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In this article we study the invertibility of the linearized operator coming from the nonlinear elasticity in the special case of
a two-dimensional thin beam of thickness 2ε in one direction and of length 2πL and periodic in the other direction. In the
context of the displacement approach, we show that the linearized operator is not invertible for some small compressions of
order O(ε2/L2) in the direction of the thickness of the beam, and not in the direction of the length as it is usually considered.
In particular, we study the kernel of an associated linear operator on an infinite strip. This linear operator depends on a
parameter δ which describes the compression with respect to the thickness for δ < 0. For small enough δ > 0, we prove
that the kernel is trivial; on the contrary for δ < 0, we rigorously find periodic solutions in the kernel. This last fact is
related to the non-invertibility of the previous linearized operator coming from nonlinear elasticity.
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1 Introduction

The goal of this article is to show that the invertibility of the linearized operator of nonlinear elasticity can be a delicate
question in some domains of asymptotically small thickness, and then that the application of the inverse function theorem
may fail.

Let us consider a two-dimensional thin beam of thickness 2ε and of length 2πL > 0, and periodic in the direction of the
length: Ωε = ω × (−ε, ε) with ω = R/ (2πLZ). We introduce the coordinates xε = (xε

1, x
ε
2). We asume that this beam is

submitted to volume forces fε = (fε
1 , f

ε
2 ), and surface forces gε = (gε

1, g
ε
2), satisfying the following equilibrium condition∫

Ωε

fε
i −

∫
∂Ωε

gε
i = 0 , i = 1, 2 . (1.1)

For a given two-dimensional displacement of the beam uε = (uε
1, u

ε
2), we consider the following energy of nonlinear

elasticity (see the book of Ciarlet [2] for similar models)

E(uε) = E0(uε) +
∫

Ωε

fε
i u

ε
i −

∫
∂Ωε

gε
i u

ε
i (1.2)

with the Saint-Venant Kirchhoff free energy

E0(uε) =
∫

Ωε

λ

2
Eε

iiE
ε
jj + µEε

ijE
ε
ij

where the index i, j take the values in {1, 2}, and we have used the Einstein convention of summation on repeated indices.
Here we use the usual definition (with ∂ε

i = ∂
∂xε

i
)

Eε
ij = 1

2 (∂ε
i u

ε
j + ∂ε

ju
ε
i + ∂ε

i u
ε
k∂

ε
ju

ε
k)

of the Green strain tensor. We consider the following displacement (still in the ellipticity range for the Saint-Venant Kirchhoff
energy for ε2δ small enough)

uε(xε) = (0, ε2δxε
2)
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2 R. Monneau: The asymptotic invertibility of the linearized operator of nonlinear elasticity

which is a solution of the Euler-Lagrange equation of the energy for fε = 0, gε(xε
1,±1) = (0,±ε2Gε) where the constant

Gε is given by

Gε = (λ+ 2µ)
(
δ + 3

2 ε
2δ2 + 1

2 ε
4δ3
)
. (1.3)

In Sect. 2, for a uniform lateral compression, namely for δ < 0, we will show that this particular displacement is not a global
minimizer if

δ ≤ − 2µ
3(λ+ 2µ)

1
L2 (1 + o(1))

in the limit of small ε.
In Sect. 3, we prove more precisely that the linearized operator of nonlinear elasticity at this particular displacement for

a uniform compression is not invertible for some δ satisfying:

δ = − 2µ
3(λ+ 2µ)

1
L2 (1 + o(1)) .

This kind of instability property has an important consequence on the characterization of the set Dε of displacements (used
as reference configuration for the linearization), where the linearized operator of Saint-Venant Kirchhoff energy is invertible.
In particular, we see that the absolute value of the strain ∂uε

2
∂xε

2
has to be less than cε2 for some constant c small enough. A

consequence will be that, after the change of coordinates used in the classical displacement approach (see [1,2] and Sect. 2),
this set stays clearly ε-dependent. In the context of the displacement approach, this ε-dependence avoids a straightforward
application of the inverse function theorem (even of Nash-Moser type) to get solutions at positive ε by perturbation of
solutions for ε = 0.

Finally let us note that recent works using the approach of Gamma-convergence (see for instance the book of Dal Maso [4]
for an introduction to this notion) have been done to justify various limit models when the thickness 2ε goes to zero (see
Friesecke et al. [7] for shells models; Friesecke et al. [8,9] for nonlinear theories of plates, and Mora and Müller [10] for
a nonlinear theory of inextensible rods). In particular, some of the limit solutions that they obtain, are outside the domain
where the linearized operator is invertible (and ouside the domain where the energy is convex). This is related to the fact
that Gamma-convergence can somehow catch some limit solutions after the buckling phenomenon.

