A Quadratic Gradient Equation for pricing Mortgage-Backed Securities

Marco Papi

Institute for Applied Computing - CNR

Rome (Italy)

A Quadratic Gradient Equation for pricing Mortgage-Backed Securities - p.

- The Mortgage-Backed security (*MBS*) market plays a special role in the U.S. economy.
- Originators of mortgages can spread risk across the economy by packaging mortgages into investment pools through a variety of agencies.
- Mortgage holders have the option to prepay the existing mortgage and refinance the property with a new mortgage.
- *MBS* investors are implicitly writing an American call option on a corresponding fixed-rate bond.

- Prepayments can take place for reasons not related to the interest rate option.
- Mortgage investors are exposed to significant interest rate risk when loans are prepaid and to credit risk when loans are terminated to default.
- Prepayments will halt the stream of cash flows that investors expect to receive.
- When interest rates decline, there will be a subsequent increase in prepayments which forces investors to reinvest the unexpected additional cash-flows at the new lower interest rate level.

 The most simple structure of *MBS*s are the pass-through securities. Investors in this kind of securities receive all payments (principal plus interest) made by mortgage holders in a particular pool (less some servicing fee).

 Other classes are the stripped mortgage-backed securities which entail the ownership of either the principal (PO) or interest (IO) cash-flows.

- *MBS*s or Mortgage Pass-Throughs are claims on a portfolio of mortgages.
- Cash-flows from *MBS*s are the cash-flows from the portfolio of mortgages (*Collateral*).
- Every pool of mortgages is characterized by
- the weighted average maturity (WAM),
- the weighted average coupon rate (WAC),
- the pass-through rate (PTR), the interest on principal.

- The price of *MBS*s are quoted as a percentage of the underlying mortgage balance.
- a_t : the mortgage balance at time t.
- V_t : the price quote in the market at time t.
- $MBS_t = V_t a_t$: the (clean) market value at time t.
- $AI_t = \frac{\tau}{12} \frac{t-30[t/30]}{30} a_t$: the accrued interest based on the time period from the settlement date.
- $MBS_t + AI_t$: the full market value.

- Modelling and pricing MBSs involve three layers of complexity:
- 1 Modelling the dynamic behavior of the term structure of interest rates.
- 2 Modelling the prepayment behavior of mortgage holders.
- 3 Modelling the risk premia embedded in these financial claims.
- The approaches used to model prepayment allow to classify existing models into two groups.

- The first type is related to American options, [Stanton, 1995] and [Stanton & Wallace 2003].
- Paying off the loan is equivalent to exercising a call option $(V_{p,t}^{\ell})$ on the underlying bond a_t , with time-varying exercise price MB(t).
- The default option $(V_{d,t}^{\ell})$ is an option to exchange one asset (the house) for another (MB(t)).
- The mortgage liability is $M_t^{\ell} = a_t V_{p,t}^{\ell} V_{d,t}^{\ell}$.
- Borrowers choose when they prepay or default in order to minimize the overall value M^l_t.

 In a second class of models, the prepayment policy follows a comparison between the prevailing mortgage and contract rates [Deng, Quigley, Van Order, 2000].

 This comparison can be measured using the difference or a ratio of the two rates, and usually the 10 years Treasury yield is used as a proxy for the mortgage rate.

- $X_t = (X_t^1, \ldots, X_t^N)$: the relevant economic factors.
- The *MBS* price at time t is $P_t = P(X_t, t)$.
- The challenging task is to give a complete justification to the choice of the market price of risk used to derive the functional form of *P*.
- The model specification follows the work by X. Gabaix and O. Vigneron (1998).
- We characterized P as the unique solution of a nonlinear parabolic partial differential equation, in a viscosity sense.

