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Abstract

In this paper, we consider the flow of fresh and saltwater in a saturated porous medium in order to describe the

seawater intrusion. Starting from a formulation with constant densities respectively of fresh and saltwater, whose

velocities are proportional to the gradient of pressure (Darcy’s law), we consider the formal asymptotic limit as the

aspect ratio between the thickness and the horizontal length of the porous medium tends to zero. In the limit of

the regime defined by the Dupuit-Forchheimer condition, we identify reduced models of Boussinesq type both in the

cases of unconfined and confined aquifers.
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1 Introduction

We are interested in the modeling of seawater intrusion in coastal regions. On the one hand coastal aquifers
contain freshwater and on the other hand saltwater from the sea can enter the ground and replace the fresh-
water. This phenomenon can be especially important in coastal regions where there is intensive extraction
of freshwater from wells. We refer to [7] for a general overview on seawater intrusion models.

Our main goal is to derive formally simplified (2D) models describing the evolution of the interfaces
freshwater/saltwater and freshwater/dry soil, from common (3D) models of hydrology based on Darcy’s law.

1.1 Setting of the problem

We consider two simple situations: the case of an unconfined aquifer (see Figure 1) and the case of a confined
aquifer (see Figure 2). In each case, the constant seawater level is h̃1 and the domains are assumed to be
unbounded horizontally. The unboundedness of the domains does not create difficulties, because we restrict
our approach to a formal level.

1.1.1 The unconfined aquifer

The geometry
We consider coordinates (x̃, z̃) ∈ RN × R of the space with x̃ for the horizontal coordinate and z̃ for the
vertical coordinate. In physical application, we have N = 1 or N = 2. We assume (see Figure 1) that
the surface of the soil is described by the level z̃ = ã(x̃), while the interface of the impermeable bedrock
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Figure 1: Unconfined aquifer

is described by the level z̃ = b̃(x̃), satisfying b̃ < ã. We assume that in the porous medium, the interface
between the freshwater and the dry soil can be written

Γt̃
h̃
=
{
(x̃, z̃) ∈ RN × R, z̃ = h̃(t̃, x̃)

}
,

the interface between the saltwater and the freshwater (which are assumed immiscible) can be written

Γt̃
g̃ =

{
(x̃, z̃) ∈ RN × R, z̃ = g̃(t̃, x̃)

}
.

In particular these interfaces Γt̃
h̃
and Γt̃

g̃ are unbounded horizontally, and we have the following constraint

(1.1) b̃ ≤ g̃ ≤ h̃ ≤ ã on RN .

We assume that all the functions b̃, g̃, h̃, ã are smooth enough. We define the open set of freshwater

Ω̃t̃
f =

{
(x̃, z̃) ∈ RN × R, g̃(t̃, x̃) < z̃ < h̃(t̃, x̃)

}
and Ω̃f =

⋃
{t̃>0}

{
t̃
}
× Ω̃t̃

f

and the open set of saltwater in the porous medium

Ω̃t̃
s =

{
(x̃, z̃) ∈ RN × R, b̃(x̃) < z̃ < g̃(t̃, x̃)

}
and Ω̃s =

⋃
{t̃>0}

{
t̃
}
× Ω̃t̃

s.

Similarly, we define the open set of the porous medium as

Ω̃t̃ =
{
(x̃, z̃) ∈ RN × R, z̃ < ã(x̃)

}
and Ω̃ =

⋃
{t̃>0}

{
t̃
}
× Ω̃t̃

where in order to keep uniform notations, we use the notation Ω̃t̃ even if it is independent of t̃.
The PDEs
We set α = f for the freshwater and α = s for the saltwater. We define the density field of the fluid α as

ρ̃α(t̃, x̃, z̃) =

 ρ0α if (x̃, z̃) ∈ Ω̃t̃
α

0 otherwise
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where ρ0α is the mass density of the fluid α (assumed to be a constant with 0 < ρ0f < ρ0s). We also set the

specific weight γα = ρ0αg
0 with g0 the standard gravity constant. We assume that ρ̃α solves formally the

following equations

(1.2)



φ̃α(x̃, z̃)
∂ρ̃α

∂t̃
+ d̃iv (ρ̃αṽα) = 0 on Ω̃α

ṽα = −κ̃α(x̃, z̃) ∇̃(p̃+ γαz̃) on Ω̃α

∣∣∣∣∣∣∣ for α = f, s

p̃ is continuous across Γt̃
g̃

ṽf · ñ ≥ 0 on (∂Ω̃t̃) ∩ (∂Ω̃t̃
f )

g̃ ≤ h̃1 and b̃ < h̃ everywhere

φ̃α
∂F̃α

∂t̃
+ ṽα · ∇̃F̃α = 0 on

{
F̃α = 0

}
∩ Ω̃α ∩ Ω̃ for F̃α + z̃ =

 h̃, g̃, b̃ if α = f,

g̃, b̃ if α = s.

Here 0 < φ̃α(x̃, z̃) ≤ 1 is the effective porosity of the porous medium, where, in order to simplify for a fully
saturated medium, we assume that the water content is equal to the porosity. Notice that this effective
porosity φ̃α should be independent of the fluid α, but for sake of generality we allow here such a dependence.

