
LECTURE NOTES

L. CAFFARELLI

1. Second Order Elliptic Equations

When learning complex analysis, it was a remarkable fact that the real part, u, of an

analytic function, because it satisfies the equation:

uxx + uyy = 0 = Δ(u)

(Laplace equation) is real analytic, and furthermore, the oscillation of u in any given

domain D, controls all the derivatives of u, of any order, in any subset D̃, completely

contained in D−. For our discussion, an important consequence of this theory are the

Schauder and Calderon-Zygmund estimates.

Heuristically, they say that if we have a solution of an equation

Aij(x)Diju = f(x)

and Aij(x) is, in a given functional space, a small perturbation of the Laplacian then Diju

is in the same functional space as Aij and f . (For instance, if [Aij ] is Hölder continuous

and positive definite, we can transform it to the identity (the Laplacian) at any given

point x0, and will remain close to it in a neighborhood.)

One can give three, essentially different explanations of this phenomena.
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a) Integral representations (Cauchy integral, for instance). This gives rise to many

of the modern aspects of real and harmonic analysis: fundamental solutions, singular

integrals, pseudodifferential operator, etc..

b) Energy considerations. Harmonic functions, u, are local minimizers of the Dirichlet

integral

E(v) =

∫
(∇v)2 dx .

That is, if we change u to w, in D̃ ⊂⊂ D

E(w)|D̃ ≥ E(u)|D̃ .

This gives rise to the theory of calculus of variations (minimal surface, harmonic maps,

elasticity, fluid dynamics).

One is mainly concerned, there, with equations (or systems) of the form

(1.1) DiFi(∇u, X) = 0 .

For instance, in the case in which u is a local minimizer of

E(u) =

∫
F(∇u, X) dx

(1.1) is simply the Euler equation:

Fi = ∇pF .

If we attempt to write (1.1) in second derivatives form, we get

Fi,j(∇u, X)Diju + · · · = 0 .
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This strongly suggests that in order for the variational problem to be “elliptic”, like

the Laplacian, Fi,j should be positive definite, that is F should be strictly convex that

in principle is in L2 (finite energy). It also leads to the natural strategy of showing that

∇u in in fact Hölder continuous to apply the (linear) Schauder theory.

That would imply that Diju is cα, thus ∇u is C1,α, and so on.

The passage from ∇u ∈ L2 to ∇u ∈ Cα, is, of course, no trivial matter. It is the

celebrated De Giorgi theorem, that then evolved into the De Giorgi-Nash-Moser theory.

In fact, the De Giorgi theorem is much more powerful than that. It considers a variational

solution of the linear equation

DiAij(x)Djw = 0

but without assuming any regularity on the coefficients Aij(x), only ellipticity, and it

proves that such a w is Hölder continuous.

Furthermore

‖w‖Cα(B1/2) ≤ C‖w‖L2(B1) .

In doing so, De Giorgi makes a jump of invariance classes.

From equations

DiQij(x)Dju = 0

that are a small perturbation of the Laplacian, that is, that under dilations become

asymptotically the Laplacian. We are now confronted with an equation that no matter

how much we dilate, remains in the same class.

3



Finally, a third approach is

c) Comparison principle. Two solutions u1, u2 of Δu = 0 cannot “touch without

crossing”. That is, if u1−u2 is positive it cannot become zero in some interior point, X0,

of D.

Again, heuristically, this is because the functions

F (D2u) = Δu = Trace[D2u]

is a monotone function of the Hessian matrix [Diju] and, thus, in some sense, we must

have F (D2u) “>” F (D2u2) at X0 (or nearby).

The natural family of equations to consider, then, is

F (D2u) = 0

for F a strictly monotone function of D2u.

Such type of equations appear in differential geometry. For instance, the coefficients

of the characteristic polynomial of the Hessian

P (λ) = det(D2u − λI)

are such equations where D2u is restricted to stay in the appropriate set of Rn×m. If λi

denote the eigenvalues of D2u

C1 = Δu =
∑

λi (Laplace)

C2 =
∑
i�=j

λkλk . . .

