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Abstract

We consider traffic flows described by conservation laws. We study a 2:1 junction (with two
incoming roads and one outgoing road) or a 1:2 junction (with one incoming road and two outgoing
roads). At the mesoscopic level, the priority law at the junction is given by traffic lights, which are
periodic in time and the traffic can also be slowed down by periodic in time flux-limiters.

After a long time, and at large scale in space, we intuitively expect an effective junction condition
to emerge. Precisely, we perform a rescaling in space and time, to pass from the mesoscopic scale to the
macroscopic one. At the limit of the rescaling, we show rigorous homogenization of the problem and
identify the effective junction condition, which belongs to a general class of germs (in the terminology
of [6, 21, 37]). The identification of this germ and of a characteristic subgerm which determines the
whole germ, is the first key result of the paper.

The second key result of the paper is the construction of a family of correctors whose values at
infinity are related to each element of the characteristic subgerm. This construction is indeed explicit
at the level of some mixed Hamilton-Jacobi equations for concave Hamiltonians (i.e. fluxes). The
explicit solutions are found in the spirit of representation formulas for optimal control problems.
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1 Introduction

In this section we introduce the problem and the main notations, assumptions and results of the paper.
We start with a foreword in which we explain the goal of the paper. Then we introduce the notions of
germs and our two main models (mesoscopic and macroscopic). We give our main results and compare
them with the literature. We finally describe the organization of the paper.

1.1 Foreword

The goal of the paper is to understand and to justify effective junction conditions for macroscopic models
of traffic flows arising by homogenization of mescoscopic models. We concentrate here on junctions
involving two incoming roads and a single outgoing one (referred later on as 2:1 junctions), or the opposite:
one incoming road and two outgoing ones (referred as 1:2 junctions). On each road, the equation satisfied
by the density is a scalar conservation law of the form

5tp + ax(f(p)) =0,

where the concave flux function f can depend on the road. At the junction point we require of course a
Rankine-Hugoniot condition, as well as relations between the incoming and outgoing fluxes, which define
what is called a germ. For the mesoscopic model, the germ is an oscillating function of time, which can
be interpreted as periodic in time traffic lights (or more generally flux limiters). For instance, for the 1:2



junction, traffic lights regulate the traffic, dispatching the vehicles in one of the two exit branches. For
2:1 junction, the traffic lights give the priority rules.

Looking at long time behavior and on large space scale, we show that the oscillating germ for the
mesoscopic model homogenizes in an effective (and homogeneous) germ for the macroscopic model. On
the branches, the PDEs satisfied by the densities are the same for the macroscopic model and the meso-
scopic model; only the junction condition (the germ) changes. Our homogenization procedure naturally
introduces a general class of germs for conservation laws on 1:2 and 2:1 junctions. The guess and the study
of those germs (Theorem 2.1) is the first key contribution of this paper. The second key contribution is
the rigorous justification of the homogenization by the construction of suitable correctors (Theorem 1.7
for 2:1 junctions and Theorem 1.4 for 1:2 junctions).

For the mesoscopic model, we manage to reduce the junction condition to a 1:1 junction, involving at
each time one incoming road and one outgoing road only. 1:1 junctions are well understood and justified
[4, 6, 7, 8, 27, 41, 42]; they are known to arise by homogenization of microscopic models of follow-the-
leader type [13, 14, 20, 22, 23, 24] and there is an equivalence between the approach through the germ
theory for 1:1 junctions and the one using Hamilton-Jacobi (HJ) equations on such junctions [12]. We
will make an extensive use of this equivalence (still in the case 1:1) in the construction of correctors.
Our new junction conditions (for 2:1 and 1:2 junctions) arise rigorously by mixing these very natural 1:1
junctions. Let us underline that the mesoscopic models we consider possess an L' —contraction property,
and, as expected, this is also the case for our limit models after homogenization. Note however that, in
the literature, there exists some junction models which do not possess this L!—contraction property?.

For our mesoscopic models, we use the approach through germs developed in [6]. This approach,
which relies on the notion of trace developed by Panov [38] (see also [44]), consists in requiring that
the trace of the solution at the junction belongs to a set, the germ. As recalled in Subsection 1.3, the
fact that the germ is “maximal” ensures the uniqueness of the solution to the conservation law and its
stability. Existence, on the other hand, comes from the “completeness” of this germ.

As explained above, the paper partially relies (for the construction of correctors) on the formulation
of traffic flows in terms of Hamilton-Jacobi on a 1:1 junction. HJ equation on junctions have been
discussed in many works [1, 2, 11, 31, 34, 35, 39]; see also the recent monograph [9]. The central notion
of flux limiters, used throughout this paper, has been developed in [31]. Questions of homogenization
in this framework are discussed in [3, 13, 31, 22, 23, 24]. In contrast with the approach developed here,
these papers rely on a comparison principle. Homogenization of scalar conservation laws has been less
considered in the literature: see [18, 19, 40|, and, as far as we know, never for problems on a junction.

Now a few words about the techniques of proof are in order. Let us first underline that, for technical
reasons, we mainly work throughout the paper in the case of 1:2 junctions; the maybe more interesting
problem of junctions of type 2:1 is handled by a simple change of variables in Subsection 4.2. Second,
and in contrast with most homogenization results we are aware of on the topic and quoted above, the
homogenization does not rely directly on a comparison principle for some Hamilton-Jacobi formulation
on the junction: indeed the limit problem cannot naturally be formulated in terms of pure HJ equations
with some general comparison principle at the HJ level.

The homogenization must therefore be proved directly at the level of the scalar conservation laws.
The construction of correctors for each element of the homogenized germ seems to be a difficult task
in general. For this reason we first show the existence of a subset of the germ, called a characteristic
subgerm, which determines the whole germ (Lemma 1.5). This characteristic subgerm will be then
used to guide the construction of correctors. Indeed, to each element of the characteristic subgerm, we
associate a corrector whose values at infinity are given by the values of this element (Theorem 1.6). This
construction uses explicit solutions for suitable HJ equations with concave Hamiltonians in the flavor of
the Lax-Oleinik formula. The explicit solutions are guessed in the spirit of representation formulas in
optimal control theory on junctions [31]. The proof of homogenization is then achieved thanks to Kato’s
inequality and germ’s theory developed in [6, 37].

Note that the mesoscopic model can itself be thought as the limit of a microscropic model taking the

1For instance traffic flows on 1:2 junctions in which the positive proportion of the traffic entering each outgoing road is
fixed, are never L!—contractions.



form of a follow-the-leader model on a junction, as discussed in [16] for instance. However the rigorous
derivation of the macroscopic model from a microscopic one seems a very challenging question. Another
open problem is the analysis of junctions involving four branches or more, which seems to require new
ideas.

1.2 Standing notation and assumptions

The following assumptions are in force throughout the paper.

Let R? = (—0,0) x {0} be the incoming branch, R/ = (0,) x {j} for j = 1,2 being the outgoing
ones. We consider the set R = U§=0 R7 U {0} with the topology of three half lines glued together at the
origin 0.

Let a/ < b < ¢ for j € {0,1,2}. We make the following assumptions on the fluxes for some § > 0:

For j € {0, 1,2}, the flux f7 : [a’, /] — R is of class C?, with (f7)” < —6 < 0 on [a/, ¢], (1)
increasing on [a?,b’] and decreasing on [V/,¢/], with f7(a’) = fI(¢/) = 0.
We set ‘ A o
élax ‘= max fJ:f](b])>O (2)

[a?,c7]
and define the nondecreasing envelope of f7

{fj(p) for pe[ai,bj] 3)

T (p) : £(b) for pe[V/,c]

and its nonincreasing envelope

j—oy . V) for peldl, V]
;) '_{ f(p) for pe[b,cl]. (4)

Throughout the paper, the set I' (respectively I?) denotes the time sets on which the branch 1 (resp. the
branch 2) is active in the mesoscopic model. The sets I' and I? form a partition of R, each I*, k = 1,2,
being periodic and of period 1 and locally the union of a finite number of intervals:

INor?P=R, I'nI?=g,
I7 is periodic of period 1 and consists locally in a finite number of intervals, j = 1, 2.

(5)

The flux limiter in the mesoscopic model is a time dependent map A : R — R, such that

A : R — R is piecewise constant, periodic of period 1 and such that
min{f% fL 1} onI! (6)
< < max’ J max I
o< AW < { A i

1.3 Entropy pairs and germs

We now introduce the notion of germs, following [6, 37]. Germs define the junction conditions and play
a central role in this paper. Let us recall that the pair (entropy, entropy flux) is given, for p,p € R, by

np,p)=p—pl, ¢ B p)=signp—p)(f(p) - [ (p))
We define the box
Q= [aovco] X [alvcl] X [CL2762] (7)
and the subset of @ satisfying Rankine-Hugoniot condition
QM ={P=0"p"p")eQ, [0°) =10+ e} (8)



Definition 1.1. (dissipation, germ, maximality)
i) (Dissipation)
For P = (p°,p',p?), P = (°,p,p?) € Q, we define the dissipation by

D(P,P):=q¢"(®,p°) — {¢'®",p") + (>, p*)} = IN— OUT

ii) (Germ)
Consider a set G < Q. We say that G is a germ (for dissipation D) if

Gc QR B (Rankine-Hugoniot)
D(P,P)>0 forall P,PeG (dissipation)

iii) (Maximal set)
Let G < Q be a set. We say that G is mazimal (for the dissipation D relatively to the box Q) if for every
P e @, we have

(D(P,P)>0 forall PeG) = Ped.

1.4 The mesoscopic problem

We are interested in a problem with one incoming branch and two outgoing ones; a periodic traffic light
regulates the traffic, dispatching the vehicles in one of the two exit branches, slowing down the traffic or
stopping it at the junction. On the time-intervals I', cars coming from road 0 can enter road 1 only, while
on the time-intervals I? cars coming from road 0 can enter road 2 only. The traffic can also be limited on
the junction by the flux limiter A, which is time dependent, but piecewise constant. For instance, time
intervals on which A(t) = 0 correspond to periods where the traffic light stops completely the traffic at
the junction.

traffic from branch 0 to branch 1 with limiter A(t),

. _. 1
no traffic entering in branch 2 } on the time-interval I°,

traffic from branch 0 to branch 2 with limiter A(t),

. _. 2
no traffic entering in branch 1 } on the time-intervals 17,

0’ + 0:(f°(p") =0

x <0

Figure 1: Divergent 1:2 junction

Let p/ (j = 0,1,2) be the density of vehicles. Then p = (p°, p!, p?) solves

(i)  peld,d] a.e. on  (0,00) x R7, j=0,1,2
() Qi + (P () = 0 on (0 xRI G=0L2  (9)
(iii)  (p°(t,07), pL(t,01), p?(¢,0%)) € G(¢) for a.e. te (0,00),

where the time dependent germ t—G(t) is the piecewise constant set-valued map given by

(t
G(t) = Ga, (1) onIF k=12, (10)



and

Ga, (t) = {P — @) eq | FE)=0 11)

min(A(t), foF(°), FH (") = f°0°) = f1(p") } (

QA2 (t) = {P = (PO7P17P2) €qQ, {rllil(ffj(lf)l(?),ofo”’(po),f2’_(p2)) _ fO(pO) _ fz(p2) } (12)

Recall that the assumption on the time intervals I*, k = 1,2, and the flux limiter A are given in (5)
and (6) respectively. The notation Ga, is justified in Section 2 below, where we also explain that the
G, (t) are maximal germs for each ¢ € R (Lemma 2.2). The germs Gy, (t) and Ga,(t) are very natural
from a traffic flow point of view. Indeed, during the time-interval I'' (for instance), the flux on the road
2 is null and we consider only a 1:1 junction between the incoming road 0 and the outgoing road 1. In
this situation, the description of the germ is well understood and take the above form (see [13] for the
derivation of the junction condition in terms of Hamilton-Jacobi equations and [12] for a reformulation in
term of scalar conservation laws). Let us recall that, for any j = 0,1,2, the L® map p’, being a solution
to the scalar conservation law 0,07 + d,(f7(p?)) = 0, has a strong trace (see Theorem A.1) at x = 0 in
the sense of Panov [38], because the fluxes are strongly concave in the sense of (1).

We say that a function v is a standard Krushkov entropy solution of d;v + 0, (f(v)) = 0 on (0, +0); x
(0, +00), with initial condition , if for every C}([0, +o0); x (0, +0),) function ¢ > 0, we have

/ / v — clor + {sign(v — o)} - (F(©) — F(0))pw + / 5—clp>0 forall ceR
(0,400 0,400) {0} x (0,+0)

The next lemma states that equation (9) is well-posed and defines a semigroup of contraction in L*.

Lemma 1.2. (Existence, uniqueness, L'-contraction on the junction)
Assume (1), (5) and (6). Given an initial condition p = (p?)j—01,2 in L®(R) with p/ € [a?,c!]
a.e., there exists a unique entropy solution to (9), in the sense that p’ is a standard Krushkov en-
tropy solution of dip? + 0.(f7(p?)) = 0 on (0,00) x RI with p/(0,-) = p’ a.e., and such that the traces
(p°(t,07), pr(t,0%), p%(t,01)) belong to the set G(t) for a.e. t € (0,0).

In addition, if p is a solution to (9) associated with the initial condition p and py is a solution to (9)
associated with the initial condition py, then Kato’s inequality holds:

g/@w[zgpﬂ'—p{w%{sz‘gn(x)ﬂ‘—p{)}-(fﬂ'(p?) e ¢J+2/ - AlP0.2)>0 (13)

for any continuous nonnegative test function ¢ : [0,00) x R — [0,00) with a compact support and such
that ¢’ := @|[0,+00)x (RIL{0}) S C! for any j =0,1,2.

The proof of Lemma 1.2 is postponed to Subsection 4.1. Let us underline that equation (9) almost
fits the usual existence and uniqueness framework of conservation laws on a junction, as discussed in [6],
as only one outgoing branch is active at any time.