Here p̃ is the pressure assumed to be defined on Ω̃t̃
f ∪ Ω̃t̃

s, and d̃iv and ∇̃ are the divergence and the

gradient, respectively, taken with respect to the coordinates (x̃, z̃). Moreover κ̃α(x̃, z̃) ∈ R(N+1)×(N+1)
sym is a

given symmetric matrix which is positive definite.
The quantity ṽα is the Darcy flux and ṽα/φ̃α is the velocity vector field of the fluid α. The expression

defining the flux ṽα follows from Darcy’s law (where κ̃α =
kα
µα

with µα the dynamic viscosity and kα the

intrinsic permeability tensor of the porous medium). The fourth condition of (1.2) involves the outward

unit normal ñ to Ω̃t̃ and means that the flux of freshwater can only go out of the soil (in the absence of
sources), which is very natural. In our proofs, we will need the fifth condition of (1.2), which is a natural
condition that means in particular that the saltwater in the soil is always below the sea level z̃ = h̃1. The
sixth condition of (1.2) means that the interface Γ̃t̃

h is transported by the freshwater velocity vector field, the

interface Γ̃t̃
g is transported by both the fresh and saltwater, and finally both the fresh and saltwater move

tangentially to the bottom z̃ = b̃.
We also assume the following boundary condition

(1.3)


p̃(t̃, x̃, z̃) =

 γs(h̃1 − z̃) if z̃ = h̃(t̃, x̃) = ã(x̃) < h̃1

0 otherwise

h̃(t̃, x̃) = ã(x̃) if ã(x̃) < h̃1.

The first condition of (1.3) follows from the fact that we assume the atmospheric pressure to be constant
and normalized to zero and that the seawater is assumed to be at the hydrostatic equilibrium. We recall
that the surface of the sea is assumed to be at the altitude h̃1. When the free surface z̃ = h̃(t̃, x̃) has no
contact with the sea, then its pressure is assumed to be equal to the atmospheric pressure zero. The first
and last lines of (1.3) mean that we assume the part ã < h̃1 to be under the seawater level.

1.1.2 The confined aquifer

The situation of the confined aquifer is chosen similar to the unconfined aquifer (see Figure 2). In particular
we assume that h̃1 > h̃ in the neighbourhood of the points x̃ ∈ RN where h̃ = ã. This means that the
freshwater only exits the porous medium to go in the seawater. The main difference is that the function h̃(x̃)
is now a given function describing the shape of the upper confining aquifer and then is independent of time
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Figure 2: Confined aquifer

t̃. Therefore Γt̃
h̃
is a time independent interface. Then equations (1.2) are still satisfied, and the boundary

condition (1.3) is replaced by

(1.4) p̃(t̃, x̃, z̃) = γs max(0, h̃1 − z̃) > 0 for z̃ = ã(x̃) and x̃ ∈ RN\ω

with the following open, possibly unbounded set

ω =
{
x̃ ∈ RN , h̃(x̃) < ã(x̃)

}
,

which can be seen as the horizontal projection of the region where the fluid is fully confined. Notice that
in order to simplify the presentation, we assume that the pressure in (1.4) is positive, which means that the
unconfined part of the soil is under the sea (like in Figure 2).

Notation. We will use the following notation. Given two functions F and G defined over RM , we define
the set

{F < G} := {x ∈ RM , F (x) < G(x)}.

The same notation will be used even if one of two functions F or G is defined over (0,∞)× RN .

1.2 Goal of the paper

Our goal is to derive formally reduced models for the evolutions of the interfaces in the limit where the
aspect ratio between the vertical dimension and the horizontal dimension is very small. We will present our
precise main results in Section 2.

1.3 Brief review of some related literature

The literature on the subject is large, especially in hydrology. We only give here some indications on the
literature, focusing more on applied mathematics.

For general models of groundwater flows, we refer the reader to [7, 6, 11], where basically we can find two
kinds of models: sharp interface models (that we consider in the present paper) and models with variable
concentration of salt. For mathematical analysis, see [12] for models with variable densities or [19] for diphasic
models with capillary pressure. For more historical notes on the origin of the models, see [14, 20, 27, 15].

Sharp interface models in the stationary regime have been studied mathematically, see for instance [13]
for one phase problems and [3, 9, 2] for two phase problems.
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For 2D models describing interfaces, we refer the reader to Boussinesq [10] where was derived the porous
medium equation under certain assumptions. See the recent book of Vàzquez [35] for a mathematical study
of this equation. Starting from sharp interface models, certain 2D models under certain assumptions are
derived in the hydrological literature [5, 8, 18, 4], see also [1, 24] for some applications. Different models are
derived in [31, 29, 32] in the framework of variable concentration of salt.

Notice that the method we use to deduce 2D models from 3D models is similar to the one of the derivation
of Saint-Venant equations from the Navier-Stokes equations (see [21]).

It is interesting to mention several works about analytical solutions and the comparison between 3D
solutions and 2D solutions obtained after applying the Dupuit-Forchheimer approximation, see in particular
[26, 36, 25, 22, 23]. For more information about analytical solutions, see [28, 30].

We refer to [17] for the analysis of a model similar to (2.6) in the confined case and [33] for the analysis of
a stationary model similar to (2.6),(2.8) (and (2.9)) in the confined case, where existence of weak solutions
is proved.

Finally, for the identification of hydraulic conductivities (as an inverse problem), let us mention for
instance [16].

1.4 Organization of the paper

In Section 2, we present our main results. In Section 3 we prove Theorem 2.2 on the identification of the limit
models. In Section 4, we prove Theorem 2.3 on the oulet properties, and in Section 5, we prove Theorem
2.4 on Ghyben-Herzberg condition. Finally in Section 6 we rewrite the models under special assumptions
and present some explicit particular stationary solutions.

2 Main results

In this section, we will explain how to obtain the reduced model (2.6) presented below, with the matrix
given by (2.4). To this end, we assume the existence of a small parameter ε > 0 such that the data of the
problem satisfy

(2.1)



x̃ = x
z̃ = εz
t̃ = t/ε
ã(x̃) = εa(x)

b̃(x̃) = εb(x)

h̃1 = εh1

φ̃α(x̃, z̃) = φα(x, z)

κ̃α(x̃, z̃) = κα(x, z) =

 κxx
α (x, z) κxz

α (x, z)

κzx
α (x, z) κzz

α (x, z)

 .

The parameter ε can be seen as the aspect ratio between the thickness of the soil (vertical dimension) and
the horizontal length of the soil. When ε is small, the process is very slow and we also have to rescale the
time, in order to observe some evolution of the interfaces.