Cn =
∏

λi = det D2u (Monge-Ampere) .
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In the case of Cn = det D2u =
∏

λi is a monotone function of the Hessian provided

that all λi’s are positive. That is, provided that the function, u, under consideration is

convex.

If F (D2u, X) is uniformly elliptic, that is, if F is strictly monotone as a function of

the Hessian, or in differential form,

Fij(M) = Dmij
F

is uniformly positive definite, then solutions of F (D2u) = 0 are C1,α. As in the divergence

case, first derivatives uα satisfy an elliptic operator,

Fij(D
2u)Dijuα = 0

now in non divergence form, and again with bounded measurable coefficients.

The aij(x)Dijuα = 0 corresponding to De Giorgi type theorem, is due to Krylov and

Safanov, and states again that solutions of such an equation are Hölder continuous.

We point out that, again this result has “jumped” invariance classes. Unfortunately,

this is not enough to “bootstrap”, as in the divergence case: The coefficients, Aij(x) =

Fij(D
2u), depend on second derivatives. If we will manage to prove that D2u is Hölder

continuous, then from equation 1.1 Dαu would be C2,α, i.e., u would be C3,α and we

could improve and improve.

To prove this, once more convexity reappears. If F (D2u) is concave (or convex) then

all pure second derivatives are super (or sub) solutions of the linearized operator. This,
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together with the fact that D2u lies in the surface F (D2u) = 0, implies the Hölder

continuity of D2u, and, by the bootstrapping argument u is as smooth as F allows.

2. De Giorgi

Theorem 1. Let u be a solution of DiaijDju = 0 in B1 of R
n with 0 < λI ≤ aij(x) ≤ ΛI

(i.e., aij is uniformly elliptic). Then u ∈ Cα(B1/2) with

‖u‖Cα(B1/2) ≤ C‖u‖L2(B1)

(α = α(λ, Λ, n).

Proof. The proof is based on the interplay between Sobolev inequality, that says that

‖u‖L2+ε is controlled by ‖∇u‖L2 and the energy inequality, that says that in turn, u

being a solution of the equation ‖∇uθ‖L2 is controlled by ‖uθ‖L2 for every truncation θ:

uθ = (u − θ)+.

We recall Sobolev and energy inequalities:

Sobolev. If v is supported in B1, then

‖v‖Lp(B1) ≤ C‖∇v‖L2(B1)

for some p(n) > 2.

If we are not too picky we can prove it by representing

v(x0) =

∫
B1

∇v(x) · x0 − x

|x − x0|n dx = ∇v ∗ G .
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Since G belongs “almost” to Ln/n−1, any P < 2n/n− 2 would do. p = 2n/n− 2 requires

another proof.

Energy inequality. If u ≥ 0, DiaijDju ≥ 0 and ϕ ∈ C∞
0 (B1) then∫

B1

(∇ϕu)2 dx ≤ C sup |∇ϕ|2
∫

B1∩supp ϕ

u2 .

(Note that there is a loss going from one term to the other: ∇ϕi versus u.)

Proof. We multiply Lu by ϕ2u. Since everything is positive we get

−
∫

∇T (ϕ2u)A∇u ≥ 0 .

We have to transfer a ϕ from the left Δ to the right ∇.

We use that whenever we have a term of the form∫
∇T ϕu A u(∇ϕ) ≤ ε

∫
∇T (ϕu) A ∇(ϕu) +

1

ε

∫
|∇ϕ|2u2‖A‖ .

(Try it!!).

The proof of the theorem is split in two parts:

Lemma 1 (From an L2 to an L∞ bound). If ‖u+‖L2(B1) is small enough (< S(n, λΛ)),

then

sup
B1/2

u+ ≤ 1 .

Proof. We will consider a sequence of truncations

ϕkuk

where ϕk is a sequence of shrinking cut off functions converging to χB1/2
.
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More precisely:

ϕk

{≡ 1 for x ≤ 1 + 2−(k+1)

≡ 0 for x ≥ 1 + 2−k

|∇ϕk| ≤ C 2k

Note that ϕk ≡ 1 on supp ϕk+1

B1/2

while uk is a sequence of monotone truncations converging to (u − 1)+:

uk = [u − (1 − 2−k)]+ .

