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One-phase Obstacle Problem

u > 0, ∆u = 1 in Ω ∩ D, u = 0 in Ω − D, u

is continuously differentiable
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Application

Describes the equilibrium state for the process of
pulling an elastic membrane from a planar surface
Convenient Notation: ∆u = χ{u>0} in Ω
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Extension to a two-phase prob-
lem:

u > 0, ∆u = λ1 in Ω ∩ D1,

u < 0, ∆u = −λ2 in Ω∩D2, u = 0 in Ω−(D1∪D2), u

is continuously differentiable
Application: consider an elastic membrane touching
the phase boundary between two liquid/gaseous phases
with different viscosity, for example a water surface. If
the membrane is pulled away from the phase boundary
in both phases, then the equilibrium state can be de-
scribed by equation (at least in the case that the contact
set has non-empty interior)
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Other Applications?
Notation: ∆u = λ1χ{u>0} − λ2χ{u<0} in Ω
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What is known for the one-phase obstacle problem?
• Regularity of the solution: the second derivatives

of u are locally bounded (Frehse)

• Non-Degeneracy: this regularity is sharp at each
free boundary point x0 ∈ ∂{u > 0}
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• Regularity of the free boundary: in general there
are singularities (example: pull up the membrane
uniformly on a circular boundary)

– p.7/20

Owner
画像



• But: if the contact set {u = 0} is “thick” enough
close to a free boundary point x0, then the free
boundary is a smooth hypersurface in an open
neighborhood of that point (Caffarelli; other
proofs for the “flatness-implies-regularity:”
Alt-Phillips, W. ’98)

• What can be said about the singular set? In two
dimensions, singular sets are one of the
following: points, lines, cusps (Sakai)
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• In higher dimensions the asymptotic behavior of
u close to singular points is that of quadratic
polynomials; the singular set can locally be
extended to a k-dimensional hypersurface
(Caffarelli ’98, Monneau 2001)

• The behavior of the regular free boundary part
close to singularities is in higher dimensions still
an open problem.
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Two-Phase Problem
How much of this can be extended to the above
“two-phase membrane problem”? Here we expect
additional singularities in the form of “branch points”

Problems that arise:
• One-phase tools like Harnack inequality, strong

maximum principle etc. cannot be used any
longer
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Two-Phase Problem
• The Bernstein technique does not work because

the free boundary is now composed of two
different parts, namely the part where the gradient
of the solution vanishes and the part where the
gradient does not vanish ⇒ no uniform growth

• All existing techniques to prove regularity of the
free boundary seem to fail!

• Though we expect the free boundary close to
branch points to be the union of (at most) two
smooth hypersurfaces, this is difficult to prove
(similar to the cusps in the one-phase problem)
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What can be done?
• Uniform quadratic growth estimate at

K ∩ {u = 0} ∩ {∇u = 0} (W. 2001), based on
the following monotonicity formula and a lemma
for the mean frequency of harmonic functions:
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Monotonicity Formula
(W. ’98)

Φx0
(r) := r−n−2

∫

Br(x0)

(|∇u|2 + λ+ max(u, 0)

+ λ− max(−u, 0)) − 2 r−n−3

∫

∂Br(x0)

u2 dHn−1 ,

defined in (0, δ) , satisfies the monotonicity formula

Φx0
(σ)−Φx0

(ρ) =

∫ σ

ρ

r−n−2

∫

∂Br(x0)

2
(

∇u · ν − 2
u

r

)2

dHn−1dr

≥ 0 .
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Frequency Lemma (W. 2001)
(based on Almgren’s frequency)
Let α − 1 ∈ N , let w ∈ H1,2(B1(0)) be a harmonic
function in B1(0) and assume that Djw(0) = 0 for
0 ≤ j ≤ α − 1 .

Then
∫

B1(0)

|∇w|2 − α

∫

∂B1(0)

w2 dHn−1 ≥ 0 ,

and equality implies that w is homogeneous of degree
α in B1(0) .

– p.14/20



Boundedness of second deriva-
tives

(N. Uraltseva 2002)
based on the following two-phase monotonicity
formula by Alt-Caffarelli-Friedman.
ACF-Monotonicity Formula: Let h1 and h2 be
continuous non-negative subharmonic H1,2-functions
in BR(z) satisfying h1h2 = 0 in BR(z) as well as
h1(z) = h2(z) = 0 .

Then for Ψz(r, h1, h2) :=

r−4

∫

Br(z)

|∇h1(x)|2

|x − z|n−2
dx

∫

Br(z)

|∇h2(x)|2

|x − z|n−2
dx ,

and for 0 < ρ < r < σ < R, we have Ψz(ρ) ≤ Ψz(σ).
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Boundedness of second deriva-
tives

Moreover, if equality holds for some
0 < ρ < r < σ < R then one of the following is true:
(A) h1 = 0 in Bσ(z) or h2 = 0 in Bσ(z),
(B) for i = 1, 2, and ρ < r < σ, supp (hi) ∩ ∂Br(z) is
a half-sphere and hi∆hi = 0 in Bσ(z) \ Bρ(z) in the
sense of measures.
This formula is applied to tangential derivatives of u at
a free boundary point.
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Characterization of Global So-
lutions

(Shahgholian-Uraltseva-W. 2004)
Let u be a global solution such that x0 ∈ ∂{u >

0} ∩ ∂{u < 0} and ∇u(x0) = 0 for some
x0 ∈ R

n and that |D2u| ≤ C in R
n . Then

u is after a translation and rotation of the form
u(x) = −λ

−

2 min(xn, 0)
2 + λ+

2 max(xn, 0)
2 .
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New approach to the Regularity
of Free Boundaries

Idea: when the scaled solution is uniformly close to a
class of monotone functions, try using the
Aleksandrov reflection.

Red Area: the solution u is ≤ 0

Blue Area: the solution u is > 0
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New approach to the Regularity
of Free Boundaries

Idea: when the scaled solution is uniformly close to a
class of monotone functions, try using the
Aleksandrov reflection.

Red Area: the difference
u(x1, x2, . . . , xn) − u(−x1, x2, . . . , xn) is ≤ 0
Blue Area: the difference
u(x1, x2, . . . , xn) − u(−x1, x2, . . . , xn) is > 0
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New approach to the Regularity
of Free Boundaries

In particular, in two dimensions the approach can be
realized more easily as 1-dimensional hyperplanes
intersect each other at most in one point:
Theorem (Shahgholian-Uraltseva-W., to appear)
Let n = 2, let (uα)α∈I be a family of solutions in B1

that is bounded in H2,∞(B1), and suppose that for
some α0 ∈ I, the origin is a branch point.
Then, if uα → uα0

in C1(B1) as α → α0, Br0
∩∂{uα >

0} and Br0
∩ ∂{uα < 0} are C1-graphs uniformly in

α ∈ Bκ(α0) for some r0 > 0 and κ > 0; here the
direction of every graph is the same.
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Stability Result
Theorem (Shahgholian-Uraltseva-W., to appear)
Let Ω ⊂ R

2 be a bounded Lipschitz domain and
assume that for given Dirichlet data uD ∈ H1,2(Ω) the
free boundary does not contain any one-phase
singular free boundary point.
Then for K ⊂⊂ Ω and ũD ∈ H1,2(Ω) satisfying
sup∂Ω |uD − ũD| < δK , the free boundary is locally
in Ω the union of (at most) two C1-graphs which ap-
proach those of the solution with respect to boundary
data uD as sup∂Ω |uD − ũD| → 0.
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