Dirichlet problem and Hölder regularity for non-local fully non-linear elliptic equations

C. Imbert / G. Barles / E. Chasseigne

Paris-Dauphine / Tours / Tours

October 15th, 2007 Workshop PDE Methods in Finance

Outline of the talk

Lévy operators and non-local elliptic equations

Examples of integral operators and non-linear equations Lévy processes Notion of viscosity solution

The Dirichlet problem

Notion of viscosity solution: again Non-local linear equation with fractional Laplacian More general integral operators

Hölder continuity

Local equations Non-local equations The Bellman-Isaacs equation

Conclusion and future works

Examples of non-local operators

► A non-singular integral operator

$$J[u](x) = \int u(z)c(x,z)dz$$

with $c \ge 0$ et $\int c(x,z)dz < +\infty$

The fractional Laplacian

$$-(-\Delta)^{\frac{\alpha}{2}}(x) = \int (u(x+z) - u(x) - Du(x) \cdot z \mathbf{1}_{B}(z)) \frac{dz}{|z|^{N+\alpha}}$$

with $\alpha \in (0,2)$.

Lévy-Itô operators

$$I_j[u](x) = \int (u(x+j(x,z)) - u(x) - Du(x) \cdot j(x,z) \mathbf{1}_B(z)) \mu(dz)$$

with μ singular measure and j(x, z) regular enough.

Singular integral operators have different order. We focus on order in (0,2).

Non-local non-linear elliptic equations

 A non-linear diffusion equation from continuum mechanics (dislocations)

 $\partial_t u + \overline{H}(Du, (-\Delta)^{\frac{1}{2}}u) = 0$

with $\overline{H}(p, l)$ continuous and non-decreasing in lA (possibly degenerate) non-linear diffusion equation $\inf_{\beta \in \mathcal{B}} \sup_{\alpha \in \mathcal{A}} \left\{ u - b_{\beta,\alpha}(x) \cdot Du - \frac{1}{2} \operatorname{tr}(a_{\beta,\alpha}(x)D^{2}u) - I_{j_{\beta,\alpha}}[u] \right\} = 0$

Bellman-Isaacs equations in stochastic control

These operaters appear in many applications

(biology, continuum mechanics, plasma models, combustion etc.)

Lévy processes

- Stochastic processes, generalization of the Brownian motion
- Discontinuous paths

- Small jumps and large jumps : "jump" diffusion?
- Characterized by a drift, a diffusion matrix and a singular measure
- The infinitesimal generator is a Lévy operator

A step further

Notion of Lévy-Itô jump processes

Viscosity solution theory and non-local operators

Key papers

- Soner (1986) : first definition of viscosity solution for a 1st-order integro-diff eq with bounded measures
- Sayah (1991) : theory for a large class of 1st-order equation and Perron's method
- Ishii-Koike (1993/1994)
- Alvarez-Tourin (1996) : 2nd-order eq + bounded measures and Perron's method
- ► Jakobsen-Karlsen (2006) : theory for a large class of 2nd-order eq and singular measures

$$(\mathsf{ENL}) \qquad F(x, u, Du, D^2u, (\mathcal{I}^{\alpha}_{x}[u])_{\alpha}) = 0 \qquad \text{dans } \mathbb{R}^{N}$$

Fundamental assumption: (degenerate) ellipticity

$$X \leq Y$$
 & $l_{\alpha} \leq m_{\alpha} \Rightarrow F(\ldots, X, l_{\alpha}) \geq F(\ldots, Y, m_{\alpha}).$

Notion of sub-jets:

$$\mathcal{J}^{2,-}u(x) = \{ (D\phi(x), D^2\phi(x)) : \phi \text{ touchs } u \text{ from below} \}.$$

Notion of limiting sub-jets:

$$\overline{\mathcal{J}}^{2,-}u(x) = \{\lim_n (p_n, A_n) \in \mathcal{J}^{2,-}(x_n) \text{ with } x_n \to x, u(x_n) \to u(x)\}.$$

For local equations, limiting sub-jets can be used to get a viscosity inequality

Notion(s) of viscosity solution

A lsc function u is a super-solution of (ENL) if, when a smooth test-function ϕ "integrable" for μ that touches u from below x globally globally, and any subjet $X \leq D^2 \phi(x)$ then

$$F(x, u(x), D\phi(x), D^2\phi(x) \quad D^2\phi(x) \quad X, I) \ge 0$$

with

$$I = \int_{|z| \le r} (\phi(x+z) - \phi(x) - D\phi(x) \cdot z \mathbf{1}_B(z)) \mu(dz)$$

+
$$\int_{|z| \ge r} (\phi \ \phi \mathbf{u}(x+z) - \phi \ \phi \mathbf{u}(x) - D\phi(x) \cdot z \mathbf{1}_B(z)) \mu(dz)$$

Existence and uniqueness of solutions

Uniqueness via comparison principles

- Compare sub-solutions with super-solutions.
- To prove comparison principle
 - 1. The dedoubling variable technique
 - 2. Jensen-Ishii's lemma: a famous and useful block box (Jakobsen-Karlsen'06, Barles-I.'07) adapted with care!!
- Existence via Perron's method

Comparison principle + existence \Rightarrow the solution = maximal subsolution

- To get existence
 - 1. Consider the maximal subsolution
 - 2. prove it is a supersolution by contradiction (bump construction ... with care!!)

