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Conservation law and Hamilton-Jacobi equations on a junction:
the convex case

P. Cardaliaguet! N. Forcadel? T. Girard? R. Monneau® *
November 10, 2023

Abstract

The goal of this paper is to study the link between the solution to an Hamilton-Jacobi (HJ)
equation and the solution to a Scalar Conservation Law (SCL) on a special network. When the
equations are posed on the real axis, it is well known that the space derivative of the solution to the
Hamilton-Jacobi equation is the solution to the corresponding scalar conservation law. On networks,
the situation is more complicated and we show that this result still holds true in the convex case on a
1:1 junction. The correspondence between solutions to HJ equations and SCL on a 1:1 junction is done
showing the convergence of associated numerical schemes. A second direct proof using semi-algebraic
functions is also given.

Here a 1:1 junction is a simple network composed of two edges and one vertex. In the case of
three edges or more, we show that the associated HJ germ is not a L!-dissipative germ, while it is
the case for only two edges.

As an important byproduct of our numerical approach, we get a new result on the convergence
of numerical schemes for scalar conservation laws on a junction. For a general desired flux condition
which is discretized, we show that the numerical solution with the general flux condition converges to
the solution of a SCL problem with an effective flux condition at the junction. Up to our knowledge, in
previous works the effective condition was directly implemented in the numerical scheme. In general
the effective flux condition differs from the desired one, and is its relaxation, which is very natural
from the point of view of Hamilton-Jacobi equations. Here for SCL, this effective flux condition is
encoded in a germ that we characterize at the junction.

AMS Classification: 35L65, 35R02, 35D40, 35F20.

Keywords: scalar conservation laws, Hamilton-Jacobi equations, networks.

1 Introduction

In one space dimension, it’s well known that the space derivative of the viscosity solution to a Hamilton-
Jacobi (HJ) equation is the solution to a scalar conservation law (SCL). We refer for example to [12, 15]
for this kind of results. In this paper, we want to investigate this relation in the case of simple junctions
composed of two edges and one vertex (referred later as 1:1 junctions), for which, up to our knowledge,
this result is completely open. Scalar Conservation Laws and Hamilton-Jacobi equations on networks
have been largely studied in the last decade. Concerning SCL, the 1:1 case has been studied following
many different approaches during the last 20 years (see the two surveys [27] and [8] and references therein
for an overview on the subject). In this paper, we choose to focus mostly on the germ approach (see
[4, 19]) as it is suitable for the correspondence result. Concerning Hamilton-Jacobi equations on networks,
the theory has been largely developed since the pionner works of Achdou, Camilli, Cutri, Tchou [1] and
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Imbert, Monneau, Zidani [24]. We refer in particular to [23], where a general comparison principle has
been developed using PDE tools and a classification of the junction condition has been proposed, to
[25, 26] for an extension to the non-convex case and to the monograph [10] for a general review on the
topic.

Even if the theories are now well understood both for scalar conservation laws and Hamilton-Jacobi
equations, the relation between these two theories has never been addressed on junctions until now. In
this paper, we will give an answer for 1:1 junctions and we will also show that the situation is much more
complicated when the junction is composed of more than three branches. The main difficulty comes from
the junction condition and we will explain how the junction condition of the HJ equation, namely a flux
limiter condition as in [23], can be interpreted as a condition on a germ, as in [4].

1.1 The main result

The aim of this paper is to make the link between viscosity solutions to Hamilton-Jacobi equations posed
on the real line with a discontinuity at the origin and entropy solutions to a suitable conservation law.
We consider here the case where the fluxes are convex but the result remains valid in the concave case

(just changing the solution u by —u). Namely, we start with the flux-limited viscosity solution u, as in
[23], of

ug + Hp(uz) =0 ifz<0

~ug+ Hp(uz) =0 ife>0 (1)
ur + Fa(ug(t,07),u,(¢,07)) =0  ifz=0
u(0,z) = ugp(x) forz e R

where ug is a Lipschitz continuous initial condition. For o = L, R, let an < by < co. We make the
following assumptions on the Hamiltonians for some 6 > 0

{ For a = L, R, the Hamiltonian H,, is of class C?, with H” > § > 0, )

decreasing on [aq,bs] and increasing on [by, ¢q ], with Hy(aq) = Ho(ca) = 0.
We define the two associated monotone envelopes

H, (ba) for [@as e ] _
a (p) = { Ha(p) for ]]ZE [baaca] . H, (p) = {

Concerning the initial data, we make the following assumption
ug is Lipschitz continuous on R and a.e. (ug)s € [ar,cr] if z <0 and (ug)y € [ar,cr] if £ > 0. (3)
We set

Hy := in H,
0 g )

and for A € [Hy,0], we define the effective junction condition F4 by
Fa(pr,pr) = max{A, H} (pr), H (pr)} (4)
The goal is then to understand the equation satisfied by

p = Uy.

Heuristics. By [12, 15], we first note that p is an entropy solution to

pt+Hp(p)e =0 ifax<0
pe+Hg(p)s =0 ifz>0 (5)
p(0,z) = po(x) for zeR

where pg = (ug), a.e.. The main difficulty is then to understand what is the appropriate junction
condition. For solutions to conservation laws with strongly convex fluxes, we recall the existence of
strong traces of p at z = 0 (see (12) and also [30]). We denote by p(¢t,07) and p(¢,0") these traces



respectively on the left and on the right. In order to fix a condition at = 0 for the scalar conservation
law, following the works of [4] and [19, 29], we look for stationary solutions to (5), that is solutions of the

form ;
k ifz <O
p(t,x) = { k; x>0 where (kr,kg) € Q :=[ar,cL] x [ar, cr]. (6)

Let us note that, if we set
u(t,z) = (kpx — tHp (k) 1zeop + (krz — tHr(kR))L(z=0},

then p = u, and wu is solution to the Hamilton-Jacobi equation (1) on (0 4 o) x R\{0}. Since we want u
to be continuous at 0, this implies that the k, have to satisfy the Rankine-Hugoniot condition

Hp(kr) = Hg(kg).
Moreover, u satisfies the junction condition in (1) iff

HR(kR) = HL(kL) = InaX(A,HE/L(kL),H};(kR))

Following [4, 19, 29], we then define the germ G4 as
QA = {(kL, kR) € Q, HR(kR) = HL(kL) = max(A,HZr(kL),Hg(kR))} y (7)

where @ is defined in (6). We will explain in Proposition 2.6 that this germ is maximal, L!-dissipative
and complete. Hence the following scalar conservation law

pt + Hp(p)r =0 ifz <0

pt + Hr(p)z =0 ifz>0 (8)
(p(tvoi)vp(tvoJr)) €0a a.e

p(0,2) = po(x) forzeR

is well-posed. The first main result of this paper is the following theorem, which makes rigorous the
previous computations.

Theorem 1.1 (Viscosity versus entropy solutions: flux limited conditions). Let uo satisfy (3) and let
us set po = (ug)y. Let Hy g satisfying (2). Let u be the unique viscosity solution of (1) in the sense of
Definition 2.1 and p be the unique Ga-entropy solution of (8) in the sense of Definition 2.3. Then, in
the distributional sense, we have

Uy = P.

We propose two different proofs for this result. The first one uses numerical schemes for (1) and (8).
More precisely, we propose a numerical approximation for (1) and we consider the numerical derivative
of the solution, which gives an appropriate scheme for (8). Since we have the convergence for the two
schemes, we recover the result by passing to the limit. The first advantage of this proof is that it will be
generalized in a future work to the non-convex case. The second advantage is that it can be extended to
the important situation of a more general junction condition, as presented below.

The second approach is a direct proof in which we use a regularization method via the notion of semi-
algebraic functions (see Section 5).

General junction conditions. Up to this point, we only considered a flux-limiter type of junction
condition (with flux-limiter A) at the junction point = 0. However it is known that, in the specific
setting considered here, a large class of coupling conditions can be equivalently treated as a flux-limiter.
Then we present our result in this larger class. More precisely, we want to consider the general problem

up + Hp(ug) = ifz <0
ur + Hp(uy) = ifz>0

ut + Fo(ug(6,07),uy(¢,07) =0 ifx=0 ©)
(0, z) = up(x) forzeR



where the function Fy : R2 — R is called a desired coupling condition and satisfies the following
conditions

(Regularity ) Fy is Lipschitz continuous and piecewise C'1(R?)
(Monotonicity) Fp is non .decrea§1ng.1n the first variable
and non increasing in the second one
(10)
(Semi-coercivity) lim Fo(pr,pr) = +©

max(0,pr,—pRr)—+0©

(Boundedness of the solution) Fy(ar,ar) = Fy(cp,cr) =0

Note that the last assumptions will imply that the solutions live in the box @ and is naturally satisfied if
the junction condition is of the form (4). Moreover notice that it is possible to show a posteriori that the
third condition of (10) is not seen by the solution u of (9) whose gradient ((u.(t,-))|(—c0,0), (Uz ("))} (0, +00))
stays in the box @ = [ar,cL] X [ag, cr], if the initial data ((0xu0)|(=w,0); (0z%0)|(0,4+u)) does it.

It is well-known that, in general, one cannot expect to have a strong viscosity solution for (9), in the sense
that the junction condition is satisfied in the viscosity sense (see Definition 2.1 below). Nevertheless, it
is always possible to define a weak viscosity solution, meaning that either the equation or the junction
condition is satisfied at = 0 (see Definition 2.2 below). We are now interested in the corresponding
SCL. Formally, we can make the following calculation with p := u, (say with H(p) = 0 at = +00)

ut=6t/m pdx=/_g;6tpd:v=—/w (H(p))y dz = —H(p).

—00 —00

Then for a solution u of problem (9), we expect p := u, to solve the scalar conservation law problem

pt+Hp(p)e =0 ifz <0

pt + Hr(p)s =0 ifx>0 (11)
Hy(p(t,07)) = HR(p(taOJr)) = FO(p(tvoi)vp(tvoJr)) ifz=0

p(0,2) = po(x) for z € R.

However, this problem does not admit a solution whose traces satisfy the third equation of (11) in general
for any given Fp satisfying (10) and one has to relax the junction condition. We recall in Subsection 2.2
how this problem has to be solved.
We then have the following result.

Theorem 1.2 (Viscosity versus entropy solutions: desired conditions). Let ug satisfy (3) and denote by
po = (uo)g. Let Hp g satisfying (2) and Fy satisfying (10). Let u be the unique weak viscosity solution
to (9) in the sense of Definition 2.2 and p be the unique Fy-admissible solution to (11) in the sense of
Definition 2.8. Then, in the distributional sense, we have

Uy = P.

This result can be seen as a direct consequence of Theorem 1.1. Indeed, it is shown in [23] that it possible
to construct a flux limiter Ap, depending on Fy (see Lemma 2.9 for this construction) such that the
unique weak solution to (9) is in fact the unique strong solution to (1) with A replaced by Ap,. As the
solution of (11) can also be interpreted as the solution of (8), the result is straightforward. However,
we will propose a direct proof of this result. Indeed, the proof using the numerical scheme can be done
directly with this type of junction condition. The main point is the following: in the numerical scheme,
we will put an approximation of the expected junction condition Fy, but at the limit where the space and
time steps go to 0, we will recover the relaxed flux-limited junction condition defined with Ap,. More
precisely, we have the following meta-theorem, which statement is made precise in Theorem 3.3.