In order to make precise our result (even if it is only a formal result), we need to consider the following
rescaling:

(2.2)


h̃(t̃, x̃) = εhε(t, x) (with hε(x) given in the confined case)
g̃(t̃, x̃) = εgε(t, x)
p̃(t̃, x̃, z̃) = εp̄ε(t, x, z)
ṽx̃α(t̃, x̃) = εvx,εα (t, x)
ṽz̃α(t̃, x̃) = ε2vz,εα (t, x).

Such a scaling may seem arbitrary at a first glance, but it comes out naturally from the formal compu-
tations, as the reader can see in the proofs. Moreover, it is very natural to think that the vertical velocity
ṽz̃α is much smaller than the horizontal velocity ṽx̃α, when the aspect ratio ε is very small.
Indeed, the two last lines of (2.2) show that the velocity of the fluid is much more horizontal than vertical,
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which is the Dupuit-Forchheimer assumption (see for instance [34], [24]). We assume the existence of formal
asymptotics:

(2.3)


hε = h + εh̄1 + ε2h̄2 + ε3h̄3 + ...
gε = g + εg1 + ε2g2 + ε3g3 + ...
p̄ε = p̄ + εp̄ε1 + ε2p̄ε2 + ε3p̄ε3 + ...
vx,εα = vxα + εvxα,1 + ε2vxα,2 + ε3vxα,3 + ...
vz,εα = vzα + εvzα,1 + ε2vzα,2 + ε3vzα,3 + ...

Here we introduced the notation h̄1, h̄2, h̄3, etc. for the functions in the expansion in order to distinguish
h̄1 from the constant h1 defined in (2.1). Notice that this expansion is only formal and we do not intend to
give a particular meaning except the one of computer algebra. In this paper, all the computations will be
carried out assuming that we are allowed to make them (e.g., if the functions are smooth enough), but never
checking that they have a special meaning in some particular functional space. Our goal is really to derive
new models, and this is why we decided not to take care of the rigor in the sense of classical mathematical
analysis.

We define

(2.4) Kα(x, z) = γs

∫ z

0

dz̄ κ̄xx
α (x, z̄) with κ̄xx

α (x, z) = κxx
α (x, z)− (κzz

α (x, z))−1κxz
α (x, z)κzx

α (x, z).

We also set

Φα(x, z) =

∫ z

0

dz̄ φα(x, z̄),

and

(2.5) ε0 =
γs − γf

γs
∈ (0, 1).

This quantity ε0 is usually small (but has nothing to do with the aspect ratio ε).
Unconfined aquifer
We have for some open sets Uf , Us of (0,∞)× RN (defined later)

(2.6)



b ≤ g ≤ h ≤ a, b < h and g ≤ h1 on [0,+∞)× RN

(Φf (· , h)− Φf (· , g))t = divx

(
[Kf (· , z)]z=h

z=g ∇x(p+(1− ε0)h)
)

on {h < a}

(Φf (· , h)− Φf (· , g))t ≤ divx

(
[Kf (· , z)]z=h

z=g ∇x(p+ (1− ε0)h)
)

on Uf

(Φs(· , g))t = divx ([Ks(· , z)]z=g
z=b ∇x(p+(1− ε0)h+ ε0g)) on {g < a}

(Φs(· , g))t ≤ divx ([Ks(· , z)]z=g
z=b ∇x(p+(1− ε0)h+ ε0g)) on Us,

with
[Kα(x, z)]

z=z2
z=z1

= Kα(x, z2)−Kα(x, z1),

and

(2.7)


h = a on {a < h1}

p(t, x) = p0(t, x) :=

 h1 − a(x) if h = a < h1

0 otherwise.

Confined aquifer
We have (2.6) with

(2.8)

 ht = 0

p(t, x) = p0(x) := max(0, h1 − a(x)) > 0 on {h = a} .
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Setting
ω =

{
x ∈ RN , h(x) < a(x)

}
,

then, in particular, p is a solution of

(2.9)


(Φs(· , g)− Φf (· , g))t
= divx

((
[Ks(· , z)]z=g

z=b + [Kf (· , z)]z=h
z=g

)
∇x(p+ (1− ε0)h) + ε0 [Ks(· , z)]z=g

z=b ∇xg)
)

on ω

p(t, x) = p0(x) := max(0, h1 − a(x)) > 0 ∂ω.

Remark 2.1 Notice that if φf = φs (as it is expected in the physical problem), then we get zero on the left
hand side of the first equation of (2.9) which becomes a stationary equation.

Then our first main result is the following formal limit:

Theorem 2.2 (The limit models)
Under the previous assumptions (in the sense of formal asymptotics), we have the following cases:
i. (unconfined case):
We assume (1.1)-(1.2)-(1.3). Then (h, g) solves (2.6)-(2.7) with{

Uf = {h < a} ∪ Int {g < h = a} ∪ Int {h = a = g} ,
Us = {g < a} ∪ Int {g = a < h1} .

ii. (confined case):
We assume (1.1)-(1.2),(1.4). Then (h, g) solves (2.6),(2.8), and p solves in particular (2.9).

The coefficients [Kf (x, z)]
z=h
z=g and [Ks(x, z)]

z=g
z=b are sometimes called the transmissivity coefficients (see

Section 4.4, page 140 in [6]). Notice that in the case Kα(x, z) = zId, φα(x, z) = 1 and b = 0, equations (2.6)
reduce to the Boussinesq equation (see equation (2) page 14 in [10]) either for g = b (no saltwater) or for
h = g (no freshwater).

