effect

» First order linear equation Oty +vou =20
» Second order term can save you Ot + vOxu = = 02, u

w(1 'x) w1 'x)
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Viscosity solutions for non-local equations on domains

» How to prescribe the boundary datum?

Think of the exit time problem for a jump process.
(=A)*2u=0 inQ

{ u=g where ?7outside Q
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Viscosity solutions for non-local equations on domains

» The non-local operator

/x+zesz [u(x +2z)— u(X)]H(dz) + /x+z¢sz [g(x +2z)— u(x)} 1(dz)

In particular, if g =0

/x+zeQ [U(X t2)- U(X)} p(dz) = u(x) fx+z¢Q p(dz)

» Notion of solution at the boundary?

either the Boundary Condition (BC)

. is satisfied
or the equation

At the boundary,
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» Fact
At x € 0N either the equation or the (BC) is satisfied
((BC) in the viscosity solution sense)

» Consequence
A solution does not necessarily satisfy the (BC) at x € 9Q

» Question
Can we find Structure Conditions on the singular measure p
ensuring that the (BC) is satisfied (in the classical sense)?
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Second order equation and curvature effect

» Linear diffusion equation

_%tr(a(x)D%) — b(x) - Du(x) +u=s

Boundary condition (BC) is satisfied if:

1. either a(x)Dd(x) # 0 (non-degeneracy wrt normal)
2. or tr(a(x)D?d(x)) + b(x) - Dd(x) < 0  (curvature/transport)

» PDE's proofs: Barles-Burdeau'95, Da Lio'02

» Different scales compete
Choose d)(d(x)/n as a test-function
and play with ¢’(0) and ¢”(0)
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The fractional Laplacian case

Non-local linear diffusion equation

—Ltr(a(x)D%u) — b(x) - Du(x) + (~A) 2 u+u=s

How does the non-local term interfer with others?

Look at its order a € (0,2)!!

» Boundary condition (BC) is satisfied if:

1. either a(x)Dd(x) # 0 (second order always wins)
2. ora>1 (v order wins)
3. or tr(a(x)D?d(x)) + b(x) - Dd(x) < 0 (1st order does the job)

» Counter-example if « < 1
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Decomposition of the neighbourhood of x € 02

Given parameters r and 9, 3,
» The neighbourhood of a point x € 02 is decomposed into three
pieces.

Br — Aint UAext UA
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Decomposition of integral operators

» # of jumps / size of inner/outer normal jps / size of all i/o jps

[int/ext, 1 _ fAext Ldux(2)
Iint/ext,2 — fAext Dd(x) .z d,ux(z)
Iint/eXt’3 - fAext ‘Z‘ d/"LX(Z)
» Second moment of the measure /  Non-local transport term
14 = %IA‘ZF dMX(Z)
jtr— Dd(x) - z dux(z)
r<|z|<1

24/ 35



Structure conditions

1. The expectation of the size of outer jumps is O(9)

‘lext,2 < ‘/ext,3‘ < O(é)lext,l

2. Either the # of inner normal jumps is infinite
or inner jumps are controlled by outer ones

either 1M%2 5 4o ﬁ(n)[intﬁl7 /int,3 < O(]_)/int,2
or [int,l 1jint2 1 4int3 _ O(l)/ext,l
' 7 e(n)

3. Second moment of the measure
controlled by inner or outer jumps

/4 — O(l)lint,2 + O(l)lext,l
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Sufficient conditions for (BC)

Remark
Structure Conditions can be relaxed for weakly singular measures.

J |z|px(dz) < +o0

Under these structure conditions on the measure, the (BC) is

satisfied if
1. either a(x)Dd(x) # 0 (non-degeneracy wrt normal)
2. or [|Dd(x) - z|ux(dz) = o0 (jumps do the job alone)

3. or tr(a(x)D?d(x)) + b(x) - Dd(x) + limsup,_ I™(x) < 0
(curvature/local transport/nl transport)
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» The uniformly elliptic case
De Giorgi, Krylov-Safonov, ..., Caffarelli, ...

No regularity assumptions made the coefficients

» The strictly elliptic case
Ishii-Lions'90, Barles-Souganidis’01, Barles-Da Lio'06 ...

Working with (continuous) viscosity solutions
“require” at least continuity of the coefficients

Main application for us: stochastic control
uniqueness is essential
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Existing results for non-local equations

» Silvestre (Indiana Univ MJ'06)

/[u(x +z) — u(x)]K(x,y)dy =0 in

» No regularity assumption on x — K(x, y)
» [1z|°ux < 400 for 3 small
» Specific non-linear equations

» Caffarelli, Silvestre ...

BZr
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Main idea of the proof

To be proven
u(x) — uly)] < Lx —y[* (1)

» Suppose it is false: for any L, 3x,y s.t. (1) is false
» Write two viscosity inequalities and combine them

either from second-order terms

» Get a contradiction
or from non-local terms

< a Structure Condition ensuring Holder continuity.

either locally strictly elliptic
or non-locally “strictly elliptic”
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The Bellman-lsaacs equation

Assumptions
> /;, with common p s.t. B \Nw < u(dz) < B \Nw
> The family j,(z) are s.t. for common r,0 > 0
{ D,ja(x,z) cont. (x,z) + not singular in B.(xp,0)
a(x, 2) = Jaly, 2)| < Golz|lx — y/°

» Coeff o, by, f, s.t. for a common 6

loallo,e + [|balloe + [[falloe < Co

Theorem
Ifo,0 > ( - B),
B-Holder ifg <1

then the value function is a-Holder for any o <1 if 3> 1
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Conclusion

1. Dirichlet problem

» For the fractional Laplacian,
classical results are naturally extended
» For general operators,
structure conditions on inner jumps and outer jumps

» Jumps can enforce the boundary condition, without (local)
diffusion

2. Holder regularity
» Ishii-Lions technique extends to non-local equation

» The Bellman-lsaacs equation can be treated
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Future works and references

To be done now
» Boundary Holder regularity, Lipschitz continuity
> CL2 regularity
» Ergodicity

» with G. Barles and E. Chasseigne. The Dirichlet problem for
second-order elliptic integro-differential equations. Indiana Univ MJ
» with G. Barles and E. Chasseigne. Hélder continuity of
solutions of second-order elliptic integro-differential equations

See also
» with G. Barles. Second-Order Elliptic Integro-Differential
Equations: Viscosity Solutions’ Theory Revisited. Annales IHP

Papers are available (or soon) here

http://www.ceremade.dauphine.fr/~imbert
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