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Will not be discussed
e The reqgularization of the least square problem

e The corresponding numerical method (because not implerdeyat)



Description of the model
Consider a Bvy process X ).~ on a filtered probability space.

Levy-Khintchine formula: there exists a functign R — C s.t.

E(eiuXT> _ GTX(U),

x(u) = — + i0u —|—/ (e — 1 —iuz)v(dz) + / (e — 1)v(dz)
: 2]<1 251
e o > (: volatility.
e JcR.
e v IS a positive measure dR\{0}, called the levy measure of X ),~¢
andv is s.t.

lémmﬂﬂ%W&ﬂ<+%.



We assume that the discounted price of the risky asset istmgele
obtained as the exponential of théwy process:

e TS = Spe.

The fact that="" S, is a martingale is equivalent fée*~) = 1, i.e.

2
/ e“v(dz) < oo, and (= 2 /(ez —1—z1,<1)v(dz).
|z|>1 2 R B
We also assume that
/ e**v(dz) < oo,
|z|>1

so the discounted price is a square integrable martingale.



We assume furthermore that the\ty measure has a density,
v(dz) = k(z)dz,

wherek is possibly singular at = 0.



Integro-differential operators for option pricing

We noteB the integral operator

(Bu)(S) = /R (U(Sez) —w(8) — S(e* — 1)%(5)) k(2)dz,

and L the integro-differential operator

—_ ov 0252 0% ov —
= — — — Bu.
Lv 87‘+ 5 aSQ—H“SaS rv + Bv




American options

The price of the American option with paydf, and maturityt is

P, = P(1,5;),
where
[ ZP(r,S) <0, 0<r<t S>0
P(1,8) > P.,(9), 0<r<t, S>0,
¢ LP(1,5)(P(1,5) — Ps(S)) =0, 0<7t<t, S>0,

P(t,S) = P.(9), S > 0.



Some references

e Maximum principle for elliptic equations associated witbuy
processes. Bony, Co@ge and Priouret (1968), Cancelier.

e Related variational inequality when> 0 in suitably exponentially
weighted Sobolev spaces: Bensousan and Lions, Schwab et al.

e Viscosity solutions, cover the case whenr= 0 and hyperbolic
problems: Pham, Cont et al, Arizawa.

e Numerical methods: Cont et al, Schwab and collaboratorsaryd O.
Pironneau

e Calibration of Levy processes with European options: Cont and
Tankov.

e Calibration of local volatility with American options: YAYA and O.
Pironneau.



American options: a forward linear complementarity problem (1)
We aim at finding a forward LCP in the variables maturitykstri

If P.(S)=(x—S), then P(r,S.t,2)=xg(&, ). y =S/,

where
[ Lg(e.y) >0, 0<E<t, y>0.
: 9(&y) = (1 —y)4, 0<&<t, y>0,
Lg(&y)(9(&y) — (L —y)+) =0, 0<¢<t, y>0,
L 9(0,y) = (1 —y)+, y >0,
with

~  0g o*y? d%g dg ~
_ 99 _ Y B
D¢ 2 12 ryay+rg+ g




American options: a forward linear complementarity problem (2)
From this observation and the identities

(99 (9_P x@——xﬁ—P—l—P and x aZQ—xi
Yo T ot You — Vou v 52 52
we deduce thaP (0, S, ¢, x) satisfies the forward problem:
(P (t,x) >0 0<t, x>0,
; P(t:z;)zP() 0<t, x>0,
LP(t,x)(P(t,z) — Ps(x)) =0, 0<t, x>0,
| P0,2) = Po(z) = (5 —2)4, x>0,
where Dy s
ou o°x* 0°u ou
Eu—a— 5 am2—|—m:%—|—Bu

and (Bu)(x) = —/Rk(z) < (e® — 1)22( )+ e*(u(xe™ ) — u(x))

) a
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Interest of the previous problem

¢ Allows for computing the prices of a family of American puttmms on
the same underlying with different maturities and strikes.

e Especially useful for calibration:

In the context of a least square method for calibration, aduation of the
cost functional requires solving only one forward problestead off
backward problems, if is the number of the observed prices.

e This program is not possible with local volatility BS models
e Under some assumptions, the price can be found by solvingabqiec

variational inequality in suitable weighted (and possiibactional) Sobolev
spaces.
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Change of unknown function in the forward problem
In order to have a datum with a compact suppott,int is helpful to change
the unknown function: we set

Uo(x) = (S — x); u(t,x) = P(t,x) —x + S.