1.5 The macroscopic problem

We expect the limit problem to be of the same form as the mesoscopic problem, but with an autonomous
germ G. The limit scalar conservation law should take the form:

(i)  plela?, ] a.e. on  (0,00) x Rji, j=0,1,2,
(i7) atpj (7 (7)) = 0 on (0,00) x Ri, j=0,1,2, (14)
(ii3)  (p%(t,0), p'(¢,0),p%(t,0)) € G for a.e. te (0,00),

Here the set G is the limit germ and is the main unknown of our problem. We now define the notion
of solution for equation (14), following [21, 37].



Definition 1.3. (Entropy solution of (14))

Given a mazimal germ G < Q and an initial condition p € L*(R) such that p’ € [a’,c] a.e. for
J=0,1,2, we say that a map p € L*((0,00) x R) is an entropy solution of (14) if, for any j = 0,1,2,
P’ is a Kruzkhov entropy solution of (14)-(ii) on R7, if its trace at t = 0 is p and if, its trace p(-,0) =
(p°(-,07), p1(-,0%), p?(+,0T)) at x = 0 belongs to G:

p(t,0) e G a.e.t>0.

Following [21, 37], and because the germ G is maximal, the last condition in Definition 1.3 is equivalent
to the following entropy inequality:

{ / [0 = e+ @l e + [ n<uf,pj>¢j<o,x>}>o
frar RI RI

for any u = (u/) € G and any continuous nonnegative test function ¢ : [0, oo) x R — [0,00) with a
compact support and such that ¢7 := Pl[0,400) x (R L{0}) 1S C" for any j =0, 1,

Let us also point out that the entropy solution p of (14) is in C([0, +oo) L}OC(R)): this is an easy
consequence of the classical continuity in L], of bounded entropy solution of scalar conservation laws on

the line (see [17, Theorem 6.2.2, Lemma 6.3.3]) and of finite speed of propagation arguments.

1.6 Main result: the homogenization

We are interested in the homogenization of (9). Namely, given an initial condition py, we want to
understand the behavior as € — 0 of the solution p¢ = (p°, p1, p2) to

(i)  pelal, ] ae.on (0,0)xRI, j=0,1,2

(i1)  Op™ + 0x(f7(p7)) =0 on (0,0) x R, j=0,1,2 15
(i) (pO(t,0), pL(t,0), po-2(£,0)) € G(t/e) forae.  te (0,m), (15)
(i) P07 = o o {hxR,

Our main homogenization result is the following:

Theorem 1.4. (Homogenization of the 1:2 junction)

Assume that (1), (5) and (6) hold. Then there exists a maximal germ Gz < Q, such that the following
holds true. Let the initial data po = (py) € L (R) be such that p§ € [a,c!] a.e. fori=0,1,2. Then the
solution p° of (15) converges in L}, .([0,00) x R) to the unique entropy solution p to

(i)  pelad?, ] a.e. on  (0,0) x RI, j=0,1,2

(1) 0 + 0u(f7(p7)) =0 on (0,0) x R7,  j=0,1,2 16
(iii)  (p°(¢,0), p*(¢,0), p2(t,0)) € Gx for a.e. te (0,00), (16)
(iv)  p(0,-) = po on {0} x R,

Let us point out that Theorem 1.4 itself implies the existence of a solution to (16), which is not
obvious otherwise. This shows in particular that the germ Gz is complete in the terminology of [6, 37].
The germ Gy is described in Subsection 2.1.3.

In order to prove the theorem, we need to build suitable correctors of the equation, associated to
elements of the germ. For this, the point is that we will not have to do it for all elements of the germ
Gx, but only for a subset of it (which will indeed determine the whole germ Gz, as we will see later on).
This subset, denoted by Ej, is called a characteristic subgerm and is given in the following expression
(where the continuous, nondecreasing maps p — ﬁ;} o for j = 1,2 are introduced in (35)):

Ef = {(po,pl,pQ) € QFH such that one of the following conditions holds:

() p? = plo, 5= 1,2, fO(p ) Fore° fo

(ii) p* = &, fop°) = fO(p fo 111 () ( Y= fhrph), (17)
(iii) p* = ¢ty fOp°) = O (p°) = [y 12 (1) A(t)dt fQ( ) = 21 (p?),

(iv) p' = o, j =0,1,2}



Case (i) corresponds to a situation in which the traffic is fluid on all branches at the macroscopic level,
and fluid on the exit branches at the mesoscopic level. In case (ii), the outgoing branch 2 is completely
congested and the traffic is stopped on this branch. The traffic reduces to a classical 1:1 junction, the
only difficulty being that the traffic is congested at the macroscopic level on the incoming branch and
fluid (but saturated by the flux limiter A) on the outgoing branch 1. Case (ii7) is symmetric, exchanging
the role of the outgoing roads. The last case, Case (iv), is particularly simple since it corresponds to a
situation in which the traffic is completely congested (and the velocity of the traffic is null everywhere).

The following lemma states that the germ Gy is a sort of closure of Fj:

Lemma 1.5. (E3 generates Gj)
Assume that (1), (5) and (6) hold. We have E5 < Gx and Ej generates Gx: namely, for any U € Q,

(D(U,U)>O vUeEﬂ) —  Ueg;.

The two main ingredients of the proof of Theorem 1.4 are the correct guess of the effective germ Gy
(with its generation property given in Lemma 1.5) and the construction of a corrector for each element
of E[\:

Theorem 1.6. (Existence of correctors with prescribed values at infinity)
Assume that (1), (5) and (6) hold. For any p = (p°,p',p?) € Ej, there exists an entropy solution
up = (u;) € LY (R x R) of (9) which is 1-periodic in time and a constant C > 0 such that for all M > C

Hug = 1% o ®x (—o0,— M)y + HU; — P L2 @x(ar,0)) < CM ™1, i=1,2. (18)
If, in addition, p is as in (i) in the definition (17) of E3, then
ug =p® onR x (-0, —C).

The definition of the germ Gy, the proof of its maximality as well as the proof of Lemma 1.5 are given
in Subsection 2.1.3. The proofs of Theorem 1.4 (convergence part) and Theorem 1.6 are postponed to
the last section (Subsection 4.1).

1.7 Homogenization for 2:1 junctions

We complete the section by the analysis of homogenization on 2:1 junctions: as already pointed out, this
case is more realistic in terms of applications. The junction is now described by the two incoming branches
RJ = (—0,0) x {j}, 7 = 1,2, and the outgoing branch R° = (0,0) x {0}. We set R = U?:o R U {0}

The mesoscopic model we are interested in concerns a junction with a periodic traffic light which
regulates the traffic. As before the time-interval R is split into the 1—periodic sets I' and I?, each I*
consisting locally in a finite number of intervals. On the time-intervals I', only cars coming from road
1 are allowed to enter the junction and the road 0, while on the time-intervals I? only cars coming from
road 2 can enter road 0. The traffic is also limited on the junction by a flux limiter A = A(t). To
summarize:

traffic from branch 1 to branch 0 with flux limiter A(t), L 1
. on the time intervals I*,

no traffic exiting branch 2

traffic from branch 2 to branch 0 with flux limiter A(t),

. . . 2
no traffic exiting branch 1 } on the time intervals 1

6,07 ~e, 1 xe 2)

(see figure 2). We fix € > 0 a scaling parameter. In this model the scaled densities p¢ = (pY, p&*t, p©

solve the conservation law:

pe e [ad, &) a.e on. (0, +0) x RI, J=0,1,2

0= + 05(f(p7)) = 0 ) on (0, +00) x RY, J=0,1,2 (19)
(p90(t,01), p&L(¢,07), p92(t,07)) € G(t/e) for a.e. t e (0, +00),

[)6(0, ) _ /3 on {0} x R.



"+ 0:(f(p) = 0

Figure 2: Convergent 2:1 junction

The fluxes f7 satisfy condition (1) with a7, l}j, & in place of a/, b/, ¢/, and f7* are defined similarly as in
(3), (4). The time periodic maximal germ G of period equal to 1 is given by

60 ={ Gl 0 (20)

and
') ={(%p",p*) €@, F2(p*) =0, min{A(®), """, /> ")} = I ") = ")},

G2 (1) = {°,p"p*) € Q, f1(»") =0, min{A®), 2T %), """} = P0°) = F°0°))-
As in the previous parts, I' and I? form a partition of R satisfying (5)7 and the flux limiter A : R — R

is a periodic, piecewise constant map such that (6) holds. Finally the initial condition p = (5/) € L*(R)
satisfies p/ € [a7, ] a.e..

Theorem 1.7. (Homogenization of the 2:1 junction)

Under the previous assumptions, for any € > 0 there exists a unique entropy solution to (19) and, as
€ — 07 the solution (p°) to (19) converges in L}, ([0,00) x R) to the unique entropy solution j of the
homogenized problem

ﬁje[dj,éj] a.e. on (0, 4+0) x R, j=0,1,2

8t/37+6 (f '(,51))=0 on (0,40) x R/,  §=0,1,2
(p°(¢,07), pr(t,07), p?(¢,07)) € g};[\ for a.e. t e (0, —v&-oo), (21)
p(0,)) =p on {0} x R.

where the maximal germ gv - is defined explicitly in (87) below with A given in Subsection 2.1.3.

The proof of this theorem is given in Subsection 4.2.

1.8 Review of the literature

Conservation laws (CL) on junctions (and their application to traffic flows) have attracted a lot of
attention: see for instance the monograph [25] and the survey paper [10]. A large part of the literature is
concerned with conservation laws on 1:1 junctions, involving one flux function for the incoming road and
a possibly different one on the outgoing road, see [4, 6, 7, 8, 27, 41, 42]. It turns out that the approach
through the germ theory for 1:1 junctions is strongly linked with Hamilton-Jacobi (HJ) equations on such
junctions (still in the 1:1 case, see [12]). Combining both approaches gives a rough picture of this 1:1
setting: in a nutshell, the junction condition reduces to a flux limiter (a scalar), the conservation law is
an L'—contraction and is equivalent to the HJ approach at the level of the antiderivative. Let us also
underline that the Hamilton-Jacobi equation possesses itself an L*—contraction property. In conclusion,
this 1:1 framework is now relatively well understood.



The situation is completely different for junctions involving at least 3 branches. Indeed, although
many works have been devoted to such junctions (see for instance [5, 21, 26, 28, 30, 37, 43]), the problem
is still poorly understood and the general picture is far from clear. For instance, if the germ approach
of [6] has been recently extended to general junctions in [21, 37] (and we strongly use this extension in
the paper), there are still few examples of germs which are maximal and complete; one of the outcome
of our paper is to describe a new class of such germs (note however that a particular case was previously
discussed in [43]). On the other hand, models involving more than 3 branches seem far richer than the
1:1 set-up: for instance our junction condition (in terms of germs) can be parametrized by a whole family
of increasing functions (in contrast with the 1:1 set-up where there is just a single parameter). Another
difference with the 1:1 setting is that 2:1 and 1:2 junctions are not always L' —contractions. And last, the
equivalence between CL and HJ is lost in general: the limit models for 1:2 and 2:1 junctions discussed in
this paper do not seem to fit a HJ framework.

It is interesting to compare our class of germs (that we call here the class of traffic light germs, TL-
germs in brief) with some of the known germs in the literature on junctions (see in particular [28]). We
only consider 1:2 junctions because a reversed germ is automatically constructed for 2:1 junctions, by
reversion transform. In [43], the author defines a germ which is a special case of TL-germs for very special
functions satisfying moreover fO_ = fL 4 f2 with M ()\) = 69X for j = 1,2. In the pioneering work
[29], the authors introduced a class of germs, by the maximization of some entropy at the junction. It
has been only very recently proved in [30] that those germs are L!-contractant. We do not know what
is the relationship between this class of germs and the class of TL-germs, even if the intersection of the
two classes is empty or not.

The vanishing viscosity germ studied in [5] can be either or not a TL-germ, depending on the flux
functions. For instance, for f© = f, f! = a1 f, f?> = aof, it is possible to show that the vanishing
viscosity germ is a TL-germ if and only if a3 + ag < 1.

Hamilton-Jacobi germs (HJ-germs in brief) were defined in [32] and studied in [31]. These HJ-germs
are the same (going from the HJ level to the level of conservation laws) as the ones defined previously in
the monograph [25] for divergent junctions, and a single ingoing road. These germs are a particular case
of RS, germs in [26], where the authors also show that the total variation of the fluxes is bounded by a
constant if it is the case for the initial data. This allows them to show the existence of a solution. The
uniqueness seems an open question in general (at least at the direct level of conservation laws). Notice
that for N > 3 branches (like 1:2 junctions), it is easy to check that HJ-germs are never L!-contractant
germs (see [12]).

In the monograph [25], the authors introduce in particular a germ for 2:1 junctions which is the same
(by reversion) as the one called RS in the article [26] for junctions 1:2. It is defined for f* = f for
i = 0,1,2, and it is possible to show that it is not in the class of what we call here TL-germs. The
existence of a solution is shown in [26], but the uniqueness seems open. We do not know if these germs
have the L'-contraction property or not.

1.9 Organization of the paper

In Section 2, we provide some key results concerning the germs discovered in this paper. Section 3 is
devoted to the construction of correctors. The proof of the main homogenization results, Theorem 1.4
and Theorem 1.7, are given in Section 4.

2 Germs for divergent 1:2 junctions

In this section, we introduce a new general class of sets, prove that these sets are maximal germs, and
show how the different germs encountered in the main results enter into this general framework.
In contrast with the rest of the paper, in this section we only use a weaker assumption than (1),
namely
For j € {0,1,2}, for a’ < b < ¢/, the function f7 : [a’/, /] — R is continuous,

increasing on [a’, /] and decreasing on [b7, ¢/], with f7(a?) = fI(c¢/) = 0, (22)
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and we use the same notation f/* as defined in (3), (4). We start the section with a description of the
general class of germs used throughout the paper and explain their main properties. We illustrate this
notion by showing that the germs introduced for the mesoscopic model do fit this general framework.
Then we present the germs found through the homogenization procedure and give several examples. We
complete the section by the proof of the main properties of our class of germs.