Local equations and transport effect

► First order linear equation

► Second order term can save you

 $\partial_t u + v \partial_x u = 0$ $\partial_t u + v \partial_x u = \varepsilon \partial_{xx}^2 u$

15/35

Viscosity solutions for non-local equations on domains

► How to prescribe the boundary datum? Think of the exit time problem for a jump process. $\begin{cases}
(-\Delta)^{\alpha/2}u = 0 & \text{in } Ω \\
u = g & \text{where ??outside } Ω
\end{cases}$

Viscosity solutions for non-local equations on domains

► The non-local operator

$$\int_{x+z\in\Omega} \left[u(x+z) - u(x) \right] \mu(dz) + \int_{x+z\notin\Omega} \left[\frac{g(x+z)}{g(x+z)} - u(x) \right] \mu(dz)$$

In particular, if $g \equiv 0$

$$\int_{x+z\in\Omega} \left[u(x+z) - u(x) \right] \mu(dz) - \left[u(x) \int_{x+z\notin\Omega} \mu(dz) \right]$$

Notion of solution at the boundary?

At the boundary, either the Boundary Condition (BC) or the equation is satisfied

► Fact

At $x \in \partial \Omega$ either the equation or the (BC) is satisfied ((BC) in the viscosity solution sense)

Consequence

A solution does not necessarily satisfy the (BC) at $x \in \partial \Omega$

Question

Can we find Structure Conditions on the singular measure μ ensuring that the (BC) is satisfied (in the classical sense)?

Second order equation and curvature effect

Linear diffusion equation

 $-\frac{1}{2}\operatorname{tr}(a(x)D^2u) - b(x) \cdot Du(x) + u = s$

Boundary condition (BC) is satisfied if:

1. either $a(x)Dd(x) \neq 0$ (non-degeneracy wrt normal) 2. or $tr(a(x)D^2d(x)) + b(x) \cdot Dd(x) < 0$ (curvature/transport)

PDE's proofs: Barles-Burdeau'95, Da Lio'02

► Different scales compete Choose $\phi(d(x)/\eta)$ as a test-function and play with $\phi'(0)$ and $\phi''(0)$

The fractional Laplacian case

Non-local linear diffusion equation

 $-\frac{1}{2}\operatorname{tr}(a(x)D^{2}u) - b(x) \cdot Du(x) + (-\Delta)^{\frac{\alpha}{2}}u + u = s$

How does the non-local term interfer with others?

Look at its order $\alpha \in (0,2)!!$

Boundary condition (BC) is satisfied if:

1. either $a(x)Dd(x) \neq 0$ (second order always wins)2. or $\alpha \geq 1$ (α order wins)3. or $tr(a(x)D^2d(x)) + b(x) \cdot Dd(x) < 0$ (1st order does the job)

• Counter-example if $\alpha < 1$

Decomposition of the neighbourhood of $x \in \partial \Omega$

Given parameters r and δ , β ,

► The neighbourhood of a point $x \in \partial \Omega$ is decomposed into three pieces.

$$B_r = \mathcal{A}^{\mathrm{int}} \cup \mathcal{A}^{\mathrm{ext}} \cup \mathcal{A}$$

 \blacktriangleright # of jumps / size of inner/outer normal jps / size of all i/o jps

$$\begin{cases} I^{\text{int/ext},1} &= \int_{\mathcal{A}^{\text{ext}}} 1 \, d\mu_x(z) \\ I^{\text{int/ext},2} &= \int_{\mathcal{A}^{\text{ext}}} \frac{Dd(x) \cdot z \, d\mu_x(z)}{I^{\text{int/ext},3}} \\ I^{\text{int/ext},3} &= \int_{\mathcal{A}^{\text{ext}}} |z| \, d\mu_x(z) \end{cases}$$

Second moment of the measure / Non-local transport term

$$\begin{cases} I^{4} = \frac{1}{2} \int_{\mathcal{A}} |z|^{2} d\mu_{x}(z) \\ I^{\text{tr}} = \int_{r < |z| < 1} Dd(x) \cdot z d\mu_{x}(z) \end{cases}$$