Note that where uk+1 > 0, uk > 2−(k+1).

Therefore if (ϕk+1uk+1) > 0, (ϕkuk) > 2−(k+1).

We will now show that, if ‖u‖L2(B1) = A0 is small enough then

Ak =

∫
(ϕkuk)

2 → 0 .

In particular (u − 1)+|B1/2
= 0 a.e.. This is done through a (non linear!!) recurrence

relation for Ak.

We have

Sobolev inequality. [ ∫
(ϕk+1uk+1)

p

]2/p

≤ C

∫
(∇ϕk+1uk+1)

2 .
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But, from Hölder ∫
(ϕk+1uk+1)

2 ≤
[ ∫

(ϕk+1uk+2)
p

]2/p

· |{ϕk+1uk+1}|ε

so we get

Ak+1 ≤ C

∫
[∇(ϕk+1uk+1)]

2 · |{ϕk+1uk+1 > 0}|ε

We now control the RHS by Ak.

From energy we get ∫
∇(ϕk+1uk+1)

2 ≤ C 22k

∫
supp ϕk+1

u2
k+1

(But ϕk ≡ 1 on supp ϕk+1)

≤ C 22k

∫
(ϕkuk)

2 = C 22kAk .

To control the term:

|{ϕk+1uk+1 > 0}|ε ≤ |{ϕkuk > 2−k}|ε

By Chebichef:

≤ 24kε

( ∫
(ϕkuk)

2

)ε

.

So we get

Ak+1 ≤ C 24k(Ak)
1+ε .

Then, for A0 = δ small enough Ak → 0 (prove it).

Corollary 1. If u is a solution of Lu = 0 in B1, then

‖u‖L∞(B1/2) ≤ C ‖u‖L2(B1)
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Step 2. Oscillation decay:

Let oscD u = supD u − infD u

Theorem 2. If u is a solution of Lu = 0 in B1 then ∃ σ(λ, Λ, n) < 1 such that

oscB1/2
u ≤ σ oscB1 u .

The proof is based on the following lemma.

Lemma 2. Let 0 ≤ v ≤ 1, Lv ≥ 0 in B1. Assume that B1/2 ∩ {v = 0}| = μ (μ > 0)

Then supB1/4
v ≤ 1 − ε(μ).

Idea of the proof. We will consider a diadic sequence of truncations

vk = [v − (1 − 2−k)]+

and their renormalizations

wk = 2kvk

B1/2

v

v

v

v

|{v = 0}| ≥ μ > 0

v3

v2

v1

10



We will be interested in the set Ck = {vk > 0}. Its complement Ak = {vk = 0} and

the transition: Dk = [Ck − Ck−1]

Ck

Dk

Ck-1

We will show that in a finite number of steps, k0, k0(λ, Λ, μ),

|Ck0| = 0 .

Then ε(μ) = 2−k0.

Note that

a) A0 = μ

b) By the energy inequality, since |wk|B1 ≤ 1,

∫
B1/2

|∇wk|2 ≤ C

c) If Ck gets small enough

4

∫
(wk)

2 ≤ |Ck| < δ ,

and 2wk|B1/4
≤ 1, done.

�
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We contend now that, since ‖wk‖H1 is bounded and |{wk = 0}| = |Ak| ≥ μ, wk “needs

some room” to go from 0 to 1/2, that is

Dk ≥ C(Ak, Ck+1)

Sublemma. Let 0 ≤ w ≤ 1

a = |A| = |{w = 0} ∩ B1/2|

c = |C| = |{w = 1} ∩ B1/2|

d = |D| = |{0 < w < 1} ∩ B1/2| .

Then if
∫ |∇w|2 ≤ C0,

|D| =≥ C1(|A| |C|)2 .