- We consider the usual information structure by a d-dimensional B.M. B = (Ω, F, {F_t}_{t∈[0,T]}, {B_t}_{t∈[0,T]}, ℙ).
- *MB*(*t*): the remaining principal at time *t*, without prepayments

$$MB(t) = MB(0)\frac{e^{\tau'T} - e^{\tau't}}{e^{\tau'T} - 1}, \quad t \in [0, T]$$

- $S_t = s_0(X_t, t)$: the adapted pure cumulative prepayment process, so that the remaining principal at time t is $a_t = MB(t) \exp(-S_t)$, for any $t \in [0, T]$.
- $dc_t = \tau a_t dt da_t$: the pass-through cash-flow.

- $\delta: \Omega \times [0,T] \to (0,\infty)$ is an integrable discount rate.
- The economy is made up of a representative agent (a trader in the MBS market) with a risk aversion $\rho > 0$.
- $dV_t^{\text{Riskless}} = \delta(t)V_t^{\text{Riskless}}dt$, $V_0^{\text{Riskless}} = A_0 > 0$.
- $V_t = (V_t^{\text{Riskless}}, V_t^{MBS,1}, \dots, V_t^{MBS,k})$: the vector of asset prices.
- $G_t^{MBS,i} = V_t^{MBS,i} + \int_0^t dc_s^i$, i = 1, ..., k: the gain process of the asset i.
- (A) The market is arbitrage-free and there exists a market price of risk $\gamma_t^{MBS} = (\gamma_t^{MBS,1}, \dots, \gamma_t^{MBS,d})$.

•
$$v \in \mathbb{L}^{1,p} \iff ||v|||_{1,p} < +\infty.$$

 $|||v|||_{1,p} = \left(||v||_{L^p(\Omega \times [0,T])}^p + \mathbb{E} \left[||Dv||_{L^2([0,T]^2)}^p \right] \right)^{1/p}$

[Th(V)] Under (A), $S_t^i \in \mathbb{D}^{2,1}$, $D_t S^i \in L^2(\Omega \times [0,T])$, for any $t \in [0,T]$ and $i = 1, \ldots, k$, $\gamma = \gamma^{MBS} \in \mathbb{L}^{1,4}$, $\sigma_G^{MBS,i}(t)$ is given by:

$$-\mathbb{E}^{\mathbb{Q}}\left[\int_{t}^{T}\left(\tau_{i}-\delta(s)\right)e^{-\int_{t}^{s}\delta(u)du}a_{s}^{i}\left(D_{t}S_{s}^{i}+\int_{t}^{s}D_{t}\gamma_{u}d\widehat{B}_{u}\right)ds\Big|\mathcal{F}_{t}\right]$$

(S1) $\{X_t^x : t \in [0,T]\}_x$, for $x \in \mathbb{R}^N$, represent the economic factors affecting MBS prices, with drift $\mu(x,T-t)$ and diffusion $\sigma(x,T-t) \in \mathbb{R}^{N \times d}$.

(S2)
$$S_t^i(x) = s_{0,i}(X_t^x, t)$$
, $s_{0,i} \ge 0$, $s_{0,i}$ is smooth.

(S3) There exist functions u_i^{Col} , $i = 1, \ldots, k$, s.t.

$$u_i^{\text{Col}} \ge -h_{0,i} = -MB_i \exp(-s_{0,i}), \text{ in } \mathbb{R}^N \times [0,T],$$

and

$$V_t^{\operatorname{Col},i}(x) = u_i^{\operatorname{Col}}(X_t^x, t) + h_{0,i}(X_t^x, t), \quad \forall \ (x, t) \in \mathbb{R}^N \times [0, T]$$

- In MBS analysis, it seems natural to assume the m.p.r. to depend directly on the value of the liability.
- The liability to the mortgagor and the asset value to the investor differ only for a transaction cost, proportional to a_t.
- Since a change of the borrower's liability produces a change in the prepayment behavior, the proportionality with the asset value, yields a natural dependence of the m.p.r. on the *MBS* price (*U*) and on its variation (∇_xU).