We now introduce the following additional non-degeneracy condition (which will be useful only in the
confined case):

(2.10) −νT · [Kf (x, z)]
z=a
z=g · ∇xa > 0 if g < a for x ∈ ∂ω,

where ν is the outward unit normal to ω.
Notice that inequality (2.10) holds, if Kf is proportional to the identity and if on ∂ω, the vector field ∇xa

points inwards ω. If moreover we work in dimension N +1 = 2, then condition (2.10) means that the upper
boundary of the confining rock is going down into the sea (like in Figure 2). This condition is a sufficient
technical condition that simplifies the analysis (in the proof of Theorem 2.3 below) in the confined case. If
this condition is not be satisfied, then we cannot exclude a degenerate situation where there exists an outlet
of freshwater into the seawater with non zero thickness in the limit case ε = 0. For this reason, (2.10) is
called a non-degeneracy condition.

Theorem 2.3 (Outlet properties)
We assume that (h, g) are smooth enough.
i. (unconfined case): We assume that (h, g) solves (2.6)-(2.7) with Uf = Us = [0,+∞)× RN .

– i.1. (evolution case):
If the following condition

(2.11) g = a = h on {a < h1}

holds at time t = 0, then it formally holds for all times, provided that it holds for all times at infinity
in space in the following sense:

(2.12) there exists R > 0 such that g(t, x) = a(x) if |x| ≥ R and (t, x) ∈ [0,+∞)× {a < h1} .
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– i.2. (stationary case):
If ht = gt = 0, then we have formally (2.11) if such relation holds at infinity in space in the sense of
condition (2.12).

ii. (confined case): We assume that (h, g) solves (2.6),(2.8) with Uf = Us = [0,+∞)× RN .
We assume moreover that the condition (2.10) is satisfied.

– ii.1. (evolution case):
If the following condition

(2.13) g = a on {h = a}

holds at time t = 0, then it formally holds for all times, provided that it holds for all times at infinity
in space in the sense of condition (2.12).

– ii.2. (stationary case):
If ht = gt = 0, then we have formally (2.13) if such relation holds at infinity in space in the sense of
condition (2.12).

Theorem 2.3 shows that under suitable conditions, for the stationary limit model (2.6)-(2.7) (resp.
(2.6),(2.8)), we always have g = a = h on {a < h1} (resp. on RN\ω). This shows (at least formally)

in the limit ε → 0, that the region
{
g̃ < ã < h̃1

}
(resp. {g̃ < ã} ∩ (RN\ω)) shrinks and disappears. The

reader may have a look at Figures 1 and 2.

We now give a result about the Ghyben-Herzberg relation (see Section 9.2 in [6]), which allows for
instance in the unconfined case (see (2.14)) to compare at the equilibrium the proportions of freshwater,
h − h1 and h1 − g, respectively above the seawater level and below. By extension to the confined case, we
also call (2.15) a Ghyben-Herzberg relation.

Theorem 2.4 (Sufficient condition for Ghyben-Herzberg relation)
We assume that (h, g) are smooth enough.
i. (unconfined case)
If (h, g) solves (2.6)-(2.7) with Uf = Us = [0,+∞)×RN and gt = ht = 0, then the following Ghyben-Herzberg
relation

(2.14) p+ (1− ε0)h+ ε0g = h1 with p = 0

holds on each connected component of {b < g < a} :=
{
x ∈ RN , b(x) < g(t, x) < a(x)

}
whose boundary

intersects {g = a} :=
{
x ∈ RN , g(t, x) = a(x)

}
.

ii. (confined case)
If (h, g) solves (2.6), (2.8) with Uf = Us = [0,+∞)×RN and gt = ht = 0, then the following Ghyben-Herzberg
relation

(2.15) p+ (1− ε0)h+ ε0g = h1

holds on each connected component of {b < g < a} whose boundary intersects {g = a}.

Notice that there is no reason for the Ghyben-Herzberg condition to hold in the evolution case. Indeed
g would be independent of time as a consequence of the fourth line of (2.6) and h would still evolve by the
second line of (2.6) which could destroy the Ghyben-Herzberg relation.

3 Identification of the limit models: proof of Theorem 2.2

In this section we give the proof of Theorem 2.2, which is separated in two subsections: the unconfined case
and the confined case. We will make some formal computations with (h, g).
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3.1 Proof in the unconfined case

Step 1: preliminaries
Setting ṽα = (ṽx̃α, ṽ

z̃
α), we can rewrite system (1.2) as

(3.1)



d̃ivx̃ ṽx̃α + ∂z̃ ṽ
z̃
α = 0 on Ω̃t̃

α

ṽα = −κ̃α(x̃, z̃) ∇̃(p̃+ γαz̃) on Ω̃t̃
α

∣∣∣∣∣∣ for α = f, s

ṽx̃f h̃x̃ − ṽz̃f + φ̃f (x̃, z̃)h̃t̃ = 0 on
{
(x̃, z̃) ∈ RN × R, z̃ = h̃(t̃, x̃) < ã(x̃)

}
ṽx̃f g̃x̃ − ṽz̃f + φ̃f (x̃, z̃)g̃t̃ = 0 on

{
(x̃, z̃) ∈ RN × R, z̃ = g̃(t̃, x̃) < ã(x̃)

}
ṽx̃s g̃x̃ − ṽz̃s + φ̃s(x̃, z̃)g̃t̃ = 0 on

{
(x̃, z̃) ∈ RN × R, z̃ = g̃(t̃, x̃) < ã(x̃)

}
ṽx̃s b̃x̃ − ṽz̃s = 0 on

{
(x̃, z̃) ∈ RN × R, z̃ = b̃(x̃) < g̃(t̃, x̃)

}
p̃ is continuous on Γt̃

g̃

ṽf · ñ ≥ 0 across (∂Ω̃t̃) ∩ (∂Ω̃t̃
f )

g̃ ≤ h̃1 and b̃ < h̃ everywhere,

where the unit vector ñ points in the same direction as

(
−∇̃x̃ã(x̃)

1

)
=

(
−ε∇xa(x)

1

)
and

(3.2)


p̃(t̃, x̃, z̃) =

 γs(h̃1 − z̃) if z̃ = h̃(t̃, x̃) = ã(x̃) < h̃1

0 otherwise

h̃ = ã if ã < h̃1.

