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Monte Carlo Methods for American Options

Pricing American Options in Complete Markets

In the context of a complete market with a nonrisky asset S° :
S0=¢"  t>0,

and a risky security with price process
{S¢, t >0}

the no-arbitrage price of the American put option with strike
K > 0 and maturity T >0 :

Po = sup E[e™(K-S,)"] = E [e—rr* (K — ST*)J“}
TGTT

where 71 = {stopping times with values in [0, T]} and
™ =min{t>0: Pr=(K-5)"}
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Monte Carlo Methods for American Options

Discrete-time Approximation

T
olett’=ih, i=1,...,n and h,,:I—

e Define the so-called Snell envelope :
YP=(K-Sr)t and Y= max{(K —S)" B [e_’h" n }}
e Then, an approximation of the American put price is :

Yon — PO 5

1/2

the error is known to be of order n=1/4, i.e.

limsup /n(Yy — Py) < o0

n—oo

and an approximation of the optimal stopping policy is :

* P n .
Tn = |nf{ti . t" == (K St")} ﬂ
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Monte Carlo Methods for American Options

Approximation of Conditional Expectations

Main observation : in the present context all conditional
expectations are regressions, i.e.

Etﬁ[t’;} - E[ ¢

n
1 i+1 ti+1

S|

— Classical methods from statistics :

e Kernel regression <Carriére>

e Projection on subspaces of L>(P) <Longstaff-Schwartz,
Gobet-Lemor-Warin AAP05>

from numerical probabilistic methods
e quantization... <Bally-Pages SPA03>

Integration by parts <Bouchard-Ekeland-Touzi FS04> lﬁ



Monte Carlo Methods for American Options

Approximation of the Replicating Strategy

e Put price is P = P(t,S¢) a deterministic function of (t, S¢)
e The replicating strategy of the American put is :

A = g/:(t,st), t<T1"
e An approximation of the replication strategy within a Monte
Carlo estimation of the put price is :
Win

B where AWgn = Win  — Wn
hn i+1 i+1 i

<Broadie-Glasserman, Fournié-Lasry-Lebuchoux-Lions-Touzi >
e Finally, the Monte Carlo scheme is : Y2 = (K — S7)* and

Yih = max{(K — Stlp)Jr , e ol { t?vﬂ}}

i

A?n - Et" t,Z’ A
i i i+1

A A AWj_—!’l b
Al = B | Y] i d
i i i1 h,
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Monte Carlo Methods for American Options

From American Options to Fully Nonlinear PDEs

Objective : Monte Carlo technique for the approximation of the
American option price and hedge extends to solutions of Fully
nonlinear PDEs.

e Fully Nonlinear PDEs are encountered in many areas of applied
mathematics. In particular,

@ stochastic control problems can be characterized in terms of
the Bellman (dynamic programming) equation

0= ~Grosup { bxu) v ST [0t x D%

H(x, u)v — k(x, u) }

@ optimal stopping problems can also be characterized in terms .
of the corresponding Bellman equation (free boundary) ‘ﬂ
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Backward SDEs and semilinear PDEs

Backward SDE : Definition

Find an F"Y —adapted (Y, Z) satisfying :

Y, = f—l—/TF,(Y,,Z,)dr—/TZ,-dW,
ie. dY, . —Fi(Ye, Z:)dt +tzt-dwt and Y7 = ¢
where the generator F : Q x [0, T] x R x RY — R, and
{Fi(y,z), t €0, T]} is F — adapted

If Fis Lipschitz in (y, z) uniformly in (w, t), and & € L?(PP), then
there is a unique solution satisfying

.
Esup]Yt2—|—E/ |Z2dt < oo
ok b



Backward SDEs and semilinear PDEs

Markov BSDE's

Let X be defined by the (forward) SDE

dXt = b(t,Xt)dt+U(t,Xt)th
and  Fi(y,z) = f(t, Xe,y,2), f : [0, T]xRIxRxR? — R
¢ =g(Xr)el*P), g : R — R

If f continuous, Lipschitz in (x,y, z) uniformly in t, then there is a
unique solution to the BSDE

dyt = —f(t7Xt, Yt,Zt)dt+Zt‘U(Xt)th y YT = g(XT)
Moreover, there exists a measurable function V :

Yt: \/(t,)(t)7 OStST ﬂ
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Backward SDEs and semilinear PDEs