Remark 1.1. In a previous work of the author [11], a displacement approach has been applied to justify the nonlinear
Kirchhoff-Love theory of periodic plates as a rigorous derivation from the three-dimensional nonlinear elasticity. In this
work it was proved that the linearized operator is invertible on a set of displacements which is ε-dependent.

The result of the present paper sheds some light on the reason why it was necessary to consider ε-dependent sets of
displacements where the linearized operator is invertible.

Let us mention a related work of Paumier [13] where in the context of the displacement-stress approach, he applied the
Nash-Moser inverse function theorem in the case of periodic plates. Unfortunately this study stayed unsuccessfull because
the invertibility of the linearized operator was only assumed and has still to be proved. Our formal result does not clarify
what happens in the context of the displacement-stress approach, but may indicate that such an invertibility may not be
possible to prove because it may be false. However, this would need further investigations and is not the purpose of the
present article.

2 Instability of the solution under uniform compression

We first introduce the following change of coordinates, classically used for the displacement approach (and first introduced
by Ciarlet et al. [3], Destuynder [5])

x = (x1, x2) =
(
xε

1,
xε

2

ε

)
∈ Ω = ω × (−1, 1)

then we have

∂ε
1 = ∂1 , ∂ε

2 =
∂2

ε
,

and we set

uε
1(x

ε) = ε2u1(x) , fε
1 (xε) = ε2f1(x) ,

uε
2(x

ε) = εu2(x) , fε
2 (xε) = ε3f2(x) ,

(2.4)
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gε
1(x1,±ε) = ±ε3g1(x1,±1) ,

gε
2(x1,±ε) = ± (ε4g2(x1,±1) + ε2Gε

)
,

(2.5)

where the constant Gε is given by (1.3). Let us remark that the perturbation term ε2Gε in the expression of gε
2 is not

compatible with the order O(ε4) usually assumed (see the von Kármán theory of [3]). Nevertheless this is a small term
which will generate small displacements that we want to consider to exhibit an unstability of the beam.

Let us also mention the work of Fonseca and Francfort [6] where it has been shown in particular that scaling (2.4) may
be inappropriate for the Gamma-convergence approach to nonlinear elasticity.

We define the renormalized energy by

Eε(u) =
1
ε5

E(uε)

and we note for the infinitesimal strain tensor

eij(u) = 1
2 (∂iuj + ∂jui) .

In Ciarlet [1], as ε → 0 the formal limit problem is given when the constant Gε is equal to 0. Using the fact that Gε −→
G0 = (λ + 2µ)δ, a straightforward variant of the displacement approach in [1] gives easily the following limit for the
renormalized energy:

Theorem 2.1 (General formal limit of the energy). Let us assume that u = u0 + ε2u2 + O(ε4), with e22(u0) =
e12(u0) = 0 and let U := (u0, e22(u2)) be the formal limit. Then we have formally

Eε(u) −→ E0(U, θ, δ) (2.6)

where θ = (θ1, θ2), θ1(x1) = IF1, θ2(x1) = IF2 + ∂1(Ix2F1), with Fi = (fi, gi), and IFi =
∫ 1

−1 fi(x1, x2)dx2 +
gi(x1, 1) − gi(x1,−1). Here

E0(U, θ, δ) = E0
0 (U) −

∫
ω

u0
i (x1, 0)θi(x1) − (λ+ 2µ)δ

∫
Ω
e22(u2) (2.7)

and

E0
0 (U) =

∫
Ω

λ

2
(
∂1u

0
1 + (∂1u

0
2)

2 + e22(u2)
)2

+ µ

{(
∂1u

0
1 +

(∂1u
0
2)

2

2

)2

+
(
e22(u2) +

(∂1u
0
2)

2

2

)2
}
.