- $x \in \mathbb{R}^N$ is the state of the economy.
- An equilibrium in the MBS market, is a d-dimensional \mathcal{F}_t -adapted process $\gamma(x)$, s.t.
- 1. $\frac{d\mathbb{Q}}{d\mathbb{P}} = \xi_T^{\gamma(x)}$ (Girsanov Exponential) is a risk-neutral measure for the MBS Market;
- **2.** [Th(V)] holds and

$$\gamma_t(x) = \rho \frac{\sum_{i=1}^k \sigma_G^{\text{Col},i}(t;x)}{\sum_{i=1}^k V_t^{\text{Col},i}(x) + V_t^{\text{Riskless}}},$$

for every $t \in [0, T]$.

[Th.] Let $\gamma(x)$ be an equilibrium. Under (S1)-(S3), $u^{\text{Col}} = (u_1^{\text{Col}}, \dots, u_k^{\text{Col}})$ is a solution in $\mathbb{R}^N \times (0, T)$ of

$$\rho \langle \sigma_0^\top \nabla u_i, \frac{\sum_{j=1}^k \sigma_0^\top \nabla u_j}{V_s^{\text{Riskless}} + \sum_{j=1}^k [h_{0,j} + u_j]} \rangle = -\delta(s)(h_{0,i} + u_i) + \tau_i h_{0,i} + \langle \nabla u_i, \mu_0 \rangle + \frac{\partial u_i}{\partial s} + \frac{1}{2} tr(\sigma_0 \sigma_0^\top \nabla^2 u_i),$$
$$u_i(x, T) = 0, \quad i = , \dots, k.$$

$$\sigma_0(x,s) = \sigma(x,T-s), \ \mu_0(x,s) = \mu(x,T-s).$$
$$u_i^{\text{Col}}(X_t^x,t) = \mathbb{E}^{\mathbb{Q}} \left[\int_t^T \left(\tau_i - \delta(s) \right) e^{-\int_t^s \delta(u) du} h_{0,i}(X_s^x,s) ds \left| \mathcal{F}_t \right] \right]$$

[Th.] Assume (S1)-(S2). Let σ be bounded, and $u = (u_1, \dots, u_k)$ is a smooth solution of the system with ∇u_i bounded, $u_i + h_{0,i} \ge 0$. For $i = \dots, k$, define

$$V_t^i \equiv u_i(X_t^x, t) + h_{0,i}(X_t^x, t)$$
$$G_t^i \equiv V_t^i + \int_0^t dc_s^i.$$

Then $(V_t^{\text{Riskless}}, G_t^1, \dots, G_t^k)$ is an arbitrage-free market which admits and equilibrium.

• Let
$$\xi(t) = A_0 e^{\int_0^{T-t} \delta(s) ds}$$
, $r(t) = \delta(T-t)$,
 $h(x,t) = h_{0,1}(x,T-t)$, and $U(x,t) = u_1^{\text{Col}}(x,T-t)$.

• The system reduces to the following equation:

$$\partial_t U - \frac{1}{2} tr(\sigma(x,t)\sigma^\top(x,t)\nabla^2 U) - \langle \mu(x,t), \nabla U \rangle + \rho \frac{|\sigma^\top(x,t)\nabla U|^2}{U + h(x,t) + \xi(t)} - \tau h(x,t) + r(t)(U + h(x,t)) = 0,$$

with U(x,0) = 0, everywhere in $\mathbb{R}^N \times (0,T)$.

Properties of U: 1) U + h ≥ 0 2) U satisfies the stochastic representation.

[Def.] The parabolic 2-jet:

 $\mathcal{P}^{2,\pm}u(x,t) = \{ (\partial_t \varphi(x,t), \nabla \varphi(x,t), \nabla^2 \varphi(x,t)) : u - \varphi \text{ has a global strict max. ($ *resp.* $min.) at <math>(x,t) \}.$

[Def.] $u : \mathbb{R}^N \times [0, T] \to (a, b)$ l.b. and u.s.c. (*resp.* l.s.c.) is a viscosity subsolution (*resp.* lower viscosity supersolution) if $u(\cdot, 0) \leq u_0(\cdot)$, (*resp.* $\geq u_0(\cdot)$), in \mathbb{R}^N , and for any $(b, q, A) \in \mathcal{P}^{2,\pm}u(x, t)$

$$b + F(x, t, u(x, t), q, A) \le 0 \qquad (\text{resp.} \ge 0).$$

 Existence Results can be found in the User's guide of M.G. Crandall, H. Ishii, P.L. Lions (1992). • We found structural conditions to deal with Hamiltonian functions s.t. $\partial_u F$ is unbounded from below. These depend on the behavior of