2.1 A general family of germs
2.1.1 The main result on germs

In this section we investigate a general class of germs on 1:2 junctions. This family is described through
a set of parameters

A= {xmxaxma%}

satisfying the following conditions

M € [0, f.] for j=0,1,2

A0 =214 )2

the maps A* : [0, £9..] — [0, A¥] are continuous nondecreasing for k=1,2 (23)
M(0) =0, A(X0) = )F for k=1,2

AL + AZ(X) = min(X, X°) for Xe 0, fO..]

The germ Gy is defined from A as follows:

ad <pf <, j=0,1,2
0§f7(p])<5\], j:0a172
gA = gf,./\ = P = (pO’pl’pQ) € R37 > . (24)

%) = fH") + f2(0?)

fk’+(pk) = 5‘k(fO’Jr(pO))v k=12 )

Theorem 2.1. (Germ for divergent 1:2 junction) Under assumptions (22) and (23), let us consider
the set Ga defined in (24). Then

(i) Ga is a maximal germ,

(ii) Gu is determined by its subset
EXI:FU{Pl,PQ,Pz;}, (25)

where the curve T' and the points Py, Py, P3 are defined below in (26) and (27) respectively. This
means that, for any P € Q,

[D(P,P) >0 VPe Ej{] —  PecGa.

In order to describe the curves I' and the points P; (for i = 1,2, 3), let us first introduce the roots of
fiEE) =Xfor j=0,1,2:

{ [a%bj] E} ujJr()\) = such that o+ (r) =\ e [O»félax]
Su

such that f77(r) = A€ [0, fl..] -
We will also use later the notation ufi = (f»%)~1. Then

= {P:(u(}r(x\),uﬂr(Al),ui(/\Q)) with A := 3*(\) for k=1,2 and Ae[o,XO]} (26)
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and

P = (ug(é\l),u}r(y),u%@))
Py = (w2 (N?),ul(0),uZ (A?)).

Heuristically, the curve I' corresponds to a situation in which all the branches are fluids, while

Py = ( empty road, empty road, empty road ) €l
Py = ( fully congested, fully congested, fully congested )
P, = ( congested, fluid and saturated, fully congested )
P, = ( congested, fully congested, fluid and saturated )

where “fully congested” means that the road is with a maximal density of vehicles (hence with zero
velocity). On the other hand, “fluid and saturated” means that the outgoing road is still fluid, but that
we can not increase the flux passing through the junction point.

The proof of Theorem 2.1 is postponed to Subsection 2.2.

Let us now explain how the germs introduced for the mesoscopic model and the homogenized germ
introduced for the macroscopic model fit into the framework just described.

2.1.2 Germs in the mesoscopic model

We check here that the sets Ga, (t) (for t € I* and k = 1,2) introduced in (11) and (12) respectively, are
of the form (24) for suitable sets Ay (t). For t € Iy, the set Ay(t) = (A(2), \1(), A2(¢), AL(t,-), A\2(¢, ")) is
given by

N(t) = XL(t) = A1), X2 =0
Af(t,A) = min(\, A(t)) for Ae [0, fO..] (28)
A2(t,0) =0 for Ae [0, f0..]

For t € I2, the set As(t) = (AJ(2), AL(£), A2(¢), AL(¢, ), A2(t,-)) is defined symmetrically, exchanging the

indices 1 and 2:

Ap(t) = A5(t) = A(t), A3=0
ALt ) = for A€ [0, fRa] (29)
A2(t,A) = min(\, A(t)) for e [0, f..].

The next lemma claims that the germs Gy, () (for k = 1,2) associated with the A (t) through definition
(24), coincide precisely with the germs Gy, (t) introduced in (11) and (12) respectively for the mesoscopic
model:

Lemma 2.2. (Characterization of the maximal germs Gy, )
For any k = 1,2 and any t € I, the set Gau(t), defined through (24) from the sets Ap(t) is a mazimal
germs and coincides with the set Gy, (t) introduced in (11) (for k =1) and (12) (for k =2).

Proof. The proof is elementary. By symmetry, we can only do it for Ga, () for t € I L. Notice that A;(t)
satisfies (23). Hence Gy, 1) is a maximal germ, from Theorem 2.1.
If P = (p*)g—0,1,2 belongs to Gy, (1) or to Ga, (t), we have

A= 000 = f1 ') € [0,A1(1)]
and then
pPe{ul (N}, pef{uiN)}.
This gives 2 x 2 cases. Examining all cases in details (it is slightly tedious to do it for both expressions),
we can check in both expressions that all cases are possible except the following case which is excluded
by both expressions
PP =ul(N), p'=ul(N) for Ae[0,A}(2)).

Hence the two expressions coincide and the lemma holds true. O
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2.1.3 The homogenized germ in the macroscopic model

We now turn to the homogenized germ. This germ is naturally associated with the correctors introduced
in the next section. It happens however that it can be built independently: we present this construction
here. We also give several examples in which the germ can be explicitly computed (Propositions 2.6, 2.7
and 2.10).

The homogenized germ Gz introduced in Theorem 1.4 is defined through the set of parameters

A= {30050 e
by relation (24) that we recall:

0< f(p?) <N, j=0,1,2
g/_\ = P = (p07p1ap2) € QRH7 R . (30)
R = A0 e°), k=12
In A, the effective limiters X\°, A\!, A% are given by

1
Nk :=/ 1(t)A(t)dt for k=1,2,
0

(31)
1
0 :/ A(t)dt = A+ X < fila-
0
For \ € [0,A%], let p° = (f>*)~1()\). Note that p° satisfies the inequality
1
%) = 160 < [ Al =X (32)
0
We introduce the 1-periodic map? F) = Fjo : R — [0, f2,.] as
0,0y i L ' 0,0
VieR  Fy(t)=FEo(t) =4 2@ i /t Als)ds > F7), Vi <1, (33)
A(t) otherwise,

and set, for k = 1,2,
1
_ / Fr()11 (). (34)
0

We extend the functions A\ up to by

max

M) =2 for Ae[X0, 0], k=12
Finally, we set, for k =1, 2,
P = (F(OG)), VP e [af, 1] with fO(p) < X°, (35)
where we recall the notation u# = (f**)~!
The interpretation of these quantities is the following: we show i 1n Lemma 3.5 below that Fpo is the
flux at the junction z = 0 of the 1—periodic corrector taking value p at —co (or, equivalently, havmg a

flux A = fO(p°) at —o0). Proposition 3.12 shows that the ﬁ’;a are the densities at +00 and on the branch

k of this corrector. Hence the quantities j\k(/\) are the fluxes at +o0 of the time periodic corrector with
a flux A at —

2For simplicity we use the same expression F and Foo although the relationship between A and p° is the equality
p? = (f9F)71()\): the first notation makes more sense in the present section, while the second one will be used throughout
Section 3 on the construction of correctors.
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Remark 2.3. (An obstacle problem) The flur F)\ at the junction can be recovered by an obstacle
problem. More precisely, one can show that

Fx=X+A—(®)) ae on R
where @y is a viscosity solution to the following obstacle problem
min(®y — B, (®,) = \) =0 on R, B =4
such that ®\ — B is 1-periodic. Moreover ®y is unique for X € [0, \°) and we have
{®r =B} c {F\ = A} and {®) > B} c {F) = A}.
Finally, we have the following representation for ®:

D, (t) :=sup{B(t—7) + A1}. (36)

=0
See Lemma 2.5 for related results on ¢y = @) — B.
We then have the following properties

Lemma 2.4. (Properties of the fluxes \F)
For k=1,2, \k < f&_ and the map A~ \F()\) is continuous and nondecreasing on [0, f0,. ] with

max

MA)+ A2V =2 YAe[0,)] (37)

and

0< A <A =XF(N%),  k=1,2, VAe[0,A]. (38)
Proof. Step 0: preliminaries. Let us first note for later use that
Fo(t) < A(t) a.e.. (39)

Indeed, let ¢ be a point of continuity of A. Then either Fo(t) = A(t), or ﬁ f:l A(s)ds = fO(p°) for any
t1 < t. In this later case,

A(s)ds = fO(p") = Fyo(t), (40)

which shows (39).
Fix k = 1,2. On I*, we have A(t) < f,. by assumption on A. Thus

max

max"*

1
xk=/ A1 (t)dt < £ [0,1] A 17 < £
0

Let us set .
- 0(p0) —
VieR,  tp(t) _Itng{/t (100 ~ A(s))ds .
We explain in Lemma 2.5 below that 1,0 is nonnegative, Lipschitz continuous, 1—periodic and satisfies
0(,,0 ;
r oy 2 1 @Y —AQR) i g (t) >0
Yo (t) = { 0 if 4o (1) = 0 a.e. (41)
and
ot) = ) — Fplt) e (42)

Moreover, by the definition of 0, for any ¢t € R, 1,0 (t) = 0 is equivalent to saying that ﬁ j;tl A(s)ds =
FO(pY) for any t1, and thus, as explained in (40), one has A > f°(p°) a.e. on {0 = 0}.
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Step 1: M are nondecreasing. Fix k = 1,2. We now prove that the A* are non decreasing on [0, A°]
(it is constant on [A%, A2 ). If 0 < A < A < A%, then

a® <p’i=ul(\) <uf(N) = p < b’
Hence, by the definition of ¥,0 and 90, 10 < Yo and therefore {10 > 0} < {tpyo > 0}. Recalling (41),
(42) and the facts that fO(p°) < fO(p°) and that A > fO(p°) a.e. on {10 = 0}, we have
Fpo(t)=f(°) — Yio(t) = 1{wp0>0}(t)A(t) + 1y, o=0} (1) (")
= 1gy,0503 ()A() + Ly =0y () (0°) + 1{w 00, v 0=0y (fO(0°) — A(t))
< 1m0 (AW) + 1y g0y ()126F°) = Fyot).

Recalling (34) then shows that A* is nondecreasing.

Step 2 ;\k is continuous in [0,\°]. We assume that A" converge to A in [0, A\°]. Let p®" = u% (A")
and p® = u% (X\). Then (p°") converges to p® and (1,0.n) converges uniformly to 1,0. Using assumptlon

(5), we can write the set I* n [0,1] into a finite union of disjoint intervals ((#/, tz))J 1,...7, up to a set of
measure 0. Then (42) shows that

1 Ji
/0 Fyon (010 (¢ / (1) + POt = S (o (1) — g () + LOHO) (8 — 1))

converges to
Jk 1

2(%( 1) = o () + fO0°)(th — 1)) = ; Fpo(t)1ndt.

j=1
By (34) this shows the continuity of A¥ in [0, X°].
Step 3: proof of (37) and (38). By (34) and (42) we have, for \ € [0, \"],

1 1
S0 + () = / Fyo (1)t = / (F0°) — W)t = (%) = A,
0 0

since 0 is periodic. This is (37). By (39), Fyo(t) < A(t) a.e.. Hence by (34), AE(\) < AF for any
A e [0,A°]. For A = \° we then have

X0 =2+ %= A0 + A2(N0) = X,

which shows that the inequalities A¥ > A¥(A?) are actually equalities. This is (38). Let us finally remark
that A*(A\) = A¥, YA = A%, Hence A" is also continuous in [0, f%, ] (recall that it is continuous in [0, A\°]
by Step 2). O

In the proof of Lemma 2.4 we used the following result:

Lemma 2.5 (Analysis of ¢,0). Fiz p° € [a,0°] such that (32) holds and let

Ve R, hyo(t)= max{/tt(fo(po) - A(s))ds}.

t1<t

Then Yo is nonnegative, Lipschitz continuous, 1—periodic and satisfies, a.e.,

U (t) = fO(0°) — Fpo(t) = { gO(PO) —A(t) Z‘t izz 8 > 8

In addition, 1o (t) + A(t) — f°(p°) = 0 a.e..
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Proof. Note, choosing t; =t — 1 as a competitor and using (32), that 1,0 > 0. Moreover, by (32) and
periodicity of A, the maximum in ¢; in the definition of 1,0 can be chosen in [t —1,¢]. By periodicity of
A, po is 1—periodic. Moreover, as

t1eR

Ppo(t) = max{/tjAt(fO(po) _ A(s))ds},

where the integrand is bounded, 9,0 is also Lipschitz continuous as the supremum of uniformly Lipschitz
continuous quantities.
Let us now compute ¢o. On {10 = 0}, we have ¢/, = 0 a.e.. Let ¢ be a point of derivability of 40

with t,0(t) > 0 and such that ¢ is a point of continuity of A. If #; is optimal in the definition of 0,
then #1 < t because ¥,0(t) > 0. Hence, for |h| > 0 small,

t+h t+h
wplt )= [ (00 = Ads = v+ [ (£67) - Al
which implies that 1o (t) = FO(»°) — A(t). So we have proved that
roy 2 [ PW0) —AQ) i dpe(t) >0
7”0(’5)‘{ 0 i Gy (1) = 0

On the other hand equality 1,0(t) = 0 is equivalent to saying that, for any ¢; < t,

o ), ADds = 1068 (43)

Comparing (33) with the previous equality shows that 1, (t) = fO(p%) — Fpo(t) ae..
Finally, we have seen in (40) that A > f°(p®) a.e. on {¢,0 = 0}, which shows the last claim. O

Proof of Theorem 1.4: Gy is a mazimal germ. By Lemma 2.4, A satisfies (23), which implies by Theorem
2.1 that G is a maximal germ. O

Proof of Lemma 1.5. Let us set
Ii= {U = (@A), ut (M), u2 (A2)) with AF:=AF()) for k=12 and Xe [0,5\0]}
={U = (0, ppo, Bpo),  p° € [a”,b"] with fO(p") < A%}

and

Then Ej defined in (17) is equal to
E]\ =Tu {Pl,PQ,Pg},

the curve I' corresponding to case (i) in (17), P; to case (ii), P, to case (iii) and Ps to case (iv). Therefore
Ej generates G; by Theorem 2.1-(ii). O
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Three explicit examples. We complete this part by three explicit computations. In the first one,
there is no flux limiter (and hence no stop); the homogenized germ is then quite straightforward. The
second one involves one stop only and no other flux limiter; it shows that the order (stop-road 1-road 2 or
stop-road 2-road 1) influences the homogenized germ, even if the flux function is the same for both exit
roads. The last one gives a hint of the class of germs that can be reached through our homogenization
procedure.
Ezxample 1: the case where the traffic is never limited. We assume that
A(t) = min{ oy, fiax)  fortel’, j=1,2 (44)

and that the sets I' and I? are as simple as possible:

Up to a translation in time, the restriction of I* to [0, 1] is a single interval. (45)
Under these assumptions, we can compute explicitly A.