Structure conditions

<

1. The expectation of the size of outer jumps is $O(\delta)$

$$|I^{\text{ext},2}| \le |I^{\text{ext},3}| \le O(\delta)I^{\text{ext},1}$$

2. Either the # of inner normal jumps is infinite or inner jumps are controlled by outer ones

$$\left\{egin{array}{ll} {\it either} & I^{{
m int},2}
ightarrow+\infty & eta(\eta)I^{{
m int},1}, I^{{
m int},3}\leq O(1)I^{{
m int},2}\ {\it or} & I^{{
m int},1}, rac{1}{\eta}I^{{
m int},2}, rac{1}{arepsilon(\eta)}I^{{
m int},3}=o(1)I^{{
m ext},1} \end{array}
ight.$$

3. Second moment of the measure controlled by inner or outer jumps

$$I^4 = o(1)I^{\text{int},2} + o(1)I^{\text{ext},1}$$

Sufficient conditions for (BC)

Remark

Structure Conditions can be relaxed for weakly singular measures. $\int |z| \mu_{\rm X}(dz) < +\infty$

Under these structure conditions on the measure, the (BC) is satisfied if

1. either $a(x)Dd(x) \neq 0$ (non-degeneracy wrt normal) 2. or $\int |Dd(x) \cdot z| \mu_x(dz) = +\infty$ (jumps do the job alone) 3. or $\operatorname{tr}(a(x)D^2d(x)) + b(x) \cdot Dd(x) + \limsup_{r \to 0} I^{\operatorname{tr}}(x) < 0$ (curvature/local transport/nl transport)

• The uniformly elliptic case

De Giorgi, Krylov-Safonov, ..., Caffarelli, ...

No regularity assumptions made the coefficients

The strictly elliptic case

Ishii-Lions'90, Barles-Souganidis'01, Barles-Da Lio'06

Working with (continuous) viscosity solutions "require" at least continuity of the coefficients

Main application for us: stochastic control uniqueness is essential

Existing results for non-local equations

Silvestre (Indiana Univ MJ'06)

$$\int [u(x+z) - u(x)]K(x,y)dy = 0 \quad \text{in} \quad B_{2r}$$

- No regularity assumption on $x \mapsto K(x, y)$
- $\int |z|^{\beta} \mu_x < +\infty$ for β small
- Specific non-linear equations

Caffarelli, Silvestre

Main idea of the proof

To be proven

$$|u(x) - u(y)| \le L|x - y|^{\alpha} \tag{1}$$

- Suppose it is false: for any L, $\exists \bar{x}, \bar{y}$ s.t. (1) is false
- Write two viscosity inequalities and combine them
 Get a contradiction
 either from second-order terms or from non-local terms

 \hookrightarrow a Structure Condition ensuring Hölder continuity.

 $\rightarrow \left| \begin{array}{c} \text{either locally strictly elliptic} \\ \text{or non-locally "strictly elliptic"} \end{array} \right|$

The Bellman-Isaacs equation

Assumptions

- ► $I_{j_{\alpha}}$ with common μ s.t. $\frac{c_{\mu}}{|z|^{N+\beta}} \leq \mu(dz) \leq \frac{C_{\mu}}{|z|^{N+\beta}}$
- The family $j_{\alpha}(z)$ are s.t. for common $r, \tilde{\theta} > 0$

$$\begin{cases} D_z j_\alpha(x,z) \text{ cont. } (x,z) + \text{ not singular in } B_r(x_0,0) \\ |j_\alpha(x,z) - j_\alpha(y,z)| \le C_0 |z| |x-y|^{\tilde{\theta}} \end{cases}$$

• Coeff $\sigma_{\alpha}, b_{\alpha}, f_{\alpha}$ s.t. for a common θ

$$\|\sigma_{\alpha}\|_{\mathbf{0},\theta} + \|b_{\alpha}\|_{\mathbf{0},\theta} + \|f_{\alpha}\|_{\mathbf{0},\theta} \le C_{\mathbf{0}}$$

TheoremIf $\theta, \tilde{\theta} > \frac{1}{2}(2 - \beta)$,then the value function is β -Hölder α -Hölder for any $\alpha < 1$ if $\beta \ge 1$

Conclusion

1. Dirichlet problem

► For the fractional Laplacian,

classical results are naturally extended

For general operators,

structure conditions on inner jumps and outer jumps

 Jumps can enforce the boundary condition, without (local) diffusion

2. Hölder regularity

- Ishii-Lions technique extends to non-local equation
- The Bellman-Isaacs equation can be treated

Future works and references

To be done now

- Boundary Hölder regularity, Lipschitz continuity
- $C^{1,\alpha}$ regularity
- Ergodicity

 with G. Barles and E. Chasseigne. The Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ MJ
 with G. Barles and E. Chasseigne. Hölder continuity of solutions of second-order elliptic integro-differential equations

See also

▶ with G. Barles. Second-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited. Annales IHP

Papers are available (or soon) here http://www.ceremade.dauphine.fr/~imbert