(2.8)

The last term in (2.7) comes from the consideration of constant surface forces equal to ±ε2Gε.
Here the quantity e22(u2) appears as a limit unkown, a priori independent on u0. Nevertheless, at least formally, it is

expected that the limit energy of a “natural solution” has to be minimal. This is why we now minimize the limit energy with
respect to the unknown e22(u2), and we get

e22(u2) = δ − 1
λ+ 2µ

(
λ(∂1u

0
1) + (λ+ µ)(∂1u

0
2)

2) . (2.9)

Moreover setting

u0(x1, x2) =



u0

1(x1, x2) = ζ1(x1) − x2∂1ζ2(x1)

u0
2(x1, x2) = ζ2(x1)

(2.10)

and

E(ζ, θ, δ) = E0(U, θ, δ)

for U = (u0, e22(u2)) with u0 given by (2.10) and e22(u2) given by (2.9), we deduce the
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4 R. Monneau: The asymptotic invertibility of the linearized operator of nonlinear elasticity

Corollary 2.2 (Formal limit of the energy). Under the assumptions of Theorem 2.1 and (2.9)–(2.10), and denoting the
limit solution by ζ = (ζ1, ζ2), we have

E(ζ, θ, δ) =
4µ(λ+ µ)
λ+ 2µ

E0
δ (ζ) − 2(λ+ 2µ)

∫
ω

δ2 −
∫

ω

ζiθi

where

E0
δ (ζ) =

∫
ω

{(
ζ ′
1 +

(ζ ′
2)

2

2

)2

+ 1
3 (ζ ′′

2 )2 + c0δ(ζ ′
2)

2

}

and c0 = λ+2µ
2µ .

When θ = 0, we can minimize explicitely the energy. In this case we will prove (using the notation h− = max(−h, 0))
Theorem 2.3 (Minimization of the limit energy). Let

V =
{
ζ = (ζ1, ζ2) ∈ H1(ω) ×H2(ω),

∫
ω

ζi = 0, i = 1, 2
}
.

We have

inf
ζ∈V

E0
δ (ζ) = − |ω|

4

((
c0δ +

1
3L2

)−)2

. (2.11)

This infimum is reached exactly for the functions (up to a translation in x1):

ζ = 0 if δ > − 1
3c0L2

and

ζ =




ζ1(x1) = −L

8

((
c0δ +

1
3L2

)−)
sin
(

2x1

L

)

ζ2(x1) = ±L
√√√√
((

c0δ +
1

3L2

)−)
sin
(x1

L

)

∣∣∣∣∣∣∣∣∣∣∣∣
if δ ≤ − 1

3c0L2 .

P r o o f of Theorem 2.3. Let us first remark that by classical compactness argument there exists a minimizer of the
energy for every δ. Moreover, the Euler-Lagrange equations of the energy E0

δ can be written as (after integrations)



ζ ′
1 + 1

2 (ζ ′
2)

2 = constant = a ≥ 0 ,

ζ ′′
2 − 3(a+ c0δ)ζ2 = 0 .

(2.12)

Here the last constant of integration is zero because
∫

ω
ζ2 = 0. Then if −3(a+ c0δ) �= k2

L2 for some k ∈ N\{0}, we have
ζ2 ≡ 0 and then ζ1 ≡ 0.

On the contrary if −3(a+ c0δ) = k2

L2 for some k ∈ N\{0}, then up to a translation in x1, we have

ζ2(x1) = A sin
(
kx1

L

)

for some constant A. Then from the first Euler-Lagrange equation we deduce that

a =
1
2
A2 k

2

L2

and

ζ ′
1(x1) = −A2

4
k2

L2 cos
(

2kx1

L

)
,
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ZAMM · Z. Angew. Math. Mech. (2006) 5

i.e.

ζ1(x1) = −A2

8
k

L
sin
(

2kx1

L

)
.

Let us now compute the value of the energy for this solution.
We have

E0
δ (ζ) =

∫
ω

a2 +
1
3

1
2
A2 k

4

L4 + c0δ
1
2
A2 k

2

L2 ,

i.e.

1
|ω| E

0
δ (ζ) = a2 + a

(
k2

3L2 + c0δ

)
.

Because of (2.12), the number a has to be non-negative. Therefore we see that the energy is minimal for

a =
1
2

(
c0δ +

k2

3L2

)−
≥ 0

and then the value of the energy is

1
|ω| E

0
δ (ζ) = −a2 .

From the expression of a we see that this energy is minimal for k = 1, i.e. for



ζ1(x1) = −L

8

(
c0δ +

1
3L2

)−
sin
(

2x1

L

)
,

ζ2(x1) = ±L
√(

c0δ +
1

3L2

)−
sin
(x1

L

)
,

and the energy is

E0
δ (ζ) = − |ω|

4

((
c0δ +

1
3L2

)−)2

.

