Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Impulse control on finite horizon with execution delay

Huyên PHAM

Laboratoire de Probabilités et Modèles Aléatoires Universities Paris 6-Paris 7 CREST and Institut Universitaire de France

joint work with B. BRUDER, Société Générale and Paris 7

Workshop PDE methods in finance, Marne-la-Vallée, October 15, 2007

イロト イヨト イヨト イヨト

Basic motivations

- Pricing and hedging of an option on hedge funds :
 - Hedge funds : pooled investment vehicle administered by professional managers
 - Illiquid assets in hedge funds : debts, options ...
 - The hedge fund manager needs time to find a counterpart to trade these assets
 - To buy or sell shares of hedge funds, investors must declare their orders one to three months before they are effectively executed
 - Once the order is passed, its execution is mandatory
- Execution delay \rightarrow liquidity risk

► Our goal : provide a general mathematical framework for studying the impact of execution delay and measuring this cost of illiquidity.

Introduction	Model and problem formulation ●○○○○○	PDE characterization	Resolution algorithm	Numerical experiments
The control pro	oblem			
Contro	lled process			

• State system in \mathbb{R}^d in absence of control :

$$dX_s = b(X_s)ds + \sigma(X_s)dW_s$$

• Impulse control with time lag : a double sequence $(\tau_i, \xi_i)_{i \ge 1}$,

- decision times : τ_i stopping times s.t. τ_{i+1} − τ_i ≥ h, h > 0 minimal time lag between two interventions
- impulse values : ξ_i valued in E (compact subset) and \mathcal{F}_{τ_i} -measurable (based on information available at τ_i)

Introduction	Model and problem formulation ●○○○○○	PDE characterization	Resolution algorithm	Numerical experiments
The control pr	oblem			
Contro	lled process			

• State system in \mathbb{R}^d in absence of control :

$$dX_s = b(X_s)ds + \sigma(X_s)dW_s$$

• Impulse control with time lag : a double sequence $(\tau_i, \xi_i)_{i \ge 1}$,

- decision times : τ_i stopping times s.t. τ_{i+1} − τ_i ≥ h, h > 0 minimal time lag between two interventions
- impulse values : ξ_i valued in E (compact subset) and \mathcal{F}_{τ_i} -measurable (based on information available at τ_i)

• Execution delay on the system : the intervention ξ_i decided at τ_i is executed at time $\tau_i + \delta$, moving the system from

$$X_{(\tau_i+\delta)^-} \rightarrow X_{\tau_i+\delta} = \Gamma(X_{(\tau_i+\delta)^-},\xi_i),$$

In the sequel, we set : $\delta = mh$, with $m \in \mathbb{N}$ (for simplicity of notations).

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
The control pr	oblem			
Contro	l objective			

• Total profit over a finite horizon $T < \infty$, associated to an impulse control $\alpha = (\tau_i, \xi_i)_{i \ge 1} \in \mathcal{A}$:

$$\Pi(\alpha) = \int_0^T f(X_t) dt + g(X_T) + \sum_{\tau_i + mh \leq T} c(X_{(\tau_i + mh)^-}, \xi_i),$$

f running profit function on \mathbb{R}^d , *g* terminal profit function on \mathbb{R}^d , *c* executed cost function on $\mathbb{R}^d \times E$.

► Control problem :

$$V_0 = \sup_{\alpha \in \mathcal{A}} \mathbb{E}\Big[\Pi(\alpha)\Big].$$

向下 イヨト イヨト

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Financial exam	ple			

• S asset price (e.g. spot price of a hedge fund) :

$$dS_t = \beta(S_t)dt + \gamma(S_t)dW_t$$

• Y_t number of shares in asset, Z_t amount of cash held by investor at time t: in absence of trading

$$dY_t = 0$$
, $dZ_t = rZ_t dt$ (r interest rate).

• Portfolio strategy : $(\tau_i, \xi_i)_i$, where ξ_i represents the number of shares purchased or selled at time τ_i , but executed at $\tau_i + mh$.