We get
( Lu(t,x) >0, 0<t, x>0,
; u(t, x) > uo(x), 0<t, x>0,
Lu(t, ) (u(t, z) — uo(z)) =0, 0<t, x>0,
u(0, ) = uo(x) x > 0,

We will restrict ourselves to the cases when this problenaralpolic.
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The chosen class of vy processes
v(dz) = k(z)dz,
with
/mm z)dz < oo and / e**k(z)dz < co. (1)

To get a parabolic problem, we assume (1) and
k(z) = (2) 2|70+,

where
(1) is a nonnegative bounded function git> Y >0in [~z Zz],

/"

—-1/2 < a < 1 if o >0,
1/2 < a < 1 if o=0.
\
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The chosen parametrization covers the particular cases:

e Merton model:.c > 0 and the jumps in the log-price have a Gaussian
distribution.

e Some Kou modelssy > 0 and the density of jumps is an asymmetric
exponential with a fast enough decayat

e Some variance gamma processess 0 and

e E

1 _ =
k(z):m<6 m1z<0+6 77plz>0)7 nn>07 1/2>77p>07

and normal inverse Gaussian processes 0, « = 1/2, with a fast
enough decay of the jump densityat
e Some parabolic generalized CGMY models

k(z) = C’\z\_(HY) (e_G|z|1Z<o — e_M|z|1z>0) : 0<Y <2, 0<G@G, 2<M.
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Comparison between the price of a European put computed by
Black-Scholes formula with = 0.1 and puts on CGMY driven assets with
c=0.1andY =0,0.5,09,C =1, M =2.5,G=1.8.
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Weighted Sobolev spaces oR. (1)

Introduce

Vl = {U - LQ(R+) x? ~ LQ(R+)} )
X

with the norm

[v][ve = \/H’UH L2(R, )+H$ HL2(R+)

It can be proved thab(R_ ) is a dense subspace Bf, and that

dv
[vllL2®y) < Qde_HLQ(RJF)’ Vo e V1.
Therefore, the semi-norm
dv
vlyr = ||5Ud—HL2(R+)

IS @ norm equivalent tg. ||y :.
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Weighted Sobolev spaces oR, (2)
For a functionv defined orR ., call v the function defined of by

v(y) = v(exp(y)) exp(y/2).

The mapping — v is a topological isomorphism frorh?(R_.) onto
L?(R), and fromV'! onto H!(R).

This leads to defining the spat#, for s € R, by
Vi={v : ve H*(R)},

which is a Hilbert space with the nori||y-s = ||0|| 77+ &), Where

Hs(R) = \// 1+ £2)s|w(€)[2dE.

Fors > 0, the spacd’ —* Is the topological dual oV”.

[
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Lemma
Foralls, 1/2 < s <1,
Ve C(0,00),

and there exist€ > 0 such thatvv € V'S,

Valu(z)| < Cllv

Vs, VZU - [1,“—00)
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Properties of the integral operator B

(Bu)(x /w )| 2|~ (1+2) ( (e — 1)22( )+ e*(u(xe™?) — u(x))) dz.

Lemma Let («, 1) satisfy the assumptions above. For eachRR,
e if @ > 1/2, then the operataB is continuous froni’ s to V52
e if a < 1/2, then the operataB is continuous fron? s to V51

e if & =1/2, then the operataB is continuous froni/* to V=17,
Ve > 0.

Corollary If («, ) satisfy the assumptions above and 12 < o < 1, then
the operatoiB is continuous from/“ to V.,
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Adjoint of B If («, 1)) satisfy the assumptions, the operaff:

(BTw)(z) = /R k(2) (x(ez ~ 1)%(35) — e y(ze) + (267 — 1)u(:v)> dz

e is a continuous operator from® to VS22 if o > 1/2,
e is a continuous operator froii® to V1, if a < 1/2,

e is a continuous operator frof® to Vs—17¢ for anye > 0, if « = 1/2.

If & > 1/2, then for allu,v € V<,

(B'u,v) = (Bv,u).

If o < 1/2, this identity holds for alki, v € V* with s > 1/2.

20



Garding inequality

Fors > 0, we introduce the semi-norm

ve = [0]gsw).-

Proposition
o If 1/2 < a < 1, there exist two constants > 0 and\ > 0 such that,
(Bv,v) > Clvya = Al 72m,), Yoe V™
o If « <1/2,then
(Bv,v) > Clv|ia — )\||11H2L2(R+), YoeV?3is>1/2.

with C' = 01if a < 0.
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2. .2

The integro-differential operator Av = —%% + m;g—; + Bv

If o > 0,and if0 < o < 1, then
e A is a continuous operator frofi' to V1,
e There is a Grding inequality:( Av, v) > clv|71 — )\||v||%2(R+).
o weak maximum principle sincedv, vi) > clvs |1 — Allvs |72, ).

e A+ M is continuous and invertible frov? onto L* (R ).