Theorem 1.3 (Numerical approximation for SCL: desired condition). Let p® (with A = (At, Ax)) be
the numerical solution of (11) (with the junction condition given by Fy). Then, there exists a flux limiter
Ap, depending on Fy such that, as A goes to zero, p™ converges to the unique solution to (8) with A
replaced by Ar,



Remark. Note that this result was already known at the Hamilton-Jacobi level (see [21]).

Remark. It is also possible to consider an even simpler junction constituted of only one edge and one
vertex. In that case, our result remains valid with analogous proofs. For instance, the analogue of
Theorem 1.1 is precisely the following:

Theorem 1.4 (Viscosity versus entropy solutions: the half line). Let ug satisfy (3) on (0, +0) and let us
set po = (ug)y. Let Hg satisfying (2) and A € [min Hg,0]. Let u be the unique viscosity solution to

us + Hr(uy) =0 if x>0
uy + max {4, Hy (uz(t,07))} =0 if z=0
u(0,2) = up(x) for  x€(0,+00)

and p be the unique G -entropy solution to

ot + Hr(p)e =0 if x>0
p(t,07) €gh if z=0 and for a.e. te(0,+0)
p(0,2) = po(x) for  x€(0,400).

with
9}4 = {kRER, HR(]{IR) =maX{A,HE(kR)}}
Then, in the distributional sense, we have
Uy = -
The above notion of solution for a scalar conservation law with boundary condition is equivalent to the
one given by the standard Bardos-Leroux-Nedelec approach (see [9, 16]).

1.2 Outline

In Section 2, we recall the different definitions of solutions for (1), (8), (9) and (11) and we give the
link between weak and strong viscosity solutions. We also prove useful properties on the germ G4 and
we explain how the flux limiter Ap, is constructed. Section 3 is devoted to the study of the numerical
scheme for (9) (Subsection 3.1) and (11) (Subsection 3.1) while we prove Theorems 1.1 and 1.2 using
these numerical schemes in Section 4. We propose a direct proof of Theorem 1.1 using regularization with
semi-algebraic functions in Section 5. Finally Section 6 is an appendix where we collect complementary
results, which are either new, or not accessible with full details in the literature. In Subsection 6.1 we
give discrete entropy inequalities on a junction, in Subsection 6.2 we give a local compactness result for
numerical solutions of conservation laws with strictly convex flux, and in Subsection 6.3 we show that
Hamilton-Jacobi germs are not L'-dissipative for N > 3 branches.

2 Notions of solution

We begin this section by recalling the definition and some properties of equation (9) in Subsection 2.1
and of equation (11) in Subsection 2.2. Finally, in Subsection 2.3, we explain how we construct the flux
limiter Ap, from a general condition Fp.

2.1 Definition of weak and strong solutions for Hamilton-Jacobi equations

We begin to recall the notion of weak viscosity solutions to (9). We consider the set of test functions on
the junction Jr := (0,7) x R:

CL(Jr) := {¢ € C°(Jr), the restrictions of ¢ to (0,T) x (—o0,0] and to (0,7 x [0, ) are C'}.

We also recall the definition of upper and lower semi-continuous envelopes u* and uy of a (locally bounded)
function u defined on [0,T) x R,

u*(t,z) = limsup u(s,y) and wux(t,z)= lminf wu(s,y).
(s:9)—(tz) (s,9)—(t,@)



We begin with the notion of strong viscosity solution for which the junction condition is satisfied in a
strong sense.

Definition 2.1 (Strong viscosity solution). Let us consider a function u : I'p — R.

i) (Strong viscosity subsolution)

We say that u is a strong viscosity subsolution to (9) if for any point (to,xo) € Jr and any function
o € CL(Jr) such that u* — ¢ reaches a local mazimum at (to, o) we have

{Spt(tOVTO) + Hr(¢z(to,20)) <O if 29 <0
@t(to,xo) + HR(SOz(to,IEO)) <0 ifxo >0

when xg # 0 and
@i (to, zo) + Folpz(to, 25 ), ¢a(to, x§)) <0

when g = 0. We call u a strong Fy-subsolution.

ii) (Strong viscosity supersolution)

We say that u is a strong viscosity supersolution to (9) if for any point (to,zo) € Jr and any function
o € CL(Jr) such that uy — ¢ reaches a local minimum at (to,zo) we have

{Sﬁt(to,iﬂo) + Hr(pz(to,20)) =0 if 2o <0
@t(to, zo) + Hr(pz(to,0)) =0  if xg >0

when xg # 0 and
@i(to, z0) + Folps(to, zy ), pulto, zg)) =0

when xo = 0. We call u a strong Fy-supersolution.

ii) (Strong viscosity solution)

We say that u is a strong viscosity solution to (9), if u is a strong viscosity subsolution to (9), and u is
a strong viscosity supersolution to (9). We call u a strong Fy-solution.

A first result of Imbert, Monneau [23] is that when the junction condition is of the form Fy4 in (4), then
the junction condition is satisfied strongly as in the previous definition. Nevertheless, this is not true for
general junction condition and one has to consider weak viscosity solutions for which either the junction
condition or the equation is satisfied at x = 0.

Definition 2.2 (Weak viscosity solution). Let us consider a function u: T'r — R

i) (Weak viscosity subsolution)

We say that w is a weak viscosity subsolution to (9) if for any point (to,x0) € Jr and any function
o € CL(Jr) such that u* — ¢ reaches a local mazimum at (to,xo) we have

{gﬁt(to,zo) + HL(<px(t0,I0)) <0 foo <0
@t(to,ibo) + HR(gDz(to,xo)) <0 ifxo >0

when xg # 0 and
@t (to, o) + Hr(px(to, z5)) <0 or  @i(to, w0) + Hr(pa(to, 25)) <0

or oi(to, o) + Foles(to, g ), pulto,zg)) <0

when xog = 0. We call u a weak Fy-subsolution.

ii) (Weak viscosity supersolution)

We say that u is a weak viscosity supersolution to (9) if for any point (to,z¢) € Jr and any function
o € CL(Jr) such that uy — ¢ reaches a local minimum at (to, o) we have

{%(toawo) + Hp(¢z(to,20)) =0 if 29 <0
@t(to,ibo) + HR(gDz(to,xo)) =0 ifxo >0

when xg # 0 and

@i(to, wo) + H(pe(to,25)) = 0 or  ¢y(to, x0) + Hr(pe(to,2§)) = 0



or spt(tOuxO)+F0(S0m(t07$07)7g0w(t07x5r)) 20

when xo = 0. We call u a weak Fy-supersolution.

iii) (Weak viscosity solution)

We say that a locally bounded function u is a weak viscosity solution to (9), if u is a weak viscosity
subsolution to (9), and u is a weak viscosity supersolution to (9). We call u a weak Fy-solution.

An important result of Imbert, Monneau [23] is that it is possible to relax the junction condition in
order to make the solution satisfy the junction condition strongly. We refer to Subsection 2.3 for the
construction of the relaxation and to Theorem 2.10 for the precise result. Let us also mention that the
existence and uniqueness (using a comparison principle) of the solutions of (1) and (9) is also proven in
[23]. In particular (9) admits a strong solution if and only if Fp is of the form Fy4 for some A € [Hy, 0].

2.2 Definition of solution for conservation law

We first recall that any solution to a Scalar Conservation Law for x € (0, +o0) with strongly convex flux
has a strong trace at © = 0 (see Panov [30, Theorem 1.1]). For any function f : (0,7) x R — R, we
denote by vr rf the strong left and right traces of f at = 0 when they exist. For instance for the left

trace, this means that
T

ess lir(I)l |[f(t,x) =~y f(¥)| dt = 0. (12)
=0~ Jo

Here we present the notion of solution we will consider for (8). We consider an effective junction condition
F4 as defined in (4) and we recall that the corresponding germ G4 is given by (7).

Definition 2.3 (Strong entropy solution). Let ug satisfying (3) and denote by po = (ug).. We say that
p€ L®((0,T) x R) is a “strong” Ga-entropy solution to (8) if

1. p is a weak solution to
pt+Hp(p)e =0 ifz <0
Pt + HR(p)w =0 Zfi[: > 0.

2. For any ¢r € CL([0,T) x R™) (resp. ¢pr € CX([0,T) x R*)) that is non-negative, for any ki, €
lar,cr] (resp. kr € [ar,cr]) the following entropy inequalities hold

// 1p— kel (bn)e + sign(p — ko) [Hi(p) — Hy(kp)] (61)s + / Ipo(@) — kzlér(0,2) dr > 0
(0,T)xR— R-

(resp.
// lp—kr|(6r): +sign(p—kr) [Hr(p) — Hr(kr)] (#R)x +/ lpo(x) —kr|¢r(0,z) dv > 0)-
(0,T) xR+ R+

3. The strong traces satisfy the germ condition
(veo(t),vrp(t)) € Ga  for a.e. t€(0,T).

As proved in [4], this notion of solution grants existence and uniqueness as soon as the germ G4 is L!
dissipative, maximal and complete. We begin by recalling the notion of L!-dissipativity, maximality and
completeness of a germ.

Definition 2.4 (Germ and properties).

i) (germ)
We say that a set G = R? is a germ if any element of G satisfies the Rankine-Hugoniot condition, i.e.

HL(kL) = HR(kR) Vk = (kL,kR) € g



ii) (L'-dissipative germ)
We say that a germ G is L-dissipative if for any k = (kp,kgr),k = (kr,kr) € G, we have

sqn(ky — kp)(Hp (k) — Hp(kp)) = sgn(kr — kr)(Hr(kr) — Hr(kr)).

iii) (maximal L!-dissipative germ) B

A L'-dissipative germ G is called mazimal if there is no L'-dissipative germ G having G as a strict subset.
iv) (complete L!-dissipative germ)

A L'-dissipative germ G is called complete (on the box Q) if for every k= (kL,kR) € Q, there exists a
strong G a-entropy solution of (8), with initial data py = kLl( ©,0) T le(o +0)-

We then have the following theorem.

Theorem 2.5 (Existence and uniqueness for (8), [4]). Let pg be an initial data satisfying po((—o0,0)) x
po((0, +0)) < Q.

(i) If the germ G4 is Lt-dissipative and mazimal, there exists at most one solution to (8) in the sense

of Definition 2.3.

(1) Furthermore, if the germ G4 is also complete (on the box @), then there exists a unique solution to
(8) in the sense of Definition 2.3.

In order to apply this result to (8), it remains to show that the germ G4 defined in (7) is L'-dissipative
maximal and complete.

Proposition 2.6 (G4 is L!-dissipative, maximal and complete). Let A € [Hp,0]. We recall that
Fa(kr,kr) = max{A, H; (kr), Hjt (kr)}. Then, the set Ga defined by

Ga = {(kL,kr) € R?, Hp(kgr) = Hp(kz) = Fa(kr,kr)}
_ { (kL,kR)ER HR(kR) HL(kL)ZA and } (13)
[ezther HR(kR) A,O R(kR) = HE(kR),O’I“ HL(kL) = Hzr(k[,)]

is a mazimal and complete L'-dissipative germ.

Remark. This Definition of the germ G4 is close to the definition of viscosity solution for Hamilton-
Jacobi’s equations. One can also relate this germ to the classical flux limited notion of solution for scalar
conservation law with applications to traffic (see [13] and [3]).