As a corollary we get the following result:

Corollary 2.4 (Case where the homogeneous solution is not a minimizer). Let us consider the energy (1.2) for non-
linear elasticity with zero volume forces fε and surface forces gε = (0, ε2Gε) where Gε is given by (1.3). Then the
displacement corresponding to a uniform compression of the beam in the direction of its thickness

uε (xε
1, x

ε
2) =

(
0, ε2δxε

2
)

(2.13)

is a particular solution of the Euler-Lagrange equation, and the energy of this particular solution is

E(uε) = −ε5|ω| (2(λ+ 2µ)δ2 +O(ε)
)
.

Let us define the following displacement

vε (xε
1, x

ε
2) =




vε
1 (xε

1, x
ε
2) = ε2

(
ζ1 (xε

1) − xε
2

ε
ζ ′
2 (xε

1)
)

vε
2 (xε

1, x
ε
2) = εζ2 (xε

1) + ε2xε
2

(
δ − 1

λ+ 2µ

(
λζ ′

1 (xε
1) + (λ+ 2µ)

(
ζ ′
2
)2 (xε

1)
))

+ ε
λ

λ+ 2µ
1
2

(xε
2)

2
ζ ′′
2 (xε

1)

(2.14)
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6 R. Monneau: The asymptotic invertibility of the linearized operator of nonlinear elasticity

where ζ = (ζ1, ζ2) is given by Theorem 2.3. Then the energy of this displacement is

E (vε) = −ε5|ω|

2(λ+ 2µ)δ2 +O(ε) +

µ(λ+ µ)
λ+ 2µ

((
c0δ +

1
3L2

)−)2

 .

In particular for every δ satisfying

δ < − 1
3c0L2

we conclude that the solution uε for the uniform compression is not a minimizer of the energy for ε small enough.

P r o o f of Corollary 2.4. The proof follows on the one hand from the computations of Theorems 2.1, 2.3 and Corol-
lary 2.2 and on the other hand on the fact that the energy can be rigorously expanded in a finite power serie where the leading
order term is given by the formal computation.

A further corollary is the following result

Corollary 2.5 (Non-invertibility of the linearized operator). For everyα ∈ (0, 1), let us introduce the following space
of displacements:

W ε =
{
wε = (wε

1, w
ε
2) ∈

(
C2,α

(
Ωε
))2

,

∫
Ωε

wε
i = 0 , i = 1, 2

}
.

Under the assumptions of Corollary 2.4, and for every displacement wε ∈ W ε, let us call Lε
wε the linearized operator of

the Euler-Lagrange equations of the energy (1.2) at the particular displacement wε. In particular Lε
0 is the usual operator

of linear elasticity, and is then invertible from W ε onto its range.
Then for every η > 0, there exists an ε0(η) such that for every ε ∈ (0, ε0), there exists δ = δ(ε) ∈ [− 1

3c0L2 − η, 0] such
that there exists a displacement wε ∈ W ε satisfying

wε ∈ [uε, vε] (2.15)

and the linearized operatorLε
wε atwε is not invertible fromW ε onto its range. Here uε and vε are given in (2.13) and (2.14).

P r o o f of Corollary 2.5. Let us choose ε0 such that

E (vε) < E (uε) (2.16)

for δ = − 1
3c0L2 − η and every ε ∈ (0, ε0). Let us assume that the corollary is false. Then the linearized operator Lε

wε is
invertible for every wε ∈ W ε satisfying (2.15) and for every δ ∈ [− 1

3c0L2 − η, 0]. Let us define the space

W ε =
{
wε =

(
wε

1, w
ε
2

) ∈ (H1 (Ωε)
)2
,

∫
Ωε

wε
i = 0 , i = 1, 2

}
. (2.17)

Let us recall that there exists a constant c > 0 such that for every wε ∈ W ε, we have
(
Lε

0w
ε, wε

)
L2 ≥ c||wε||2H1

as it is well known for the classical linear elasticity by a version of Korn’s first inequality. We now decrease δ and by
continuity, let us consider the first δ (if it exists) such that there exists a wε ∈ W ε satisfying (2.15) and such that

inf
wε∈W ε,||wε||L2=1

(
Lε

wεwε, wε
)
L2 = 0 . (2.18)

Using the usual Garding’ s inequality for elliptic systems, it is then classical that the infimum is reached for a function
wε ∈ W ε satisfying ||wε||L2 = 1 and we have the corresponding Euler-Lagrange equation

Lε
wεwε = νwε .