Proof. For x0 in C we reconstruct w integrating along all rays that go from x0 to a point

in A

A

S(A)

C

1 = w(x0) =

∫
wr dr
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or

|A| ≤ Area S(A) <

∫
D

|∇w(y)|
|x0 − y|n−1

dy

(
wr dr dσ ≤ |∇w|rn−1 dr dσ

rn−1

)
Integrating x0 on C

|A| |C| ≤
∫

D

|∇w(y)|
(∫

C

dx0

|x0 − y|n−1

)
dy

Among all C with the same measure |C|, the integral in x0 is maximized by the ball of

radius |C|1/n ∫
C

≤ |C|1/n .

So

|A| |C| ≤ |C|1/n

( ∫
D

|∇w|2
)1/2

|D|1/2 .

Since
∫ |∇w|2 ≤ C1, the proof is complete. �

Proof of the theorem. We iterate this argument with 2(wkΛ
1
2
) = w. If Ck stays bigger

than δ after a finite number of steps k + 0 = k(δ, μ), we get

∑
|Dk| ≥ |B1/2 impossible.

So for some k < k0, |Ck| ≤ δ that makes |Ck+1| = 0 from the first part of the proof.

Corollary 2. oscB
2−k

u ≤ λk oscB1 u.

Corollary 3. u ∈ Cα(B1/2) with λ = 2−α (defines α).

Corollary 4. If ‖u‖L∞(Rn) ≤ C =⇒ u = C+.
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Note. This argument in Lemma 1 is very useful when two quantities of different homo-

geneity compete with each other: area and volume (in a minimal surface) or area and

harmonic measure, or harmonic measure and volume as in free boundary problems.

3. Krilov Safanov

Let u be a nonnegative solution of Lu =
∑

aijDiju = 0 with

λ Id ≤ aij ≤ Λ Id in B1 of R
n

Then, in B1/2:

sup
B1/2

u ≤ C inf
B1/2

u

with C = C(λ, Λ, n).

Proof. We start by remarking that an equation Lu = 0 as above is totally infinitesimal

in nature.

Further, since no regularity of the coefficients aij is required. The only information

that Lu = 0 is giving us is that at every point the largest eigenvalue of D2u, μmax must

be nonnegative, the smaller μmin must be nonpositive and

μmax ∼ −μmin .

Therefore, the passage from the infinitesimal to the global is a very delicate issue that

depends on a very special equation that has simultaneously divergence and nondivergence

structure, the Monge-Ampere equation:

MA(u) = det D2u = f(x) .
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The MA equation,

det D2u =
∏

μj

is elliptic only when all μj are positive (or negative) that is when u is convex .

On the other hand, det D2u is the Jacobian of the map

x → y(x) = nablau(x)

and as such it has a hidden divergence structure. This is reflected in the celebrated

Alexandrov (Backelman-Pucci) theorem.

Theorem 3. Let v be a solution of aijDijv = f in B1. Suppose that v ≥ 0 on ∂B − 1.

Then

sup(v−)n ≤ C

∫
??

(f+)n dx ≤ ‖f+‖n
Ln .

Remark 1. The domain of integration, ??, will be very important for us.

Remark 2. This Theorem plays, in some sense, the role of the Sobolev inequality for

De Giorgi’s theorem, asserting that a combination of second derivatives controls v.

Proof of the Lemma. We consider −v = min(v, 0). We extend it by zero to B2 and form

its convex envelop Γ(v)
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We now consider the gradient map

x −→ y(x) = ∇Γ(v)

and estimate its volume by above and below:

By above:

Vol (∇Γ(B1)) =

∫
B1

det D2Γ .

But
∫

B1
det D2Γ(v) is connected to f+ by the following two observations

a) det D2Γ(v) is supported on the contact set D, since through any other point Γ

contains at least a segment (prove it). In particular we will take ?? = D−.

b) At a contact point

0 ≤ D2Γ(v) ≤ D2v

Therefore

det D2Γ(v) ≤ πμj ≤ (μmax)
n ≤ C(f+)n

(μj denotes the eigenvalues of D2v).

Therefore, we can estimate by above:

Vol (∇Γ(B1)) ≤
∫

D

(f+)n dx .

Now the estimate by below: Consider any plane Π:

Π = {y =
∑

wjxj + a} with slope, |w| ≤ sup(v−)

4
.
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Translate it far down the constant very negative so that it stays fully below the graph of

Γ(v), and then raise it continuously: (at = a + t).