Step 2: rescaling
Using the rescaling (2.1), (2.2), we set

Ωt,ε
α =


{
(x, z) ∈ RN × R, gε(t, x) < z < hε(t, x)

}
if α = f,{

(x, z) ∈ RN × R, b(x) < z < gε(t, x)
}

if α = s,

and we get
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(3.3)



divx vx,εα + ∂zv
z,ε
α = 0 on Ωt,ε

α

−εvx,εα = εκxx
α (x, z)∇xp̄

ε + κxz
α (x, z)∂z(p̄

ε + γαz) on Ωt,ε
α

−ε2vz,εα = εκzx
α (x, z)∇xp̄

ε + κzz
α (x, z)∂z(p̄

ε + γαz) on Ωt,ε
α

∣∣∣∣∣∣∣∣∣∣
for α = f, s

vx,εf hε
x − vz,εf + φf (x, z)h

ε
t = 0 across

{
(x, z) ∈ RN × R, z = hε(t, x) < a(x)

}
vx,εf gεx − vz,εf + φf (x, z)g

ε
t = 0 across

{
(x, z) ∈ RN × R, z = gε(t, x) < a(x)

}
vx,εs gεx − vz,εs + φs(x, z)g

ε
t = 0 across

{
(x, z) ∈ RN × R, z = gε(t, x) < a(x)

}
vx,εs bx − vz,εs = 0 across

{
(x, z) ∈ RN × R, z = b(x) < gε(t, x)

}
p̄ε is continuous on Γt

gε :=
{
(x, z) ∈ RN × R, z = gε(t, x)

}
−vx,εf · ∇xa+ vz,εf ≥ 0 across {z = hε(t, x) = a(x) > gε(t, x)}

g ≤ h1 and b < h everywhere,

with

(3.4)


p̄ε(t, x, z) =

 γs(h1 − z) if z = hε(t, x) = a(x) < h1

0 otherwise

hε = a if a < h1.

This implies in particular that

(3.5)

 ∂z(p̄
ε + γαz) = O(ε) = −ε(κzz

α (x, z))−1 {εvz,εα + κzx
α (x, z)∇xp̄

ε}

vx,εα + κ̄xx
α (x, z)∇xp̄

ε = O(ε) = εκxz
α (x, z)(κzz

α (x, z))−1vz,εα

∣∣∣∣∣∣ in Ωt,ε
α ,

with κ̄xx
α (x, z) defined in (2.4).

Notice that the first line of (3.5) comes from the third line of (3.3), and the second line of (3.5) comes
from inserting the first line of (3.5) into the second line of (3.3).

It is easy to check that the matrix κ̄xx
α (x, z) ∈ R2×2

sym is symmetric positive definite because κα is symmetric
positive definite.

We now set

Ωt
α =


{
(x, z) ∈ RN × R, g(t, x) < z < h(t, x)

}
if α = f,{

(x, z) ∈ RN × R, b(x) < z < g(t, x)
}

if α = s.

Using the formal asymptotics (2.3), this implies for the leading order term that:

(3.6)

 ∂z(p̄+ γαz) = 0

vxα = −κ̄xx
α (x, z)∇xp̄

∣∣∣∣∣∣ in Ωt
α

The second equation of (3.6) gives a kind of effective Darcy’s law for the horizontal “velocity” of the fluid.
The first equation of (3.6) means that the fluid is vertically at the hydrostatic equilibrium. This implies also
that the velocity of the fluid is only horizontal, which is the classical formulation of the Dupuit-Forchheimer
assumption (see for instance [34], [24]).
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Using again the formal asymptotics (2.3), we deduce from (3.3), the second and third lines of (3.3) being
replaced respectively by the second and first lines of (3.6):

(3.7)



divx vxα + ∂zv
z
α = 0 on Ωt

α

vxα = −κ̄xx
α (x, z)∇xp̄ on Ωt

α

∂z(p̄+ γαz) = 0 on Ωt
α

∣∣∣∣∣∣∣∣∣∣
for α = f, s

vxfhx − vzf + φf (x, z)ht = 0 across
{
(x, z) ∈ RN × R, z = h(t, x) < a(x)

}
vxf gx − vzf + φf (x, z)gt = 0 across

{
(x, z) ∈ RN × R, z = g(t, x) < a(x)

}
vxs gx − vzs + φs(x, z)gt = 0 across

{
(x, z) ∈ RN × R, z = g(t, x) < a(x)

}
vxs bx − vzs = 0 across

{
(x, z) ∈ RN × R, z = b(x) < g(t, x)

}
p̄ is continuous on Γt

g :=
{
(x, z) ∈ RN × R, z = g(t, x)

}
−vxf · ∇xa+ vzf ≥ 0 across {z = h(t, x) = a(x) > g(t, x)}

g ≤ h1 and b < h everywhere.

Then we can integrate the pressure in the vertical direction and get

(3.8) p̄(t, x, z) =

 γsp0(t, x) + γf (h(t, x)− z) for g(t, x) < z < h(t, x)

γsp0(t, x) + γf (h(t, x)− g(t, x)) + γs(g(t, x)− z) for b(x) < z < g(t, x),

with

(3.9) p0(t, x) :=

 h1 − a(x) if h(t, x) = a(x) < h1

0 otherwise,

i.e.

γ−1
s p̄(t, x, z) =

 p0(t, x) + (1− ε0)(h(t, x)− z) for g(t, x) < z < h(t, x)

p0(t, x) + (1− ε0)(h(t, x)− g(t, x)) + (g(t, x)− z) for b(x) < z < g(t, x),

with ε0 defined in (2.5). This shows in particular that

(3.10) γ−1
s ∇xp̄(t, ·) =


∇x (p0 + (1− ε0)h) on Ωt

f ,

∇x (p0 + (1− ε0)h+ ε0g) on Ωt
s.