This germ is also the unique maximal L!-dissipative germ containing (pr., pr) where (pr, pr) is the unique
couple such that A = H} (pr) = Hy (pr). This corresponds to the so called (A, B)-connection if one
takes (A, B) = (pr,Pr) (see [2]). Notice also that contrarily to [2] and [4], we do not need any crossing
condition to be satisfied.

Finally, we can also link this definition with the monotone graph approach introduced in [8]. If one takes
To := {(pr,pr, Fo(pr,PR), Fo(pr,PR)), (PL,PR) € R?} then the projected maximal monotone graph is
I'={(prL,pr, Fa(pL,Pr), Fa(pL,PR)), (PL:PR)E Gy}

Proof of Proposition 2.6. We begin to prove that the germ is L'-dissipative. Let k = (k:L,kR),I% =
(kr,kRr) € Ga. We have to show that

sgn(ky — kp)(Hy(kr) — Hy (kL)) = sgn(kr — kr)(Hr(kr) — Hr(kg)). (14)

The result is obvious if HL(kL)fHL(iCL) ZHR(kR)fHR(]%R) =0 or if HL(kL) HL(I;L) HR(kR)f
Hg(kgr) > 0 and k; > kr. Let us now assume to fix the ideas that HL(kL) HL(kL) Hr(kr) —
HR(/%R) > 0and k;, < kg, (the case Hp,(kr) —HL(/%L) = Hp(kgr) — HR(kR) <0and k;, >k, is obtained
exchanging k and IAC) We need to check that kr < kg. Note that



Since Hr(kgr) = Hp(kr) > HL(I%L) > A, and since k € G4, we necessarily have Hy (kr) = Hgr(kr).
Therefore R R
Hp(kr) = Hr(kr) > Hr(kr) = Hg (kr),

which implies that kg > kg. This proves (14) and the L' dissipativity of G4.

To prove the maximality of G, let us now fix some k € R? such that Hy (k) = Hr(kg) and assume that
(14) holds for any k € G4. We have to check that k € G4. We first check that Hy (k) = Hr(kg) = A.
By contradiction, assume that Hp (k) = Hg(kr) < A. We take k such that k; is the smallest element
in (Hy)"'({A}) and kg the largest in (Hg) '(A). Then k € Ga, kr < kr, kr > kg and Hy (k) < A =
Hy(kr) and similarly Hg(kr) < A = Hg(kg), which contradicts (14). So Hy (k) = Hg(kgr) = A.

We now prove that

Hp(kr) = Aor Hr(kg) = Hg(kgr) or Hr(kr) = Hj (kr). (15)
By contradiction, assume that

Hp(kp) > A, Hf (kp) < Hr (k) and Hg (kr) < Hr(kg).

Let us choose k € G such that HL(lAfL) = HZ(]%L) = A and HR(/%R) = H};(ER) = A. Then, as H;, and
Hp are convex and as H; (kp) < Hp(kr) and Hy (kg) < Hr(kg), we have

Hf (kz) = min Hy, < A = Hj (kz),
which implies that kr > kg (equality cannot hold because Hy(kr) > A = Hp, (/%L)) while
Hy(kgr) = min Hg < A = Hy, (kr),

which implies that kg < kg (because Hp(kg) = Hp (k) > A = Hg(kg)). This yields a contradiction
with (14). Therefore k satisfies (15) and belongs to G4. This shows the maximality of G4.

The proof of the completeness of the germ G4 is postponed to Lemma 3.7, where we show the existence
of a solution using the convergence of the numerical scheme introduced in Subsection 3.2. O

Remark. In the case of a junction with NV > 3 branches, it is possible to show that the Hamilton-Jacobi
germ is never L!-dissipative (except in the special case where the limiter A = 0 which corresponds to no
flux at the junction point). See Lemma 6.7.

We now present an important result telling that the gem G4 is generated by a set of three points :

Ea = {(aLvaR)a(CL,CR)v(ﬁéaﬁé)}a (16)
where (p7, p4) is such that
Hy(pg) = Hp (p2) = A = Hyy (Pr) = Hr(PR)-
This fact was already mentioned in [2].

Lemma 2.7 (€4 generates G4 on Q). Assume that A € [Ho,0]. Then the set £4 generates Ga on the
box Q: namely, for any (kr,kr) € Q,

( qr(kr.kr) — qr(kr,kr) =0 V(kr,kr) € Ea ) = (kr,kr) € Ga,
where, for o« = L, R, qo are the entropy fluxes defined by

4a(q,p) = sign(q — p)(Ha(q) — Ha(p)).



Proof. We choose (kz,,kgr) € Q and we will test it with the elements (kr,kg) € £4 using the dissipation
condition in order to show that (kr,kg) € Ga.

Step 1: recovering Rankine-Hugoniot condition

We choose (kr,,kr) = (ar,ar). We then have

0 < qL(kL,l%L) — qR(kR, ];R) = sign(kL — aL)HL(kL) — sign(kR — aR)HR(kR).

Since kr, = ar and kr > ag, we recover that Hy(kr) > Hg(kg). In the same way, taking (kr,kr) =
(c,cr), we get Hr (k) < Hr(kg), which implies that

Hy(kr) = Hr(kgr).

Step 2: Hp(kz) = Hr(kr) >
We choose (kr,kr) = ( e, D) and by contradiction, we assume that

HL(]{IL) = HR(]{IR) < A= HL(IEL) = HL(IER).

Since - -
Hp(kp) = Hp(ky) > H(kr) = Hp (kL),

we deduce that kz < kr. In the same way, we get kg > kg. Using that
0< QL(]CL,]%L) - qR(kR, ];R) = sign(kL - ];L)(HL(]{L) — A) — sign(kR — ];R)(HR(kR) — A) <0

we get a contradiction.

Step 3: HL_(kL) = HR(kR) = FA(kL, kR)
We choose (kr,kr) = (p7,pa) and by contradiction, we assume that

HR(kR) =HL(kL)>A and HL(/CL)>HZF(]€L) and HR(kR)>H§(]€R)

Using that Hp(ky) = Hy (kL) > A = Hy (kz), we deduce that kr < k. In the same way, we have
kr > kr. This implies that

0 < qr(kr, kL) — qr(kr, kr) = sign(k — k)(Hy (k) — A) — sign(kr — kr)(Hr(kr) — A) <0

which is a contradiction. O

General junction condition for SCL. We now explain how the Scalar Conservation Law (11) should
be treated. Following the approach of [6], the idea to understand this problem is to study two half-space
problems for two given Dirichlet boundary condition (kr, kg),

pt+Hp(p)e =0 ifz<0 pt+ Hr(p)e =0 ifx>0
p(t,07) = kL(t) p(t,07) = kr(t) (17)
p(0,2) = po(z) forxz <O p(0,2) = po(z) forz >0

where the couple of boundary conditions (kL (t), kr(t)) satisfies the following transmission condition

Hy(p(t,0-)) = Hr(p(t,0+)) = Fo(kL(t), kr(t)). (18)

Moreover, the Dirichlet boundary conditions in (17) have to be understood in the sense of Bardos-Leroux-
Nedelec (see [9]), i.e.

Hi(p(t,0-)) = g"=(p(t,0-), kL (1)), Hr(p(t,0+)) = g% (kr(t), p(t,04)) for a.e. te (0,T)
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where for a general Hamiltonian H, g is the Godunov flux defined by
9" (p1,p2) = { mingepy, p,) H(p) i p1<p2

MaXperp, p,] H(p) if p2 < p1.

We say that a solution to (17)-(18) is a Fy-admissible solution to (11).

In our specific setting, due to the monotonicity of Fy, for any couple (p”, pf*) € R? verifying Hy (p") =
Hp(pf) there exists a unique value F(pY, p®) € R such that there exists (kr,kr) € R? satisfying
Fo(kr,kr) = F(p", p%) and (18) with p(¢,07) = pl and p(t,0%) = pf (see [7] and [6]). Moreover,
one can show (the reader can try to check it directly, but this result will be addressed in a much more
generality in a future work) that

F(p(t,07), p(t,07)) = max(Ar,, H[ (p(t,07)), Hg (p(t,07))),

where Ap, is constructed in Lemma 2.9 below. Then, solving (18) rewrites as

HR(p(t,Oi)) = HL(p(tvoJr)) = FAFO (p(t707)7p(t70+)).

which is exactly the junction condition that p must satisfy in (8).
We then define the solution of (11) as follow.

Definition 2.8 (Definition of solutions to (11)). We say that p € L*((0,T) x R) is a Fy-admissible
solution to (11) if p is a Gy -entropy solution to (8) with Af, defined in Lemma 2.9.

2.3 Construction of the flux limiter Ap,

In this section, given a desired junction condition Fy satisfying (10), we want to define the relaxed junction
condition such that the weak viscosity solution to (9) satisfies the relaxed junction condition strongly.
This junction condition is of the form Fa, (see (4)), where the constant Ap, depends on Fy and is
defined as the unique constant such that there exists p = (i, pr) such that

Ap, = Fo(p) = Hy (br) = Hp (bL).
More precisely, we have the following lemma (see also [23, Lemma 2.13]):

Lemma 2.9 (Definition of the flux limiter Ap,). Let Fy and H,, o = L, R satisfy respectively (10) and
(2). We denote by
Hy := max min H,(p) = max(H(br), Hr(br)),

a=L,

where we recall that by is the point of minimum of Hy.
Let br be the mazimal p such that Hr(p) = Ho, and by, be the minimal p such that Hy(p) = Ho. If
Fo(br,br) < Hy, we set Ap, = Hy. If Fy(br,br) = Hy, then we define the set

A= {XeR,3p = (pr,Pr) 5.t. A = Fo(p) = Hp (br) = Hy (P)}-
Then A is non-empty and is reduced to a singleton. We denote by Ap, the unique constant such that
A ={Ap,}.
Moreover, if Fy = Fa with A € [Hy,0], then Ap, = A.
Proof. Step 1: A is non empty. Given A > Hy, we define p) such that
HE (py) = HE; (0R) = M.

For A = Hy, we set
Ho.—  1im A
Do ,\—>(HO)+pO‘

11



which satisfies pgo = bg and pf‘) = by. In particular, the map \ — pf‘% is continuous and increasing,
while the map A — p% is continuous and decreasing. Since F{ is non-decreasing in the first variable and
non-increasing in the second one, the map A — Fy (p%, pj\%) is non-increasing.

We then define the application K : A — Fy(p},pR) — A. When Fo(pfo,pgo) = Fy(br,br) = Hy, we get
that K (Hp) > 0. Using the fact of A — Fy(p},pk) is non-increasing, we also have

K()\) < Fo(l_)L, Z_)R) - A
and so for A large enough, we have K(\) < 0. By continuity, this implies that there exists X > Hj such
that K(\) = 0. We set p = (p},p}) and we get
Fo(p) = X = Hp (pr) = Hf, (bR),
ie. AeA.
Step 2: A is reduced to a singleton. Assume that there exists A;, Ao € A such that A; > Ay. Hence,
there exists p% and p’ such that
M = Fo(pp,pR) = Hp (01) = Hi (pR) > do = Fo(p1,pR) = H (07) = Hf; (%)
In particular, we have p} < p? and pk > p%. By monotonicity of Fp, this implies that

Fo(pp.pR) < Fo(pi. pR),

which is a contradiction. O

As explained before, the solution of (9) is satisfied in a weak sense for general Fy. Nevertheless, it
is possible to relax the junction condition in order to make the solution satisfy the junction condition
strongly. More precisely, we have the following theorem, given in [23, Proposition 2.12].