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
	000000			
Financial exam	ple			

State process X = (S, Y, Z)
▶ when the order (τ_i, ξ_i) is executed at time τ_i + mh, the system moves to

• Optimal investment and/or indifference pricing : maximize the expected utility of terminal payoff

$$\mathbb{E}\Big[U(Z_T+Y_TS_T-g(S_T))\Big].$$

回 と く ヨ と く ヨ と

Introduction	Model and problem formulation ○○○○●○	PDE characterization	Resolution algorithm	Numerical experiments
Related literature				
Some r	references			

• PDE variational formulation of impulse control problems : Bensoussan-Lions (82) : no delay m = 0Bar-Ilan, Sulem (95), Oksendal, Sulem (06) : delay but with particular controlled process (Lévy process for X and additive intervention operator Γ) on infinite horizon

• Probabilistic calculation for particular threshold strategy : Bayraktar, Egami (06) : m = 1, infinite horizon and impulse value chosen at time of execution, i.e. $\xi_i \ \mathcal{F}_{\tau_i+h}$ -measurable

• Financial applications : liquidity risk and execution delay (m = 1)Subramanian, Jarrow (01), Alvarez, Keppo (02), Keppo, Peura (06)

Related literature

New features and contributions in our model

- General diffusion framework on finite horizon
- \bullet New orders can be decided between the period of execution delay, i.e. $m\geq 1$

Main goal

- Obtain a unique PDE characterization of the original control problem
- Provide an implementable algorithm
- Measure impact of execution delay and cost of illiquidity

イロト イポト イヨト イヨト

Resolution algorithm

Numerical experiments

Value functions

Markovian setting

• Extend definition of control problem V_0 to general initial conditions :

► Important issue : the state process X is not Markovian in itself (in contrast to usual stochastic control problems)!

Given an impulse control, the state of the system is not only defined by its current state value at time t but also by the pending orders : the orders not yet executed, i.e. decided in (t - mh, t].

Remark : Due to the time decision lag h, the number of pending orders is $\leq m$.

 \rightarrow finite-dimensional system

イロト イポト イヨト イヨト

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Value function	s			
Some i	notations (I)			

• Set of $k \ (k = 0, \dots, m)$ pending orders at time $t \in [0, T]$:

$$P_t(k) = \left\{ p = (t_i, e_i)_{1 \le i \le k} \in ([0, T] \times E)^k : \\ t_i - t_{i-1} \ge h, \text{ and } t - mh < t_i \le t \right\},\$$

• State domains for $k = 0, \ldots, m$:

$$\mathcal{D}_k = \{(t,x,p) : (t,x) \in [0,T] \times \mathbb{R}^d, p \in P_t(k)\}.$$

Remark

For k = 0, $P_t(0) = \emptyset$, and $\mathcal{D}_0 = [0, T] \times \mathbb{R}^d$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Set of admissible controls from a given pending order $p = (t_i, e_i)_{1 \le i \le k} \in P_t(k)$:

$$\mathcal{A}_{t,p} = \left\{ \alpha = (\tau_i, \xi_i)_{i \ge 1} \in \mathcal{A} : (\tau_i, \xi_i) = (t_i, e_i), \ i = 1, \dots, k \right.$$

and $\tau_{k+1} \ge t \left. \right\},$

▶ Given $(t, x, p) \in D_k$, $k \le m$, $\alpha \in A_{t,p}$, we denote $\{X_s^{t,x,p,\alpha}, t \le s \le T\}$ the controlled process starting from $X_t = x$, with pending order p, and controlled by α .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Introduction Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Value functions

Control objective : dynamic version

• Criterion : for $(t, x, p) \in \mathcal{D}_k$, $k \leq m$, $\alpha = (\tau_i, \xi_i)_i \in \mathcal{A}_{t,p}$,

$$J_k(t, x, p, \alpha) = \mathbb{E} \Big[\int_t^T f(X_s^{t, x, p, \alpha}) ds + g(X_T^{t, x, p, \alpha}) \\ + \sum_{t < \tau_i + mh \le T} c(X_{(\tau_i + mh)^{-}}^{t, x, p, \alpha}, \xi_i) \Big],$$