Step 3: integration on [g, h]
Integrating the first equation of (3.7), we get∫ h

g

dz
(
divx vxf (x, z)

)
+
[
vzf
]z=h

z=g
= 0

and conclude that

(3.11)

∫ h

g

dz
(
divx vxf (x, z)

)
+ φf (x, h)ht − φf (x, g)gt + (vxf )|z=hhx − (vxf )|z=ggx = 0

by the following arguments: (3.11) holds in {h < a} by considering the fourth and the fifth lines of (3.7)
respectively.
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Recall the fourth and the ninth lines of (3.7):

(3.12) vxfhx − vzf + φf (x, z)ht = 0 across {h < a} ,

(3.13) vxfhx − vzf ≤ 0 across {h = a > g} .

We see that the outflow condition (3.13) is equivalent to assume that (3.12) still holds on {h = a > g}, but
with the convention that (Φf (x, h))t = φf (x, h)ht satisfies

(3.14) (Φf (x, h))t ≥ 0 across {h = a > g} .

With this convention of interpretation, (3.11) can be rewritten as

(Φf (x, h)− Φf (x, g))t + divx

(∫ h

g

dz vxf (x, z)

)
= 0.

Using the fact that ∇xp̄ is independent of z in Ωt
f , and setting

Kα(x, z) = γs

∫ z

0

dz̄ κ̄xx
α (x, z̄),

using (3.6), we get

(Φf (x, h)− Φf (x, g))t = divx

(
[Kf (x, z)]

z=h
z=g γ

−1
s ∇xp̄

)
,

i.e., using (3.10),

(3.15)


(Φf (x, h)− Φf (x, g))t = divx

(
[Kf (x, z)]

z=h
z=g ∇x(p0 + (1− ε0)h)

)
on {h < a} ,

−(Φf (x, g))t ≤ divx

(
[Kf (x, z)]

z=h
z=g ∇x(p0 + (1− ε0)h)

)
on {h = a > g} ,

where we have used convention (3.16) in the second line of (3.15). This implies the third line of (2.6) with

Uf = {h < a} ∪ Int {h = a > g} ∪ Int {h = a = g} .

Step 4: integration on [b, g]
We get ∫ g

b

dz (divx vxs (x, z)) + [vzs ]
z=g
z=b = 0

i.e., as above

(3.16)

∫ g

b

dz (divx vxs (x, z)) + φs(x, g)gt + (vxs )|z=ggx − (vxs )|z=bbx = 0

with the following reasoning: (3.16) holds in {g < a} by considering the sixth and the seventh lines of (3.7).
We can rewrite (3.16) as

(Φs(x, g))t + divx

(∫ g

b

dz vxs (x, z)

)
= 0.

Using the fact that ∇xp̄ is independent of z in Ωt
s, we get as above

(Φs(x, g))t = divx
(
[Ks(x, z)]

z=g
z=b γ

−1
s ∇xp̄

)
i.e., by the second line of (3.10)

(3.17) (Φs(x, g))t = divx ([Ks(x, z)]
z=g
z=b ∇x(p0 + (1− ε0)h+ ε0g)) on {g < a}

This implies the fifth line of (2.6) with

Us = {g < a} ∪ Int {g = a < h1}

because when g = h = a < h1, definition (3.9) implies that p0 + (1− ε0)h+ ε0g is constant.
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3.2 Proof in the confined case

The procedure is exactly the same as in the unconfined case, except that h is independent of the time t, and
that the renormalized pressure p0(x) is replaced by

p(t, x) =

 max(0, h1 − h(x)) > 0 for x ∈ RN\ω,

unknown for x ∈ ω = {h < a} .

On ω, the pressure p is unknown, but will be determined by PDE’s relations below (see (3.19)).
Therefore we have

(3.18)

−(Φf (x, g))t = divx

(
[Kf (x, z)]

z=h
z=g ∇x(p+ (1− ε0)h)

)
on {h < a} = ω

−(Φf (x, g))t ≤ divx

(
[Kf (x, z)]

z=h
z=g ∇x(p+ (1− ε0)h)

)
on Int {g(t, ·) < h = a} ⊂ RN\ω

(Φs(x, g))t = divx ([Ks(x, z)]
z=g
z=b ∇x(p+ (1− ε0)h+ ε0g)) on {g(t, ·) < a} ⊃ ω

0 ≤ divx ([Ks(x, z)]
z=g
z=b ∇x(p+ (1− ε0)h+ ε0g)) on Int {g(t, ·) = a < h1} ⊂ RN\ω.

This implies in particular that p solves the following equation

(3.19)
(Φs(x, g)− Φf (x, g))t

= divx

((
[Ks(x, z)]

z=g
z=b + [Kf (x, z)]

z=h
z=g

)
∇x(p+ (1− ε0)h) + ε0 [Ks(x, z)]

z=g
z=b ∇xg)

)
on ω.

This implies the result ii. of Theorem 2.2 in the confined case.

4 Outlet properties: proof of Theorem 2.3

In this section, we give the proof of Theorem 2.3, which is splitted in two subsections for the unconfined and
the confined case respectively.

4.1 The unconfined case

Step 1: Proof of i.1. in the evolution case
We assume that

(4.1) g(t, ·) = a on {a < h1} , at t = 0

and want to show that this is true for all times t ≥ 0. We have

∇x(p0 + (1− ε0)h) = −ε0∇xa across {h = a < h1} ,

and from the third line of (2.6) and the first line of (2.7), we get

(4.2) −(Φf (x, g))t ≤ −ε0 divx

(
[Kf (x, z)]

z=a
z=g ∇xa

)
on {a < h1} .