Moreover from (2.18), it is clear here that the Lagrange multiplier ν is equal to zero, and then wε is an eigenfunction in the
kernel of Lε

wε . This is in contradiction with the invertibility of Lε
wε on W ε. Therefore we get the existence of a constant

c′ > 0 such that for every wε ∈ W ε, we have
(
Lε

wεwε, wε
)
L2 ≥ c′||wε||2L2 (2.19)

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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for every

wε = (1 − t)uε + tvε , t ∈ [0, 1]

for δ = − 1
3c0L2 − η.

In particular we write for wε = vε − uε:

E (vε) = E (uε) + E ′ (uε) · wε +
∫ 1

0
dt

∫ t

0
ds E ′′ (uε + swε

) · (wε, wε
)
.

Because uε is a solution of the Euler-Lagrange equations we deduce that E ′(uε) = 0.
Now we recall that for a general wε ∈ W ε, we have the following identity for every wε ∈ W ε:(

Lε
wεwε, wε

)
L2 = E ′′ (wε) · (wε, wε

)
.

As a consequence of (2.19), we get

E (vε) ≥ E (uε) + 1
2 c

′||wε||2L2

which is in contradiction with (2.16). This then proves that the linearized operator has to be non-invertible.

Let us remark that this last corollary has important implications on the set of displacements Dε where the linearized
operator is invertible. After the change of coordinates introduced at the beginning of this section we see that (for suitable δ
arbitrarily close to − 1

3c0L2 , and ε small enough) we can find some smooth displacements w defined on Ω = ω × (−1, 1)
such that w and all its derivatives are arbitrarily small and the linearized operator at the particular displacement w is not
invertible. This proves in these coordinates that the complement of the set of displacements Dε contains arbitrarily small
elements w as ε goes to zero.

This result has to be put in relation with a result in [11] where we proved that the linearized operator is (in particular)
invertible on the set

Dε =
{
w ∈ W , |∇w|W 2,2(Ω) < Mε , |∂1w2 + ∂2w1|W 2,2(Ω) < Mε2 , |∂2w2|W 2,2(Ω) < Mε3

}
for a constant M > 0 and for ε small enough and with the Sobolev space

W =
{
w = (w1, w2) ∈ (W 3,2(Ω)

)2
,

∫
Ω
wi = 0 , i = 1, 2

}
.

3 Proof of the non-invertibility of the linearized operator at the homogeneous solution

Let us consider the linearized operator Lε
uε as defined in Corollary 2.5 at the particular homogenous displacement uε(xε) =(

0, δxε
2
)

for some fixed δ. Up to a change of coordinates (different from the one introduced at the beginning of Sect. 2),
we transform the problem on Ωε = ω

ε × (−1, 1). Then we denote by L(δ) the linearized operator written in these new
coordinates. We are interested in the solutions in the kernel, i.e. solutions v such that

L(δ)v = 0 on Ωε =
ω

ε
× (−1, 1) .

More generally we will study the operator L(δ) on the whole strip:

L(δ)v = 0 on Ω0 = R × (−1, 1) (3.20)

where the operator can be written explicitly




∂11v1

(
λ+ 2µ+ λ(δ +

δ
2

2
)

)
+ ∂12v2(λ+ µ)(1 + δ) + ∂22v1

(
µ+ (λ+ 2µ)

(
δ +

δ
2

2

))
= 0

∂11v2

(
µ+ (λ+ 2µ)

(
δ +

δ
2

2

))
+ ∂12v1(λ+ µ)(1 + δ) + ∂22v2(λ+ 2µ)

(
1 + 3

(
δ +

δ
2

2

))
= 0

∣∣∣∣∣∣∣∣∣∣∣
on Ω0 ,

∂2v1

(
µ+ (λ+ 2µ)

(
δ +

δ
2

2

))
+ ∂1v2µ(1 + δ) = 0

∂2v2(λ+ 2µ)

(
1 + 3

(
δ +

δ
2

2

))
+ ∂1v1λ(1 + δ) = 0

∣∣∣∣∣∣∣∣∣∣∣
on ∂Ω0 .
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(3.21)

Then we have the

Theorem 3.1 (Existence of a non-trivial kernel in the compression case). For δ < 0 and |δ| small enough, there ex-
ists some non-constant solutions of (3.20), periodic in x1 of frequency

ξ2 = − 3(λ+ 2µ)
2µ

δ(1 + o(1)) as δ −→ 0 .

On the contrary for δ ≥ 0 with |δ| small enough, the only bounded solutions of (3.20) are constants.