• Corresponding value functions :

$$v_k(t,x,p) = \sup_{\alpha \in \mathcal{A}_{t,p}} J_k(t,x,p,\alpha), \quad k \leq m, \ (t,x,p) \in \mathcal{D}_k.$$

Remark

 $V_0 = v_0(0, X_0, \emptyset).$

- 4 同 ト 4 目 ト 4 目 ト

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Value functions	5			
Assum	ptions			

- (H1) f, g, c and Γ are continuous and satisfy a linear growth condition on x
- (H2) $g(x) \ge g(\Gamma(x, e)) + c(x, e)$, for all $(x, e) \mathbb{R}^d \times E$.

Remarks

- Economic interpretation of (H2) satisfied in financial examples
- If (H2) is not satisfied, the value functions may be discontinuous Example : $b = \sigma = f = g = 0$, c(x, e) = 1. Then,

$$v_0(t,x) = \begin{cases} 0, & T-mh < t \leq T \\ i, & T-(m+i)h < t \leq T-(m+i-1)h, \ i \geq 1. \end{cases}$$

 \rightarrow Discontinuities of v_0 at t = T - (m + i - 1)h, $i \ge 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Introduction Model and problem formulation PDE characterization Resolution algorithm Numerical experiments

State domain partition

• Partition the set of pending orders into $P_t(k) = P_t^1(k) \cup P_t^2(k)$:

$$P_t^1(k) = \left\{ p = (t_i, e_i)_{1 \le i \le k} \in P_t(k) : t_k > t - h \right\}$$
$$P_t^2(k) = \left\{ p = (t_i, e_i)_{1 \le i \le k} \in P_t(k) : t_k \le t - h \right\}$$

and define the corresponding state domains $\mathcal{D}_k = \mathcal{D}_k^1 \cup \mathcal{D}_k^2$:

$$\begin{aligned} \mathcal{D}_{k}^{1} &= \{(t, x, p) : (t, x) \in [0, T] \times \mathbb{R}^{d}, \ p \in P_{t}^{1}(k) \} \\ \mathcal{D}_{k}^{2} &= \{(t, x, p) : (t, x) \in [0, T] \times \mathbb{R}^{d}, \ p \in P_{t}^{2}(k) \} \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Dynamic programming

State domain of no possible order decision

• If $(t, x, p) \in \mathcal{D}_k^1$, the controller cannot take action in [t, t + dt]. Only the diffusion X operates

- - 4 回 ト - 4 回 ト

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Dynamic programming

State domain of no possible order decision

• If $(t, x, p) \in \mathcal{D}_k^1$, the controller cannot take action in [t, t + dt]. Only the diffusion X operates

▶ Linear PDE's on \mathcal{D}_k^1 , k = 1, ..., m:

$$-rac{\partial v_k}{\partial t} - \mathcal{L}v_k - f = 0$$
 on \mathcal{D}^1_k

where

$$\mathcal{L}\varphi = b(x).D_x\varphi + \frac{1}{2}\mathrm{tr}(\sigma\sigma'(x)D_x^2\varphi)$$

is the generator of the diffusion X.

(本間) (本語) (本語)

Dynamic programming

State domain of possible order decision

- If $(t, x, p) \in \mathcal{D}_k^2$, the controller has the choice of :
 - doing nothing, i.e. let the diffusion X operate on $[t, t+dt] \rightarrow$ linear PDE's
 - passing immediately an order (t, e), so that the pending orders switch from p (with cardinal k) to p ∪ (t, e) (with cardinal k + 1) →

$$v_k(t,x,p) \geq \sup_{e \in E} v_{k+1}(t,x,p \cup (t,e))$$

- 4 同 ト 4 目 ト 4 目 ト

Dynamic programming

State domain of possible order decision

- If $(t, x, p) \in \mathcal{D}_k^2$, the controller has the choice of :
 - doing nothing, i.e. let the diffusion X operate on $[t, t+dt] \rightarrow$ linear PDE's
 - passing immediately an order (t, e), so that the pending orders switch from p (with cardinal k) to p ∪ (t, e) (with cardinal k + 1) →