Proposition 2.6. Assume (44) and (45). Let us set 0% = |I* n [0,1]| (for k =1,2). Then
A= 0 min{ e fhax} for k=12,

5\0 = 91 mln{fr?lax’ félax} + 02 min{fr?}axa fI%laX}'

AP PO
Letting 0% = 50l (for k =1,2), the curves \*, \? are given by

AN := max('A, A — A2)
AZ(\) := min(62), \2)

=
Il

‘ for Xe[0,A\°] if6? =02

{ AL(A) := min(* A, A1)

A . Ae[0,X0] if 62 < 62,
)\Q(A):zmaxwz}\,)\/\l)‘ for Ael0.NT] 0% <6,

Proof. The computation of the A¥ (k = 0,1,2) is immediate. Let us now compute the \¥ (k = 1,2). To
fix the ideas, we assume that 02 > 62, the other case being treated in a symmetric way. Without loss
of generality, we also assume that 0 < ' < 1, since otherwise the problem reduces to a problem with a
single outgoing road. We set ¢* = min{f%__ fk 1 k =1,2. Note that §2 > 62 is equivalent to saying
that ¢1 > ¢%. Fix A € [0,A°] and let p° = uf (N).

Let us first assume that A € [0, ¢?]. Recalling that 6, = 1 — 61, we have max(§'\, A — A\?) = '\ and
min(62X, A?) = 62X. On the other hand, in this case, the map F,o defined in (33) is constant and equal
to A = fO(p°). Then, for k = 1,2,

1
AF(N) = /0 Fpon ()1 (t)dt = 0F .

Let us now suppose that A € (¢%,A\°]. Then max(6'\, A — A2) = A — A2 and min(#%\, \?) = \2.
compute F 0, We assume without loss of generality that I' n[0,1) = [0,60') while I? n [0,1) = [6! )

Slnce A< = 0'¢! + 6%¢? and A > ¢2, we deduce that A < ¢'. Hence the minimum over t1 of
ft A)ds is reached for t; = —(1 — 0) = —6? if t € [0,01). Then, by (33),
0y A=) p1
Py = 1 P00 e 5252000 (g,
A(t) otherwise

so that

1 0! 20y 42 20y 42 _
)\1()\) = / Fion ()1 (t)dt = FPO(A)(t)dt = M(ﬁl—k(el—w)/\ = 92(/\—(b2)+91)\ = A=\%,

0 0 Pt —A P —A
while

1
M) = /0 Fpoony()12(t)dt = 0%¢* = X2
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Ezample 2: one stop followed successively by two exits. Consider now the case where f! = f2 = f, and
f° may be different. We set A := max(f°,., fmax). We also assume that for 7o = 0°, 7 = 6° + 91,
T = 0° + 0 + 6% = 1 with 6" > 0, we have

0 on [0,79) =1I°
At)y=<{ A  on [r,m)=1"
A% on [r,m) =[m,1) =12

In other worlds, all the incoming vehicles from road 0, go on road j during the time interval I7 for j = 1, 2,
while they are all stopped at the junction during the time interval I°.
We then have the following result

Proposition 2.7. (Flux computation with one stop followed successively by two exits) Under
the previous assumptions, we have for X € [0, \°]

AL(A) = min{A(6° + 61), A1}
A2(A >? max{\02, A\ — A}
AL +A3)(N) = A

with B -
0.= A% +6%), A':=A%' N2 =A%

Moreover, if 0% = 62, then we have \' = \? and

M >A2 on (0,09
with equality at both end points of the interval (0, \°).

Remark 2.8. The result of Proposition 2.7 in the special case ' = 02, means that the order (stop-road
1-road 2) matters with respect to the order (stop-road-2-road 1). The road which receives the traffic just
after the stop, will have a higher passing flux than the other one.

After reversion, this corresponds to a convergent 2:1 junction where the outgoing road 0 is congested.
Then road 1 (just after the stop) will evacuate more easily than road 2, its vehicles onto the road 0. This
happens because the stop created some free space on road 0 just after the junction. This last interpretation
is much more intuitive here.

Proof. For t € [0,1], let B(t) = max(0, A°(t — 6°)) and extend B to R by B(t + 1) = B(t) + A°(0' + 6?)
such that B’ = A. For any A € [0,A°], where A" := Jo A = AY(0' + 0?), define @, as in (36) and
t =ty € (6% 1] such that

G0

M= DB(t) ie tA_QOZAo_X

We then have, using that {®) = B} < {F\ = A},
=/FA=/ A+/ )\=/A+/ (A— A).
I I3 A {®5>B} I3 A {®>=B} I I3 A {®>=B}
Since {®) = B} n [0, 1] = [t, 1], we deduce that
M) = A% + / (A — A%
[T1 /\t)\,‘l'l]
Let us set Ay = % such that ty, = 7i. This implies that, for A € [0, 4], we have

M) = A% + (A= A% (m — 1)) = Ay

and then . B B B
M) = min(Ar, M) on [0,\°], with A!':= \em = A%0%
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Similarly, using that
A2\ = / (A — A%) + A9?
[t/\VThl]
we can show that . - -
A2(A) = max(A0%, A — X)) on  [0,)\°]
This ends the proof. O
Remark 2.9. (Bounds on the derivatives of ) A natural question is the characterization of the

functions M that can be constructed by homogenization. In fact, the derivative of these fluxes has to be
bounded between 0 and 1. More precisely, one can show that

1= = (AN =g¢'(A\) =0 ae for Ae[0,)°]
(and symmetrically for 5\2) with ' 4
g (A) == [{Fx = A} n I|

Moreover g7 € L*([0,\°]) has a monotone nonincreasing representant in the class of L™ functions. We
can show that this also implies that if there exists some A\ € (0, \°) such that the derivative vanishes

(V) () =0

then M = const on [A1, \°]. Moreover each N is sandwiched in between a concave function and a convex
function.

Ezample 3: concave flux AL We now explain how to compute Al from A when A has a particular struc-
ture and is assumed to be continuous.

Proposition 2.10. (The case of A! concave and A continuous)
Given 0 < t; —tg < 1, assume furthermore that A : R — [0, +00) (still 1-periodic) is Ct, decreasing on
[to,t1], and increasing on [ti,to + 1]. Given \0 := f[0,1] A, consider ty € [to,t1] such that A(tg) = \°.
Assume now that

A" <0 on [to,t1) and I' = [to,t1] mod. 1

Then up to translate A, we can assume that ty = 0, and we have

. Ao i Ae (A(t2), A(0)]
> (A):{ e i Ac A (46)

The function X! is C' and concave on [0,\°]. Moreover A is linear on [0, A(t1)], and C? strictly concave

n (A(t1), A°]. We also have (\')(A\°) = #o = 0 when 0 = Ty < t;.

Proof. We first notice that for € [0, A(t1)], we have Fy = A and A'(\) = |I1|\.
For X € [A(t1), A(to)], we define t € [fo, t1] such that A(¢)) = A. Arguing as in the proof of Proposition
2.7, we have

BN == AT — A1) = / (AN

Because A — tx = (Ajiz,0,1) 1 (A) = A7H(A) is C on (A(t1), A(fo)], we see for later use that j3 is also
C!, and is moreover nonincreasing. Now for ¢ := ty, we have A(t) = X and

i.e.



Taking the derivative, and dividing by A’(¥) < 0, and up to assume that tg = 0, we get
(_ﬁ/) 0A= Id[ﬂ),h)
with —3 = (A!)’. This implies that

A = Qi)™ on (A(t), Alfo)]
O

Remark 2.11. 1) Notice that we can also prove a sort of recriprocal result. Given any C? concave
Junction X' : [0,A°] — [0, 400) with (A1) < 0 on (0,A°) and A1(0) = (A1)(A%) = 0 < (AL)(0) < 1,

we can cook-up a suitable 1-periodic function A with A(t1) = 0. Everything can be done such that AL

associated to A as in Proposition 2.10 (except that A is constant on (t1,to+1) and possibly dzscontmuous
at to and ty1).

2) Notice also that in this remark and in Proposition 2.10, the function A is not piecewise constant, as
it is assumed in our homogenization result. Nevertheless, an approzimation of such A by a sequence of
piecewise constant functions is always possible, and then relation (46) is still valid, once it is correctly
interpreted (where A s continuous and piecewise linear). Then any concave A\ as in point 1), can then
be obtained as limits of homogenized AL of piecewisely approximated functions A.

2.2 Proof of Theorem 2.1

This subsection is devoted to the proof of Theorem 2.1. Starting with a lemma describing how the
dissipation condition can be violated (Lemma 2.12), we prove that G, is maximal and generated by E/J{
(Lemma 2.13) and then that it is a germ (Lemma 2.14).

2.2.1 A technical lemma

We consider P = (p¥, p,p?) and P = (p°,p', p?) with P, P € Q7 i.e. such that we have the Rankine-
Hugoniot relations

Defining
FO:= f(3°) = f(0°), s°:=sign(p® —p°)
F'= f(p') = f(p'), s':=sign(p' —p") (47)
F?:= f(p*) — f(p?), s°:=sign(p® —p?)

we get

D(P,P)=s"F° — {s'F' + F?} with F°=F'+F?
and s/ = 0 implies F7 = 0.

Lemma 2.12. (Violated dissipation for divergent 1:2 junction)
Let us consider the dissipation

FO=F! + F?
D :=s"F%— {lel + s2F2} with sh e {0,£1} for j7=0,1,2
s9 =0 implies FJI =0 for §7=0,1,2.

Then D < 0 if and only if
sPF0 <0, s'=3s2+3s" weakly
or
s'F1 >0, s%=3s2+s' weakly
or
s?2F?2 >0, s=s'+5% weakly

where
Vo524 5% weakly <— s°+0, s's2>0, s%!'<0, s%%<o.
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Proof. The proof is technical but elementary. Up to change (FY, F!, F?) in (F° —F! —F?), we can
assume that

D=s"F+s'F' + *F? with F'+F'+F?=0
and we want to show that D < 0 if and only if

(0) s°F% <0, st=s2+5" weakly
or

(1) s'F'<0, s°=s?+s! weakly
or

(2) s*F? <0, sY=s!+5? weakly.

Step 1: (0),(1) or (2) imply D <0
We only consider the case (0) (the other cases being symmetric).
This means that we have

s9F% <0, 40, s's?=0, s"s'<0, s%%<0

and we distinguish several cases.

Case l.a: s'! =0 =52 Then F! =0 = F? and D = s"F° < 0.

Case 1.b: s' =0+ s2. Then F! = 0 and then F? = —F° and also 52 = —s°. We get D = 2s°F% < 0.
Case 1.c: s' + 0 = s2. This is symmetric to case 1.b.

Case 1.d: s' £ 0, s> + 0. Then s! = 52 = —s°, and F' + F? = —F° gives D = 2s°F° < 0.

We conclude that D < 0 in all cases of Step 1.

Step 2: if we do not have (0),(1) nor (2) then D >0
If sF7 > 0 for all j = 0,1,2, then D > 0. Then assume that at least one such term is negative. By
symmetry, we can assume that

s'FO < 0.
Notice also that if all the s? for j = 0, 1,2 have the same sign (with value in {0, £1}), then D = 0 (because
FY+ F' + F? = 0). Then we can assume that the s/ do not have all the same sign.
Moreover recall that we don’t have (0). Hence we can assume in particular that

sPF% <0
s+ 0 and (3132 <0 or s%!'>0 or s%s?> 0)

5%, s, 5?2 do not have all the same sign.

We distinguish several cases.

Case 2.a: s%s! > 0. If s2 + 0, then s' = s = —s? and F° + F! = —F? which gives D = 252F2 > 0
because case (2) is also excluded. If s> = 0, then F? = 0 and F'' = —F° which implies D = 0.

Case 2.b: s%s? > 0. This case is symmetric of case 2.a.

Case 2.c: s's?2 < 0. If s = s, then s° = st = —s? and F° + F! = —F?2. This implies that
D = 252F? > 0, because (2) does not hold. If s = s2, then we obtain, in a symmetric way, that D > 0.

We conclude that D > 0 in all cases of Step 2.
This completes the proof of the lemma. O

2.2.2 Maximality

Lemma 2.13. (Maximality of Gn) We work under the assumptions of Theorem 2.1. Let us consider
a set G < Q satisfying the dissipation condition

D(P,P)>0 foral P,Ped.
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Let
Ef =T u{P, P, P} defined in (25).

If EX c G, then we have
G < Ga.

This implies in particular that Ga is mazximal.

Proof. We choose P € G and we will test it with
PEFU{Pl,PQ,Pg}

using the dissipation condition D(P, P) > 0 in order to show that P € Gx.
We write

P=0"pp%), P="p"0")
We use notation (47) for the fluxes F7 for j = 0,1, 2.
Step 1: recovering Rankine-Hugoniot condition
We choose P := P3. Because for all P € Q = [a",c°] x [al, c!] x [a?, c?], we have p/ < p/ = ¢/ for all
7 =0,1,2, we get
0< D(P,P)=F"—(F' +F*), [°(p")=[f'(p") + [*(P"),

which implies

0% = {rehH + F*)} <o. (48)
We now choose P := Py. Because for all P € @), we have p/ > p/ = o’ for all j = 0,1, 2, we get

—H{F = (F'+ F)} =0, f°0°) = f'(0") + £2(°),

which implies

%) = {1 ") + 2"} = 0. (49)
Combining (48) and (49), we get the Rankine-Hugoniot relation and then P e Qf*7.