This result is interesting because of the following

Corollary 3.2 (Non-invertibility of the linearized operator at the homogeneous solution). For every ε small enough,
there exists a δ satisfying

δ = − 2µ
3(λ+ 2µ)

1
L2 (1 + o(1)) as ε −→ 0

such that the linearized operator Lε
uε defined in Corollary 2.5 at the particular displacement

uε (xε) =
(
0, ε2δxε

2
)

is not invertible from W ε (defined in (2.17)) on its range.

P r o o f of Corollary 3.2. It is sufficient to set δ = ε2δ and ξ = ε
L .

Theorem 3.1 is also interesting because it provides an example (over an unbounded open set) where the dimension of the
kernel of the operator increases by perturbation (which is forbiden over bounded domains). This last property was remarked
by Nirenberg and Walker [12] on another system on R2 in weighted Sobolev spaces.

Sketch of the P r o o f of Theorem 3.1.
Preliminaries on the symmetry
For a function v(x1, x2) we introduce

vs(x1, x2) = 1
2 (v(x1, x2) + (x1,−x2)) , and va(x1, x2) = 1

2 (v(x1, x2) − (x1,−x2))

and

vS =

(
vs
1

va
2

)
, and vA =

(
va
1

vs
2

)
.

It is easy to verify that if L(δ)v = 0 then vS and vA satisfy the same equation.

Case δ < 0

We apply the partial Fourier transform in x1 and get a function v̂(ξ, x2). We will note v̂′ = ∂2v̂. Taking into account the

previous remark on the symmetry, we introduce the vector V =



v̂1

v̂′
2

v̂2

v̂′
1


 whose first two components are symmetric in x2

for v = vS and antisymmetric for v = vA. The same remark applies for the last two components of V . The partial Fourier
transform of the equations on Ω0 gives the following relation

V ′ = AV

where A is a 4 × 4 matrix. The solution is the following

V (x2) = ex2AV0 .

Finally the boundary conditions on ∂Ω0 can be written

QV0 = 0
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where

Q =

(
BeA

Be−A

)

where B is an explicit 2 × 4 matrix. We now have to compute the exponential of A. To this end we remark that A has the
following representation by blocks 2 × 2:

A =

(
0 D

C 0

)
.

The zero on the diagonal are a consequence of the symmetry and C,D are 2 × 2 matrices. It is then possible to compute Q
which gives

Q =



a b c d

e f g h

−a −b c d

e f −g −h




for some expressions a, b, c, d, e, f, g, h. This particular form of Q comes also from the symmetry. Indeed, it is possible to

prove that if V0 =



u1

u2

u3

u4


 satisfies QV0 = 0, then V +

0 =



u1

u2

0
0


 and V −

0 =




0
0
u3

u4


 are also solution of the same equation.

Introducing

Q+ =

(
a b

e f

)
and Q− =

(
c d

g h

)

we see that we simply have to study separately the kernel of Q+ and Q−. It is possible to show that det Q+ > 0 while δ is
small enough and ξ �= 0. On the contrary we find

detQ− = cξ2
(
ξ2 +

3(λ+ 2µ)
2µ

δ(1 + o(1))
)

(1 + o(1))

where c is a constant. This proves the existence of periodic solutions if ξ2 = − 3(λ+2µ)
2µ δ(1 + o(1)) with negative δ.

Case δ ≥ 0

We multiply the equations on Ω0 by ψ(x1)v and integrate by part. Here ψ is a cut-off function. If ψ ≡ 1, then formally the
problem reduces to

∫
Ω0

tWSW = 0

where the boundary terms are zero because of the boundary conditions. Here S is a 4×4 matrix andW = (∂1v1, ∂2v2, ∂1v2,

∂2v1). Still by symmetry, it is possible to see that S(δ) =

(
S+(δ) 0

0 S−(δ)

)
is diagonal by blocks 2×2. It is easy to check

that det S+ > 0 for δ = 0 and then for δ small enough. On the contrary

detS−(0) = 0 for δ = 0

and S−(0) has only one zero eigenvalue. Let us call Λi(δ), i = 1, 2 the corresponding eigenvalues for general δ with

Λ1(0) > 0 for Λ2(0) = 0 .

www.zamm-journal.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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We only have to study Λ2

(
δ
)

, and for δ small enough we can compute

Λ2

(
δ
)

= cδ(1 + o(1))

where c > 0 is a constant. For δ > 0 we conclude that

tWSW ≥ cδ|W |2 for some constant cδ > 0

and then the usual cut-off argument with the function ψ implies that every bounded solution v is constant. The same cut-off
argument applies in the particular case δ = 0.
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