$$v_k(t,x,p) \geq \sup_{e\in E} v_{k+1}(t,x,p\cup(t,e))$$

▶ Variational inequalities on \mathcal{D}_k^2 , $k = 0, \dots, m-1$:

$$\min\left[-\frac{\partial v_k}{\partial t} - \mathcal{L}v_k - f, \\ v_k(t, x, p) - \sup_{e \in E} v_{k+1}(t, x, p \cup (t, e))\right] = 0 \quad \text{on } \mathcal{D}_k^2$$

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Dynamic programming

Dynamic programming system

• PDE system for the value functions v_k , $k = 0, \ldots, m$:

$$\begin{split} & -\frac{\partial v_k}{\partial t} - \mathcal{L}v_k - f &= 0 \quad \text{on} \ \mathcal{D}_k^1, \quad k \ge 1, \\ & \min\left[-\frac{\partial v_k}{\partial t} - \mathcal{L}v_k - f, \\ & v_k(t, x, p) - \sup_{e \in E} v_{k+1}(t, x, p \cup (t, e))\right] &= 0 \quad \text{on} \ \mathcal{D}_k^2, \ k \le m - 1. \end{split}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Boundary conditions

Time-boundary conditions

• (Standard) terminal condition at T :

$$v_k(T^-, x, p) = g(x), \quad x \in \mathbb{R}^d, \ p \in P_T(k), \ k = 1, \ldots, m.$$

イロン イヨン イヨン イヨン

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Boundary conditions

Time-boundary conditions

• (Standard) terminal condition at T :

$$v_k(T^-, x, p) = g(x), \quad x \in \mathbb{R}^d, \ p \in P_T(k), \ k = 1, \ldots, m.$$

• Non standard condition on the time-boundary of $\mathcal{D}_k \leftrightarrow$ execution of the first pending order (t_1, e_1) of $p = (t_i, e_i)_{1 \le i \le k}$:

$$v_k((t_1 + mh)^-, x, p) = c(x, e_1) + v_{k-1}(t_1 + mh, \Gamma(x, e_1), p_-),$$

where $p_{-} = p \setminus (t_1, e_1) = (t_i, e_i)_{2 \le i \le k}$.

(Technical difficulty due to continuity issue for v_{k-1}).

イロト イポト イヨト イヨト

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

An original PDE problem

Non standard features

- Form of the domain $\mathcal{D}_k = \mathcal{D}_k^1 \cup \mathcal{D}_k^2 = \{(t, x, p) : (t, x) \in [0, T] \times \mathbb{R}^d, p \in P_t(k)\}$
- \bullet Coupled system both on the PDE and on the boundary conditions :
 - v_k depends on v_{k+1} on the variational inequality
 - v_{k+1} depends on v_k via a time-boundary condition
- Discontinuity of the differential operator for v_k
 - linear PDE on \mathcal{D}^1_k
 - free-boundary problem on \mathcal{D}_k^2

・ロン ・回 と ・ ヨ と ・ ヨ と

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Viscosity characterization

Main theoretical result

Theorem

The family of value functions v_k , k = 0, ..., m, is the unique viscosity solution to the PDE system, satisfying the time-boundary conditions, a linear growth condition on x, and

$$v_k(t,x,p) \geq \sup_{e \in E} v_{k+1}(t,x,p \cup (t,e)), (t,x,p) \in \mathcal{D}_k, t = t_k + h.$$

Moreover, v_k is continuous on \mathcal{D}_k .

Model and problem formulation

PDE characterization ○○○○○○○○○● Resolution algorithm

Numerical experiments

Viscosity characterization

(Short) Elements of Proof

- Viscosity properties : as usual, consequences of a suitable version of **dynamic programming principle**
- Uniqueness and comparison principles : more delicate! In addition to usual **Ishii's lemma**, arguments in the proofs involve **backward and forward iterations on the domains and value functions** due to the coupling.