B2

B1

sup v

The plane Πat , for t large enough will cross the graph of Γ(v), away from the edge of B2.

In fact, inside B1, since the domain D ⊂ B1. Therefore any such w ∈ Γ(B1)+....material

cut-off by Xerox.... the ball of radius sup(v−)
4

is contained in ∇Γ(B1). Therefore(
sup(v−)

4

)n

≤ C Vol (∇Γ(B1)) ≤ C

∫
D

(f+)n .

This completes the proof with ?? = D the contact set of Γ with v. �

We now go back to our u nonnegative solution of

Lu = 0 .

We will assume that u(0) = 1 and show that supB1/2
u ≤ C0. This is done in two parts:

In the first we only assume that u is a supersolution, (we call it ū, Lū ≤ 0) and show

that:
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Lemma 3. If ū ≥ 0, and ū(0) = 1, then ū belongs to a “weak Lε”:

|{ū > t}| ≤ C t−ε for ε = ε(λ, Λ, n) .

For that we need a sublemma:

Sublemma. (first rough version) ū as above, then

|{ū < 2} ∩ B1| ≥ θ > 0 (θ = θ(λ, Λ, n)) .

(Remark: Note the similarity with De Giorgi theorem.)

Proof. We consider

v = ū + 2(1 − |x|2)

and we apply the ABP Theorem

1
‖

v−(0)

≤ sup
B1

(v−)n ≤ C

∫
D

((Lv)+)n

We note that

a) Since Lū ≤ 0, Lv ≤ C.

b) On the contact set D, 0 ≥ Γ(v) = v, therefore ū < 2.

We thus get

1 ≤ C|{Γ(v) = v}| ≤ C|{u < 2}| .

�
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Remark. On the set where Γ(v) = v, v has a “global” tangent plane, �, by below (that

of Γ(v)), and thus, ū has a global tangent paraboloid P = � + 2 − 2|x|2 by below, giving

control on first and....

Now we want to iterate this argument at every scale to obtain the Lε estimate. For

that, we need two tools. One, the possibility of localizing better the set where ū is

bounded. The second a Calderon Zygmund type lemma for iteration.

An improved sublemma 1. ū as above, then for any cube contained in Q1 with sides

of size 1/8

(Q1/8(x0)) − |{ū < τ} ∩ Q1/8(x0)| ≥ θ > 0

for some τ, θ (λ, Λ, n).

Proof. For σ = σ(λ, Λ, n) large, h = −|x|−σ is a supersolution of Lh ≤ 0.

Then instead of the auxiliary function v = ū − 2(1 − |x|2), we use

v = ū + γ(x − x0) ,

with

Q1/8

x0
0

paraboloid
inside  Q1/8 (x0)
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Then Lv ≤ 0 outside Q1/8(x0) and Lv ≤ C inside Q1/8(x0).

Then Γ(v) = v can occur only inside Q1/8, i.e., D ⊂ Q1/8 and as before

−v(0) ≤
∫

D

Lv ≤ C|D| = C|D ∩ Q1/8|

The second ingredient is a CZ type lemma:

Lemma 4. Let A ⊂ B ⊂ Q1 be two measurable sets with the following properties

a) |A| ≤ δ

b) Whenever |A∩Qs(x)|
|Qs| > δ, this implies that for any Q2s(y) that contains Qs(y) ⊂ B

Q2s(y) ⊂ B

Then

|A| ≤ δ|B| .

Proof. We make a CZ decomposition: We split Q1 into 2n cubes Q1/2

If
|A∩Q1/2(x)|

|Q1/2| > δ, we keep it, if not we keep subdividing. This way we build a sequence

of diadic disjoint cubes Qj that contain A (a.e.). Each one of the predecessors A∗
j (the

last cube we did not choose) has the property that

a)
|A∩Q∗

j |
??

< δ
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b) Q∗
j ⊂ B.