BSDE's and semilinear PDE's

e By definition,
Yt+h - Yt - V(t + h, Xt+h) - V(t, Xt)

t+h t+h
- —/ F(X,, Y,,z,)dr+/ Z, - o(X,)dW,
t t

e If V(t,x) is smooth, it follows from I1t8's lemma that :

t+h /9y t+h
/ <0t + EV) (r, Xp)dr + / DV/(r, X;) - o(X,)dW,
t t

t+h t+h
= —/ fF(X;, Y,,Zr)dr+/ Z, - a(X,)dW,
t t

where L is the Generator of X :

1
LV = b-DV+§Tr[oo'TD2V]
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Backward SDEs and semilinear PDEs

Stochastic representation of solutions of a semilinear PDE

Under some conditions, the semilinear PDE

_%‘t/ _ LV(t,x) — f (x, V(t,x), DV(t,x)) = O
V(T,x) = g(x)

has a unique solution which can be represented as
V(t,x) = Y~
where Y%* solves the BSDE

T T
Y, = g(X7) +/ F(X,.Y,.Z,)dr —/ Z - o(X,)dW,, t<s<T
S S

and X = x, dX, = b(X.)ds + (X)W, t<s< T Yk



Backward SDEs and semilinear PDEs

Extension of Feynman-Kac's formula

Let f = 0, then
;
V(it,x) = Y& = g(X¥) - / Z, o (XFX) dw,
t

— take conditional expectations V(t,x) = E [g(X}*)] with :
X =x and dX!* = b(X)dr+ o (XF¥) dW,
= Numerical solution by Monte Carlo :

N
V(t,x) = %Zg(x;’)) — V(t,x) as. (LLN)
i=1

and

VIV (U(e,x) = V(£x) = N@OVIgXxn)) (CLT)  r3



Backward SDEs and semilinear PDEs

Discrete-time approximation

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the
associated backward SDE by means of Monte Carlo methods
Start from Euler discretization : Y = g (Xt’;) is given, and

Y,

i1

Vi =—f (X0, Y0, Z0) Ati+ 200 (X]) AW,
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Backward SDEs and semilinear PDEs

Discrete-time approximation

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the
associated backward SDE by means of Monte Carlo methods
Start from Euler discretization : Y{? = g (X{) is given, and

E/[ Y Y= (XP YD, ZD) Dt 2o (X)) AW,

tiv1

— Discrete-time approximation : Y/” = g (X{) and

]+f(xg,yt7,zg)m,- 0<i<n-1,

i tit1

o o= E7 |y
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Backward SDEs and semilinear PDEs

Discrete-time approximation

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the
associated backward SDE by means of Monte Carlo methods
Start from Euler discretization : Y{? = g (X{) is given, and

ENAW:,, — Y. =Y = —f (Xt’:, Y, Zt”) Ati+-Z[o (Xt"’) AW,

i+l i1t i i

— Discrete-time approximation : Y/” = g (X{) and

o o= B Yo, FO ez Ay 0<i<n-1
zp = (g E YD AW,
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Backward SDEs and semilinear PDEs

Discrete-time approximation

<Bally-Pagés SPA03, Zhang AAP04, Bouchard-Touzi SPA04>

Numerical solution of a semi-linear PDE by simulating the
associated backward SDE by means of Monte Carlo methods
Start from Euler discretization : Y{? = g (X[) is given, and

ENAW:,, — Y. =Y = —f (Xt’:, Y, Zt”) Ati+-Z[o (Xt"’) AW,

i+l i1t i i

— Discrete-time approximation : Y/” = g (X{) and

o o= B Yo, FO ez Ay 0<i<n-1
zp = (g E YD AW,

— Similar to numerical computation of American options ﬂ
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Backward SDEs and semilinear PDEs

Discrete-time approximation, continued

Theorem Assume f and g are Lipschitz. Then :

1
Iimsupn{ sup EYt”—Ytz—i—E[/ ]Z{’—Zfdt]} < 0
n—0 0<t<1 0

e Same rate of convergence as for the simulation of (forward) SDEs
e in the present context all conditional expectations are regressions,

i.e.
B[y, 7] = E[vg,X]
E|: t+1Ath+1‘ft::| = E|: t+1AWtI+1’th:|
— can be approximated as in the case of American options... ,ﬂ
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Backward SDEs and semilinear PDEs

Simulation of Backward SDE's

1. Simulate trajectories of the forward process X (well understood)

2. Backward algorithm :

\A/t: = g(XtZ)

yo o= B [?/g] +f (Xg;_l, o 2;;71) A, 1<i<n,
A ]_ ~ A

Z, = A B, Voaw,|

(truncation of ¥" and Z" needed in order to control the P error)
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Backward SDEs and semilinear PDEs

Simulation of BSDEs : bound on the rate of convergence

Theorem Forp>1:

< o0

limsup max n_l_d/(“p)Nl/ZpH\A/t'.’ -Y! .
1 1 P

n—oo 0<i<n

1
For the time step —, and limit case p =1 :
n

1
rate of convergence of NG

if and only if
nlE N2 = n/2 e N = n3+s
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Second order BSDEs

Main purpose

e Enlarge the class of BSDE's in order to obtain a stochastic
representation of Fully Nonlinear PDE’s
(In particular, representation of general stochastic control problems)

e Gradient is related to the representation of a random variable as a
stochastic integral (up to the driver)

e In order to obtain a fully nonlinear PDE, one needs to include
“the Hessian" in the driver...