- 4 同 ト 4 目 ト 4 目 ト

PDE characterization

Resolution algorithm

Numerical experiments

Initialization phase

First step of the algorithm based on the following remark :

• An order decided after T - mh is executed after T, and so does not influence the state process X_t for $t \leq T$.

イロト イヨト イヨト イヨト

Resolution algorithm

Initialization phase

First step of the algorithm based on the following remark :

• An order decided after T - mh is executed after T, and so does not influence the state process X_t for $t \leq T$.

► Therefore, if $(t, x, p) \in D_k$ is s.t. the pending order $p = (t_i, e_i)_{1 \le i \le k} \in \Theta_k \times E^k$ satisfies : $t_1 > T - mh$, i.e. all the pending orders are executed after T, then

$$v_k(t,x,p) = \mathbb{E}\left[\int_t^T f(X_s^{t,x,0})ds + g(X_T^{t,x,0})
ight],$$

which is easily computable.

イロン 不同と 不同と 不同と

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Step n				

$$\mathcal{D}_k(n) = \left\{ (t, x, p) \in \mathcal{D}_k : t_1 > T - nh \right\},$$

$$N = \inf\{n \ge 1 : T - nh < 0\}.$$

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Step n				

$$\mathcal{D}_k(n) = \left\{ (t, x, p) \in \mathcal{D}_k : t_1 > T - nh \right\},$$

$$N = \inf\{n \ge 1 : T - nh < 0\}.$$

From the initialization phase, we know the value of v_k on $\mathcal{D}_k(m)$

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Step n				

$$\mathcal{D}_k(n) = \left\{ (t, x, p) \in \mathcal{D}_k : t_1 > T - nh \right\},$$

$$N = \inf\{n \ge 1 : T - nh < 0\}.$$

▶ From the initialization phase, we know the value of v_k on D_k(m)
 ▶ D_k(N) = D_k

回 と く ヨ と く ヨ と

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Step n				

$$\mathcal{D}_k(n) = \left\{ (t, x, p) \in \mathcal{D}_k : t_1 > T - nh \right\},$$

$$N = \inf\{n \ge 1 : T - nh < 0\}.$$

- From the initialization phase, we know the value of v_k on $\mathcal{D}_k(m)$
- $\blacktriangleright \mathcal{D}_k(N) = \mathcal{D}_k$
- ▶ We shall compute v_k on $\mathcal{D}_k(n)$ by forward induction on n = m, ..., N.

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

From step *n* to n + 1

- Induction hypothesis at step n: we know the values of v_k , $k = 0, \ldots, m$, on $\mathcal{D}_k(n)$
- ▶ Step $n \rightarrow n+1$: Computation v_k , k = 0, ..., m, on $\mathcal{D}_k(n+1)$
 - by **backward recursion on** k!

・ロン ・回と ・ヨン・

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

From step *n* to n + 1: k = m

• Computation of v_m on $\mathcal{D}_m(n+1)$:

・ロン ・回と ・ヨン・

-2

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

From step *n* to n + 1: k = m

- Computation of v_m on $\mathcal{D}_m(n+1)$:
 - v_m satisfies the linear PDE

$$-\frac{\partial v_m}{\partial t} - \mathcal{L}v_m - f = 0, \text{ on } \mathcal{D}_m(n+1)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

From step *n* to n+1: k = m

- Computation of v_m on $\mathcal{D}_m(n+1)$:
 - v_m satisfies the linear PDE

$$-rac{\partial v_m}{\partial t} - \mathcal{L} v_m - f = 0, \text{ on } \mathcal{D}_m(n+1)$$

• together with the boundary data of $\mathcal{D}_m(n+1)$

$$v_m((t_1 + mh)^-, x, p) = c(x, e_1) + v_{m-1}(t_1 + mh, \Gamma(x, e_1), p_-).$$

► Notice that since $t_1 > T - (n+1)h$, then $t_2 > T - nh$, and so $p_- = (t_i, e_i)_{2 \le i \le m}$ is s.t. $(t_1 + mh, \Gamma(x, e_1), p_-) \in \mathcal{D}_{m-1}(n)$ $\longrightarrow v_{m-1}(t_1 + mh, \Gamma(x, e_1), p_-)$ is known from step n