Integrating on
ωh1 = {a < h1}

we get that

m(t) :=

∫
ωh1

(Φf (· , a)− Φf (· , g)) ≥ 0

is finite because of (2.12), and satisfies

dm

dt
≤ −ε0

∫
∂ωh1

ν̄T · [Kf (x, z)]
z=a
z=g ∇xa ≤ 0,
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where the middle integral term is non-positive because ν̄ := ∇a
|∇a| is the outward normal to the set ωh1 =

{a < h1}. Therefore 0 ≤ m(t) ≤ m(0) and m(0) = 0 because of (4.1). This implies that m(t) = 0 and by
the strict monotonicity of Φf (x, ·) (because φf > 0), we conclude that

g = a on ωh1

for all times t ≥ 0. Moreover, we obviously have h = g = a where g = a.

Step 2: Proof of i.2. in the stationary case
For any z1 < h1, let us define the set

ωz1 = {a < z1} .
In the case gt = 0, integrating by parts (4.2) on ωz1 , we get

0 ≤ −
∫
∂ωz1

ν̄T · [Kf (x, z)]
z=a
z=g · ∇xa,

where ν̄ := ∇a
|∇a| is the outward normal to the set ωz1 = {a < z1}. This implies that

g = a across ∂ωz1 .

Because this is true for any z1 < h1, we conclude that

g = a on ωh1 .

4.2 The confined case

Step 1: proof of ii.1. in the evolution case
We recall that

(4.3) −(Φf (· , g))t ≤ divx

(
[Kf (· , z)]z=h

z=g ∇x(p+ (1− ε0)h)
)

on [0,+∞)× RN .

Integrating (by parts) this inequality on ω̄ = RN\ω, we get (using g ≤ a) that

m(t) :=

∫
ω̄

(Φf (· , a)− Φf (· , g)) ≥ 0

is finite because of (2.12). Moreover it satifies

dm

dt
≤ −ε0

∫
∂ω̄

ν̄T · [Kf (x, z)]
z=a
z=g ∇xa ≤ 0

where in this subsection we define ν̄ = −ν as the outward unit normal to ω̄, and where we have used condi-
tion (2.10). Using (2.13) at time t = 0, we then argue as in the unconfined case (Step 1).

Step 2: proof of ii.2. in the stationary case
For any z1 ∈ R, let us define the set

ω̄z1 = ω̄ ∩ {a < z1} .
In the case gt = 0, integrating by parts (4.3) on ω̄z1 , we get

0 ≤ −
∫
∂ω̄z1

ν̄T · [Kf (x, z)]
z=a
z=g · ∇xa,

where we consider the new definition

ν̄ :=


−ν if x ∈ ∂ω̄,

∇xa
|∇xa| if x ∈ ∂ω̄z1\∂ω̄.

This implies that
g = a across ∂ω̄z1 .

Because this is true for any z1 ∈ R, we conclude that

g = a on ω̄.
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5 Proof of the Ghyben-Herzberg relation (Theorem 2.4)

In this section we prove Theorem 2.4.

Proof of Theorem 2.4
i) (unconfined case)
From Theorem 2.3 i.2, we have g = a = h on {a < h1}. Moreover we have p = 0 on {a ≥ h1} ⊃ {g < a},
and in particular, we then deduce from the fourth line of (2.6) that

(5.1)


divx ([Ks(x, z)]

z=g
z=b ∇x((1− ε0)h+ ε0g)) = 0 on D := {b < g < a} ,

h = g = h1 across Γa := {g = a} ∩ ∂D,

g = b across Γb := {g = b} .

The second line of (5.1) follows from the fact that

(5.2) {a > h1} ⊂ {g < a} ,

because we assume g ≤ h1 as it is written in the first line of (2.6). Indeed, recall that D ⊂ {a ≥ h1}.
Therefore Γa ⊂ {a ≥ h1}. Moreover Γa ∩ {a > h1} = ∅, because of (5.2). Therefore Γa ⊂ {a = h1} and then
g = a = h1 = h on Γa, which shows the second line of (5.1).

Let
Ψ := (1− ε0)h+ ε0g − h1.

Using (5.1), we have

(5.3)


divx ([Ks(x, z)]

z=g
z=b ∇xΨ) = 0 on D,

Ψ = 0 across Γa,

g = b across Γb.

Multiplying the first equation in (5.3) by Ψ and integrating over D, we get

0 =

∫
D

Ψdivx ([Ks(x, z)]
z=g
z=b ∇xΨ) = −

∫
D

(∇xΨ)T [Ks(x, z)]
z=g
z=b (∇xΨ) ≤ 0,

where the boundary terms vanish because of the two last lines of (5.3). This implies that ∇xΨ = 0 on D
and therefore Ψ is constant locally. Therefore Ψ = 0 on each connected component of D whose boundary
intersects Γa.
ii) (confined case)
From Theorem 2.3 ii.1, we have g = a on {h = a}. From the fourth line of (2.6), we deduce in particular
that

(5.4)


divx ([Ks(x, z)]

z=g
z=b ∇x(p+ (1− ε0)h+ ε0g)) = 0 on D := {b < g < a} ,

h = g = a across Γa := {g = a} ∩ ∂D,

g = b across Γb := {g = b} .

Notice that the second line of (5.4) follows automatically because we have g ≤ h ≤ a. Let

Ψ := p+ (1− ε0)h+ ε0g − h1.

Using (5.4) and (2.8), we get again (5.3) and argue as in the unconfined case i. This completes the proof of
the theorem. �
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6 Special assumptions and particular solutions

In this section, for simplification, we assume that

(6.1) Kα(x, z) = z · Id,

and
φα ≡ 1.

We will present some explicit stationary solutions.