= Requires understanding local behavior of double stochastic
integrals...
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Second order BSDEs

Second order BSDEs : Definition

A

1
f(x,y,z,7) = f(x,y,z,7) + ETr[(mT(x)fy] non-decreasing in

Consider the 2nd order BSDE :

C/Xt = O'(Xt)th
C/Yt = —f(t,Xt, Yt7Zt7rt)dt+Zt 'O'(Xt)th, YT :g(XT)
dZt = O dt + rt O'(Xt)th

A solution of (2BSDE) is
a process (Y, Z,a, ) with valuesin R xR" x R" x §"

Question : existence ? uniqueness ? in which class?
< Cheridito, Soner, Touzi and Victoir CPAM 2007> ﬂ
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Second order BSDEs

Second order BSDEs : Main technical tool

(i) Suppose a solution exists with Y; = V/(t, X;), then
Yt+h - Yt = V(t + h7Xt+h) - V(t,Xt)

t+h s
- —/ F(X., Yr,Z,,I‘r)dr+/ Z, - dw,
t t

t+h
= —/ F(X,, Yy, Z,,T,)dr
t

t+h r r
+/ <Zt +/ audu+/ FudWL,) - dW,
t t t

(o(.) = Identity matrix for simplification)
(ii) 2x 1td's formula to V/, identify terms of different orders
— Need short time asymptotics of double stochastic integrals

t r
//buqu-dWr./ £>0 P
JO 0
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Second order BSDEs

Second order BSDE : Existence

Consider the fully nonlinear PDE (with £V = 1 Tr[oo " D?V])

v Lv(t,x)—f (t,x, v(t, x), Dv(t,x), D2v(t,x)) =0
(E) ot
v(T,x) = g(x)

If (E) has a smooth solution, then

?t = V(t,Xt), Zt = DV(t,)(t-)7
C_Yt = ,CDV(t,Xt), Ft . VXX(taxt)

is a solution of (2BSDE)
(immediate application of 1t6's formula) lﬂ
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Second order BSDEs

Second order BSDE : Uniqueness Assumptions

Assumption (f) £ : [0, T] x RY x R x RY x Sg(R) — R
continuous, Lipschitz in y uniformly in (t,x, z,~y), and for some
C,p>0:

[t xy,2)] < C(A+Iyl+xP+ [P+ [P)

Assumption (Comp) Ifw (resp. u) : [0, T| x R — R is a

Is.c. (resp. u.s.c.) viscosity supersolution (resp.subsolution) of (E)
with

w(t,x) > —C(1+|x|P), and u(t,x) < C(1+|x|P)

then w(T,.) > u(T,.) implies that w > u on [0, T] x RY lﬂ
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Second order BSDEs

Second order BSDE : Class of solutions

Let A7, be the class of all processes Z of the form
S S
Zs = z+/ ardr—i—/ FrdXP*, selt, T]
t t

where z € RY, o and T are respectively RY and Sy(RY)
progressively measurable processes with

max {|Zs|, Jos|, ITs]} < m(1+|XEP) |

Tl < m (L X [XEP) (1l X - X
We shall look for a solution (Y, Z, ,T) of (2BSDE) such that
Z € Arx = Um>oAfy ﬂ
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Second order BSDEs

Scond Order BSDE : The Uniqueness Result

Theorem Suppose that the nonlinear PDE (E) satisfies the
comparison Assumption Com. Then, under Assumption (f), for

every g with polynomial growth, there is at most one solution to
(2BSDE) with

Z 6 At’x
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Second order BSDEs

2BSDE : Idea of proof of uniqueness

Define the stochastic target problems

V(t,x) := inf {y L YENE > g (XEX) as. for some Z € At,x}
(Seller super-replication cost in finance), and

U(t,x) = sup {y L YEYY < g (XEY) ass. for some Z € At,X}

(Buyer super-replication cost in finance)

e By definition : V/(t, X;) < Y;: < U(t, X;) for every solution
(Y.Z,a,T) of (2BSDE) with Z € A «

e Main technical result : V' is a (discontinuous) viscosity

super-solution of the nonlinear PDE (E)

= U is a (discontinuous) viscosity subsolution of (E) ﬂ
e Assumption Com — V > U
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Second order BSDEs

A probabilistic numerical scheme for fully nonlinear PDEs

By analogy with BSDE, we introduce the following discretization

for 2BSDEs :

Yo = &(Xq) .