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

From step *n* to n + 1: k = m

- Computation of v_m on $\mathcal{D}_m(n+1)$:
- ► Linear Feynman-Kac (F-K) representation

$$v_m(t,x,p) = \mathbb{E}\left[\int_t^{t_1+mh} f(X_s^{t,x,0}) ds + c(X_{t_1+mh}^{t,x,0},e_1) + v_{m-1}(t_1+mh,\Gamma(X_{t_1+mh}^{t,x,0},e_1),p_-)\right].$$

イロン 不同と 不同と 不同と

-

From step *n* to n + 1: $k + 1 \rightarrow k$

- Recursion hypothesis at order k + 1: we know the values of v_{k+1} on $\mathcal{D}_{k+1}(n+1)$.
- Computation of v_k on $\mathcal{D}_k(n+1)$:

・ロン ・回と ・ヨン・

From step *n* to n + 1: $k + 1 \rightarrow k$

- Recursion hypothesis at order k + 1: we know the values of v_{k+1} on $\mathcal{D}_{k+1}(n+1)$.
- Computation of v_k on $\mathcal{D}_k(n+1)$:
 - Known boundary data of $\mathcal{D}_k(n+1)$ from step n

$$v_k((t_1 + mh)^-, x, p) = c(x, e_1) + v_{k-1}(t_1 + mh, \Gamma(x, e_1), p_-).$$

イロン 不同と 不同と 不同と

From step *n* to $n + 1 : k + 1 \rightarrow k$

- Recursion hypothesis at order k + 1: we know the values of v_{k+1} on $\mathcal{D}_{k+1}(n+1)$.
- Computation of v_k on $\mathcal{D}_k(n+1)$:
 - Known boundary data of $\mathcal{D}_k(n+1)$ from step n

$$v_k((t_1 + mh)^-, x, p) = c(x, e_1) + v_{k-1}(t_1 + mh, \Gamma(x, e_1), p_-).$$

• Depending on whether $(t, x, p) \in \mathcal{D}_k^1$ or \mathcal{D}_k^2 , the PDE for v_k is either linear or a variational inequality with obstacle

$$\sup_{e\in E} v_{k+1}(t,x,p\cup(t,e)),$$

which is known from recursion hypothesis at order k + 1.

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Summa	ary			

• Computation of the family $\{v_k, k = 0, \dots, m\}$ on \mathcal{D}_k :

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments
Summa	arv			

• Computation of the family $\{v_k, k=0,\ldots,m\}$ on \mathcal{D}_k :

▶ Initialization : Linear F-K computation of $\{v_k, k = 0, ..., m\}$ on $\mathcal{D}_k(m)$

(4回) (1日) (日)

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments

Summary

• Computation of the family $\{v_k, k = 0, \dots, m\}$ on \mathcal{D}_k :

▶ Initialization : Linear F-K computation of $\{v_k, k = 0, ..., m\}$ on $\mathcal{D}_k(m)$

▶ Step $n \rightarrow n+1$ (from n = m to n = N) :

Computation of $\{v_k, k = 0, ..., m\}$ on $\mathcal{D}_k(n+1)$ by backward recursion from k = m to 0 :

Introduction	Model and problem formulation		Resolution algorithm	Numerical experiments
	000000	0000000000000		

Summary

• Computation of the family $\{v_k, k=0,\ldots,m\}$ on \mathcal{D}_k :

▶ Initialization : Linear F-K computation of $\{v_k, k = 0, ..., m\}$ on $\mathcal{D}_k(m)$

▶ Step $n \rightarrow n+1$ (from n = m to n = N) :

Computation of $\{v_k, k = 0, ..., m\}$ on $\mathcal{D}_k(n+1)$ by backward recursion from k = m to 0:

• Initialization : Linear F-K computation of v_m on $\mathcal{D}_m(n+1)$ from step n

Introduction	Model and problem formulation	PDE characterization	Resolution algorithm	Numerical experiments