Theorem 2.10 (General junction conditions reduce to flux limited ones). Assume that Hy and Hp
satisfy (2) and that Fy satisfies (10). Then u is a continuous weak viscosity solution to (9), if and only
if u is a strong viscosity solution to (1) with Fa for A := Ag, defined above in Lemma 2.9.

3 Numerical schemes

3.1 Numerical scheme for the Hamilton-Jacobi equation (9)

In this subsection, we describe the numerical scheme used to solve the Hamilton-Jacobi equation (9).
Given a time step At > 0 and a space step Az > 0, we consider the discrete time ¢,, = nAt for n € N and
the discrete point z; = jAxz for j € Z. We denote by u} the numerical approximation of u(t,,z;). In
order to discretize (9), we will use a Godunov approximation. More precisely, we introduce the following
Godunov numerical Hamiltonians, for & = L, R
g (p™,p") = { mingepy- p+) Ha(p) if p~ <p*
’ maxpe[p*,p*] Ha(p) if p+ <p
We remark that g« are non-decreasing in the first variable and non-increasing in the second one. More-
over, gHe(p,p) = Hy(p) for a = R, L. For j € Z, we define

no_ u?‘*'l - u;l
iy Az
The numerical scheme is then given by
umtl
J J Hy, n n _ . _
At +g (pjfévpj+%) =0 fOI'j < 1,
umtl —
J J Hg n n _ : 19
] Y (pjf%,pﬁ%) =0 forj=>1, (19)
u’?“ —u”
J J n n _ .
At +FO (pjfévqur%) =0 fOI‘j—



completed with the initial condition

ul = ug(jAz) forjeZ.

9=
For A = (At, Ax), let

Tt —
UA(t,.I) = Z ﬂ[tn,tn+1)(t)ﬂ[xj,zj+1)(x) U’? + %({E - In)

neN z
We then have the following convergence result.

Theorem 3.1 (Numerical approximation for Hamilton-Jacobi equations). Let T' > 0 and uo be Lipschitz
continuous. We assume that the H, satisfy (2) and Fy satisfies (10) or is of the form (4). Let ul} be the
solution of the scheme (19) and u be the solution of the Hamilton-Jacobi equation (1) with the relazed
junction condition Far . Let Ly := max(Lu,, Lug, |[0p, Follco, ||0p, Folleo) where Ly, is the Lipschitz
constant of H,. We also assume that the CFL condition

Ax
— = 2L 2
ST (20)

holds. Then ua converges locally uniformly to u.
Proof. Recalling that by Theorem 2.10, the solution to (1) with A = Ap, is also the solution to (9), the
proof is a consequence of [21, Theorem 1.1 or Theorem 1.2] remarking that the two schemes are identical.

The main difference with the result in [21] is that in that paper, the network is composed of two outgoing
edges, but it’s rather easy to come back to this setting. Indeed, if we set, for z > 0,

o _fu(t,—z) if a=L
v (t,x)—{ u(t,z) if a=R

then v? is solution of

{ v + Ho(v,) = 0 in (0,7) x (0,4+), @ =R, L (21)

v + Fy(vE,vf)y =0 in (0,T) x {0}

where Hp(p) = Hrp(—p), Hr = Hg, Fy(p1,p2) = Fo(—p1,p2). Setting ij’n = u”; and UJR’n = uf} for

j = 0, an easy computation, using that g"%(py,p2) = g% (—p2, —p1), shows that v"

;7 1s solution of the
following scheme

a,n+1 a,n

% +gl (p?ﬁn%’p?fg) =0 forj>1, «a=L,R
antl _ am
% + F, (pfjrn%’pﬁé) =0 forj=0, oa=L,R, with vé*” _ v(l)%,n
where
am Ui 0"
i S VI (22)

On the contrary, the scheme proposed in [21] to solve (21) writes

,Uf_lﬂH-l — T
% + max (H; (pj"_”l) JH <p]04+nl)) =0 forjeN, a=1,2,
2 2
vq,nJrl — "
L R (P ) = 0 forj=0, a=1,2 with ot =e2"
2 2

(23)
The rest of the proof is then a direct consequence of the following lemma which proof is postponed.
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Lemma 3.2 (Equivalent formulation of the Godunov flux). For a general convex hamiltonian H, we
have

9" (p1,p2) = max(H™ (p1), H™ (p2)).

This shows that the two schemes for (21) are equivalent and so, using [21, Theorem 1.1 or Theorem 1.2],

this shows that ”v;"" converges to v®” locally uniformly and so, by a change of variable, ”ul" converges

to u” in the sense of Theorem 3.1. This ends the proof of the theorem. o
It remains to show the lemma.

Proof of Lemma 3.2. We denote by py the minimum point of H so that H is non-increasing on (—o0, pg]
and non-decreasing on [pg, +20) and we distinguish several cases:
Case 1: p; < po < p2. In that case H" (p1) = H(po) = H (p2) and

9" (p1,p2) = min H = H(po) = max(H " (p1), H (p2)).

[p1,p2]

Case 2: py < p1 < p2. In that case H (p1) = H(p1), H (p2) = H(po) and

9" (p1,p2) = min H = H(p1) = max(H " (p1), H (p2)).

[p1,p2]
Case 3: p; < o. This case is similar to the previous one.

p p
Case 4: py < po < p1. In that case H (p1) = H(p1), H (p2) = H(p2) and

max(H (p1), H(p2)) = max H = g™ (p1,po).

[p2,p1]

Case 5: py < p2 < p1. In that case H (p1) = H(p1), H (p2) = H(po) and

max(H (p1), H(po)) = H(p1) = max H = gH(pl,m)'

Pp2,p1

Case 6: p2 < p1 < po. This case is similar to the previous one. O

3.2 Numerical scheme for the scalar conservation law equation (11)

Given uy satisfying (3), we consider pg := (ug), and its discretized version

po(y) dy-

0 B ug-)Jrl — ug) _ UO($j+1) _ UO(CCj) B i Tjt1
Pj+12 = Az Az T Az

;
We now want to describe the numerical scheme for (11). This scheme is directly derived from the scheme
(19). Indeed, recalling the definition of p, , in (22), we can write

At
n+l _  n = H n (e _ H n n : o
e N (g . (pﬂ%,pﬁ%) gr (pj,%,pﬂ% ) for j < -2

At
n+l _ . n = Hp () n _ _Hp n 7
L N (g " (pﬂ%,pﬂg) g (pj,%,pﬂ%

At
+1 _ H -
P =y ap (07 (o) ~ o (oypfy)) ford
> for j = —1.

At
n+l _ , n n n H n n
Pjpt =P T Ay (FO (pj+§vpj+%> -9 (pj—%’pj-#%)

For notations’ sake, we also denote by F;" the right-hand side of the above scheme such that for any n, j,

we have
1
p?:uz = ]'—gn(P?—l/mP?+1/2’p?+3/2)-
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We denote A = (Az, At) and

pA = Z ZP?+1/2]1[tn,tn+1)X[Ijvxﬁl)' %)
neN jeZ

For this scheme we have the following convergence result

Theorem 3.3 (Numerical approximation for SCL). Let ug satisfy (3), Hr r satisfy (2) and Fy satisfy
(10). Suppose also that the CFL condition (20) is satisfied and that

At o

o<, 2
Az 2 (26)

where M = max(|arl,|cL|, larl|,|cr|) and § is introduced in (2). Then (pa)a converges almost everywhere
as A —> (0,0) to p € L™, the unique solution to (8), in the sense of Definition 2.3, with A = Ap, and
Ap, given in Lemma 2.9.

Remark. This result is rather classical if we take Fy := Fy for A € [Hp, 0] in the numerical scheme (24)
and the proof of convergence has been written in a similar setting in various sources including [3], [5] and
[31]. The result we present here is stronger. Indeed, we put the desired condition Fy in the scheme and
we show that the numerical solution converges to the solution with the relaxed junction condition F4 Fo-
The strategy of the proof is similar to the classical case, but for completeness’ sake we rewrite it here,
putting most of the heavy computations in Appendix.

We first present the different lemmas that we piece together in order to get Theorem 3.3.
Lemma 3.4. (Monotonicity and stability)
Let ug satisfy (3), Hp r satisfy (2) and Fy satisfy (10). Suppose also that the CFL condition (20) is

satisfied. Then the numerical scheme (24) is monotone. That is to say Fi' is non-decreasing with respect
to each of its three variables. Furthermore, the scheme is stable, namely we have

TN
Yn e N, vj e 27 p;}+1/2 c { [aLacL] lf] x 1 (27)

[aR,cR] lf] = 0.

Proof. We begin to prove the monotonicity. Fix n,j. Recall that the Godunov flux g and the junction
condition Fy are non-decreasing with respect to their first argument and non-increasing with respect to
their second one. Then,

Yo, we R, u— FJ'(u,v,w) is non-decreasing,

Vu,v € R, w— FJ'(u,v,w) is non-decreasing.

Notice that, for a given H, the derivative of the Godunov flux g is bounded by the Lipschitz constant
LH of H

Op 9" (p1,p2) € [0; L] 0pyg™ (p1,p2) € [~ L, 0]

Recalling that Ly := max(La,, Layg, ||0p, Fo(p1, p2)|loo, [|0p, Fo(P1, P2)||0), We also have

Op Fo(p1,p2) € [0, Ly]  0p, Fo(p1,p2) € [—L,0].

Then
n At
v F; (u,v,w) 21— A, (Ly — (—Ly))
Ay
=1—-2— .
1 2Am Ly

Since the CFL condition (20) is satisfied, we recover that v — F7*(u, v, w) is non-decreasing.
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We now prove the stability result by induction on n. First, by assumption (3), the property (27) is true
for n = 0. Fix n € N such that (27) holds true for n. We recall that

1
p?:uz = ]'—gn(P?—1/2ap?+1/2ap?+3/2)-

If 5 = 1, by monotonicity of the scheme, we then have

n " At
piile = Filar,ar,ar) = ap — ~, (H(ar) — H(ar)) = ar

and At
p;lill/Q < ]:;-l(CR,CR,CR) = CR — E(H(CR) — H(CR)) = CR.

In the same way, if 7 = 0, we get

n+1 At

Piiie = FilaL,ar,ar) = ar — E(H(GR) —Fy(ar,ar)) = ar

and
At
ity < Fjlen,crocr) = cr — A, (H(cr) = Foler, cr)) = cr,

where we used Assumption (10) to get that Fy(ar,ar) = Fo(cr,cr) = 0. Using the same arguments, we
get also the result for j < 1. This ends the proof of the lemma. O

Recall that, associated to the entropy p — |p — k|, is the entropy flux
pr—sign(p — k) - {H(p) — H(k)} = H(p ~ k) — H(p v k)

where we used the notation, for any a,b € R, a v b = max(a,b) and a A b = min(a,b). This naturally
suggests the following result.