Step 2: getting flux limiters B - -
Step 2.1: 0 < f1(p') < A'. Weset P:= P = (p°(A!),p(A\!),p2(0)). Assume by contradiction that

A= F1ph) > A = £ Y.
Using Rankine-Hugoniot relation and the facts that f2 > 0 and f2(p?) = 0, we get
A= 1200 > N = ).
Using that p! € [a!,b!] and that p° € [b°, c°], we deduce that
o>t P <0

Then we get the table

k=0 1 2
sk >0||[<0
F* | <ol [|[[<o]|[<0]
P <0 >0

with the convention that the boxed inequalities are the known ones, and the unboxed inequalities are the
deduced ones.

Hence whatever is the value of s?, we deduce from Lemma 2.12 that D < 0 either from sF° < 0 or
from s'F'* > 0 (depending on the value of s2). Contradiction.
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Step 2.2: 0 < f?(p?) < A\%. Choosing P := P», we get the result in a symmetric way.

Step 2.3: conclusion
From Rankine-Hugoniot relation, we deduce that

0< ) < 3= A 432,
which, combining with Steps 2.1 and 2.2, implies the limiters
0< fA(p')y <M for j=0,1,2.

Step 3: getting key inequalities defining Gj.
Step 3.1: fh " (p') = A (fO("))-
Assume by contradiction that .

At < AT 00).
We choose A = min(A°, fO+(p°)) and we define P = (p°,p',p?) := (u%(N),u’ (A1), u2 (A\?)) with A\F =
A*(X). This implies in particular that

@) =x= 0" =
Hence (recalling that A is nondecreasing)

A= 1Y) < PO < NPT < M) =X = 1Y) = £ ()
and then
p'elal,0'], pt<ph

Then we get the table

k=0 1 2
sk >0
F* [ [=0][[>0
sFFF >0

In order to go further, we have to distinguish cases.
Case A: A < A. Then

A= f0(p") = min(X, O (p") > fO(p°) = A

and
P’ =ul(\) <uf (N%) <p’
i.e.
k=0 1 2
sk <0 >0
Ft o[>0l || [>0
sFFE <0 >0

Hence whatever is the value of s2, we deduce from Lemma 2.12 that D < 0 either from s°F° < 0 or from
s'F1 > 0 (depending on the value of s*). Contradiction.
Case B: A\ = \. Then, we have with \¥ = f*(p¥) and \¥ = f*(p*) for k = 1,2

A< Al and M+ A2 =X=X=2"4 )2

Hence -
A2 > )\2

ie.
210 = 0 > 0% = 0%
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and then

We can almost complete the table

k=0 1 2
sk >0]| <0
F* [ [=o0]][>0]] <0
skEF =0 >0 | >0

Again we deduce from Lemma 2.12 that D < 0 using s2F? > 0 or s!F! > 0 (depending on the sign of
sY). Contradiction.

We get a contradiction in all the cases and so

U@ = N E0).
Step 3.2: f2%(p?) = A2(f%*(p°)). Proceeding symmetrically to Step 3.1, we get the result.

Step 3.3: conclusion
Finally, this shows that P € Gy and completes the proof of the lemma. O

2.2.3 Germ property

Lemma 2.14. (Germ property of Gx) Under the assumptions of Theorem 2.1, the set Gp defined by
(24) is a germ.

Proof. By construction, we have Gy = Q¥ and then we only have to show that?

D(P,P) >0 forall P,Pegy. (50)

Assume by contradiction that there exists P, P € Ga such that
D(P,P) < 0.
Then from Lemma 2.12, we have two cases. Either
sYFO <0 and s° + s = 5% weakly,
or (up to exchange the indices 1 and 2), we have
sS'F1 >0 and s' + 5% = 5% weakly.

Case A: s'F° <0 and s+ s' = s* weakly.
Up to exchange P and P, this means that

F'<0, %=1, s'<o0, s*<0,

i.e.
P> pr<pt, pP<pt %) < fO°) < A

Hence -
> u’ (\).

3The proof of inequality (50) is a short proof. Still it is quite difficult to guess that proof from scratch (and also the
expression of the germ Gp) and it needs a lot of tries. Notice that each component of P and P can be either in the
nondecreasing (i.e. fluid) or nonincreasing (i.e. congested) part of the flux. A first (tedious) proof was done distinguishing
(23)2 = 64 cases, and using a much more complicate (and equivalent) expression of Gao. Finally, the proof we give here is
easy to follow line by line but is absolutely not intuitive.
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Recall that . R
e = A UOTEY), TR = 0T R0)

and in particular
o) =A% et = AL e = N

where we have used the fact that A(f0_ ) = A¥(X%) = XF for k = 1,2. Therefore, since f*(p*) < ¥, we
have

{ pte{ul (AH} U [ul (A1), c!]
P’ e {ui(x_\Q)} U [u? (M%), ).

This implies that

and then
0% = 1Y + 0% < £1 Y + £20%) = £°0°) < 20"

Contradiction.

Case B: s'F! >0 and st £ 59 = 52 weakly.
Up to exchange P and P, this means that

F'>0, st=1, <0, s*<0,

i.e.

1ot = oY, et pP< PP <pt
Recall also that . R

U = MO E), AR = RO 0Y)

FUE@EY) = Ao E0), AT = N (O ().
Case B.1: p° > u% (A\%). Then

and
which implies

Contradiction. -
Case B.2: pY < uf (A\°). Hence we have

and then

Using the fact that F!' > 0, we get 2 < 0. This implies that

{ P> ph, P’ <p
1Y > H1eh, %) < 2%
Hence
pl < u1+()\1), P < ui()\Q)
Moreover R R
{ Froh) = 210" = AT E0) = AT, A= 100)
2% = 24 (%) = X2 (0°) = (N, A= f00%) <A



Contradiction with f(p!) > fi(p').
This completes the proof of the lemma. O

2.2.4 Proof of Theorem 2.1

Proof of Theorem 2.1. The proof of Theorem 2.1 is a straightforward application of Lemma 2.14, which
says that Ga is a germ, and of Lemma 2.13, which proves at the same time its maximality and the fact
that it is generated by EY =T U {Py, P, P3}. O

3 Construction of the correctors

In this section, we build a corrector associated to a density at —oo equal to some p® € [a®, "] such that

/ A = 00, (51)
0

Let us recall that a corrector is a time-periodic solution to the mesoscopic model (9), which is equal to
p0 at —oo.

The construction of the corrector relies, on the one hand, on the equivalence between Hamilon-
Jacobi equations and conservation laws in one space dimension and, on the other hand, on representation
formulas for solutions of Hamilon-Jacobi equations for concave Hamiltonians. We proceed in four steps.
We start with a general construction of a periodic in time solution to a Hamilton-Jacobi equation on a
half-line (0, +00), with a periodic Dirichlet condition at = 0 (Lemma 3.1). We apply this construction
to the entry line (road 0) for a junction condition problem (Lemma 3.5). The surprising fact is that this
construction can be achieved independently of the outgoing roads 1 and 2. The reason for this is that,
in the periodic regime, the flux entering roads 1 and 2 will be at each time the maximal flux coming
from road 0: thus no information coming from the outgoing roads is needed to build the solution on
the incoming road. Given the flux exiting road 0, one can solve the Hamilton-Jacobi problem on the
exit lines 1 and 2 (Lemma 3.10) thanks again to the general construction of Lemma 3.1. In the fourth
step we glue the solutions together and show that they form a periodic solution to the conservation law
(9) (Proposition 3.12 for the fluid regime and Proposition 3.13 for regimes in which one of the outgoing
branches is fully congested).

3.1 A periodic solution to a HJ equation on a half-line

In this section, we assume that

f :[a,b] — R is a strictly increasing map which is of class C? and strongly concave:

f"(p) < —0 < for any p € [a, b], for some constant § > 0 (52)
and
1 : R — R is a Lipschitz continuous map, which is 1—periodic (53)
and satisfies ¢'(t) € [—f(b), —f(a)] a.e. teR.
We consider the Hamilton-Jacobi equation
(1)  OrwE [a,b] a.e. in R x (0, +00),
(1) w4+ f(Oyw)=0 forteR, x>0, (54)
(1) w(t,0) = (k) for teR.
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Inspired by the Lax-Oleinik formula and by optimal control on junctions (see for instance [31]), we
can guess a representation of the solution. The following result checks afterwards that the candidate is
indeed the unique solution.

Lemma 3.1. (Explicit time-periodic solution of the HJ equation)
Under the assumptions (52) and (53) on f and 1, there exists a unique time-periodic Lipschitz continuous
viscosity solution w : R x [0, +0) — R to (54) which is of time period equal to 1. It is given by

w(t,z) = sup P(t1) — §(t —t1,x) (55)

t1<t
where the map & : [0,0)% — R is defined by

§(s,y) = max —py +sf(p)  Vs=0,y=>0.
pela,b]
Proof. Step 1: Uniqueness of the solution to (54).
We only sketch the proof, arguing as if the two solutions w and @ of (54) were smooth: the general case
can be treated by standard viscosity techniques. Arguing by contradiction, we assume that sup w—w > 0.
Then we look at the maximum of w(t,x) — w(t, ) — ex? (for € > 0 small). At the maximum point (¢, z)
one gets dyw = Jpw and Jyw = 0, W + 2ex with 2 > 0 (since w = w at = = 0), so that

03 dow + f(Opw) — 4@ — f(0s) = f(3s + 2ex) — f(0p) > O,

as z > 0 and f is increasing. This leads to a contradiction.

In order to proceed, we first need to rule out the case in which % is constant. In this case the solution
to (54) is given by w(t,x) = ¢ + p*x where p* € [a,b] is such that f(p*) = 0. On the other hand we
have by (53) that 0 € [f(a), f(b)]. Using Lemma 3.2 below, one can easily check that the optimal s in
the expression of w(t,x) = 1 — infs> &(s, ) is given by s* = a/f'(p*) and then £(s*,2) = —p*w which
gives the correct expression for w.

From now on we assume that 1 is not constant. We note for later use that this implies that f(a) <0
and f(b) > 0 because —¢’ € [f(a), f(b)] and ¥ is periodic and not constant. We suppose in addition that
1 is of class C! and satisfies ¢'(t) < —f(a) for any ¢t € R. This extra condition is removed at the very
end of the proof.

Step 2: w is globally Lipschitz continuous on R x [0, +0)
We first note that the sup in the definition of w is in fact a max, because 1 is bounded and, as

SUPpe[q,5) f(P) is positive,

lim { inf ]f(t—tl,x)} —+m  VYR>0. (56)

t1——00 (z€[0,R
In particular w is uniformly bounded on any strip R x [0, R]. As explained in Lemma 3.2, the map
(s,y) — &(s,y) is globally Lipschitz continuous and bounded in C*! in [0,00) x [¢, +0) (for any € > 0),
with
a?/g(s7y) = _ﬁv asg(s,y) = f(ﬁ)a

where p is the unique maximum in the definition of (s, ). Since w can be rewritten as

w(t,z) = tsu%d)(h At)—&(t—(t1 At),x)

it is globally Lipschitz continuous on [0, +00)2.

Step 3: w is locally semiconvex in time-space

Next we check that w is locally semiconvex in time-space in R x (0, +00): we use this property below to
check that w is a solution. This local semiconvexity is not straightforward because w(t, z) is defined as
a supremum of an expression on the interval (—oo,¢] which itself depends on the variable ¢t. In order to
overcome this difficulty, we will show that the maximum time #; , in the definition of w(t,z) is indeed
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strictly less than ¢ (with some bound), which will allow us to replace locally the interval (—oo,t] by
some smaller interval locally independent on ¢. For the proof, let us introduce a few notation. Given
(t,z) € R x (0,00), let Lt%’m < t be a maximum point in the definition of w(t, z) and p;, € [a,b] be the
unique maximum point in the definition of £(¢ — t},m,x). We next claim that, for any 0 < € < 1, there
exists n > 0 such that, if = € [¢,1/¢], then ¢} , < ¢t —7. Indeed, otherwise, there exists a sequence (t,, )
such that z,, € [e,1/e], ftlr,“wn > t, — 1/n. By periodicity we can assume without loss of generality that
tn € [0,1] and converges to some ¢ and that (x,,) converges to some € [¢,1/€]. Then i} , converges to
t, which is a maximum point in the definition of w(¢, z), and py, ., converges to some p € [a, b], which is
the unique maximum point in the definition of £(0,z). As {;, =t is a maximum for w(t,x), we get by
the optimality conditions (using the additional regularity ¥ € C1),

Ql)/(t) = —(755(0,35) = _f(p) = _f(a’)v

because the unique maximizer p of p — —pz on [a, b] is p = a. This contradicts our additional assumption
that ¢/ < —f(a) and shows that there exists 7 > 0 such that, if x € [¢,1/€], then {; , <t —7.

As a consequence, given (t,z) € R x (0,0), there exists a neighborhood V of (¢,2) and ' > 0 such
that,

w(svy) = Sup w(tl) - f(S - tlay)v Y= .’L‘/2 V(s,y) eV.

t1<t—n'

Note that the upper bound for ¢; in the above problem is now independent of (s,y). Recalling that £ is
bounded in C*! in [0,00) x [2/2,00), this shows the semiconvexity of w in V.

Step 4: w is solution of (54).