If o =0,andif < a <1, then
e A is a continuous operator fro® to V<,
e There is a Grding inequality:(Av, v) > clv[ia — Allv]|72, -
o weak maximum principle sincedv, vi) > clvs[vo — Allvs |72, ).

e A+ M is continuous and invertible frov** onto L*(R.).
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The variational problem (V1)
Take

V=V if o0>0, and V=V if o=0anda>1/2,
K={veV, v(r) > u(xr) inR,}.

u satisfies (V1) if
1. we L2(0,T;V)NCY[0,T); L*(R4)), with 2% € L((0,T) x R}),
2. there exists a constatir > S s.t.
u(t,z) =0, Vte|0,T],Vx> Xr.
3. u(t) € K for almost every € (0,7), andu(t = 0) = uo,
4. fora.e.t € (0,7), for anyv € K with bounded support,

<%—|—Au—|—rw,v—u> > 0.

23



The cases > 0
Theorem Under the assumptions above and it 0,

e there exists a unique solution of (VI) i¥ (0,7, V?).
e Janondecreasingnd LSC functiony : (0, 7] — (S, X7) S.t.

Vi€ (0,7), {x>0stu(t,x)=uo(x)} =[vy(t),+00).

e Calling

0
u:a—?JrAu%—rx,

we have a.e.
0 < p=1lg—0 (m; - / k(z)ezu(t,xe_z)dz> < rxlip>q))-
R

e The functionu is nondecreasing w.r.t: and nonincreasing w.r.t.

e 1> 0a.e.inthesef(t,x): u(t,x) =0}

24



x=y(t)
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Scheme of the proof

1. for X > 5, approximate (VI) by a similar problem (W) posed in
0, T] x |0, X] with a Dirichlet condition ornc = X;

2. solve first a penalized version of (¥) by introducing a semilinear
monotone operator. Pass to the limit as the penalty paratesigs to
Zero;

3. prove that the free boundary of (V) stays in a bounded domain &S
tends to infinity: this will show that foX large enough a solution of
(VI x) Is actually a solution of (VI);

26



The penalized problem in[0, X] (1)

e Vv e L?0,X),Ex(v) € L?(R,) is the extension of by 0:

Ex()(x) = wv(x), f0<z<X,
Ex(v)(z) = 0, if x> X.

Vi ={ve L}0,X), Ex(v) eV} (< HY)

AX . VX — V)/(,
(Axv,w) = (AEx (v), Ex (w)).

27



The penalized problem in[0, X| (2)
Findux . S.t.

(0
'lg)t(,e + Axux.c +rr(l — 1sgyVe(ux.)) =0, te (0, 7], 0 <z <X,
ux,e(t = O,f) = Uo(x)a

\ UX’G(t,X) = 0,

_/\

0< o <X,
t e (0,7,

where .
Ve(u) =V(-)

€
andV is a smooth nonincreasing convex function:

o

28




Ingredient: a reqularity result for the Dirichlet problem
Introduce the function spaces

ov
1 2 2 1
WX—{veL(OX)x—axeL(OX)} (<—>H)
W2 =Jyewl x@eLQ(OX) (<—>H2>
X X 8332 °

For0 < g <1, Wfé is the space obtained by real interpolation betwidé&p
andL?(0, X) with parameter = 1/2 — 3
and

Wit = {’UEWX, gxewﬁ} (<—>H1+5).
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The domain ofd x is

Dx = {’U cVx: Axv € LZ(O,X)}

Proposition
o>0
o If v € Dy, then ”U‘(O’X/) EW)Q(,, VX < X.
e For0 < a < 3/4, Dx = W% N V.
e For3/d<a<1, >0 st DxycWd* nvy.
o If v € Dy, then 22 € CO((0, X)).

Consequencd-or anye > 0,

S< X <X — EX(ux,e) SEX/(’LLX/7€).

30



Bounds on the solution of (VI)

Fix0<o<5,0<a<1/2,b1>1,bp>1,9 > >0andz >0
and define

| max(e®*1%, [2]°2, 1) oo () < 9

F = 0',5' —1 271_— :
o, 0] x[—1/ a)xq P >0, 9>y ae. in[—z, 2|

Proposition

The functiony is bounded if0, T'] by some constanX independent of
(o, ,) In F.

The quantities 0.7:v2) and|| 2L || 2o 1) xr, ) are
bounded independently of, a, ) in F.
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The casesr = 0

| max(e?*%, |2]°2, 1) oo (v) < 93

Fo=1[1/2+a,1-a]x .
Y > 0,9 > a.e. in[—z,z]

Fix (a, ) € F5 and callu,, the solution of (VI) when the volatility i

Lemma

The quantities|uy || 1, (0, 7:ve) and||uq || 2(0,1;v20) are bounded
Independently of, and the free boundary associateditostays in
0, 7] x [0, X], whereX does not depend on

One may apply the theorems of J.L. Lions on singularly peddmproblems
and pass to the limit as — 0.