6.1 Unconfined aquifer

Any solution (h, g) of the following system

(6.2)



b ≤ g ≤ h ≤ a on [0,+∞)× RN

(h− g)t = divx ((h− g)∇x((1− ε0)h)) on {h < a}

gt = divx ((g − b)∇x((1− ε0)h+ ε0g)) on {g < a}

g = a = h on {a ≤ h1}

h < a on {a > h1}

is a solution of (2.6). Here the pressure p has been omitted because p = 0 if a > h1 and {h < a} , {g < a} ⊂
{a > h1}.

A particular stationary solution (h, g) of (6.2) satisfying moreover the Ghyben-Herzberg condition

g = max(b, h1 − (1− ε0)h̄) on {g < a}

and
h = max(h̄+ b, h1 + ε0h̄) on {h < a}

with h̄ = h− g ≥ 0, ḡ = g − b ≥ 0, is given by a solution h̄ of the following problem

(6.3)

 0 = divx
(
h̄∇x

{
max(h̄+ b, h1 + ε0h̄)

})
on {h < a} = {a > h1} ,

h̄ = 0 on {h = a} = {a ≤ h1} ,

where the transition set h̄+ b = h1 + ε0h̄ can be seen as a free boundary.

An example of a particular stationary solution
We recover a classical Ghyben-Herzberg solution in a special case. Let us consider the case b = 0 < h1 = a(0),
N = 1 and then x = x1 ∈ R. We also assume that g(x) < h(x) < a(x) for x < 0,

g(x) = h(x) = a(x) for x ≥ 0.

We set

h0 =
h1

1− ε0
.

Then for any ` > 0, there exists an explicit solution of (6.3) given by

h̄(x) =


h0

√
−x

`
for − ` ≤ x < 0,

h0

√
1− ε0

(
x+ `

`

)
for x ≤ −`.
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This corresponds to

g(x) =


h1 − (1− ε0)h0

√
−x

`
for − ` ≤ x < 0

0 for x ≤ −`,

and

h(x) =


h1 + ε0h0

√
−x

`
for − ` ≤ x < 0

h0

√
1− ε0

(
x+ `

`

)
for x ≤ −`.

This solution is displayed in Figure 3.

air
dry soil

sea

bedrock

freshwater

saltwater

z = a(x)

z = h1

z = h(x)

z = b = 0

z = g(x)

x
x = −` 0

Figure 3: A classical stationary solution in the unconfined case

Remark 6.1 Notice that, because of the square root shape of the free boundary at the point x = 0, and the
infinite velocity of the freshwater at that point (because this field is divergence free), the assumption (2.2)
of small and essentially horizontal velocity is no longer valid at that point. Our model seems to capture the
essence of the physics, but a refined analysis would require to consider a boundary layer close to the singular
points, like the outlet of freshwater into the seawater.

6.2 Confined aquifer

We recall that
ω =

{
x ∈ RN , h(x) < a(x)

}
.

Then (h, g) is a solution of (2.6) and (2.8), if (h, g) solves the following equations

(6.4)


b ≤ g ≤ h ≤ a on [0,+∞)× RN ,

gt = divx ((g − b)∇x(p+ (1− ε0)h+ ε0g)) on ω,

g = a = h on RN\ω,

with p solution of

(6.5)

 0 = divx ((h− b)∇x(p+ (1− ε0)h) + ε0(g − b)∇xg)) on ω,

p(t, x) = p1(x) := max(0, h1 − a(x)) > 0 across ∂ω.
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Proposition 6.2 (horizontal confinement)
We assume that h ≡ h0 ∈ (0, h1) on ω and b ≡ 0. Then the solution g of (6.4)-(6.5) satisfies for all times
t > 0

(6.6)



0 ≤ g ≤ h0 on ω,

g = h0 across ∂ω,

gt = ε0 divx

(
g

(
1− g

h0

)
∇xg

)
+ ε0 divx (g∇xβ) on ω,

with β solution of

(6.7)


∆β = 0 on ω,

β =
h0

2
across ∂ω.

Remark 6.3 The third equation of (6.6) appears to be an approximation of the equation considered in [34],
in the limit case where the gradient of the solution is small.

Proof of Proposition 6.2
We simply set

β(t, x) = ε−1
0 (p(t, x)− (h1 − h0)) +

1

2h0
g2(t, x).

The end of the proof is straightforward.

Remark 6.4 Because h− b is constant under the confining rock (in ω), notice that

(h− b)∇x(p+ (1− ε0)h) + ε0(g − h)∇xg

is then proportional to ∇xw. In dimension N = 1, we have ∆w = ∇x(∇xw) = 0 in ω, which means that
∇xw is constant and can then be assumed to be a given quantity (proportional to the velocity of freshwater
arriving from the left in Figure 4). In higher dimensions, we can solve uniquely equation (6.7), if we have
further suitable boundary conditions far from ∂ω or at infinity.

6.2.1 A stationary solution

Proposition 6.5 Under assumptions of Proposition 6.2, we consider a solution w of
∆w = 0 on ω,

w =
h0

2
across ∂ω,

and we assume the following Ghyben-Herzberg relation

(6.8) g − g2

2h0
+ w = h0 on {g > 0} .

Then any solution of (6.6)-(6.7)-(6.8) satisfies

(6.9)

 gt = 0

{g > 0} = {w < h0} .

The proof of Proposition 6.5 is straightforward.

An example of a particular stationary solution
We will give a solution in dimension 1. Let us consider the case b = 0 < h0 = a(0), N = 1 and then
x = x1 ∈ R. We assume that

ω = {x < 0} .
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Under the assumptions of Proposition 6.5, for any ` > 0, there exists an explicit solution given by

w(x) =
h0

2

(
1− x

`

)
,

and 
g − g2

2h0
+ w = h0 for − ` < x < 0,

g = 0 for x ≤ −`.

This solution is displayed in Figure 4.

air

bedrock

freshwater
saltwater

confining rock

sea

z = a(x)

z = b = 0

z = g(x)

z = h = h0

z = h1

ω

x

x = −`
0

Figure 4: A stationary solution in the confined case
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