As f is uniformly concave and w locally semiconvex, w satisfies the equation in (54) in the viscosity sense
if and only if it satisfies this equation at any point of differentiability. Let (¢,2) € R x (0,00) be a point
of differentiability of w. By the envelop theorem (Theorem A.5), for any optimizer t}@. < t for w(t, )

and if p;, € [a,b] is the unique maximizer for £(t — £}, z), we get

axw(ta SU) = _ayf(t - t},zv 1') = ﬁt,ma atw(tv :L’) = _asg(t - {%,1:7 .’t) = _f(pt,m)‘
Thus
Orw + f(Qew) = —f (Pr) + f(Pr2) = 0.
This shows that w satisfies the equation in (54) and that d,w € [a,b] a.e..

For the boundary condition, we first note that (choosing t; = ¢ as a competitor)

w(t,0) = —1(t) — £(0,0) = ().

Moreover, R X R R
w(t,0) = () = (t —t;) max f(p) = (o) — (t —1;0)f (D).

p€la,b]

If, contrary to our claim, we had w(t, 0) > 1 (t), then one would have t}o <t and

(t=ti0)f(b) <w(tig) —w(t) = — [ W/(s)ds < (t—13)f (D),

ito
which is impossible since f(b) > 0. Hence w(t,0) = —(¢).
Step 5: Conclusion.
We finally remove the extra assumption that ¢ € C! and satisfies ¢ < —f(a): let (™) be a sequence
of smooth periodic maps satisfying —f(b) < (¢¥™)" < —f(a) and which converges to ¢ (such a sequence
exists since —f(b) <Y’ < —f(a) a.e.). Let w™ be given by (55) for )™ in place of ¢. Then w™ solves the

HJ equation for ¥" and, by stability, converges locally uniformly to the unique viscosity solution of the
problem with 1. Note that (54)-(i) holds as well by L® — = convergence of d,w™ to dyw. O

It remains to state and check the intermediate lemma.
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Lemma 3.2. (Properties of the fundamental solution ¢)
The map & defined by
(s,y) = max —py +sf(p) V520, y=0.
pela,
is globally Lipschitz continuous in [0,00) x [0,00) and bounded in C*! in [0,00), x [€,0), for any € > 0.
Moreover, £ is differentiable at any (s,y) with s > 0 and

ayg(sv y) = —Ps,y> 0s&(s,y) = f(ﬁs,y)v (57)

where P s the unique point of mazimum in the definition of £(s,y) and is given by

(f)"My/s) ify/se (f'(b), f(a))
ﬁs,y = b if y/5 < f/(b) (58)
o ify/s> fa)

Proof. As f is increasing and strongly concave, the point of maximum p,, in the definition of (s, y) is
unique for s > 0 and y € [0,00) and given by (58). Thus, by the envelope theorem (Theorem A.5), ¢
is differentiable at any (s,y) with s > 0 and its derivatives are given by (57). As ps,, is bounded, this
implies that £ is globally Lipschitz continuous in [0, 00) x [0, o).

It remains to show that (s,y) — ps,, is Lipschitz continuous in [0, 00) x [€,00) (where € > 0 is fixed).
As f is strongly concave, f’ is decreasing. Since f is increasing, this implies that f'(a) > 0.

Using again that f is strongly concave with f” < —§ < 0, we see that —Cy < ((f")™!) < 0 with

= 1/6. Let (s,y),(s',y") € (0,00) x [g,00) be such that (to fix the ideas) y/s < y'/s’, and then
Ds'y’ < Ds,y- The idea consists in using ¢ in order to control y,y’, which will in turn control also s, s’ in
some sense.

Without loss of generality we can also assume that y/s < f’(a) since otherwise ps , = a = Py . We
have

e sl <o %~ F@) - L ro)| <o (4 a s - 2)).

S

Let us first suppose that y/s,vy'/s’ < f'(a). As y,y' =€, we get 1/s' < f'(a)/y’ < f'(a)/e. Hence
5 ) 1 y f'(a) f'(a))?
|Ds'yr — Ds,y| < Co (5/|y/ —yl+ §|s - 5’|> <G (£|y/ —yl+ %\s —5| ).

Finally, if y'/s'" = f'(a) and y/s < f'(a), then

e =poal <o (£ =L+ L= V) < (P - D)+ Dy )
<o (L -y Ly y) .

This shows that the map (s,y) — P, is Lipschitz continuous in (0, 00) x [, 00), and thus on [0, +0) x
[e, +o0). Therefore ¢ is bounded in C1! in this set. O

In order to show that the correctors will have the good behavior at infinity, we have to examine
carefully the behavior of the solution of the HJ equation at infinity.

Lemma 3.3 (behavior of the solution at o). Assume that conditions (52) and (53) on f and ¢ hold and
that 0 € [a,b] with f(0) = 0. Then the solution w of (54) is bounded and there exists a constant C' > 0
such that

C
[0z wl| oo (R (M1,00)) < i VM = C. (59)
Remark 3.4. We can actually show that there exists a constant C' > 0 such that
C
lw — mawaLw(Rx(M,oo)) < M VM = C.

The bound w < maxv follows by comparison, while the other bound is obtained using the uniform
concavity of f in the representation formula.
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Proof. We can assume without loss of generality that a < 0 < b since, if a = 0 or b = 0, then by (53) ¢
must be constant and therefore, since f(0) = 0, w = 9 is also constant.

As wr(t,z) = [|¢|o and w™(¢,2) = —|1)||ex are respectively time-periodic super- and sub-solution of
the equation, we have |w| < ||t)]|sx by comparison.

We now turn to the proof of (59). Given any (¢,z) € R x (0,+o0) a point of differentiability of w,
consider some optimizer ¢; < t for w(t,z) and p the optimizer in the definition of £(t — £, z). From the
proof of Lemma 3.1, we know that #; < ¢ and that d,w(t,z) = p. So, to prove (59), we just need to
estimate p.

Recalling Lemma 3.2 again, we have

0:E(5,y) = f(B) where p = —0,&(5,9) = (F) (LG (w/s),  TE(2) = max(a, min(8, 2)).
Hence f(0) = 0 implies
(s,4) <0 if y/s> f(0),

0s&(s,y
0s§(s,y) >0 if y/s < f/(0).
We claim that z/(t — £, + 1) < f’(0). Indeed, otherwise, 2/(t — t1) = x/(t — t; + 1) > £'(0) and thus
€(-,z) is decreasing on [t — t1,¢ — t; + 1]. This implies, as ¢ is 1—periodic, that

Yt —t+1) =&t —t + L,z) >t —t1) — &t —t1,2) = w(t, z),

a contradiction because t; = f; — 1 is a competitor in the definition of w(t, ). Thus z/(t—#; +1) < f/(0).

In the same way one can check that, if #; +1 < ¢, then z/(t —f; — 1) = f/(0), using t; = #; + 1 as a
competitor in the definition of w(t, ). Let us check that indeed #; + 1 < ¢ if x is large enough: otherwise,
|t — 1] < 1 and therefore

w(t,z) =Pt =) + min {pzr — (= 4) ()} < [¥]w + [ floo + min pz
p€la,b] pEla,b]

= ¢l + [flle + az,

which yields to a contradiction if x is large enough, because a < 0 and w is bounded.
The two estimates on x/(t —¢1 + 1) and z/(t — t; — 1) imply that, for  large enough,

= f/(0)(t = 1)] < f(0),

where f/(0) > 0. Thus, for  large enough, z/(t — t;) is close to f'(0) € (f'(b), f'(a)) and therefore for
large enough

o= () ()| = | () - oo < e - ro) < 5 < £

t—1t; t—1t -t

O

3.2 Periodic solutions to a HJ equation on the entry line

We build in this part an antiderivative of the corrector on the incoming road R°. We suppose here that
1O satisfies (1) and that the flux limiter A satisfies (5) and (6). For p° € [a”, c°] such that (51) holds, let

foo) = P +p") = f°0°)  forpe[a® —p°, & —p°], (60)

so that f;?o (0) = 0 and 0 € [ag — po, co — po]. We consider the periodic in time viscosity solution wgo to
the HJ equation

(i)  Oyuwle [~ao —p%,c® —p°] a.e. in R x (—00,0),
(ii) Oy + fO(0,w’) =0 . forteR, <0 (61)
(iii)  Jpw® + min{A(t) — fO(p°), fOF(0,w’)} =0 forteR, x =0
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By a solution, we mean that w’, is continuous on [0, +o0) x (—00,0] and is a viscosity solution in the
sense of [31] to (61)-(i)-(ii)-(iii) on each open interval on which A is constant. It is easy to check that
the whole theory developed in [31] generalizes to this simple time-dependent setting. Notice that, if w®
is a solution of (61), then w® + c is also a solution for any constant ¢ € R. Still we have the following
existence result.

Lemma 3.5 (Explicit time-periodic solution in the incoming road). Assume that fO satisfies (1) and
that (5) and (6) hold. Let p° be such that p° € [a®,b°] and (51) holds, or p® = (f%~)~! (fol A(s)ds).

Then there exists a bounded, Lipschitz continuous and time-periodic solution wgo to (61), with period 1,
which is given by the representation formula

max{O7 maxe, <t {¢po (t2) — 520 (t — ta, x)}}, if p° € [a®, 7],

O (t, x) = 62
it maxs, <o{Vpo (t2) = E(t — t2,2)} }. ifp = (f07) (Jy Als)ds), )
where
Gols,y) = max —py+sfp(p)  Vs>0,y<0
and .
wax | G760 - ADds} i e [0,
Ppo(t) =4 4 n (63)

|6 - aw)as P00 = (1) (i Als)ds).
0
In addition, there exists a constant C' > 0 (depending on p®), such that

wgo(t,x) =0 for < —-C, teR if p° € [a®, 0°],

and 0500 e kx(—onry < & forM =Cifp® = (fO7) 7 (fol A(s)ds) with p° e (b9, ).
(64)
Finally,
wlo(t,0) = () VEeR,

0

and, if p° € [a®,b°], the map Wy

(t,x) is nondecreasing on (—o0,0] for any t € R.

Recall that the map ¢, (for p° € [a%,b°]) was introduced in Lemma 2.5 when building the homoge-
nized germ Gj.

Remark 3.6. Notice that in case p° € (b°,c°], it is possible to construct explicit examples of solutions
where 6xwgo (t,z) has no compact support in the space variable x, but tends to zero as x — —0.

Proof. Note first that, if p” = b° satisfies (51), then w), = 0 is the solution to (61) because in this (very
particular) case, assumption (6) implies that A(t) = f2... From now on we assume that

max*
p° # 0.

As p° is fixed, we remove the subscript p° throughout the proof for simplicity of notation. Note that, if
p? e [a®0%), 0 < b —p® < c® — p¥ and thus the map y—£°(s,y) is decreasing on (—o0, 0] for any s > 0.
Hence the map x'—>w20 (t,x) is nondecreasing on (—o0,0] for any ¢ € R.

Step 1: w’ is a viscosity solution to the HJ equation (61)-(ii). If p° € [a°,b°) is such that (51)
holds, Lemma 2.5 states that the map 0 is Lipschitz continuous and 1—periodic and we can rewrite

w® = w? in the form

p(J

wWO(t, z) = max{O,zDO(t,x)} with  @°(t,x) = max{uy, (t2) — (¢ — 12, 2)}.
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In the case p = (fo)~ f A(s , the map 0 is also Llpschltz continuous and 1—periodic and we
set @Y := w" Our aim is to use Lemma 3.1 to check that @ is a viscosity solution to the HJ equation
(61)-(ii). For this we change variable and set

WO (t,2) = @°(t, —x) = max{iyo (t2) — Eo(t —ta,2)}, >0, 2>0,
2
where . ~
(s, y) = max —py+sf°(—p) s=0,y=0.

pe[—cO+p°,—b0+p°]

Note that the map p— fo(—p) is uniformly concave and strictly increasing on [—c? + p°, —b° + p°]. In
addition, the maps 1,0 defined in (63) is Lipschitz continuous, 1—periodic and satisfies, by Lemma 2.5,

Ui (t) € 0, f(0°) — A)} < [0 (= (=" + 7)), = f(~ (=" +p"))]  ae.teR,
where, for the proof of the inclusion, we used (6) and the equality
[=F2(=(=0" + %)), = (= (=" + D) = [~ Firax + £20°), 2 (07)].

Therefore we can apply Lemma 3.1 which states that @° is globally Lipschitz continuous, 1—periodic in
time, and satisfies the HJ equation (54) in R x (0, +o0) for f(p) = fo(—p) and the boundary condition
w°(-,0) = tp0. This implies that @w(¢,z) = w"(t,—x) is a Lipschitz continuous viscosity solution of
(61)-(i) and (61)-(ii) in R x (—00,0), with @°(-,0) = 1,0.

Assume now that p° € [a%,5°). As fO is concave and the constant map (¢, 2)—0 is also a solution of
(61)-(ii) in R x (—0,0), w? is also a viscosity solution of (61)-(ii) in R x (—00,0). In addition, (61)-(i)
holds since 0 € [a® — p°,® — p°] and 0,@° € [a® — p°,® — p°]. Note finally that w%(-,0) = ¥0(-) as
¢po > 0.

Step 2: w bounded and satisfies (64). As f(0) = 0, Lemma 3.3 states that ©° and thus w® are

bounded.
Let us first assume that p° € [a®,b°). Fix < 0 and ¢, < t. Then

g i, pr— (=) <@ —pe+ | min{=(t =) (p))
(B = )z — (= ta)(fm — F°")).
Thus .
BO(t7) < (1° — )z + max {— /:<A<s> — POB0))ds — (¢~ 1) (P — L)}

t1<tz<t

We note that the map

b max {— / PO))ds — (t — t) ([0 — F2(0°))}

t1<t2<t

is a continuous, periodic function. Hence it is bounded. As p® < bY, this shows the existence of C' > 0
such that, for any * < —C and t € R, w°(¢,z) < 0. Therefore (64) holds in this case.

In the case p° = b°, it is easy to see that A = f2,. and then 1,0 = 0, which implies that wgo =0is
solution. Hence (64) holds in this case.