We may assume the Q∗
j are disjoint. Since they still cover A, we get

|A| =
∑

|A ∩ Q∗
j | ≤ δ

∑
|Q∗

j | ≤ δ|B| .

We are now ready to prove the Lε estimate.

Proof. Consider

Ak = |{ū > tk}| .

We will apply the previous lemma to

B = Ak

A = Ak+1

C =??

and

u∗ =
ū

tk
.

Then, we know from the lemma that |Ak| ≤ |A1| ≤ (1 − θ) = δ. Let’s check that Ak,

Ak+1 satisfy the A–B conditions. Indeed if

|Ak+1 ∩ Q|
|Q| > δ

that means that

|{u∗ > t} ∩ Q| ≥ (1 − θ)|Q|

or

|{u∗ < t} ∩ Q| ≤ θ|Q|
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that means that there cannot be any point nearby (in 4Q) where u∗ is less than 1. (If

not we contradict the lemma.) Thus Q∗ ⊂ Ak = B.

By applying this argument inductively, we get that

|Ak| ≤ (1 − θ)k = (tk)−ε

for ε chosen so t−ε = (1 − θ). The final step in the proof uses only that u ∈ Lε
w and u is

a subsolution (we will call it u:

Lemma 5. Suppose that 0 ≤ u in Q2, Lu ≥ 0 and ‖u‖Lε
w
≤ 1. Then

sup
Q1/2

u ≤ M0 .

Proof. Suppose that supQ1/2
u = M0. We want to find an apriori bound on M0. The idea

is the following:

If u(x0) = a generic constant M , and we tube around x0, a large enough cube Q�(M)

then u must cross (1 + γ)M in Q, if γ is chosen small enough.

Let’s see why:

M

M/2

u(x) = M

Q
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We look simultaneously in Q�(M)/2 at the sets

A = {u ≥ M/2} ∩ Q�(M)/2

B = {u < M/2} ∩ Q�(M)/2

Obviously

|A| + |B| = |Q�(M)/2| .

From the Lε estimate that we are assuming

|A| ≤
(M

2

)−ε

(independently of Q).

We want to make both A and B < 1
2
|Q�(M)/2| to get a contradiction.

For |A|, then, we need (M

2

)−ε

≤
∣∣∣�(M)

2

∣∣∣n .

That is �(M) = M−ε̂ a small negative power of M will do. For B, we look at

w =
(1 + γ)M − u

γM
.

Then on Q�(M):

a) w ≥ 0 since we are assuming (by contradiction) that u ≤ (1 + γ)M

b) Lw ≤ 0, since Lu ≥ 0

c) w(x0) = 1

From the Lε estimate of Lemma.....,

∣∣∣{w > t} ∩ Q�(M)/2

∣∣∣ ≤ t−ε|Q�(M)/2| .
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If we choose t =
( 1
2
+γ)

γ
, we get

|B| =
∣∣∣{u ≤ M

2

}
∩ Q�(M)/2

∣∣∣ ≤ [ γ
1
2

+ γ

]ε

|Q�(M)/2|

We choose γ small so that [ γ
1
2
+γ

]ε < 1
2

(independently of M and we get a contradiction.

Recapitulating: For γ, ε̂ small enough (γ, ε̂(λ, Λ, n)), if u(x0) = M then,

sup
Q

M−ε̂

u ≥ (1 + γ)M

We are ready to complete the proof: Let x0 ∈ Q1/4(0) and u(x0) = M0 large. By repeating

the argument above we can find a sequence of points xj , such that

Mj = u(xj) = (1 + γ)Mj−1 = (1 + γ)jM0

and

material missing from xerox copy

�(Qj) = (Mj)
−ε̂ = (1 + γ)−ε̂ jM−ε̂

0 .

That is

|xj+1 − xj | ≤ M−ε̂
0 (1 + γ)−jε̂ .

If M0 is large enough, the sequence xj stays in Q1/2 and u(xj) → ∞. A contradiction.

4. Evans-Krylor

Theorem 4. Let u be a solution of F (D2u) = 0, with F uniformly elliptic and concave

(or convex). Then for some α(λ, Λ, n),

‖u‖C2,α(B1/2) ≤ C‖u‖L∞(B1) .
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Proof. a) We prove first that u is C1,1. We may assume that Fij(0) = δij . In particular,

tran (M) ≥ F (M)

so Δu ≥ 0.