Lemma 3.5 (Discrete entropy inequalities). Let ug satisfy (3), Hp r satisfy (2) and Fy satisfy (10).
Suppose also that the CFL condition (20) is satisfied. Let T > 0 and (pa)a be defined by (25). For any
(kr,kgr) € Q, writing ka = kplj<_1 + krl;s0, we set

gHL (p;'lfl/Q \4 kL7p;'l+1/2 Vv kL) - gHL (p;‘lfl/g N kL7p?+1/2 N kL) Zf .7
(I);l(kA) = gHR (pg'il/g \% kR5p;L+1/2 Vv kR) - gHR(p?,1/2 A kR5p;L+1/2 A kR) Zf

j>1 (28)
FO(p?_l/g Vv kLap?_H/g Vv kR) - FO(p?_l/g A kLap?_H/g A kR) Zf J=0.
We also set
Pa(ka) = Z Z QT (ka) (e, 40 1) x[200541)
neN jeZ
Then, for any ¢ € CL((0,T) x R) non-negative, we have, with pa defined in (25),
T
[ [ pa = kalo + @a(ka)on) dido + [ [pa(0.2) ~ ksl 6(0.2) do
o Jr R
T
+/ Rp,(kr,kr)o(t,0) dt = O(Az) + O(Ab), (29)
0

where RFo(kLukR) = |HL(]€L) — Fo(kL,kR” + |HR(kR) - FQ(kL,kR)|.

Remark. The proof of this lemma is pretty straightforward and derives directly from the monotonicity
proven in Lemma 3.4. Since it contains long computations, we postponed it to the Apppendix.

Finally, in order to get the desired convergence, we also need the compactness of (pa)a. We use the
following lemma, which proof is also postponed to the Appendix.
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Lemma 3.6 (Compactness of pa). Let ug satisfy (3), Hr r satisfy (2) and Fy satisfy (10). For any
I, let (Ay); verify the CFL condition (20) and (26). Then, there exists p € L® and a subsequence also
denoted (pa,)1 such that

pA, — p  a.e. as A — 0.

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. First, using Lemma 3.6, we take a subsequence of pa that converges to p € L®
e.. We now want to prove that p is a solution to (8) in the sense of Definition 2.3. The first point of
Definition 2.3 is classical and we skip it.

Let ¢ € C¥([0,T) x R™) be non-negative and (kr,kr) € Q. We first want to prove that

/ /7 DA (ka %dtdx—»/ /7 sign(p — kr) [Hr(p) — Hr (k)] ¢ dt da. (30)

Let x < 0 and t € [0,T) such that pa(t,z) — p. Then, for any Az, there exists j < —1 such that
pa(t,x) = p?+1/2 and

Ba(ka)(t, ) =g (pa(t,x — Az) v kp,pa(t,z) v kL) — g2 (pa(t,x — Az) A kp,pa(t,z) A kL)
=g"L (pa(t,x — Ax) v kp,pa(t,z) v kL) L(pa(t,x) v kr,palt,z) v kr)
+sign(pa(t, ) — kr) [Ho(pa(t, x)) — Hp(kL)]

+ 9" (palt,x) A kp,palt,x) A ke) — g™ (pa(t,z — Az) Ak, palt, ) A ki)

g
g

Using the Lipschitz bound on the Godunov flux, we recover:

T T
/ / D (ka)d, dt do = / / sign(pa — kr) [Hi(pa) — Hp (k)] ¢ dt dz + T
0 - 0 -

where
T
7| < 2LH/O /7 pa(t, ) — pa(t o — Az)| |¢u(t, 2)| dt do
T
< 2LH/ / lpa(t, ). (t, ) — pa(t,x — Ax)d, (t, x)| dt dx
o _
T
< 2L'H|:/O /]R* |pA(t7‘r)¢w(t7x) _pA(t,.’II - Ax)¢m(t7$ - A$)| dt dx

T

+ / / Ipa(t,z — Ax)g,(t, ) — pal(t,x — Ax)p,(t,x — Az)| dt dx]
o Jr-

=:T +13.

First, notice that

e[ [

Now, since po — p a.e. and |pads| < C|p.| € L1((0,T) x R), the sequence (pa¢.)a is convergent to
pd in LY((0,T) x R). From Frechet-Kolmogorov Theorem, we recall that

pa(t,z — Aa:)/ Gu(t,y) dy‘ dt dz < 2Lyl |pallne||dee|| L1 Ax.

Ax

AlgigOHTAx(P%) — p9zllLi(0,1)x®) = 0,

where Ta, f(z) = f(x — Az). It is then easy to see that Zy = o(1) when A — (0,0). This implies (30).
Then, for ¢ € C*([0,T) x R™), passing to the limit in (29), we get

// lp = ki|¢e +sign(p — ki) [H(p) — Hr(kL)] ¢o + / lpo(x) = kL|(0,2) dz > 0.
(0,T) xR~ R-
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The analogous result holds if ¢ is compactly supported in [0,T") x (0, +o0). Note that, when treating this
case, we need to consider a Ag such that for any Az < Ag, pa(t,z) = p?+1/2 with j > 1. We can however

choose Az to be small enough such that ¢ = 0 on (0, Az) and recover the analogous inequalities. So the
second condition in Definition 2.3 is satisfied.

We now want to prove the third point. Let (kz,kr) € Eap,, where E4,, is defined in (16). In particular,
we have Ry, (kL,kr) = 0. Using the same reasoning as before with ¢ € C((0,T) x R), we get, using the
notation H(x,p) := Hr(p) - Ig- (z) + Hr(p) - Lg+(x) and k(z) := kr, - Lg- (z) + kg - 1g+(x), that

T T
/ / DA (kp)p, dt dz —> / / sign(p — k) [H(x, p) — H(x, k)] ¢ dt dz
0o JR 0 JR\{0}

and

// |P—k|¢t+sign(P—k) [H(l‘,p) _,H(ka)] ¢z =0
(0,T)xR

Using a sequence of test functions focusing on x = 0, we then recover

T
| asop.ke) ~ an(imp. k)] 62,0 dt > o
0
where the ¢, are defined in Lemma 2.7. Then, for almost every t,

qr.(vep, kL) — qr(vrp, kr) = 0.

Using Lemma 2.7 and the fact that (yzp,7rp) € Q a.e. on (0,T), we deduce that (yrp,Yrp) € Gay, a-e.
on (0,7T) and we recover that p satisfies the third condition of Definition 2.3. Finally the uniqueness of
p follows from the first point of Theorem 2.5.

O

We now state and prove the following result.

Lemma 3.7 (Completeness of G4). Under the assumptions of Proposition 2.6, the L!-dissipative germ
Ga is complete.

Proof of Lemma 8.7. Consider any k = (kr, kr) € Q. In order to show the completeness of G4, we simply
have to show the existence of a Ga-entropy solution to (8) with initial data po = kr1(—c0,0) + kRr1[0,+00)-
The existence of such a solution follows from the construction of the function p in the proof of Theorem
3.3. This insures that G4 is complete and ends the proof. O

4 Proof of Theorem 1.1 and Theorem 1.2 using numerical schemes

We are now able to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Fix A := (At,Ax) satisfying the CFL condition (20) and (26). Denote by
(u}‘)neN,jeZ the solution of the scheme (19). Recall that

uA(t,x) = Z ]l[tn,tn+1)(t)]l[xj,Ij+1)(x) [u? + 7T177(x — wn)

neN

Then, by construction (see (22)), for any A,

(UA)JC =pA

where pa is the solution of the scheme (24) with pg as initial datum. Let ¢ € CL([0, +c0) x R). Then we

have
//uAgbx dtdx = —//pAqbdtd:c.
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Using Theorem 3.1, we know that the scheme (19) with ug as initial datum converges locally uniformly
to u the unique weak viscosity solution to (9). Furthermore, ¢, € C%([0, +o0) x R) so we can pass to the
limit in the left-hand side as A — (0, 0) satisfying the CFL condition to get

//uA¢E dtdx—»//u¢w dtdz.

On the other hand, using Theorem 3.3, we get that pa converges a.e. to p the unique solution of (11)
in the sense of Definition 2.3. Also, thanks to Lemma 3.4, we know that (pa)a is uniformly bounded.
By dominated convergence, we also pass to the limit in the right-hand side and get that, for any test

function ¢ € C1([0, +0) x R),
//ugbx dtdzr = — //p(bdtd:r.
This gives the desired result. O

The proof of Theorem 1.1 can be obtained exactly in the same way.

5 An alternative proof of Theorem 1.1 using semi-algebraic func-
tions

Let u be the viscosity solution of (1) for A € [Hp,0] and p be defined by

p(t,x) = u(t, ). (31)

We would like to give a more direct proof of Theorem 1.1 and show that p is an entropy solution of (8).
It is easy to check that p is already an entropy solution outside {z = 0} (see for instance [14, 22]). We
then focus on the junction condition at z = 0. In all this section, we assume that Hy g satisfy (2). We
denote by pr, and pr the strong traces of p at 0 (see [30] and (12)): pr := yLp and pr := Yrp-

We first note that formally

Hr(ug(t,07)) = Hg(u.(t,07)) vt > 0. (32)
Equality (32) can be rewritten rigorously as

Lemma 5.1 (The Rankine-Hugoniot condition). We have

Hi(po(t)) = Hr(pr(t))  ace. t >0, (33)

This common value is equal to —u(t,0).

Equality (33) makes sense since pq(t,-) (and then also Hq(p(t,-)) have strong traces at = 0. Note also
that equality (33) is nothing else the Rankine-Hugoniot condition at x = 0.

Proof of Lemma (5.1). For any £ € C%((0,+00)) and h > 0 small, we have, after integrating the equation
of u which is satisfied a.e. (since u is Lipschitz continuous)

00 h
[ EWHRua(1,0) dedt =17 [ [ 0ute,) daat,
(t,2)e(0,400) % (0,h) 0 0

By continuity of u, the right-hand side converges, as h — 07, to fooo &' (t)u(t,0)dt. The left-hand side can
be rewritten as

0 h
w [ eHR(ptt) dode

and converges to fooo E(t)Hr(pr(t)) dt as h — 0% (where pg(t) is the strong trace of p at 07). This
implies that

/ " W Hnlon(t)) dt = / " (e, 0yt
0 0
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In the same way, we have . .
| o) ar= [ ¢ ouieo
0 0

This shows (33). Note in addition that, as u is Lipschitz continuous,

| €m0 == [ a0 - - [ e pa0) @

for « = L, R, which proves that the common value in (33) is equal to —u(t, 0). O

We continue by showing that the traces of p satisfy the first line in the second equivalent definition of G4
in (13).

Lemma 5.2 (p satisfies the first property of the germ Ga). Assume that u is a solution to (1). Then p
defined by (31) satisfies
Hr(pr(t)) = A a.e.t>0.

Proof. We know by [23, Theorem 2.11] that w(t) := u(t,0) is a viscosity subsolution of w; + A < 0. Thus
it satisfies w(t + 7) — w(t) < —Ar for any t,7 > 0. Let us integrate the equation satisfied by u against
the test function (s,y) — (Th) ™ Lt 41 x[—h,0] (S, ¥) for 7,h > 0. We have, by Lipschitz continuity of u,

0= [ ' [ (o) + Halus s,

0 t+1 0
— () / (ult + 1) — ult, y))dy + (rh)~" / / L (pls. ) dyds

—h

t+7 0
< ult+0) —u(t0) + C2 o+ ()~ [ ' | Hupts. )y

h t+1 0
<-A+ C; + (Th)fl/ / Hp(p(s,y))dyds.
t —h

We let h — 07 and obtain o
[ Hulo(s)ds = ar
t
which gives the claim. O

Lemma 5.3 (The traces are in the germ). Assume that the Lipschitz continuous viscosity solution u to
(1) satisfies

for a.e. te (0,T), u(t,-) has a left derivative u,(t,07) and a right derivative u,(t,0%) at 0.  (34)

Then
(or(t), pr(t)) = (ur(t,07),us(t,07)) € Ga for a.e. t=0. (35)

Remark. The forthcoming paper [28] shows that (34) actually holds in a very general set-up (and in
particular under our standing conditions). Below we prove it for semi-algebraic data only by using a
representation formula.