Summary

 \bullet Computation of the family $\{v_k, k=0,\ldots,m\}$ on \mathcal{D}_k :

▶ Initialization : Linear F-K computation of $\{v_k, k = 0, ..., m\}$ on $\mathcal{D}_k(m)$

▶ Step $n \rightarrow n+1$ (from n = m to n = N) :

Computation of $\{v_k, k = 0, ..., m\}$ on $\mathcal{D}_k(n+1)$ by backward recursion from k = m to 0 :

- Initialization : Linear F-K computation of v_m on $\mathcal{D}_m(n+1)$ from step n
- k+1→k: Computation of v_k on D_k(n+1) by linear F-K or optimal stopping problems involving data of v_{k-1} on D_{k-1}(n) and v_{k+1} on D_{k+1}(n+1)

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Impact of execution delay on option pricing

- Indifference price π of a call option $g(S_T) = (S_T K)_+$:
 - $v_0(S_0, Y_0, Z_0)$: value function of the optimal investment problem without option
 - $v_g(S_0, Y_0, Z_0)$: value function of the optimal investment problem with option delivery
 - $\pi = \pi(S_0, Y_0, Z_0)$ s.t. $v_g(S_0, Y_0, Z_0 + \pi) = v_0(S_0, Y_0, Z_0)$
- Numerical illustrations with :
 - BS model : r = 0, $\sigma = 10\%$, $K = S_0$ (At The Money)
 - CARA utility : $U(x) = 1 e^{-\eta x}$ with $\eta = 20$. $\rightarrow \pi = \pi(S_0, Y_0)$
- Dependence of π on delay *mh* and maturity *T*

・ロン ・回 と ・ ヨ と ・ ヨ と

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Indifference price for a T = 3 years ATM call option for different values of h, in percentage of the initial spot price

h	BS price	discrete hedging, $m = 0$	delayed hedging, $m = 1$	discrete hedging	delayed hedging
(years)		$Y_0 = 0$	$Y_0 = 0$	optimal Y ₀	optimal Y ₀
0.01	6.90	6.94	6.94	6.85	6.86
0.025	6.90	6.94	7.03	6.87	6.91
0.05	6.90	6.97	7.19	6.89	6.97
0.075	6.90	6.99	7.34	6.92	7.05
0.1	6.90	7.03	7.48	6.94	7.11
0.15	6.90	7.08	7.79	6.98	7.23
0.2	6.90	7.16	8.16	7.03	7.35
0.3	6.90	7.26	8.75	7.11	7.59
0.4	6.90	7.42	9.58	7.19	7.81
0.5	6.90	7.53	10.32	7.27	8.02
0.6	6.90	7.66	10.98	7.35	8.22
0.7	6.90	7.80	11.84	7.42	8.41
0.8	6.90	7.93	12.86	7.49	8.58
0.9	6.90	8.12	13.97	7.56	8.75
1	6.90	8.48	15.60	7.62	8.90
1.5	6.90	8.97	23.49	7.89	9.47

・ 同 ト ・ ヨ ト ・ ヨ ト

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

3

Indifference price for a T = 3 years ATM call option, with no initial endowment $Y_0 = 0$ in stock, for discrete and delayed hedging in function of h (m = 1).

Huyên PHAM Impulse control on finite horizon with execution delay

Image: A matrix

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Indifference price for a T = 3 years ATM call option, with optimal initial endowment in stock, for discrete and delayed hedging in function of h (m = 1).

Huyên PHAM Impulse control on finite horizon with execution delay

_ ⊸

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Indifference price for discrete and delayed hedging with h = 2 months (m = 1), with optimal initial endowment Y_0 in stock, in function of the maturity.

Huyên PHAM Impulse control on finite horizon with execution delay

Model and problem formulation

PDE characterization

Resolution algorithm

Numerical experiments

Difference of the Indifference price w.r.t. BS price for discrete and delayed hedging with h = 2 months (m = 1), with optimal initial endowment Y_0 in stock, in function of the maturity.

Huyên PHAM Impulse control on finite horizon with execution delay