Also, if F (M) = 0 any solution v of F (D2v) = 0 satisfies

Fij(M)(Dijv) ≥ 0

or more generally, if u, v are solutions

Fij(D
2u)Dijv ≥ 0

it follows that given a solution u, the second order incremental quotient

δh,e = u(x + he) + u(x − he) − u(x)

is a subsolution if

Fij(D
2u(x))Dij(δ) ≥ 0

Corollary 5. (from weak Harnack)

‖Dααu‖L∞(B1/2) ≤ C‖u‖L∞(B1)

Proof. Δu is a subsolution, bounded by below, and in Lε
w (from its divergence structure).

From the weak Harnack inequality Δu is bounded. This implies that u ∈ W 2,ρ and thus,

the weak Harnack applies to (Dααu)+ for all α.

(Dααu)− is controlled then by the fact that Δu ≥ 0.

b) We are now ready to prove the C2,α estimate.
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A couple of preliminaries

b1) Renormalization:

If u is a solution of F (D2u), then ū λu(μx) is again a solution of

F̃ (D2ū) = 0

with F̃ being just a dilation of F (if λ = μ−2, F̃ = F , or if F is homogeneous F̃ = F ).

The important fact is that the structural conditions of F remain the same. Therefore, it

is enough to prove, that if u is a C1,1 solution in B1, then the oscillation of D2u decreases

a fixed amount when we go from B1 to Bρ for some fixed 0 < ρ < 1.

b2) Second observation is that if F is uniformly elliptic and both M and M +N satisfy

F (M) = F (M + N) = 0 then λ ≤ ‖N+‖
‖N−‖ ≤ Λ, and n particular

‖N‖ ∼ ‖N+‖ ∼ ‖N−‖ .

We now proceed as follows.

Let us normalize the situation so that

diam(D2u(B1)) = 1

We want to show that for some 0 < ρ0,

diam(D2u(Bρ0)) ≤ 1/2 .

Let us call Γ = {D2u(B1)}. Then diam Γ = 1, that means that ∃ M0, M1 = M0 + N ,

two matrices in Γ with

‖M0 − M1‖ = 1 .
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At this point, we do two coverings of Γ by balls Bj , and B̂j with finite overlapping. The

first family, of radius δ, the second of radius ε � δ, both the be chosen.

The number of Bj ∼ δ−n2
and that of B̂j ∼ ε−n2

. We first inspect the inverse image

of the Bj (H the Hessian map)

B1  (x, variable)
M = D2u

   : x       D2u>

Since H−1(Bj) covers B1, there exists one Bj , B0, such that |H−1(B0)|δn×m (in B1 of x).

But in H(B1) we have that

M1

M2

Bδ ( M )

since diam H(B1) = 1 ≥ 1/2, there exists M2 such that

‖M2 − M̄‖ ≥ 1

4

(note that we use diam ≥ 1/2 instead of 1).
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In particular, from b2

‖M2 − M̄‖+ ≥∼ 1

4
= θ > 0

we have that if

M2 = D2u(x2)

and

M̄ = D2u(x̄)

for some α

D2
ααu(x2) ≥ D2

ααu(x̄) + θ .

If we choose δ � θ, we have further that

D2
ααu(x2) ≥ D2

ααu(x) +
θ

2

for any x in H−1(Bδ) and therefore

sup
B1

D2
ααu(x) ≥ sup

(
D2

ααu +
θ

2

)
H−1(Bδ)

.

But D2
ααu is a subsolution and this implies that

sup
B1/2

Dααu(x) ≤ sup
B1

Dααu − C θ .

We now inspect the covering by balls of radius ε.

If ε � C θ, there is at least one ball of the B̂j that we do not need anymore to cover

H(B1/2).

As long as diam H(B1/2) ≥ 1/2 we may repeat the argument. After a finite number

of steps, if diam remains above 1/2 we run out of B̂j . A contradiction.
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