Proof. Step 1: proof of equality in (35)
Using the definition of strong traces, we have

T
ess- lim lpL(t) — p(t, =) + [pr(t) — p(t, x)| dt = 0. (36)
xr—> 0
This implies that
T
ess- 11I(I)1+ loL(t) —ug(t, —)| + |pr(t) — us(t, x)| dt = 0.
xr— 0
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Therefore, for any € > 0 there exists . > 0 such that

T
/ lor(t) — ux(t, —x)| + |pr(t) —ux(t,x)| dt <e forae. xe(0,x).
0

Thus, after integration in space, we get
T
/ lor (W) + u(t, —z) — u(t,0)| + |pr(t)z — u(t,x) + u(t,0)|dt < ex forall xe€ (0,z).
0

Using that w is Lipschitz continuous, assumption (34) and Lebesgue Theorem, we get therefore

T T
t,—z) —u(t,0 t,x) —u(t,0
/ pL(t) — lim u( ) JJ) u( ) )‘ + / pR(t) — lim w dt = 0.
0 z—0+ — 0 rz—0+t T
This means that, for a.e. t,
- u(t, —z) — u(t,0) - o u(t, z) — u(t,0) _
Uy (£,07) —xlir& — = pr(t) and ug(t,07) = xlir& - = pr(t). (37)

Step 2: proof of the inclusion in (35)

We already know that —u.(¢,0) = Hp(pr(t)) = Hr(pr(t)) = A for a.e. time ¢ (see Lemma 5.1 and
Lemma 5.2). Let us fix such a time ¢ > 0. Our aim is to check that (pr(t), pr(t)) € G4a. We argue by
contradiction, assuming that

Hi(pr(t) > A, Hi(pr(t)) < Ho(pr(t)) and  Hp(pr(t)) < Hr(pr(t)).

Let us fix € > 0 so small that A := Hr(pr(t)) —e > A. We then choose k as the smallest solution
to Hp(k7) := X and k%, as the largest solution to Hgr(k%) := A. As Hp and Hp are convex and
Hi(pr(t)) < H(pr(t)) and Hg (pr(t)) < Hr(pr(t)), we have k5 > pr(t) and k%, < pgr(t). Moreover,
H/ (k) = min Hy, while Hp (k%) = min Hg. Let us define the map w : R x R —> R by

w(s, ) —u(t,0)+{ kS —As ifx >0

Then w is a test function which is a subsolution of the Hamilton-Jacobi equation (1) because,
Hp(ky) = Hr(kR) = A = —ws
and using A € [Hy, 0], we get
max{A, H; (k7), Hg (k%)} = max{A, min H,, min Hp} = A < X\ = —w,.

Moreover, by (37) and the fact that k7 > pr(t) and k% < pr(t), we get that u(t,z) = w(0,z) if |z| is
small enough. Thus, by finite speed of propagation and comparison, we have u(t + h,0) = w(h,0) for
h > 0 small enough. Therefore

—Hp(pr(t)) = u(t,0) = ws(0,0) = =X = —Hp(pr(t)) + ¢,
which contradicts our assumption. This proves that (pr(t), pr(t)) € Ga. O

We are now ready to give an alternative proof of Theorem 1.1. This proof relies on semi-algebraic
functions. For the reader’s convenience, we recall below some useful facts about semi-algebraic sets and
functions and we refer to [17] for a complete reference (see also [18]).

Remark. We recall that a basic semi-algebraic set is a set defined by a finite number of polynomial
equalities and polynomial inequalities, and a semi-algebraic set is a finite union of basic semi-algebraic
sets. The class SA,, of semi-algebraic subsets of R™ has the following properties:

o All algebraic subsets of R™ (i.e., zeros of a finite number of polynomial equalities) are in SA,,.
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e SA, is stable by finite intersection, finite union and taking complement.
e The cartesian products of semi-algebraic sets are semi-algebraic.

e The Tarski-Seidenberg Theorem says that the image by the canonical projection p : R**! — R" of
a semi-algebraic set of R**! is a semi-algebraic set of R™.

e By [17, Proposition 1.12], the closure and the interior of a semi-algebraic subset of R™ are semi-
algebraic.

e By definition, a semi-algebraic map is a map defined on a semi-algebraic set and whose graph is a
semi-algebraic set.

e An important property of semi-algebraic functions is given in [17, Theorem 2.1] (Monotonicity
Theorem): If f : (a,b) — R is semi-algebraic, then there exists a finite subdivision a = ag < a1 <
.-+ < ar = b such that, on each interval (a;,a;+1), f is continuous and either constant or strictly
monotone.

e An important consequence of the monotonicity Theorem is given in [17, Lemma 6.1]: left and right
derivatives of a continuous semi-algebraic map on an open interval exist (with values in R u {+00}).

Sketch of proof of Theorem 1.1. As Theorem 1.1 has already been established by using numerical schemes,
we only sketch the proof. Recall that u is a viscosity solution of (1). We have to prove that p := u, is an
entropy solution to (8). Following for instance [14, 22], we know that p solves the equation in {z # 0}.
It remains to check the junction condition at z = 0. From Lemma 5.3, we just need to show that the left
and right derivatives u, (¢,07) and u(¢,0") are well defined for a.e. time ¢. To do so we will use a rep-
resentation formula. Using this representation formula, we show the existence of these derivatives when
the initial datum and hamiltonians are semi-algebraic, then conclude by an approximation argument.

Step 1: representation formula of the solution
In order to use a representation formula, we reverse the time direction of trajectories, and for this reason,
we set 4(t,x) = uw(T —t,z) and

La(q) = sup (—qp — Ha(p))

where (with the same notation), we denote by H, : R — R a C, strictly convex and superlinear extension
of H, from the interval [aq, o] to the whole line R, for o = L, R. This implies that L, : R — R is also
C1, strictly convex and superlinear. Let us now define
Li(q) if <0
L(z,q) ==X —A if =0
Lr(q) if >0

Following [23, Proposition 6.3], for to < T', we have
T
ito,0) = inf [ LO3(0) de+ un((T),
v(to)=z0 J¢,
where the infimum is taken over the trajectories v € H'([to, T],R).

If 4 is optimal for z, then ¥ is a straight-line on each interval where it does not vanish (by optimality
conditions using L,, strictly convex). As a consequence, the minimization problem boils down to minimize
for tg < T and if, for instance zg < O:

N : : —x
w(tg, xo) = mln{rynglgl(T —to)Lr (3; — tg) + up(y),

en Bl =00 (F0 ) = A )7 = (£ )+ o
3 O — X Yy — O
tocm B 7 o1~ t0) L2 < - to) —A(m—m) + (T =12)Le (T - ) +uo(y)}
= min{ f1(z0), f2(x0), f3(z0)}, (38)
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where f1 corresponds to trajectories ending at y < 0 while fs (resp. f3) corresponds to trajectories ending
at y = 0 (resp. y < 0) and remaining in 2 = 0 during the time interval [71, 72]. Notice that (38) is still
true for zg = 0, with each minimum replaced by an infimum.

Step 2: argument for semi-algebraic data

Here we assume that the data (Lg, Ly and ug) are semi-algebraic. We claim that the map (to, ) given
by (38) is also semi-algebraic. Let us mention that in the case of analytic data, Trélat proved in [33, 34]
that the solution to the Hamilton-Jacobi equation is subanalytic. To prove our claim, let us show for
instance that fs is semi-algebraic. Let us define the semi-algebraic set A by

As :={(t0,x0,7'1,7'2,y,z,u,v) eRE 0<ty<m <1 <T, (1 —to)u=120 <0, (T —7)v =y,
y=0, 2> (n—to)Lr(~u) — A(re — 1) + (' — 72) Lr(v) + Uo(y)}'

Let Cy denotes the projection of Az onto the components (tg,xo,z). Then, by the Tarski-Seidenberg
Theorem, Cs is a semi-algebraic set. Note that Cs is also, by definition, the epigraph of fa. Therefore the
subgraph of fo (which is the closure of the complement of Cs) and its graph (intersection of the epigraph
and subgraph) are also semi-algebraic. Thus f; is a semi-algebraic map. By stability of semi-algebraic
sets by finite union, we deduce that (to,-) is semi-algebraic on (—0,0). Moreover the function (tp,-)
is continuous at xg = 0. Hence (o, -) is also semi-algebraic on (—o0,0]. A similar argument shows that
it is also semi-algebraic on [0, 00). Because the union of semi-algebraic sets is semi-algebraic, we deduce
that @(to,-) is semi-algebraic on R. This implies that u(¢,-) is semi-algebraic on R for any ¢ € (0,7).
Using [17, Lemma 6.1], we then deduce that the limits

th) —u(t t,h) — ult
uz(t,07) := ,}i%& w and g (t,0%) ;= hl_i)%ﬁ w
exist at any time ¢ € (0,T). Therefore (34) holds. We can then conclude by Lemma 5.3 that (pr(t), pr(t)) €
Gy for ae. te[0,T].

Step 3: argument in the general case

One can check! that it is possible to approximate our data Hy,, Hg, ug by semi-algebraic data HS, H$,
and u§ satisfying our standing assumptions (with locally uniform convexity for H§ and HF). By the
previous step, we know that, if u® is the solution to the HJ equation associated with these perturbed
data, then p® = u: solves the associated SCL. To conclude, we only need to pass to the limit: indeed,
u® converges locally uniformly to the solution u of the HJ equation (1), while p® converges in L, to
the entropy solution p of (8). We infer therefore that u,, which is the weak limit of ug, is equal to the

x)

solution p of (8). O

6 Appendix

6.1 Proof of the discrete entropy inequalities for the SCL numerical scheme

Before proving that the scheme satisfies the discrete entropy inequalities stated in Lemma 3.5, we prove
the following discrete entropy inequalities, independent of the test function.