Finally, we consider the case p° = (f%7) (fo ds) > b°. Then (64) follows from Lemma 3.3 and a
change of variables.

Step 3: w’ satisfies the boundary condition (61)-(iii).

For proving the supersolution propelrty7 we just need to check that w°(-,0) is Lipschitz continuous and
satisfies 0;w°(t,0) + A(t ) (%) = 0 ae. (cf [31 Theorem 2.11]). Recalling that w°(-,0) = 1,0(-), this
inequality is obvious if p° = (%) fo . If p0 € [a%,8°), it holds thanks to Lemma 2.5.
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Next we turn to the subsolution property. Assume that o(t,z) := a(t) + ¢°z is a C! test function
touching w® from above at (tg,0), where ¢ is a point of continuity of A and with (condition (2.12) in
[31, Theorem 2.7))

Alto) = £(0°) = F°(¢°) = f~ (). (65)
We have to prove that o/(to) + A(to) — fO(p°) < 0. Without loss of generality, we can assume that
Oé(to) = wo(to,O).
Assume first that p° = (fo’*)’l(fo1 A(s)ds). Then, for h e R,

to+h to+h
alto+h) = @(to+h,0) = w’(to+h,0) = wo(to70)+/ (f(°)—A(s))ds = a(t0)+/ (fO(p°)—A(s))ds,
to tO
which proves that o/ (tg) = fO(p°) — A(to).
We now assume that p° € [a%,b°). Let {1 < to be optimal in the definition of ¢, (to) in (63). We
claim that #; < to. Indeed, otherwise, t; = ¢y and thus w°(ty,0) = 0 = a(tg). So, for any = < 0,

o(to,z) = "z = w(tg,z) =0,

which implies that ¢° < 0. But (65) says that ¢° € [b° — p°, c® — p°], where b° — p° > 0, a contradiction.
As t1 < tp, for any h € R with |h| small,

to+h
alto + h) = @(to + h,0) = w’(ty + h,0) = Ppo(to +h) = / i (fo(p°) — A(s))ds

t1

to+h to+h
:w%mm+/ M%M—A@quww+/ (F(°) — A(s))ds.

to to
Hence o/ (to) + A(to) — fO(p°) = 0. -

The next step is the computation of the trace f0’+(8xw20 (t,07) + p°), where wgo

(61). The computation of this trace will be useful for gluing the correctors on each branch. Let us
note that, as w? is a Lipschitz continuous viscosity solution to (61), Lemma A.3 states that aIwgo is a
Krushkov entropy solution to the scalar conservation law

(i) pela® 7130,00 —p°] ae. inR x (—0,0),
(ii) Op+ 0:(f%(p)) =0 forteR, x <0.

is the solution of

Thus 8xw20 possesses a trace, denoted as (%wgo(-,O’), at © = 0 (Theorem A.1), in the sense that there
exists a set N of measure zero in (—o0,0) such that, for any t; < to,

. 0 0 - _
lm R |0ty () = Oztwpo (-, 07) [ L1ty 42) = O- (66)

By continuity of f®*, we infer the existence of the trace f0’+(6mwgo (t,07) + p°).

Lemma 3.7 (Computation of the trace f0’+((?xw20 (t,07) +p°)). Under the assumption of Lemma 3.5,
let wgo be the solution of (61) given in Lemma 3.5. Then

_ B oo if wgo (t,0) = 0 and p° € [a°, b°)
f0,+(axw20(t70 )+p0) = { r?lax wago(t’o) ~0 or po _ (fo’,),]_ <f01 A(s)ds) or po — 0 a.e.teR
(67)
and

oy (1,0) = —min{A@®) = 20°) , [T (0l (t,07)} e inR, )

= fO(p°) — Fpo(t) a.e. inR,

where the flur Fyo is defined in (33) for p° € [a°,b°) and by

1
Fn) = 40) i1 = () ([ Aloyas) ors? =1 (69
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Proof of Lemma 3.7. In the case where p = (f%7)7! (fol A(s)ds) or p° = b° the proof is quite simple.
Indeed, in those two cases, we have saturation, i.e. &Uwgo +p% € [6°, Y] a.e., and then fo’*'(@wwgo +pY) =
12, which shows (67). Moreover, we have

) fO(p%) — Fpo(t) = 0= fO(p°) — A(t) by Lemma 2.5 and (6) if p° = °
Orte(8,07) = =Ujp (1) = { W)~ At by (63) i = (£27) 1 (i A(s)ds)
which shows (68).

We now prove the results in the case
p() e [GJO’bO).

Step 1: Proof of (67). We first claim that

fO’Jr((}zwgo(t,x) —|—p0) _ { fg(po) ifw o(t,.’l}) =0

max

a.e. (t,z) € R x (—00,0). (70)

To prove (70), let (t,x) € R x (—00,0) be a point of differentiability of the Lipschitz map wgo. Then,
if w o(t,z) = 0, we get axwgo (t,z) = 0 since w? po = 0, and thus (70) holds in this case. Let us now
assume that wd, (¢, ) > 0. Let {5 < ¢ be optimal in the definition of w, in (62). We have already proved

(see Step 3 in the proof of Lemma 3.1) that £ < t. Then o is differentiable at (¢ — #2,2) with, by the
envelope theorem A.5 used twice,

61;11)20 (t,x) = —095520 (t—12,2) =pe [b°—p°  —p],
where p is optimal for 520 (t —#2,2). As fOr([6°, c°]) = {f%..}, this shows (70).

Fix t € R. Recalling that x'—>w20 (t, z) is nondecreasing and nonnegative, equality wgo (t,0) = 0 implies
that wgg (t,z) = 0 for any x < 0. Thus

lim 1,0 00 (t,2)>0} = L{uw?, (+,0)>0}-

z—0~
Combining the remark above with (66) and (70) gives (67).
Step 2: proof of (68). We recall that wgo(-,O) = 9o (). Thus, by Lemma 2.5,

ﬁtw o(t,0) = —(A(t) — £°(p°)) for a.e. t € R with w o(t,0) > 0.
On the other hand, if w])(t,0) > 0, then by (67)
f0+(a ’LU (t 0~ )) max_fo( ) (t)_fo(p0)7

thanks to (6). This proves that (68) holds a.e. in {w20(~70) > 0}. Fix now t € R a point of continuity
of A, of derivability of wOU( 0) and such that wo0 (t,0) = 0 and (67) holds. Then 6tw00(-, 0) = 0 since

wly > 0. As iy =t is optimal in (63) and A is continuous at ¢, one necessarily has A(t) — f%(p°) = 0 by
optimality, so that by (67)

minf A(t) = f2°) , O (Qaw(t,07) } = min{A(t) - f°6°) . 0f = 0.
This proves the first equality in (68) in {wgo(-,O) = 0}. The second one is just the last statement of

Lemma 2.5 since wgo (t,0) = 1hpo(t).
O
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3.3 Periodic solutions to a HJ equation on the exit lines

We proceed with our construction of correctors, now building the correctors on the exit lines. Again we
use a representation formula of the solution in terms of a Hamilton-Jacobi equation.

Let p® € [a®, b°] satisfying (51) or p® = (f07)~! (fol A(s)ds). Let w) be defined in Lemma 3.5. We

fix j = 1,2 and assume that f7 satisfies (1). Recalling the definition of the flux Fjo in (33) and (69), we
introduce the flux entering the exit-line j (where j = 1,2) as

min{A(t), f0’+(6ww20 (t,07) +p°)} ifte I,

J — (4) =
o () = Fpo(£)11:(t) = { 0 otherwise,

where the second equality comes from (68) in Lemma 3.7. Let us also recall the definition of ﬁi o introduced
in (35) in the case p° € [a®, b°].
Definition 3.8 (The notation f)io). Given p® € [a®, b°] satisfying (51) or p® = (f*)~! (fol A(s)ds), let
ﬁio € [a?,b7] (for j = 1,2) be the unique solution to

PE) = P = [P0
Remark 3.9. Note that ﬁ;o indeed exists and is unique since, by (6) and the definition of Fgo, 0 <
fol F]f(, (t)dt < fi .. and f7 is one-to-one from [a’,b7] to [0, fI..]-

max

Let us now set fgo(p) = fi(p +]3;0) — fj(ﬁio) for p e [a’ —ﬁ;o,bj —ﬁzg], and

t
Tl = = [ () = P as. ()
0
Note that 1/;; o is a 1—periodic, Lipschitz continuous map, satisfying
(7;;0)/ € _[_fj (ﬁi,o)a max fgo] = _[JEZO (aj - ﬁ;o)a ]E;o (bj - ﬁzo)] a.e.. (72)
Let us consider the time-periodic viscosity solution w; o to the Hamilton-Jacobi equation

(i)  Opw € [a? —ﬁgo,bj —ﬁ;o] a.e. in R x (0, +00),
(i) Gy’ + fj((zz_wj) =0 forte R, z >0, (73)
(iii) wI(t,0) = Vo (t) for teR.

Lemma 3.10 (Explicit time-periodic solution in the outgoing roads). Fiz j = 1,2. Assume that f’
satisfies (1) and that (5) and (6) hold. Let p° € [a®,b°] satisfying (51) or p° = (f%~)~! (fol A(s)ds)
and let 1;;0 be defined in (71). Then, there exists a unique time-periodic Lipschitz continuous viscosity

solution w;“ to (73), of time period equal to 1. It is given by

who(t2) = sup{ih, (t1) — &0 (t — t1,2)}, (74)

t1<t

where the map 520 :[0,00)2 — R is defined by
Eo(s,y) =  max  —py+sfi(p) Vs=0,y>0
P pelad —pi b7 —pi] P

Finally, there exists a constant C' > 0 such that

VM > C. (75)

=lQ

Hawwio | oo (Rx (M,00)) <
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Proof. Following Lemma 3.1, w; o defined in (74) is the unique solution to (73) and is Lipschitz continuous
because by construction f;o 2 [a? — ﬁ; 0, b0 — ﬁi} o] — R is increasing and uniformly concave and 1/~1p0 satisfies
(72). As fga (0) = 0, Lemma 3.3 implies that wzo is bounded and satisfies (75). O

In order to make the link with conservation laws, we need the following technical result which will
allow us to glue the solutions on the different branches. Fix p° as in Lemma 3.10 and let w? 00 p o € [a?, 7]

and w o be respectively defined by Lemma 3.5 , Definition 3.8 and Lemma 3.10. The maps w o being a
solutlon to the HJ equation (61) (for j = 0) and (73) (for j = 1,2), &xwpo is a solution to the correspondmg

conservation law (Lemma A.3). Therefore &zw; o has a trace at = 0 in the sense of Panov (Theorem

Ad).
Lemma 3.11 (Expression of the flux of the traces). On I (for j = 1,2), the trace (@zwgo(-, 07), @xwio (-,01))

satisfies
min{ A(t), 0+ (2,5 (t,07) + %), 7 (2w0)a (t,01) + o) | 76)
= fo(azwpo(t70 ) +1°) = fj(amw;O(t»OJr) +ﬁ§,0) a.ce
while on R\I7, the trace (9zwio(~,0+) satisfies
F(@awly(8,07) +p2) =0 a.e., (77)

Proof. Step 1: proof of (76). The main idea is to reduce the problem to a HJ equation on a junction
and then to use the equivalence between HJ and conservation_law on a simple junction with only two
branches given by Lemma A.4. Fix j = 1,2 and let (11,72) < I’ on which A is constant. We set

{ Wo(z,g =;u§0(t, z) + p° :L“ffo(po (t—71) in (11, 72) x (—0,0), 78)

Wj( ’ = pO(ta ) +pp0$ - (pi,O)(t - Tl) - wZO(TlaO) + wgo(TlaO) in (TlaTQ) X (Oa —I—OO),

We claim that W = (W W7) is a viscosity solution to the problem on the 1:1 junction (in the sense of

[31]):

(i) WO+ fo>0,W% =0 fort € (11,72), x <0,

(ii)  OWI + fI(0,W7) =0 fort e (m1,m2), >0, 9
(i) W(£,0) == WO2,0°) = WI(1,0°) for t € (1. 7), (79)
(iv) W (t,0) + min{A(t), fOF (0. W (t,07)), £/~ (0, W (t,01))} =0 forte (1, 7).

Indeed, by construction, W (7;,07) = W(71,07). By Lemma 3.7, we have
QW (£,07) = dywl (t,07) — fO(p°) = —Fpo(t) = —=F(t)  ae. in (1,72),
while, by the boundary condition satisfied by wi o and the definition of 1;; o in (71),
QW (£,0%) = dwly (t,07) = [1(9)0) = (&) (1) = [/ (Ple) = —=Fio(t)  ae. in (71,72).

Thus equality (iii) in (79) holds. Note also that, by the equation satisfied by wgg and wi 0y (79)-(1) and
(79)-(ii) hold. Let us finally check that the junction condition (79)-(iv) holds in the viscosity sense. As,
by the definition of F]go,

W (,0) + A(t) = —Flo (1) + A(H) 20 ae,

[31, Theorem 2.11] implies that W is a supersolution. For the subsolution property, assume that (¢, z) :=
a(t) +¢°r1,-0 + ¢? 1,50 is a test function touching w® from above at (to,0), where tg € (71, 72) and with
(condition (2.12) in [31, Theorem 2.7])

A(t) = f2°) = (") = (&) = 77 (). (80)
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We have to prove that o/ (tg) + A(t) < 0. As the map (¢, z)—a(t) +q°x1, o touches locally W from above
on (11, 72) x (—00,0] at (tg,0), the map (¢, x)—a(t) + (¢° — p°)xl.<o + fO(p°)(t — 71) touches locally wgo
from above on R x (—o0,0] at (¢9,0). By the equation satisfied by wgo, this implies that

o (to) + fO(p°) + min{A(to) — f(0°), /" (¢° = ")} < 0.