= existence and unigueness for (VI) when= 0 and bounds on the free
boundary and the solution.
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Sensitivity (1) (cases > 0)

3C > 0 such that Y(o,a, ), (5,a&,¢)in F,

4 _ _ _ _ ~
Ju =@l 20,0y + llu =l 72, < C (lo = 31+ la— @l + llv = $s).

T 2
| [ = o) + itu = we)) < € (jo = 51+ Ja =il + 10 = D)
\ JO R

where
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Sensitivity (2) (caser > 0)
Let (o, an, ¥n)nen be a sequence of coefficientsinsuch that

lim (lo = on| +|a = an + Y = ¢nls) = 0.

n—aoo

With the notations:,, = w(oy,, n, ¥y) andu, = w(on, an, ¥y,

( |ty — U\\Loo((o,T)xR+) — 0,

[ pn — MHLM(O,T)XI&Q — 0, V1l < p < 400,

_/\

ou, Ou

\ |wn — vl Loo0,1:v) + |Un — Ul L2¢0,7,v2) + HW — EHL%(O,T)XI&L) — 0.
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Calibration of the L evy process
Goal: try to calibrate the Evy process in order to recover the prices of a
family of put options on the asset of interest, which arelatée on the

market.

The observable American puts are characterize(tpy:; )ic;.
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0 e+ 1 1
5000 5500 6000 6500 7000

A typical set of data : observed prices for a famity, =;);c;
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Least squares (LS)

e Observe the options’ pricQsPL-)iE], the spotS, (7 = 0) and define
’L_Li:wi—SO—PZ‘ sz tz,.fb'z 1_1,7;)2.
e Take a conve#{ C F and a convex funct/p : H — R,

H=[o,5] x [-1/2,1 —a] x Hy,

s.t. for all sequencé&r,,, a.,, ¥y,) € H with Jr(o,, an, ¥, ) bounded,
one can extradio,,/, o/, ¥,/ ) converging inF to (o, a, v) € ‘H with

Jr(o,a, ) < liminf Jp(o,7, o, Ynr).

e The least square problem is to

Minimize J(u)+Jgr(o, a,v) | (0,a,%) € H, u = u(o, a, ) satisfies (VI).
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Advantage to evaluate the cost function, one needs to solve only one

parabolic partial integrodifferential variational inexdy, instead of#1
backward problems.

Difficulty for finding the optimality conditions The differentiability ofu
w.r.t. (o, a, 1) is not clear.

Program Find first the optimality conditions for a modified LS problem
where the state satisfies the penalized nonlinear pb andg#sslimit.
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Sincey(t) < X, with X independent ofc, o, 1)) € H, the LS problem is
equivalent to

Minimize J(ux )+Jgr (o, a, ) ‘ (o,,0) € Hyux = ux (o, a, ) satisfies (Vk) .

with X > X.

Approximate by the LS problem corresponding to the pendhz¥sion

Minimize J(ux ) + Jr(o, o, ) | (0,,7) € H, and

(0
?gt(’e + Axux,e +re(l —1gssyVe(ux,)) =0, t€(0,T], 0 <z <X,

ux (t=0,2) =uo(x), 0<z<X,
| ux,e(t, X) =0, ¢€(0,T]

L\
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Necessary optimality condition(1): the adjoint problem

Assume thati; > u.(t;, x;), Vi. For each optimal tripletc™, a*, ¢*),
(which can be obtained as the limit of optimal triplets foeadt square
problems with the penalized problem),

we call(u*, u*) the state related t@r*, o*, ™).

There exist a functiop® € Z and a Radon measugé, s.t. for all regular
test-functionv with bounded support im,

/ / <—+Av)q <& v>=2 wiu (b, ) — @)v((ts, 7)),

el
prlgt| =0,  |ut|g" =0.
where
ov

7 = {v € L2(0,T: Vi ); 5, + Axv € L((0.T) x (0, X)), v(t = 0) = o} ,
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We have

In the sense of distributions and

¢* vanishes in the coincidence set.

40



Necessary optimality conditions (2)

and for all(o,n,v) € H,

41




Necessary optimality conditions (3)
and

(0= a*) (DaJr(of,af,07) + 26 (u",q") ) 2 0,
(DyTnlo?, @l ) = ')+ (G (' q), o =) >

with

T T
g(a)(u*7q*) ~ / <B§?)u*,q*>, <g(¢)( q ) > 2‘/ <B§P,I€)u*’q*>
0 0

and

BYv(w) =~ [ K @)1os(12D) (6~ D52 @) + € (1 es igyoae™) = vl)))

Kk an z —z
B(w v / |1+2a ( e® _1)8:13( T)+e (1{Z>_1Og(%)}v(aﬁe )—v(a:))) dz.

42