 $(\lambda, \kappa, u) \mapsto \lambda^{-1}F(x, t, u, \lambda p, \lambda X + \kappa p \otimes p)$ for $u \in [a, b]$, $0 < m \le \lambda \le M$, $2\kappa \le z'(u)$, for some $z \in C^1([a, b]; [m, M])$, x, t, p, X being fixed.

- (P) $h \in C^{2,1}(\mathbb{R}^N \times [0,T]), \partial_t h(\cdot,t), tr(\sigma \sigma^\top(t) \nabla^2 h(\cdot,t)),$ $\nabla h(\cdot,t)$ are bounded and *x*-Lipschitz continuous.
- [Th.] Under the assumption (P), if $\tau \ge \delta$ in [0, T], then the MBS problem admits a unique bounded viscosity solution U, such that $U + h \ge 0$.

• The m.p. of prepayment risk is

$$\gamma_t(x) = \rho \frac{\sigma^{\top}(X_t^x, T - t) \nabla U(X_t^x, T - t)}{U(X_t^x, T - t) + h(X_t^x, T - t) + \xi(T - t)}$$

- The typical technique used to prove a representation of U as an expectation, is based on the dynamic programming principle (Fleming & Soner, 1993).
- The existence of the value function is guaranteed by the existence of the expected value.
- In the MBS model the expectation depends on U itself.
 Hence we need more regularity on ∇U.

- [Th.] (Papi 2003) If σ is independent of x, $h(\cdot, t) \in \mathbb{W}^{4,\infty}$, $\partial_t h(\cdot, t)$, $\mu(\cdot, t) \in \mathbb{W}^{2,\infty}$, uniformly in time. Then $U \in \mathbb{W}^{2,1,\infty}(\mathbb{R}^N \times (0,T)).$
- [Th.] Let σ be bounded, $x_0 \in \mathbb{R}^N$. If $U \in \mathbb{W}^{2,1,\infty}(\mathbb{R}^N \times (0,T))$, $U + h \ge 0$, then 1) $\gamma_t(x_0) \in \mathbb{L}^{1,p}$, for any $p \ge 2$. 2) If $X_t^{x_0}$ admits a Borel-measurable density, then $U(X_t^{x_0}, T - t) =$ $\mathbb{E}^{\mathbb{Q}} \left[\int_t^T e^{-\int_t^s \delta(\kappa) d\kappa} (\tau - \delta(s)) h(X_s^{x_0}, T - s) ds \Big| \mathcal{F}_t \right]$ 3) $\gamma_t(x_0)$ is a market price of equilibrium.

• The prepayment function S depends on the trajectory followed by one or more of the underlying factors x_t .

• $s_0(y) = y$, for $y \ge 0$.

• The prepayment rate y_t follows $y_t = \int_0^t \eta(x_s, y_s) ds$

•
$$x_t \in \mathbb{R}^d$$
, $dx_t = b(x_t)dt + c(x_t)dB_t$.

- $X_t = (x_t, y_t)$ is a strongly degenerate diffusion.
- Let $X_0 = (x_0, 0)$, b, η, c are smooth functions, $c(x_0)$ is invertible and $\nabla_x \eta(x_0, 0) \neq 0$.
- The Hörmander condition ⇒ X admits a smooth density.

- M. Papi, A Generalized Osgood Condition for Viscosity Solutions to Fully Nonlinear Parabolic Degenerate Equations, Adv. Differential Equations, 7 (2002), 1125-1151.
- M. Papi, Regularity Results for a Class of Semilinear Parabolic Degenerate Equations and Applications, Comm. Math. Sci., 1 (2003), 229-244.
- M.Papi, M.Briani. A PDE-based approach for pricing Mortgage-Backed Securities, Preprint Luiss 2004.