Lemma 6.1 (First discrete entropy inequalities). The numerical scheme (24) satisfies the following
discrete entropy inequalities: for alln e N, j e N and (kr,kr) € Q, set ka = krlj<—1 + krl;z0. Then

Ry,
il ifi=—1
N, I
n+1 n n n
|pj:1/2 —kal— |pj+1/2 — kal N (I)j+1(kA) - q)j (ka) < Rg
At Ax = s ifj=0
T
0 otherwise

IThis is the point where the proof is sketchy: the actual construction of H§, H%, and ug requires some work and has to
be done with care.
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where
Ry = |Huo(ko) — Fo(kr,kr)|, a=L,R,

and @7 (ka) is defined in (28).
Proof. Let ke R. Fix n € N, j € Z such that j # 0, —1. We have, using the monotonicity of the scheme,

+1 _ on+l +1
|p?+1/2 — k[ = Pitip VR =P AR

= f?(p?*1/2’p?+1/27p?+3/2) v ]:]n(ku kvk) - -7'—;1(]9?71/27P?+1/2,p?+3/2) A ]:_;l(k, k,k)
< fgn(p?71/2 v kvp?+1/2 v kvp;'l+3/2 v k) — f;l(p?71/2 A kap;'l+1/2 A k,p?+3/2 A k)

= (10 — b+ o (@) — By (1))

This is exactly the third inequality. Now we treat the case j = 0. We have

At
Fo' (ke kr, kr) = kg — — (Hr(kr) = Fo(kz, kr))
Then,
kr = Fjy (Pj,1/2 A kLapj+1/2 A kRaijrg/z AkRr) — Ax (Hr(kr) — Fo(kr,kRr))
At
kr < FQ'(Pf_1jo v KLy Pfiaje V KRy Dfygye v kR) + 20 (HR(kR) — Folkz, kr))"
where a* = max(=+a,0), and we can adapt the previous argument in the following way
|p’f/§1 —kr| = p’f/;l v kr *p%l A kR
= fg(pﬁ1/27p7ll/2ap§/2) Vv kg — fél(pﬁl/gvp?/g,pg/z) A kr
At
S TGP 1y2 v kL, iy v kR Py v kR) + 1 (HR(RR) — Fy(kr, kr))"
At _
— Fo (P 1j0 A kL. Pijg A kR, D5jo A KR) + s (Hr(kr) — Fo(kr, kr))
= (95 — knl + 5 (B (ka) — B (ka) + Rp).
We conclude for the case j = —1 with the same procedure. This ends the proof of the lemma. O

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5. Let ¢ € CL([0,T) x R) be non-negative. For all j € Z and n € N, we define

n 1 Tj+1
¢j+1/2 = E / (b(tn,.’l/') dJI

We also denote by N := inf{n € N,¢,, > T'}. By Lemma 6.1 and since ¢;—l+; > 0 Vn, j, we have
2
n+1 n n+1
Z [|pj:1/2 —kal = [Pfia/0 — kA|] Az ¢j:1/2
JEZ

<= Y [®F1(ka) — D (ka)] AL @7, — (@7 (ka) — B (ka) — Re] At ¢
§#0,—1

— [®F (ka) — @™y (ka) — Ro] At ¢"7),.

Using the Abel’s transformation and rearranging the terms, we get

215t =kl = Ipfrj — hal| Az 67, (39)
JEZ

<|Rr n+1 R n+1 At B (A AL n+l _ n+l =T T

= L¢—1/2 + R¢1/2 + Z J ( A) ¢j+1/2 ¢j_1/2 t 1y + Lo

JEZ
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First, we estimate Zs.

Iz = Z @7 (ka)At [¢?:f/2 ¢n+11/2]

J

JEZ
Tjt1 zj
= Z o7 kA / d(tns1,x)de — / d(tnt1,x) dx
JEL Tj Tj—1
Tj+1
SNt gy [ ltasr0) — dltnsro — M) ds
JEZ T
Tj+1 x
= Z o7 kA / <¢z (tnt1, ) Az + / (x — Ax — §)bux(tns1,y) dy> dz
jeZ T x—Ax
n At [Tt 7
/ O (k) (tn, @) Atp(tni1, ) dz + . OF (ka)— / / (2 — Az — Y)Puu(tni1,y) dy dz
jez Az Tj z—Ax

=/R<I>A(kA)(tn,a:) /tt+ [¢m(t,x)+/j"“ (btx(s,x)ds] dt da

At [T+ [
s ek [ @ Ayt dyds
j Az
JEL Tj

tnt+1 tnt1  flnt1
=/R<I>A(kA)(tn,x) /t ¢I(t,x)dtd:v+/R<I>A(kA)(tn,x)/tn /t Gea (s, 2) ds dt da

n

e VAL [T
s N0ty [ [ @ A= ot dyds

jez
Notice that, if we take (kr,kg) € Q, then there exists a constant C' such that |Pa| < C. Consequently,

tnt1 "
7, =/<I>A(kA)(tn,:c) / 6o (t, ) dtdz + T} + T,
R t

n

where

|I§|<ngp||¢tm(t,-)||L1(At)2, 17| < < Csup ||dan(t, )|l AtAD.

We then have .
n+1
Iy = / DA (ka)(tn,x) / ¢ (t,x) dt doe + O(At2) + O(AtAx). (40)
R t

n

We now estimate Z;. Recalling that Rp, (kr,kgr) := |Hr(kr) — Fo(kr,kr)| + |Hr(kr) — Fo(kr, kr)| =
Rr + Rp, we have

—At[Ruo™i), + Rroy! |
At %o 2
e B [ otnna) ok Ra [ ot 0) o
T_1 o

(RL, + RRr)o(t n+1,O)A$+RL/ 0/ (bz(thrl,y)dyderRR/ 1/0 (bz(tnﬂ,y)dydx}

At
Az

tnt1 n+1 n+1
=RF0(kL,kR)/ ¢(t O)dt+RF0 kL,kR / / S O)dsdt

+—RL/ /% . dydx+—RR/ /% iy dyde

n1
ZZRFO(]{JL,]{IR)/ gf)(t,()) dt+I/ +Il JrIl
t

n
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and there exist a constant C' such that
71| < Cllgello (AL, 1T} + I | < O]l AtA.
This implies that
tn+1
T) = Rp,(kL, kR)/ o(t,0)dt + O(At?) + O(AtAzx). (41)
t

n

Combining (39), (40) and (41), we finally get

tnt1 tnt1
/ B (k) (tn, ) / 60 (t,2) dt da + Ry (kr, kp) / 6(1,0)dt + O(A12) + O(AzAY)
R t t

n n

n+1 7 n+1
Z [|pa++1/2 N kA|] Az 7

JEL

We sum up with respect to 0 < n < N and use once again Abel’s transformation to get

T T
/ / B (ka)(t, ) 6u(t, z) dt do + /O Ri (ke kr)o(t,0) dt + O(AL) + O(A)

Y |75 = kal = 1o — kal | Az 671,
n=0 jeZ
N
n n n+1 N
> Z Z |pj+1/2 — kal [¢j+1/2 N (bj:l/z] Z |pJ+1/2 kA|¢J+1/2Ax + Z |p;+1/2 kA|¢J++1/2Aw'
n=0 jeZ JEZ JEZL

Recalling that ¢ € CP([0,T) x R), we get that ¢§-\E}2 = 0 for all j. Hence

/ /T B (ka)(t,2) bult, z) dt do + /T Riy (ke kr)o(t, 0) dt + O(AL) + O(A)

T4 tn41 Tj+1
Z Z P12 — kA|/ / —¢(t,x)dtde — Z |p]_‘_1/2 kA|/ #(0, x)

n=0 jeZ JEZ

- /R /O D — kale(t,z) dide — /R 1pa (0, 2) — kal6(0, ) da

and we recover the desired discrete entropy inequality. O

6.2 Local compactness for a numerical scheme of a conservation law
The proof of Lemma 3.6 is a direct consequence of the following lemma, stated on one branch:

Proposition 6.2 (Local compactness on one branch). Let f € C?(R) be Lipschitz continuous and such
that
["=6>0. (42)

For n =0, we assume that q 1 is given for j =0, and for j = 1 we assume that q"Jrl1 is solution of the

following scheme
At :
n+l _ n _ = fo.m n P N ) n
qj+% - j+% Az (g (qj+%5qj+%) g (qu%’qur%)) (43)
where we recall that the Godunov fluz associated to f is given by

f _ Jmingep, (f(2)  ifp<q
9'(p.q) {maxzef;}’,] (F) ifp>q

We assume that |q

< M for some M > 0 and for all j,n > 0 and that A = (At, Ax) satisfies

— =2Ly and v :=—§M <1 (44)
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where Ly is the Lipschitz constant of f. We set

qa = Z Z q;’l-i—l/?ﬂ[tn,tnu)X[wjijﬂ)'

neNj=1
Then, there exists p € L* and a subsequence also denoted (qa, )r such that

qa, — p a.e..

Proof Of Lemma 3.6. The proof is a direct consequence of the previous proposition applied on (0, +o0)
t0q+1—pj+1 and on (= O0,0)toq;l_’;:p’ijil for j > 1. =
2 2

The rest of this section is devoted to the proof of Proposition 6.2. The idea consists to use a localized
discrete Oleinik estimate, see Lemma 6.5. To prove this estimate, we first need to prove the following
discrete ODE on the discrete gradient.

Lemma 6.3 (A discrete ODE on the discrete Gradient). For j > 1, let
n._ G2 =4
YT T A
and for j =2

W} = max{0, wi_;,wji, wj}.
Then, for all j = 2 and for allm =0
n+1 an
max(0, wAt ) — W] < *g|ﬁ)?|2- (45)
Proof. First, fix n € N and j > 2. we have
ntl _yn A | fm o Fg o an g o n Fgm o am
w; o = wy (A—x)z [9 (%+1/2ij+3/2) -9 (qj—1/27qj+1/2) -9 (%—1/2an+1/2) +yg (Qj—3/2an—1/2)]

=w; — (A—x)g[gf(qg 12 W AT qj+1/2 + wj +1A33) 2gj(q]‘—1/2’q_j+1/2)

+ g (@1 — W Ay — w}’A!E)]
=: G(U};‘L_l ; wya U};L_'_l y q?*l/Q’ q;-lJrl/Q).

Due to the monotonicity of g/, we know that G is non-decreasing with respect to its first and third
variables. We now prove that G is also non-decreasing with respect to its second variable. Indeed, we
have

At
OwG(a, w,b,q-1,q1) = 1 — s [0197 (q-1 + wAz, q1 + bAZ) — 0297 (g1 — aAz, 1 — wAZ)]

At
>1—-2—Ly >0,
Az

by (44). This implies that

n A~

+1 _ N N
w;l - G(wjflaw w]+17q]+1/27q] 1/2) G(w;l7w;1 ’(UJ aq_]+1/27q] 1/2)

Moreover,

0= G(07 Oa 07 q;l+1/27 q;‘l—l/2) < G(Uj)?a UD? w] aq_]+1/25 q_] 1/2)

This implies that
maX(O7w§L+1) < G(’l[};l7 w;l w] 7qJ+1/27 qJ 1/2) (4‘6)
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For clarity’s sake, we omit the n dependency when not necessary. Set

qn_l/z wr
Q= (Be) . wy= (5)).
J Qj+1/2 J w]

We then get
max(0, w1t — @? 1
Al T (Ax)? [97(Q; + W;Az) = 297 (Q;) + 97 (Q; = W, Aw)]. (47)

We now want to estimate the right hand term. Using (50) in Lemma 6.4 below (with P = Q;, W = W;
and o = £Ax), we have
max(0, w}”l

At

,wn
) =@ <-I=—-(I} +1;) (48)

where for § = =+,

J

1
I :/ (1~ t)Hess(g/)(Q; + tBAW;)W; - Wdt.
0

To estimate I;—r, we use the explicit form of Hess(g/)(Q; + taAxzW;) given in Lemma 6.4 below. We

assume for the moment that wy > (0. We then have

1
If = 5|w§|2/0 A =OLs~@<s@). 1 m>0ydt

where p = p(t) = ¢"_

(IFs tAzw?} and g = q(t) = q;.ﬂr% + tAzw?, and

N[

1
Iy >5|@?|2/0 (L =)L p(qy>+ ),/ (a) <0y A

where p' = p/(t) = ¢

r 1= tAzd? and ¢ = ¢'(t) = 4. - tAzw?. We now want to prove that
2 2

1
L~ @<f@). 5 w)=0) T Lis@)=5+(). fa)<0y = 1 VE€]5, 1], (49)
Since W} > 0, we have ¢’ —p’ = wi Az — 2tAr ] < (1 -2t)Az 0} <0ift > % Moreover, by definition

of p,q,p’,q, we have p’ < p and ¢’ < q.
By contradiction assume that (49) is not satisfied, i.e.

fllp) <0 or  f~(q) = f(p)

fl@)<fr@) or f'(¢)=0.