Recalling the definition of f© in (60), the inequality above yields
o/ (to) +min{ A(to), f** (¢°)} <0,

where, because of (80) and (6), fO*(¢°) = f0.. = A(to). Hence o/(to) + A(tg) < 0. This proves that W
is a viscosity solution to (79).
We now rely on Lemma A.4, which implies that the trace 0, W (-,t) satisfies

0.W(t,0)e G a.e. in (11, 72),
where
G ={(w’u) € [a® "] x [a?, ], min {A(t), FOF (u¥), 27 (u?)} = fO(u®) = f7 (u?)}.
This is (76).

Step 2: proof of (77). Fix j € {1,2} and let (7,72) = R\’ on which A is constant and let W =
(WO WJ7):R — R be given by

WO(t, ) = wly (£,0) + alz — fI(ply)(t—71)  in (71,72) x (=00,0), (&1)
Wi(t,z) = w)o(t, ) + Pt — fj(ﬁg)o)(t —71) in (71,72) % (0, +00),
We claim that W is a viscosity solution of the HJ equation on the 1:1 junction
(Z) 5tW0+fJ(8zWO) =0 fOI‘tG(Tl,TQ), l‘<0,
(Z’L) 5tWJ + fj(ﬁzWJ) =0 forte (Tl,TQ), x>0 (82)
(iii)  W(t,0) := WO(t,07) = WI(t,0%) for t € (11, 72),
(iv) W (t,0) + min{0, f&+ (0, WO(t,07)), f7=(0.WI(t,07))} =0 forte (r1,72).

Indeed, by construction, W is continuous and conditions (ii) and (iii) hold. On (71, 72) X (—00,0), we
have (in the a.e. sense and thus, by the smoothness of W which is affine, in the viscosity sense)

WOt ) + (@, WO(t,2)) = Qs (1,0) — (i) + f7(a?) = 0

since étho (t,0) = (@ZO)’(t) = fj(ﬁio) as Fgo =0 on (11,72) = R\I7. Thus (i) holds. The same proof
shows that 0,W (¢,0) = 0, which implies condition (iv). As W is a viscosity solution of (82) we infer from
Lemma A.4 that the trace at x = 0 of 0, W satisfies

0:W (t,0) € G,
where
G ={(’ ) e[d, ], min {0, 7 (u), 77 (u")} = f/(u”) = f7 ()}
= {(u W) e[, d]?, 0 = fI(u”) = f/ (u))}.
This implies (77). O

3.4 Construction of the correctors

We are now ready to build the correctors, i.e., the time-periodic solutions to (9) with a specific behavior
at infinity. Throughout this part, assumptions (1), (5) and (6) are in force.
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3.4.1 The correctors in the fluid case

We build here a corrector when (p°, p!, p?) is as in case (i) of the definition (17) of Ej.

Proposition 3.12. Assume that p* € [a®,b°] satisfies fO(p°) < fol A(t)dt. Then there exists a bounded
solution uy = (ui}o) to (9) on R x R, which is time-periodic of period 1 and satisfies, for a constant
C > 0 depending on the data and on p°,

. g C
ugg (t,z) = p° for a.e.teR, x < —C, Huéo (t,-) —p;OHLoo(RX(]y[’OO)) < gYi for any M = C.

Proof. Let us set

ugg(t,x) = 8xwgg(t,x) +p? on R x (—o0,0),

wly(t, @) = dewo(t, @) +pe onR x (0,+0),j = 1,2,
where wgg, ]3?) o € [a7,b7] and w; o are defined in Lemma 3.5, Definition 3.8 and Lemma, 3.10 respectively.
By construction, uyo is bounded and time-periodic of period 1 as wgo and w; o are Lipschitz continuous
and 1—periodic in time. As wgo and wZO solve (61)-(i)-(ii) and (73)-(i)-(ii) respectively, uyo satisfies (9)-
(i)-(ii) thanks to the local correspondance between viscosity solution and conservation laws in 1—space
dimension recalled in Lemma A.3. The behavior at infinity of w0 is a consequence of (64) and (75). As
for the junction condition (9)-(iii), it is proved in Lemma 3.11. O

3.4.2 The correctors in the fully congested case

In this part we assume that the second exit road is fully congested (case (ii) in (17)):

Proposition 3.13. Assume that (p°, p',p?) € Q satisfies

p* = W) = 0700 = /0 () A@d = f1(p") = £ (").

Then there exists a bounded solution u = (u?) to (9) on R x R, which is time-periodic of period 1 and
satisfies, for a constant C > 0 depending on the data and on p°, u? = ¢* and

C
[ = D° oo (x (—on,nay) + ! = PH oo x (11,009 < o Jor any M = C.

Proof. Let us define a new flux limiter by setting A := A1;1. We note that p° = (f%)~! (fol A(s)ds)
Let us consider wgo the solution introduced in Lemma 3.5 and w; , the solution given for j = 1 in Lemma
3.10 for the the new flux limiter A. We set

b

As wly and wj, solve (61)-(i)-(ii) and (73)-(i)-(ii) respectively (with flux limiter A), (ugo, upo, ¢*) satisfies
(9)-(i)-(ii) thanks to the local correspondance between viscosity solution and conservation laws in 1—space
dimension recalled in Lemma A.3. The behavior at infinity of (ufo,u,) is a consequence of (64) and
(75). As for the junction condition (9)-(iii), it is proved in Lemma 3.11. O

o(t,x) = axwgo (t,z) +p° onR x (—0,0),
o(t,x) = axwéo (t.x) + P onR x (0,+0).

SRR =)

4 Proof of the homogenization

The section is dedicated to the proof of the existence of a solution to the mesoscopic model and of the
homogenization for the 1:2 junctions (Subsection 4.1) and for the 2:1 junctions (Subsection 4.2).
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4.1 Proof for a 1:2 junction
In this part, we prove Lemma 1.2, Theorem 1.6 and Theorem 1.4.

Proof of Lemma 1.2. We show the existence of a solution to (9) with initial condition p by induction
on the time intervals [0,7%+1), k e N, where ([r* TkH)) form a partition of [0, +c0) such that, for any
ke N, A is constant on the interval (7%, 7%*1) and (7%, 7%*1) < I’ for some i = 1, 2.

Step 1: existence on (0,71)
To fix the ideas we assume here that (0,7') = I', as the case where (0,7') < I? can be treated in a
symmetric way. Let A denote the (constant) restriction of the flux limiter A(-) to (0,71).

Let w be an antiderivative of the initial data p, i.e. w : R — R is Lipschitz continuous and such that
Oz W = p.

On the time interval [0,7!) we set

(po,pl,pz) = (6ww0, dpw', Opw?) on (0,7’1)

where (w°, w!) solves the HJ equation, with a junction condition at = 0,
opw? + fj(a wl) = on (0,71) x RY, j=0,1,
w(t,0) := wo(t, 0~ ) wl(t,0h) on (0,74 x {x =0},
o+ minl A, O (@u0), fr (@)} =0 on (0.7)) x |z = 0},
w! = w? on {t=0}xR j=0,1,
and w? is the solution to
dw? + f2(0,w?) =0 on (0,7!) x R?,
dyw? + min {0, f2~ (d,w?)} =0 on (0,71) x {x =0},
w? = w? on {t=0}xR?

where the solutions are given by the theory developed in [31]3.
From Lemma A.4, we know that p:= (p°, p') is an entropy solution to

P e la?, ] ae. on  (0,71) x R, j=0,1
tp? +0:(f1(p7)) = 0 in (0,71 x R7, j=0,1,
p(t,0) e GO1 a.e. on  (0,7') x {0},

with initial condition (p°, p'), where the (maximal) germ G°! is given by
GO,l = {(p07p1> c [(IO,CO] % [al,c1]7 min {A,fo’+ fl — } fO fl(pl)}.

Moreover, introducing W% = w?(0,0), f2 =0 = f9+, RY := (—w,0), we see that (wg = w?%(0,0),w?)
is solution to

orwd + fI(0w?) =0 on (0,7!) x RY, i=,2
w(t,0) = w9(t,0) = w?(t,0) at  (0,7!) x {z = 0},
Oyw + min{ f9-+ (0,w9), >~ (0,w?)} =0 at  (0,7!) x {z = 0}.
wl = @ on {t=0} xR, ji=,2.

Setting p2 = 0, p? = 0,w? = 0 and a9 = 0 = 9, we see from Lemma A.4 that p = (p?,p?) is an
entropy solution of

pelad, ] ae. on  (0,71) x R, =,2
P’ +0,(f1(p7))=0  on (0,71) x R, = 5,2
p(t,0) e G92 on (0,71) x {z = 0},

31In [31], the Hamiltonian is coercive. To cover this case, we just have to extend each fJ as a concave function on R
such that —f7 is coercive. Then using the comparison principle and suitable barriers (built on the initial data), it is quite
standard that we can show that d;w7 < 0 for our initial data satisfying f7(0;@7) = 0. Then using the PDE itself, we can
show that the solution satisfies f7(0yw7) = 0 and then dzw’ € [a’, ¢?] almost everywhere.
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with initial condition p/, where the germ G2 is given by
GP? ={(p?,p*) € [a7, 7] x [, &), min{fPF(p9), 2~ ()} = F2(09) = F2(0°))-

This shows that p? is an entropy solution of

p? € [a?, %] a.e. on (0,71) x R?,
ap® + 0:(f2(p*)) =0  on (0,71) x R?,
p%(t,0) e G? on (0,71) x {z = 0},

with initial condition p? and with
G?:={p® € R such that (0,p%) € G9?} = {p* e [a*, "], [f*(p°) =0} = {a® *}

Therefore p = (p°, pt, p?) solves (9) on (0,7!) with initial condition p.

Step 2: existence on [0,7%) given the solution on [0,7%71), k > 2
Assume that we have built p on [0,7%71). Recall that p has a continuous in time representative with
values in L} . (see [17, Theorem 6.2.2]). Let us set p := p(7%~1,.). We can then build as in the previous
step a solution p = (p°,pt, p?) of (9) on (7%71,7%) with initial condition p at time 7%~1. Tt remains to
check that the concatenation () in[0.r) a

. p(t,) in[0,7

)= )
is an entropy solution to (9) on [0, 72) with initial condition 5. Note that the junction condition (9)-(iii)
at x = 0 is satisfied because this is the case for p on (0,7%~1) and for p on (7¥~1, 7%). It remains to check
that 5/ is an entropy solution on [0,7%) x R’ for any j = 0,1,2. The argument is standard and we only
sketch it. To fix the ideas, we do the proof for j = 1, the argument for j = 0 and j = 2 being symmetric.
Fix a CL([0,7%) x (0, +00)) function ¢ > 0. Let 6, : [0,7*~1) — [0,1] be smooth, nonincreasing map,
with a compact support and such that 6,, — 1 and €/, — 0 uniformly in [0, 7%~ — §] for any § > 0. As
p' is an entropy solution on [0, 771) x R!, we have, for all c € R,

[l o)+ {sinlet = b0~ FEDabact [ 15—l g6 (0) > 0.

(0,7k=1) J(0,4+00) {0} x(0,+00)

By the continuity of t—p'(t,-) in L}, .((0,0)), we find, when letting n — 0,

-/ pclet [ [ et clat{sien(s! - O} (70~ fe)gat [ P clp = 0.
{Tk=1}x(0,+0) (0,7=1) J(0,+0) {0} x(0,+00)

As p' is an entropy solution on [r*71, 7%) x R! with initial condition p', we also have

[ 18 e fsien - 9} 1) - e+ [ o' —clp > 0.
(rk=1,7%) J(0,40)

{Tk=11x(0,00) —

Putting together the two previous inequalities proves that p! is an entropy solution on [0,7%) x R! with
initial condition p!.

Step 4: existence on [0, +0)

By induction this proves the existence of a solution of the whole time interval [0, c0).

Step 5: Kato’s inequality (13) and uniqueness

We claim that (p°, p*, p?) satisfies Kato’s inequality (13). Indeed, as the sets Gy1 and G2 introduced in
(11) and (12) are maximal germs (see Lemma 2.2), we just need to apply Kato’s inequality given in [6]
on each time interval (7%, 7%1) for k € N and then proceed as above to glue the solution together. The
uniqueness of the solution p is then an obvious consequence of Kato’s inequality. O

Proof of Theorem 1.6. Let p € Ex. The existence of a corrector when p satisfies (i) in the definition
(17) of Ej is given by Proposition 3.12. The case (ii) is the aim of Proposition 3.13. The cases (¢i7) is
symmetric to the case (ii), exchanging the indices 1 and 2. The case (iv) is obvious because then one can
choose u) = ¢/ for j =0,1,2. O
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Proof of Theorem 1.4. Recall that the construction of Gz and the proof that it is a maximal germ are
given in Subsection 2.1.3.

We now prove the homogenization. It is known that the sequence (p¢) is relatively compact in

((0,+m) x R) (Proposition A.2 in the Appendix).

Let p = (p)i=0,12 be a limit (in L}, .((0,+90) x R) and up to a subsequence) of (p¢). We have to
check that p is the unique solution to (16). By stability, p’ is an entropy solution on [0, +o0) x R* and
satisfies p’ € [a’, ¢'] a.e. on (0, +00) x R? for i = 0,1, 2.

Let p = (p') € E;. By Theorem 1.6 there exists a time-periodic solution u, of (9) and C' > 0 such
that for M > C, we have

Ll

loc

lug — POl e (Rx (—o0,—ar)) + [l — Pl oo R x (M,00)) < CM T, i=1,2. (83)

We set us(t, ) = up(t/e,x/€). Note that the scaled function uf, = (u$¥) is a solution to (15) (without
the initial condition). Thus, by Kato’s inequality (13), we have

) { / /R |57 — 16} + {sign(p™ — ug') k- (F(p) — £(ug"))2n

i=0
+ [ @ - w0l 0.0 >0
R'L

for any continuous nonnegative test function ¢ : [0,00) x R — [0,00) with a compact support and such
that ¢/ := P[0, +00) x (Ri u{0}) 18 C! for any j = 0,1,2. Letting ¢ — 