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ON THE EVANS-KRYLOV THEOREM

LUIS CAFFARELLI AND LUIS SILVESTRE

The Evans-Krylov theorem consists of the a priori estimate:

Theorem 1. Smooth solutions, u, of a uniformly elliptic, fully non-linear convex equation

F (D2u) = 0 in the unit ball B1, of R
n have a C2,α interior a priori estimate

‖u‖C2,α(B1/2) ≤ C‖u‖C1,1(B1)

with the constant C depending only on the ellipticity of F .

The importance of the Evans-Krylov theorem is that it allows us to solve the Dirichlet problem
for fully nonlinear equations by the method of continuity (rendering classical solutions).

This theorem was proved independently by N. Krylov [4] and L. C. Evans [3]. In this note,
motivated by our work on integral fully nonlinear equations [1], we provide a more direct
presentation of their proof (although the underlying key ideas are the same).

We recall the two opposite components in Krylov-Safonov Harnack inequality, the proof of
which can be found in [2] (Theorem 4.8).

a) (The weak Lε estimate) If v is a non-negative supersolution of

aij(x)Dijv ≤ 0

in B1, with λI ≤ aij ≤ ΛI then

|{v > t inf
B1/2

v} ∩B1/4| ≤ C(λ,Λ)t−ε

b) (the oscillation lemma) If v is a subsolution of aij(x)Dijv ≥ 0 in B1 and v ≤ 1 , then

sup
B1/2

v ≤ C(λ,Λ)|{v > 0} ∩B3/4|

In case of harmonic functions, these are just consequences of the mean value theorem.
We also recall that convexity of F as a function of D2u, implies that any pure second

derivative, uσσ, of u and thus any linear combination

ℓ(x) =
∑

j

uσjσj (x)

is a supersolution of the linearized operator

aij(x)Dijℓ(x) ≤ 0

(aij(x) = Fij(D
2u(x)).

Finally, the uniform ellipticity of F implies that for any two points x1, x2 in B1,

(1) tr[D2u(x2)−D2u(x1)]
+ ≈ tr[D2u(x2)−D2u(x1)]

−

At this point, we define for any subspace V

w(x, V ) = ∆V u(x)−∆V u(0)

(∆V u(x) is the Laplacian of u at the point x when restricted to the affine variety x+ V ).
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Note that for each fixed V , w is an ℓ(x) as above and satisfies the Lε estimate. Also, note
that the positive and negative part of the laplacian can be expressed as

max
V

w(x, V ) = tr[D2u(x)−D2u(0)]+,

min
V

w(x, V ) = − tr[D2u(x)−D2u(0)]−.

By rescaling dyadically and iterating it is enough to prove the following lemma:

Lemma 2. There exists a θ > 0, θ = θ(λ,Λ), such that if for all V , for all x in B1,

w(x, V ) ≥ −1

Then for all V , for all x in B1/2,

w(x, V ) ≥ −1 + θ.

Indeed, this will imply by iteration, that the laplacian is Hölder continuous. Noew we prove
the lemma.

Proof. Assume that w(x0, V0) ≤ −1+θ for some V0 and x0 in B1/2 (θ, small, to be chosen). We
will then find a contradiction. Since w(·, V ) + 1 is a nonnegative supersolution the Lε lemma
applies and

w(x, V ) + 1 ≤ θ1/2

in a set Ω that covers almost all of B1/4, i.e.,

|B1/4 \ Ω| ≤ Cθε/2

We notice that in Ω, 1− θ1/2 ≤ −w(x, V ) ≤ tr[D2u(x)−D2u(0)]− ≤ 1. On the other hand,
we know that

w(x, V ) +w(x, V ⊥) = △u(x)−△u(0) = tr[D2u(x)−D2u(0)]+ − tr[D2u(x)−D2u(0)]−.

Thus, we also have 0 ≤ tr[D2u(x) − D2u(0)]+ − w(x, V ⊥) ≤ θ1/2 for x ∈ Ω. Moreover, for θ

small, by (1),

−w(x, V ) ≈ tr[D2u(x)−D2u(0)]− ≈ tr[D2u(x)−D2u(0)]+ ≈ w(x, V ⊥).

Thus, there is a constant c(λ,Λ) > 0 such that w(x, V ⊥) ≥ c(λ,Λ) in Ω. We now examine the
function v = (c(λ,Λ)−w(x, V ⊥))+ in B1/4, for which the oscillation lemma applies and satisfies

a) 0 ≤ v ≤ 2
b) v(0) = c(λ,Λ)
c) v = 0 in Ω.

For θ small (i.e., for Ω almost all of B1/4) this contradicts the oscillation lemma since c(λ,Λ)
is a fixed positive constant for θ small. This completes the proof. �
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