On the one hand, if f'(p) <0, since ¢’ < p’< p, we deduce that f'(¢’) < 0. Hence f(¢') < f*(p’). Since
p’ < p, we also have f*(p') = inf f and so f(¢’) = inf f which contradicts the fact that f'(¢’) < 0. On
the other hand, if f'(p) > 0 and f~(q) = f(p), then f'(q) < 0. Since ¢’ < g and p’ < p, we then get

F@)=17(d)>f(@=flp)=f"p) = fT®)

which is a contradiction. We then deduce that (49) holds true. This implies that

and

1
1
I > 5|w;?|2/ (1—t)dt = o|a}|.
1/2 8
Notice that this inequality is also true if @} = 0. Injecting this in (48), we get the result. O

It remains to show the following lemma concerning some properties of the Godunov flux.
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Lemma 6.4 (Regularity of the Godunov flux). Define
Ti=A{(p.q) st f7(p) = f(g) > inf f}.

Then g’ is CY(R?\I') and

! ]l ' 7
Ve (pq) = (L PLu-@= ()f(p)>0}>
9 (f’(q) 9>+ (). 1" (2)<0}

Moreover gf is W%*(R2\TD) and for all (p,q) ¢ T

1 0
Hess(¢/)(p,q) = < {r- (q)<f(;n)6‘ p=opf" (p) . e ))
{f(a9)>f+(p),f'(q)<0}

Finally, if P = (p,q) and W = (w,w), then for all « € R and for any subgradient Vg’ (P) € dg7 (P)
(which is a true gradient if P ¢ T')

1
g (P +aW) — g/ (P) = aW - Vg/ (P) + a2/ (1 —t)Hess(g!)(P + taW)W - Wt (50)
0

Proof. We just prove (50), the proof of the other properties being direct consequences of the reformulation
of the Godunov flux, in the convex case, gf(p,q) = max(f*(p), f~(¢)), given in Lemma 3.2.

If w = 0, the result is obvious. Assume that w # 0. We set U = [—~M, M]?\I". Since f is convex, g is
also convex and we have D?g/ > {D?g/},;; - 1y, where {D?g/},;; is the classical derivative part of D?g/
given by Hess(g/). So to prove (50), it’s sufficient to show that 1y (Q 4+ atW) = 1 for a.e. t. To show

this, we claim that for all ¢
Ln (T +tW)=0.

Indeed, if there exists @ = (q1,q2) € I' n (I' + tW) for some ¢ # 0 (assume that w > 0 and ¢ > 0 to fix
the idea, the other cases being similar), then

F (g2 +tw) = [T (g +tw) > (@) = f(q2) > [~ (g2 + tw)

which is a contradiction. This implies that the curve ¢ — @Q + atW can cross I' at most one time and so
1y(Q + atW) =1 for a.e. t. O

Lemma 6.5 (Discrete Oleinik estimate). Under the same assumptions as Proposition 6.2, let Ry > Ry >
0 and Jo > J1 = 2 be such that (J1Az, JoAx) < (Ry, Re). Then for wj defined in Lemma 6.3 and for
0<n<3(Jo—J1), we have

0 1

8 ]1+nilleJ2 nw] = (n + I)At (51)
Remark. We provide here a proof of the localized estimate (51). A similar estimate (with possible different
constants) can also be deduce from the proofs of the known global results. For Godunov flux, it can be
deduced either from [20], or from [11] for an optimal constant with a nice proof (which simply uses the
fact that Godunov scheme is equivalent to solve exactly the Riemann problem (i.e. solve the exact PDE),
and then average the solution). See also [32] for the case of Lax-Friedrichs schemes.

Proof of Lemma 6.5. Step 1: Initial condition
We first check that (51) holds true for n = 0. We have

q; /2= q; /
ir1/2 — 4i—1/2 .
w;l = T Wlth |q_;LJ_F1/2| < M

2M 1
(At§> sup w] (At6> =7 <=-x1
8 je[r]hr]z] A(E 2 2
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and (51) is satisfied for n = 0.
Step 2: The supersolution

Recall that, by Lemma 6.3, we have, with @7 := max(0, w}_;,w},w? ), for j > 2

n+1

max (0, w)") — @ )
’ ) J < _ - A’r_l2 52
Notice that )
1 1 1
—2’— for m=>1
m+1 m m

and then we see immediately that
1 1
n .

(Atg) (n+1)

is a supersolution of the equation with equality in (52), whose w™ is itself a subsolution. Moreover h"
satisfies the equality in the inequality (51) for n = 0.
Step 3: Time evolution and comparison
Now assume that (51) is true at step n > 0 and let us show it is also true at step n + 1.
We then assume that

sup wi < h"

jelJ1+n,Ja—n]

ie.

sup Wi < h".

je[Ji+n+1,Jo—(n+1)]

Then (52) implies that

0
sup max(0, w}”‘l) < sup Q(w}) with @(w) :=w — At |w]?.
JelJi+(n+1),J2—(n+1)] jelJi+n+1,Jo—(n+1)] 8

Because ® is nondecreasing on [O, (At%)fl], and
2M S\N' 1

0< o} < An < (AtZ) = Eho because v <1,

we deduce, using that hA™ is a supersolution, that

1

B(") < { ®(hm) < hnTE if n>1, because h" < gAt%)7

®(5h0%) = R0 < $A0 = ! if n=0 because @) < 3h°
for all j e [J; + (n+ 1), J2 — (n + 1)]. This implies that

sup max(0, w;”l) < Bt
jelJi+(n+1),Jo—(n+1)]

This ends the proof fo the lemma. O

Lemma 6.6. (Total variation estimates)
Assume that for Jo = J1 = 2 and for B >0

qr —q
MgB for all jel[Ji,Js—1]
Az

lg" | <M for all je[J1, 2]
Then we have

Z 0712 — €12l <2M +2B(J2 — J1)Ax
jelJ1,J2—1]

30



and

Z |qjj11/2 - qj—1/2| < 2LJ"E Z |qj+1/2 - qj—1/2| < 2LJ'E -(2M +2B(J2 — J1)Aw).
je[J1+1,J2—1] jelJ1,J2—-1]

where Ly is the Lipschitz constant of f.

Proof. The result easily follows from a picture with worse cases (and from the scheme for the last bound).
We skip the details. This ends the proof of the lemma. O

We are now in a position to prove Proposition 6.2.

Proof of Proposition 6.2. We simply apply the bounds of Lemma 6.6, which shows that for all § > 0 and
0< R1 < R2
laalBV (@ 5, 1) < Cos ]2 (0, 400)x(0,40) < M

for the triangle

QG,Rl,Rg = {(t,x) € (O,-"-OO)2 st.te (9,@ +9) , TE (Rl +t—6,Ry — (t—9))}

Recovering (0, +00) x (0, +00) by triangles possibly arbitrary small, we deduce the result from a standard
diagonal extraction argument. This ends the proof of the lemma. O

6.3 Hamilton-Jacobi germs are not L!-dissipative for N > 3 branches

In this subsection, for convenience of an (undeveloped) traffic interpretation/motivation, we prefer to
work with concave fluxes instead of convex fluxes (which is indeed equivalent by a simple change of sign).

Notation.
Let I and J be two non-empty finite sets (of indices) with I n J = ¢J. For a € T u J, we consider real
numbers a, < ¢q, and non constant concave functions f< : [aq, co] — [0, +0) with f*(aq) = 0 = f*(cqa)-

We consider Ag := rer}in] Ao uw Where A o= max f¢>0and Qq := [aq, o] We set
[e3 Ue [e%

fo*(q) = sup f*, f¥7(q) = sup f*, for geQq

laa,d] [g:¢a]
and, for all A € [0, 2%,
g3 (N) :=¢q where g € Qq is defined by  f*(q) = A = f*F(q) (53)
We consider weights
0o €(0,1] forall aeluJ such that 1=29i= ZHj. (54)

iel Jjed
Notice that for o € Tu J, the equality 0, = 1 implies that Card(I) =1 (ifa € I) or Card(J) =1 (if a € J).
HJ problem

We consider the following Hamilton-Jacobi problem on a junction with incoming branches indexed by I
and outgoing branches indexed by J

u%+91_1f1(91u;) =0 <0 iel
ui+9;1fj(9jui)_ =0 x>0 jed
ut = u! fu x=0 iel, jelJ (55)

Uy + min {A,min 0, Lot (0,ul), min9j1fj’(9jui)} =0 x=0
el jed
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where A € [0, Ag] is the flux limiter. We define p® := 0,ug for a € I U J, which satisfies (at least formally)

Py + fH(p')e =0 r<0 iel
pl+ (") =0 >0 jelJ (56)
p= ((pi)ielv (pj)jeJ) € ng =0 for a.e. time ¢

with the HJ germ defined by the set

P = (Pa)aciug € n Qo, such that there exists A € R with
gHJ welud

A = _ _
051 f*(pa) = A = min {A, min 071 o (p1), min 9j—1fﬂv(pj)} forall aelulJ
ic je.
By (54) we recover the Rankine-Hugoniot relation
Zfi(pi) = Z fi(p;) forall pegh’.
el jed

Lemma 6.7. (Lack of dissipation for Hamilton-Jacobi germs with 3 branches or more)
Set n:= Card(I) and m := Card(J) with n,m = 1. Under the previous assumptions, we have:

i) The set Gil7 is L'-dissipative if A€ [0,Ag] andn=m =1, or if A=0 and n,m > 1.

ii) For A€ (0, Ao], the set Gi7 is not L'-dissipative if n +m > 3.

Proof of Lemma 6.7. Recall that the germ Gf7 is L!-dissipative (on the box Q := H Q) if and only
aeluJ

if the entropy flux satisfies IN > OUT, i.e. for all p’, p € G&”, we have
> sien(p —pi) - {£(0}) — £(p)} = ) sien() —p) - {17 (0)) — £ (p))} (57)
el jeJ
The case A = 0 is trivial, and we now assume that A € (0, Ag]. We choose
P =g\ (0;A), P = ¢ (0;A), iel, jel,
where the map ¢$ (-) is defined in (53). Now we choose ag € 1 U J and for some A € (0, A), we set
[ 46N ifi=agel, and _[d0N ifj=ared
Pis= (0,0 ifie I\ {ao}, Pis= 0 @00 ifj e J\ {ao}
Then we have

[+ ifi=agel, (-1 ifj—aged,
Slgn(pi‘pl)—{ 1 fiel\{ag), 2 sten pﬂ)‘{ 11 i e T\ {ao)

and
{Fo0h) = f¥(Pa)} = 0a(A—=X) >0 forall aelu.l

Dividing (57) by (A — A) > 0, this leads to:

{-1+20,,} > {+1} if agel
{-1} >{+1—20,,} if apelJ

which forces 6, > 1. This contradicts (54) if Card(I) > 2 or Card(J) > 2. The fact that G{7 is
L'-dissipative for Card(I) = 1 = Card(J) is proved in Proposition 2.6. This ends the proof of the
lemma. O
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