Yi,o= B Y+ f (XL, 20T ) Al 1<i<n,
Z5, = ap B [VEAW]

= faep B YD (@AW - A
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Second order BSDEs

Intuition From Greeks Calculation

e First, use the approximation f”(x) ~p—o E[f"(x + W})]
e Then, integration by parts shows that

, , e—v?/(2h)
f'(x) ~ f'(x+y)———dy
V2

2
o / ye—y/2 _ / W,
= /f(x—i—y)h\ﬁdy—E{f(x—i-Wh)h]

— /f(x+y)y2h2he\_yﬁ/2dy E[f(X-i-Wh)(

e Connection with Finite Differences : W), ~ \/E( 01+ 1(5 )

E [¢(X + Wh)vl\:h] ~ Y \/5)2—/7@&(x — Vh) Centered FD! pi
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Second order BSDEs

Intuitive derivation : Monte-Carlo-FD scheme

Consider the nonlinear PDE

<%\:+EV>+f(x,DV(t,x),D2V(t,x)) =0

Evaluate at (s, Xs) and integrate betweens t; and tj1; :
tit1
BV (ta1, Xo, ) — V(t,-,Xt,.)—F/ £ (..DV,D?V) (s, X,)ds = 0
t;
leading to the approximation scheme :

V(tivxt,') = Eti\/ (tl'+1aXt,'+1)
+hF (Xtm EtiDV(ti+1v Xti+1)7 ]Eti D? V(ti+1> Xt;+1))

and use integration by parts... g



Second order BSDEs

The Convergence Result

<with A. Fahim>

Theorem Suppose that ||g|; . < oo, f is Lipschitz, ||f,[| « < o,

and Hf{lH]Loo < 00. Then

Yoy — v(t,x)
where v is the unique viscosity solution of the nonlinear PDE.

e Bounds on the approximation error are available

¢ ||g]|co < o0 is needed for the stability, can handle exponential

bound by change of variable...

e This convergence result is weaker than that of (first order)

Backward SDEs... ﬂ

Nizar TOUZI Nonlinear Monte Carlo Methods



Numerical Examples

Outline

@ Numerical Examples

Nonlinear Monte Carlo Methods




Numerical Examples

Comments on the 2BSDE algorithm

e in BSDEs the drift coefficient u of the forward SDE can be
changed arbitrarily by Girsanov theorem (importance sampling...)

e in 2BSDEs both p and o can be changed. Numerical results
(together with above theorem) however recommend prudence...

e The heat equation v; + vy = 0 correspond to a BSDE with zero
driver. Splitting the Laplacian in two pieces, it can also be viewed
as a 2BSDE with driver f(v) = 3~

— numerical experiments show that the 2BSDE algorithm
performs better than the pure finite differences scheme
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Numerical Examples

Numerical example : portfolio optimization (X. Warin)

With U(x) = —e™" and dS; = Sio(Adt + dW;), want to solve :

-
V(t,x) := supE [U <X+/ Hudst>]
0 t St

e An explicit solution is available

e V is the characterized by the fully nonlinear PDE

(V)
VXX

1
—Vt+§)\2 =0 and V(T,)=U
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Numerical Examples

“sortie_sobsde_erreur_relative” +

Fig.: Relative Error (Regression), 1 asset @
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Numerical Examples
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Numerical Examples

Varying the drift of the FSDE

Drift FSDE Relative error
(Regression)

-1 0,0648429
-0,8 0,0676044
-0,6 0,0346846
-0,4 0,0243774
-0,2 0,0172359

0 0,0124126
0,2 0,00880041
0,4 0,00656142
0,6 0,00568952
0,8 0,00637239
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Numerical Examples

Varying the volatility of the FSDE

Volatility FSDE Relative error Relative error
(Regression)  (Quantization)
0,2 0,581541 0,526552
0,4 0,42106 0,134675
0,6 0,0165435 0,0258884
0,8 0,0170161 0,00637319
10, 0124126 0,0109905
1,2 0,0211604 0,0209174
1,4 0,0360543 0,0362259
1,6 0,0656076 0,0624566
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